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The aim of this essay is to show that the subject-matter of ontology is richer
than one might have thought. Our route will be indirect. We will argue that
there are circumstances under which standard first-order regimentation is
unacceptable, and that more appropriate varieties of regimentation lead to
unexpected kinds of ontological commitment.

Quine has taught us that ontological inquiry—inquiry as to what there
is—can be separated into two distinct tasks.1 On the one hand, there is
the problem of determining the ontological commitments of a given theory;
on the other, the problem of deciding what theories to accept. The objects
whose existence we have reason to believe in are then the ontological com-
mitments of the theories we have reason to accept. Regarding the former
of these two tasks, Quine maintains that a first-order theory is committed
to the existence of an object satisfying a certain predicate if and only if
some object satisfying that predicate must be admitted among the values
of the theory’s variables in order for the theory to be true. Quine’s crite-
rion is extremely attractive, but it applies only to theories that are couched
in first-order languages. Offhand this is not a serious constraint, because
most of our theories have straightforward first-order regimentations. But
here we shall see that there is a special kind of tension between regimenting
our discourse in a first-order language and allowing our quantifiers to range
over absolutely everything.2 We will proceed on the assumption that ab-
solutely unrestricted quantification is possible, and show that an important
class of English sentences resists first-order regimentation. This will lead us
to develop alternate languages of regimentation, languages containing plural

1See Quine (1948).
2For an excellent discussion on quantifying over everything see Cartwright (1994). See

also Dummett (1981) chapters 14-16, Parsons (1974), Boolos (1998b) and McGee (2000).

1



quantifiers and predicates. It will also lead us to set forth a more inclusive
criterion of ontological commitment.

1 Regimentation

I use ‘regimentation’ in Quine’s sense.3 Ordinary discourse is plagued with
unclarities and ambiguities. Usually they are harmless. But under special
circumstances—such as the practice of scientists and philosophers—they
may interfere with our goals. When we regiment, we paraphrase the sen-
tences of our original discourse into sentences with fewer unclarities or am-
biguities. There is no presupposition of synonymy, or of sameness of ‘logical
form’. It is only required that, to our satisfaction, whatever we hoped to
achieve by way of our original sentences can be achieved closely enough by
way of their paraphrase. In many cases, this means that truth-conditions
must be preserved, but we needn’t assume this in general. No questions
about our original sentences are settled with regimentation: the old dis-
course is surrendered in favor of the new.

Regimentation is important for the purposes of ontological inquiry be-
cause our theories are not always expressed in ways that allow us to assess
their ontological commitments. But we may be able to regiment them using
languages for which some criterion of ontological commitment is available.
In doing so no light is shed on the commitments of the original theories, but
as long as we are willing to surrender them in favor of their regimentations,
we will be in a position to determine what our ontological commitments are.

A language of regimentation needn’t be a fragment of natural language.
It is sufficient that it be well understood. For instance, we may attempt to
eliminate ambiguity by adding subscripts to the pronouns of some suitable
fragment of English. The resulting language is not itself a fragment of
English, but it will presumably be well understood by any English speaker.
Formalisms such as first-order logic can also be used for regimentation. We
may regard ‘∃xi’, ‘xi = xj ’, ‘¬’ and ‘∧’ as abbreviating the expressions ‘there
is an objecti such that’, ‘iti is identical to itj ’, ‘it is not the case that . . . ’
and ‘it is both the case that . . . and . . . ’ (respectively). Not all of the latter
are part of English, but they will be well understood by any English speaker
familiar with the relevant subscripting conventions.

First-order languages naturally suggest themselves as languages of regi-
mentation. Besides enabling the application of Quine’s criterion of ontolog-
ical commitment, they provide us with grammatical simplicity, notational

3See Quine (1960), section 33.
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perspicuity and considerable expressive power. So much so that there is
some pull towards thinking that we should always choose a first-order lan-
guage as our language of regimentation. Quine and others seem to have
adopted just this view.4 Nonetheless, the choice of a language of regimen-
tation should be made on the basis of its ability to further our goals. And,
depending on the circumstances, first-order languages may not turn out to
be the best candidates for the job.

The adequacy of regimentation is constrained only by our needs. Not so
for the adequacy of a criterion of ontological commitment. Once we have
settled upon a language of regimentation and accepted a theory couched in
that language, ontological commitments are forced upon us. They cannot
be chosen on the basis of their ability to further our goals.

2 Critics

Suppose we agree that our language of regimentation is to be first-order.
How might we regiment the Geach-Kaplan sentence?

Some critics admire only one another.

One option is to introduce the first-order predicate ‘P(. . .)’ as an abbrevia-
tion for the English ‘. . . is such that some critics admire only one another’
and go on to paraphrase the Geach-Kaplan sentence as ‘∀x P(x)’. But nor-
mally we expect a paraphrase to preserve some of the logical connections of
the original sentence. For instance, we might want the existence of critics
to be derivable from our paraphrase of the Geach-Kaplan sentence. And, of
course, ‘∃x Critic(x)’ isn’t derivable from ‘∀x P(x)’.

Is it possible to find a first-order paraphrase of the Geach-Kaplan sen-
tence which preserves all the logical connections we might be interested in?
Kaplan answered part of this question in the negative.5 He proved that there
is no first-order sentence that is true in precisely the same models as the
following second-order sentence, which is reminiscent of the Geach-Kaplan
sentence when ‘Axy’ is read ‘x admires y’ and all quantifiers are restricted
to critics:

(1) ∃X(∃xXx ∧ ∀x∀y[Xx ∧Axy → x 6= y ∧Xy])]).

But now suppose we were to agree that a sentence ϕ can only be a regimen-
tation of the Geach-Kaplan sentence if it meets the following condition:

4See, for instance, Quine (1948) and Davidson (1967).
5See Boolos (1984), p. 57.
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(∗) ϕ is true in a model just in case (1) is.

Then, by Kaplan’s proof, there is no way of regimenting the Geach-Kaplan
sentence in a first-order language.

However, there is usually no reason to impose conditions as stringent as
(∗) on our regimentations. We might, for example, paraphrase the Geach-
Kaplan sentence as a first-order version of the following:

(2) There is a (non-empty) set of critics z such that, for any x and y, if
x ε z and x admires y, then x 6= y and y ε z.

A first-order version of (2) does not meet condition (∗) because there are
models that verify (1) with domains containing no sets. But it is possible for
a sentence to serve as a paraphrase even if it doesn’t preserve all the original’s
logical properties. All that is required is that, to our satisfaction, whatever
we hoped to achieve by way of the original can be achieved closely enough by
way of the paraphrase. Thus, if not all the logical properties of the Geach-
Kaplan sentence are important for our present purposes, there needn’t be
an obstacle for paraphrasing it as (2). Moreover, solid intuitions about the
logical properties of the Geach-Kaplan sentence run out well before forcing
anything like (∗) upon us, and some of the intuitions we do have easily fade
away in the presence of an otherwise attractive paraphrase.

3 Collective Predicates

There is a well-known distinction between collective and distributive read-
ings of English predicates. For instance, ‘The children carried the piano’ can
be taken to mean either that the children carried the piano together, or that
each of the children is such that she carried the piano. In the former case,
the predicate ‘. . . carried the piano’ is understood collectively; in the latter,
it is understood distributively. In general, we shall say that an occurrence of
the predicate ‘. . . (are) P’ is understood distributively in ‘they (are) P’ just
in case ‘they (are) P’ can be paraphrased as ‘each of them (is) P’. Otherwise,
we shall say that ‘. . . (are) P’ is understood collectively.6

Throughout this paper it will be convenient to eliminate the sort of
ambiguity that afflicts sentences containing predicates which are open to
both collective and distributive readings. We shall do so by stipulating

6By extending this characterization in the obvious way, we can speak of an n-adic pred-
icate being understood distributively or collectively with respect to each of its argument-
places.
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that predicates are to be understood according to their collective readings
whenever there is any risk of ambiguity. Also, we shall sometimes speak of
collective and distributive predicates instead of collective and distributive
readings of predicates.

Attention to collective predicates sheds light on the reason why find-
ing a first-order paraphrase for the Geach-Kaplan sentence is not entirely
straightforward. The following is presumably an uncontroversial non-first-
order paraphrase:

(3) There are some critics such that, for any x and y, if x is one of them
and x admires y, then x 6= y and y is one of them.

Note that each of the three occurrences of the predicate ‘. . . is one of . . . ’
in (3) must be understood collectively with respect to its second argument-
place. But there is no direct way of paraphrasing collective English predi-
cates into first-order languages because first-order predicates do not admit
plural arguments. In order to find a first-order paraphrase for (3) some de-
viousness is required. One possibility is to replace plural quantification over
critics with singular quantification over sets of critics, and replace ‘. . . is one
of . . . ’ with the set-theoretic ‘. . . ε . . . ’. What we get is (2) (from section 2).

More generally, we could replace plural quantification over critics with
singular quantification over objects that serve as surrogates for critics: sets
of critics, or classes of critics, or ‘plural objects’ composed of critics, or
events involving critics. To ensure that the result is firstorderizable, we
shall require of our surrogates that they admit of a ‘membership’ relation,
that is, whenever s is a surrogate for the Fs we shall require that the Fs be
all and only the ‘members’ of s.7 This allows us to replace ‘. . . is one of . . . ’
by the ‘membership’ relation in our paraphrases. For instance, (3) might be
paraphrased as:

(4) There is a surrogate z with only critics as ‘members’ such that z has
at least one ‘member’ and, for any x and y, if x is a ‘member’ of z and
x admires y, then x 6= y and y is a ‘member’ of z.

And, as one would expect, (4) is equivalent to (2) (from section 2) when our
surrogates of choice are sets.

7Needless to say, ‘membership’ does not, in general, correspond to set-theoretic mem-
bership. Our requirement is equivalent to a uniqueness condition according to which, if
s is a surrogate for the Fs and the Gs are not the Fs, then s is not a surrogate for the
Gs. Accordingly, we cannot have it that s is a surrogate for the Fs just in case s is the
mereological sum of the Fs, since the Fs and Gs might not be the same objects but share
a mereological sum. Requirements on surrogates are liberalized in section 6.
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In many cases, the surrogate-method (as we shall call it) is an extremely
effective way of producing first-order paraphrases for sentences containing
‘. . . is one of . . . ’. But George Boolos has shown that it cannot always be
made to work.8 He noted that although the following is obviously true,

There are some sets such that, for any y, y is one of them just
in case y ε/ y;

it gets assigned a necessarily false paraphrase by the surrogate method when
surrogates are taken to be sets:

There is a set x such that, for every y, y ε x just in case y is a
set such that y ε/ y.

The problem generalizes. For, given any non-trivial9 choice of surrogates σ,
the following is true:

(5) There are some σ-surrogates such that, for any y, y is one of them just
in case y is a σ-surrogate which is not a ‘member’ of itself.

But it gets assigned a necessarily false paraphrase by the surrogate method
when our choice of surrogates is σ:

(6) There is a σ-surrogate x such that, for every y, y is a ‘member’ of x
just in case y is a σ-surrogate which is not a ‘member’ of itself.

Thus, for any non-trivial choice of surrogates, we can find a sentence that
cannot be paraphrased by appeal to those surrogates.

Friends of the surrogate method have a way of avoiding this conclusion.
They can claim that the quantifier ‘for every y’ in (6) doesn’t really range
over all surrogates, and that x is outside this range. They might add that
the quantifiers in (6) are systematically ambiguous, or that their range is
indeterminate. But this move is blocked if we are allowed to assume that
the domain of (5) consists unequivocally of everything there is.

8See Boolos (1984), Boolos (1985a) and Boolos (1985b).
9On the assumption that there are at least four individuals, say that a choice of surro-

gates σ is non-trivial only if every two individuals have a surrogate.
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4 Bernays’s Principle

The conclusions of the preceding section are not as strong as one might
have hoped. We saw that, for any non-trivial choice of surrogates, there is
a sentence that cannot be paraphrased by appeal to those surrogates. But
this is compatible with the view that every sentence can be paraphrased
by appeal to some choice of surrogates. Moreover, a sentence might have
a first-order paraphrase even if the surrogate-method fails. Thus, (5) can
be paraphrased as ‘there exists a nonselfmembered σ-surrogate’, which is
certainly firstorderizable.

In this section we shall make a stronger case for the view that there are
sentences resisting first-order paraphrase.

Cantor’s Theorem is well-known. It states that there is no function from
a set onto its power-set. Less well-known is a certain kind of extension
of this result. Intuitively, the thought is that there is no function from the
objects there are onto the ‘pluralities’ of objects there are. This goes beyond
Cantor’s Theorem because there is no set containing all objects.

So far, however, our proposition has not been properly expressed. To
begin with, we have said nothing about what a ‘plurality’ is supposed to
be.10 Moreover, functions are normally taken to be sets, so it is unclear
just what one might mean by ‘function’ in the present context. In order to
express our proposition properly, we need a piece of notation. If the Gs are
some ordered pairs, we shall say that the Gs map x onto the Fs if, for every
y, 〈x, y〉 is one of the Gs just in case y is one of the Fs. Our proposition is
then this:

(BP) Given any ordered pairs, there are some things onto which those or-
dered pairs map nothing.

As far as I know, Paul Bernays was the first to set-forth this kind of result,11

so I shall refer to it as Bernays’s Principle.
I submit that, when our domain consists of everything there is, Bernays’s

Principle has no first-order paraphrase. Unfortunately, I have no proof that
this is so. In fact, I haven’t the slightest idea what such a proof would look
like. Note, for example, that a Kaplan-style nonfirstorderizability result is
not what we are looking for. The lesson of section 2 is that a sentence may
have an acceptable first-order paraphrase even if it is nonfirstorderizable in

10See, however, section 12.
11See Bernays (1942), pp. 137-8. Theorem 5.3 of Shapiro (1991) is a second-order

version of (BP).
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Kaplan’s sense.12 The best I can do to forward my claim is show that, when
our domain consists of absolutely everything, the surrogate-method does not
succeed in firstorderizing Bernays’s Principle, no matter what surrogates we
chose.

If we attempt to paraphrase Bernays’s Principle in accordance with the
surrogate-method what we get is the following:

(7) ∀α∃β∀x¬∀y(〈x, y〉 is a ‘member’ of α ↔ y is a ‘member’ of β);

where Greek letters range over the surrogates of our choice, σ-surrogates
say. Let an ordered pair be one of the Ss just in case its first component is
a σ-surrogate and its second component is a ‘member’ of that σ-surrogate.
On the assumption that our domain consists of everything there is, it is an
instance of Bernays’s Principle that there are some things onto which the
Ss map nothing. If there is to be a corresponding instance of (7), we must
assume that there is a σ-surrogate for the Ss—call it ρ.13 What we get is
then:

(8) ∀x¬∀y(〈x, y〉 is a ‘member’ of ρ ↔ y is a ‘member’ of γ),

for some surrogate γ. But, if ρ exists, the following is a consequence of our
definition of the Ss:

(9) ∀y(〈γ, y〉 is a ‘member’ of ρ ↔ y is a ‘member’ of γ).

And, of course, (8) and (9) are in contradiction.
When our domain consists of absolutely everything, the surrogate-method

does not succeed in firstorderizing Bernays’s Principle, no matter what sur-
rogates we chose. Perhaps it has some other first-order paraphrase. If so, I
have been unable to find it. As far as I can tell, Bernays’s Principle cannot
be regimented in a first-order language.

12In fact, a Kaplan-style result isn’t available for Bernays’s Principle. In order to prove
such a result, we would have to select some second-order sentence χ and insist that a
formula ϕ can only be a first-order paraphrase of Bernays’s Principle if it meets the
following condition:

(∗) ϕ is true in a model just in case χ is.

To conclude the proof we would then have to show that there is no first-order formula
true in precisely the same models as χ. But presumably (∗) is only plausible if we chose
χ to be something along the following lines,

(1) ¬∃X∀Y ∃u∀v(X(u, v) ↔ Y v);

Unfortunately, (1) is a theorem of second-order logic, so there are plenty of first-order
formulas which are true in precisely the same models as (1).

13In fact, this assumption may fail, as it does when we choose sets as our surrogates.
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5 PFO Languages

An alternative language of regimentation suggests itself. Let a plural first-
order language (PFO for short) be the result of enriching a first-order lan-
guage with plural quantifiers and variables, and a dyadic predicate ‘≺’, which
takes a singular variable in first argument-place and a plural variable in its
second. Our plural variables are ‘xx1’, ‘xx2’, etc. ‘∃xxi’ is to be interpreted
as ‘there are some objectsi such that’, and ‘xi ≺ xxj ’ is to be interpreted as
‘iti is one of themj ’. Thus, for instance, ‘∃xi∃xxj(xi ≺ xxj)’ is to be read

there is an objecti and some objectsj such that iti is one of themj .

(A formal characterization of PFO languages is provided in the appendix.)
PFO languages are an excellent means for regimenting English sentences

containing the collective predicate ‘. . . is one of . . . ’. For instance, Bernays’s
Principle can be paraphrased as:

∀xx∃yy∀u∃v¬(〈u, v〉 ≺ xx ↔ v ≺ yy).

The Geach-Kaplan sentence also has a natural PFO paraphrase:

∃xx∀y∀z[(y ≺ xx ∧Admires(y, z)) → (y 6= z ∧ z ≺ xx)];

(where our domain of discourse consists of critics).
Our interpretation of PFO languages makes use of a convention that was

introduced in Boolos (1984) and is now standard in the literature. There is
some pull towards thinking that the English ‘there are some Fs such that
so-and-so’ is only true if there are at least two Fs such that so-and-so. But it
is by no means evident that this should be so. One could argue, for example,
that an utterance of ‘there are some Fs such that so-and-so’ is pragmatically
inappropriate, but true, when it is known that there is only one F such that
so-and-so, in much the same way that the utterance of a disjunction can
be pragmatically inappropriate, but true, when it is known of one of the
disjuncts that it is true. Boolos’s convention is to side-step this controversy
altogether and stipulate that ‘there are some Fs such that so-and-so’ is to be
true just in case there are one or more Fs such that so-and-so. I will assume
that Boolos’s convention is in place throughout the remainder of this essay.

6 Beyond PFO

The question now arises whether PFO languages can be used to regiment
English sentences involving collective predicates other than ‘. . . is one of
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. . . ’. In this section I will make a case for the view that, under certain
circumstances, they cannot. Consider the following sentences,

(A) The seashells are scattered ;

(B) The Peano Axioms imply Fermat’s Last Theorem;

(C) The mechanics repaired the car ;

(D) The musicians will perform the symphony ;

(E) The philosophers mingled with the mathematicians;

(F) The seashells are mixed together with the rocks;

(G) The soldiers are between the students and the administrators.

How might one paraphrase (A)–(G) into a PFO language? A natural thing
to do is paraphrase (A) as:

The set of seashells is scattered;

which, in turn, has an straightforward first-order paraphrase and a fortiori
a straightforward PFO paraphrase:

∃x(Set(x) ∧ ∀y(y ε x ↔ Seashell(y)) ∧ Scattered(x)).

More generally, one might claim that there is an object which serves as a
surrogate for the seashells: a set of seashells, or a class of seashells, or a
‘plural object’ composed of seashells, or an event involving seashells. When
discussing first-order paraphrases in section 3, we required that surrogates
admit of a ‘membership’ relation. But now we can be more generous. All
we shall require is that ‘x is a surrogate for the Fs’ have a PFO paraphrase.
This allows us to treat the mereological sum of the Fs as a surrogate for the
Fs.14

With the machinery of surrogates at hand, one might hold that talk of the
seashells being scattered is not to be paraphrased by predicating something
of the seashells themselves. Rather, it is to be paraphrased by predicating
something of their surrogate. In the case of (A) we get:

14Specifically, we can take ‘x is a surrogate for the Fs’ to abbreviate ‘for every y, if y is
one of the Fs then y is a part of x; and, for every y, if y is a part of x then, there is a z such
that z is a part of y and z is a part of one of the Fs’. On the more restrictive conception
of surrogates this cannot be done because of the presence of the collective predicate ‘. . . is
one of . . . ’. See footnote 7.
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The seashells’ surrogate is scattered.

The surrogate-method faces an important difficulty. Suppose that our do-
main consists of absolutely everything. Then it follows from Bernays’s Prin-
ciple that, no matter what surrogates we chose, at least one of the following
must be the case:

(α) There are some objects with no surrogate.

(β) There are some objects—the Fs—and some objects—the Gs—such
that the Fs are not the Gs but the Fs have the same surrogate as the
Gs.

A couple of examples should make clear why this causes trouble for friends
of the surrogate-method.

First, suppose we chose sets as our surrogates. That is, whenever we
have some things, we will let their surrogate be the set containing precisely
those things. Then set-extensionality guarantees that (β) will never be the
case, so (α) follows from Bernays’s Principle: there must be some things
with no surrogate. In particular, it turns out that the cardinals have no
surrogate (since there is no set of all cardinals). This is a problem because,
although the following sentence is intuitively true,

The cardinals are scattered among the ordinals;

the surrogate-method would paraphrase it as something necessarily false:

There is a set with precisely the cardinals as members and it is
scattered among the ordinals.

Second, suppose we decide to let mereological sums be our surrogates. That
is, whenever we have some things, we let their surrogate be their mereological
sum. Since any objects whatsoever have a mereological sum, (α) cannot be
the case, so (β) follows from Bernays’s principle: there are some objects and
some other objects such that the former have the same mereological sum as
the latter. That this is a problem can be illustrated as follows. Suppose that
there are a few scattered plies of sand on a table. Then it is true of the piles
of sand, but false of the grains of sand which make up the piles, that they are
scattered. But, if we take mereological sums to be our surrogates, this fact
cannot be captured by the surrogate-method, since the mereological sum of
the piles is precisely the same object as the mereological sum of the grains
of sand.
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Given a choice of surrogates σ, let us say that the Fs are a problem case
for σ if either the Fs have no σ-surrogate, or there are some things which are
distinct from the Fs but have the same σ-surrogate. As it turns out, problem
cases are far from scarce: it is easy to verify that there are ‘more’ problem
cases than non-problem cases. So, no matter what surrogates we choose,
we are at risk of coming across sentences—such as our examples—that get
the wrong truth-value when paraphrased in accordance with the surrogate-
method. Of course, we may sometimes be able chose our surrogates in such a
way that problem cases turn out not to be important in the relevant context.
But it is not possible in general. Unless a non-trivial Reflection Principle is
assumed to hold, the formal semantics for second-order languages described
in section 13.2 is an example of a case in which it cannot be done.15

A particularly sophisticated version of the surrogate-method, developed
by James Higginbotham and Barry Schein,16 deserves special attention.
Their method of paraphrase uses events as surrogates. For example, they
paraphrase ‘Those boys built a boat’ as:

There is an event E such that (a) E is a boat-building and (b)
for every x, x is an agent of E just in case x is one of those boys.

This proposal works nicely for many special cases. But it cannot be made
to work generally, on pain of generating a version of Russell’s Paradox. The
problem emerges if we predicate something collectively of the events that
are not ‘agents’ of themselves. For instance,

The events that are not agents of themselves have little in com-
mon.

Higginbotham and Schein would have us paraphrase this sentence as:

There is an event E such that (a) E is a having-little-in-common,17

and (b) for every x, x is an agent of E just in case x is not an
agent of itself.

15If an appropriate Reflection Principle holds—a principle ensuring that any true sen-
tence of second-order set-theory is true in some standard model—then an adequate formal
semantics for second-order languages can be carried out entirely within first-order logic.
For further discussion, see section 13.2. See also Rayo and Uzquiano (1999).

16See Higginbotham (1998), Higginbotham and Schein (1989) and Schein (1993).
17A having-little-in-common is an awkward event indeed. This speaks against Higgin-

botham and Schein’s account, not against my argument.
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But clause (b) of the paraphrase implies a contradiction.18

It might be replied that it is somehow illegitimate to speak of events that
are ‘agents’ of other events. Unfortunately, this restriction also undermines
the generality of Higginbotham and Schein’s proposal. For it would be
unable to account for sentences like ‘Events of this magnitude are very rare’.

We have seen that the surrogate-view faces important difficulties. Other
ways of paraphrasing English sentences with collective predicates into PFO
languages might do better. I can only report that I have been unable to find
any.19

7 Plural Predicates

There is a natural way of extending PFO languages to accommodate col-
lective English predicates such as those considered in the preceding section.
Let PFO+ languages be the result of extending PFO languages with atomic
plural predicates, that is, atomic predicates taking plural variables in some of
their argument places. Atomic plural predicates are interpreted in terms of
collective English predicates. Thus, ‘Scattered(xxi)’ might be interpreted
as ‘theyi are scattered’, and ‘Surrounded(xi, xxj)’ might be interpreted as
‘iti is surrounded by themj ’. (A formal characterization of PFO+ languages
is provided in the appendix. Yi (unpublished) examines languages of this
kind at some length.)

PFO+ languages turn out to be enormously useful. In this section we
shall see that they provide us with a natural way of regimenting English
sentences containing plural definite descriptions, such as (A)–(G) from sec-
tion 6.

There is a familiar procedure for regimenting sentences with singular def-
inite descriptions. As an example, consider ‘The sailor carried John home’.
If we follow Russell’s advice, this sentence can be formalized in a first-order
language as:

(10) ∃x[∀y(Sailor(y) ↔ x = y) ∧ CarriedJ(x)].20

The following definitional equivalence is frequently introduced:
18Byeong-Uk Yi makes a similar point in footnote 34 of Yi (1999).
19The resilience of collective predicates gives rise to a curious puzzle about de rebus

belief. See McGee and Rayo (2000).
20Here and elsewhere, I assume that the context makes clear what the variables should

be taken to range over and how the non-logical predicates should be interpreted.
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ψ(ιx[ϕ(x)]) ≡def ∃x[∀v(ϕ(v) ↔ x = v) ∧ ψ(x)].21

Thus, (10) is equivalent to:

CarriedJ(ιx[Sailor(x)]).

Something similar can be done for plural definite descriptions. Here we shall
focus on the simplest case: sentences of the form ‘the Fs are G’, where ‘F’
is a count noun. Richard Sharvy has set forth a general account of plural
definite descriptions which can be naturally framed in a PFO+ language.22

Consider ‘The sailors carried John home’. When ‘. . . carried John home’
is understood collectively, it might be paraphrased as:

(11) ∃yy[∀x(x ≺ yy ↔ Sailor(x)) ∧CarriedJ(yy)];

where ‘CarriedJ(. . .)’ abbreviates the collective reading of ‘. . . carried John
home’. This suggests the following notation:

ψ(πx[ϕ(x)]) ≡df ∃yy[∀x(x ≺ yy ↔ ϕ(x)) ∧ ψ(yy)].

Thus, (11) is equivalent to

CarriedJ(πx[Sailor(x)]).

When ‘. . . carried John home’ is understood distributively in ‘The sailors
carried John home’, a slightly different paraphrase suggests itself:

(12) ∀y(y ≺ πx[Sailor(x)]) → CarriedJ(y));

where ‘CarriedJ(. . .)’ is the singular counterpart of ‘CarriedJ(. . .)’.23 It
is easy to verify that (12) amounts to nothing more than:

∀x (Sailor(x) → CarriedJ(x)).

Nonetheless, we may introduce the following piece of notation:

CarriedJD(xx) ≡df ∀y(y ≺ xx → CarriedJ(y));

(and similarly for other predicates). Thus, (12) may be rewritten as:
21In this and other definitions I ignore differences of scope for the sake of simplicity.
22See Sharvy (1980).
23See section 7. When singular and plural PFO+ predicates are spelled the same, I shall

assume that they are counterparts.
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CarriedJD(πx[Sailor(x)]).

The machinery we have set forth allows us to give PFO+ paraphrases for a
substantial class of English sentences containing plural definite descriptions.
For instance, ‘The seashells are scattered’ can be paraphrased as:

Scattered(πx[Seashell(x)]);

and ‘The fugitives crossed the border’ can be paraphrased as:

CrossedBorderD(πx[Fugitive(x)]).

8 Generalized Quantifiers

PFO+ languages also provide us with the resources for regimenting English
sentences with generalized quantifiers. Consider the following examples:

(a) Almost half of the monkeys became infected;

(b) Many of the bills are counterfeit;

(c) Few of the students have any patience left.

They can be paraphrased as:

(a′) The monkeys who became infected are almost half of the monkeys;

(b′) The counterfeit bills are many of the bills;

(c′) The students who have any patience left are few of the students.

Accordingly, (a)–(c) can be formalized in a suitable PFO+ language as:

(a′′) AlmostHalfOf(πx[Monkey(x) ∧ Inf(x)], πx[Monkey(x)]);

(b′′) ManyOf(πx[Bill(x) ∧ Counterfeit(x)], πx[Bill(x)]);

(c′′) FewOf(πx[Student(x) ∧ Patience(x)], πx[Student(x)]);
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where all the non-logical predicates in (a′′)–(c′′) are to be understood in
the obvious way; in particular, ‘AlmostHalfOf(xxi, xxj)’ is interpreted as
‘theyi are almost half of themj ’, ‘ManyOf(xxi, xxj)’ is interpreted as ‘theyi
are many of themj ’, and ‘FewOf(xxi, xxj)’ is interpreted as ‘theyi are few
of themj ’.

The possibility of formalizing generalized quantifiers in terms of plural
predicates is to be expected. In Barwise and Cooper’s influential article
on the subject, a determiner such as ‘Many of’ is interpreted as a binary
relation taking a set S as its first argument and one of S’s subsets as its
second.24 Thus, ‘Many of the Fs are G’ is true just in case ‘Many of’ holds
between the set of Fs and its subset consisting of the F-and-Gs. But Barwise
and Cooper’s assumption that the Fs form a set is uncalled for. It would be
better to think of ‘Many of’ as a two-place plural predicate, and say that
‘Many of the Fs are G’ is true just in case ‘Many of’ holds between the Fs
and the F-and-Gs. That is what the present proposal amounts to.25

If it is along the right lines, then every formula of a first-order language
with generalized quantifiers can be transformed into an equivalent PFO+

formula.26 The relevant transformation is stated formally in the appendix.
24See Barwise and Cooper (1981). In fact, Barwise and Cooper say that determiners

are to be interpreted as functions that take a set S as an argument and deliver a subset
of the power-set of S, but the two formulations are equivalent.

25I am ignoring two complications. First, note that ‘Not all of the Fs are G’ is true when
none of the Fs are G. On Barwise and Cooper’s proposal, this is accounted for by letting
the determiner ‘not all’, understood as a two-place singular predicate, hold between the set
of Fs and the empty set. But a similar move is not available when ‘not all’ is formalized as
a plural predicate, because plural predicates do not admit of ‘empty’ arguments. Instead,
one might formalize ‘Not all of the Fs are Gs’ as a PFO+ version of ‘Either there are Fs
but no F-and-Gs, or the F-and-Gs are not all of the Fs’. A limit case is ‘None of the Fs
are G’, which is true only when no Fs are G. It can still be formalized as ‘either there
are Fs but no F-and-Gs, or the F-and-Gs are none of the Fs’, but the second clause is
redundant.

The second complication arises because we have only considered quantifiers of the form
‘Q of the Fs’, whose definite description ensures the existence of Fs. What about quan-
tifiers of the form ‘Q Fs’? These come in two different flavors, depending on whether
the absence of Fs makes ‘Q Fs are G’ true or false. If the latter, ‘Q Fs are G’ may be
paraphrased as ‘Q of the Fs are G’. (For instance, ‘Many Fs are G’ can be paraphrased
as ‘Many of the Fs are G’.) If the former, ‘Q Fs are G’ may be paraphrased as ‘Either
there are no Fs, or Q of the Fs are G’. (For instance, ‘All Fs are G’ can be paraphrased
as ‘either there are no Fs, or all of the Fs are G’.) In any case, quantifiers of the form ‘Q
Fs’ reduce to quantifiers of the form ‘Q of the Fs’. They may therefore be ignored with
no loss of generality.

26It is noted in Heck (2000) that a uniform method for paraphrasing first-order talk
of types as first-order talk of tokens brakes down when the language is enriched with
generalized quantifiers. Although this is true, it is also true that the problem could be
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For illustration, consider ‘Many of the bills are counterfeit’. In a first-order
language with generalized quantifiers it may be formalized as:

[ManyOf x : Bill(x)] (Counterfeit(x)),

for which our transformation yields

ManyOf(πx[Bill(x) ∧ Counterfeit(x)], πx[Bill(x)]).

Our transformation also works for sentences with iterated generalized quan-
tifiers. Consider, for instance, ‘Most of the candidates alienate many of the
voters’:

[MostOf x : Candidate(x)] [ManyOf y : Voter(y)] (Alienate(x, y));

it is transformed into:

MostOf(πx[Candidate(x) ∧ A(x)], πx[Candidate(x)]),

where A(x) is:

ManyOf(πy[Voter(y) ∧Alienate(x, y)], πy[Voter(y)]).

9 Truth and Satisfaction

In this section we will set forth definitions of truth and satisfaction for PFO+

languages.
The most natural way to proceed is to expand upon the standard def-

inition of satisfaction for first-order languages. As before, we let variable
assignments associate an object in our domain with each singular variable,
but we also let variable assignments associate multiple objects in our do-
main with each plural variable. Variable assignments are therefore treated
as relations rather than functions. If σ is an assignment and ‘vv’ a plural
variable, both ‘σ(‘vv’, x)’ and ‘σ(‘vv’, y)’ may be true even if x 6= y (though,
of course, when ‘v’ is a singular variable, σ behaves like a total function, so
that ‘σ(‘v’, x)’ holds for precisely one x).

avoided by further enriching the language. For instance, in a PFO+ language with a
domain consisting of all and only the word-tokens, ‘Many word-types are short’ can be
paraphrased as
∀xx [∀x∃!y (SameType(x, y) ∧ y ≺ xx) −→ ManyOf(πx[x ≺ xx ∧ Short(x)], πx[x ≺

xx])].
As far as I can see, this does not make covert use of a representation function—a function
differing only in name from an assignment of tokens to their corresponding types.
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Relations are standardly taken to be sets of ordered pairs. But this
will not do for our purposes. Problems arise when our domain of discourse
consists of too many objects to form a set. Since we want the sentence
‘∃xx∀y(y ≺ xx)’ to turn out to be true, we need a variable assignment that
associates every object in our domain with the plural variable ‘xx’. But
such an assignment would contain an ordered pair 〈‘xx’, y〉 for every object
y in our domain, and would therefore have too many members to be a set.

Fortunately, Boolos has found a way out of this difficulty.27 Instead
of taking a variable assignment to be a certain set of ordered pairs, we
shall consider the ordered-pairs themselves, and have them play the role
of assigning values to our variables. Thus, we shall say of some ordered
pairs that they form a plural variable assignment just in case a certain
plural predicate ‘Assignment(xx)’ is true of them. And, instead of treating
the satisfaction relation as a first-order predicate ‘Sat(ϕ, σ)’, which holds
between a formula and a set of ordered-pairs, we shall take satisfaction to
be a two-place plural predicate, ‘Sat(ϕ, xx)’, which holds between a formula
and the ordered pairs forming a plural variable assignment. Once Boolos’s
modification is in place, the definitions of truth and satisfaction proceed
along familiar lines (see appendix for details).

Our formal semantics yields an important stability result: the satisfac-
tion predicate for a PFO+ language can always be defined within another
PFO+ language. First-order languages are also stable in this sense, but PFO
languages are not. In general, the satisfaction predicate for a PFO language
can only be defined within a PFO+ language.28 This suggests that if the
realm of first-order regimentation is to be left behind, PFO+ languages are
a more natural stopping point than their PFO counterparts.

27See Boolos (1985a).
28Matters would be otherwise if there existed a set w with the feature that an arbitrary

set of PFO formulas is satisfied by the ordered-pairs of a given plural variable assignment
just in case it is satisfied by the restriction of that assignment to w. This would allow us to
regard variable assignments as sets of ordered pairs, and to frame our definition of satis-
faction in a first-order language. Unfortunately, the existence of w is provably inconsistent
with the axioms of second-order ZFC. A partial result holds if, given the ordered pairs of a
plural variable assignment, there is always a set w′ with the feature that an arbitrary set
of PFO formulas is satisfied by the ordered-pairs of a plural variable assignment differing
from the former in at most the values of singular variables just in case it is satisfied by
the restriction of the latter assignment to w′. This would require the existence of a Π2

0

indescribable cardinal, which is independent from the axioms of set-theory (if consistent
with them). For an excellent discussion of these issues see Shapiro (1987).
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10 Ontological Commitment

The goal of ontology may be regarded as more or less ambitious. The less
ambitious goal is to discover, of each predicate, whether there are objects
it is true of. The more ambitious goal requires us to start by dividing our
predicates into those that pick out ‘basic’ ontological properties and those
that do not. It might be argued, for instance, that ‘. . . is an abstract object’
and ‘. . . is an electron’ pick out basic ontological properties, but that ‘. . . is
owned by my uncle Hector’ and ‘. . . is such that all whales are mammals’
do not. We must then discover which of the predicates that pick out basic
properties are instantiated and, if possible, go on to give an account of how
they are related to predicates that do not pick out basic properties.

In what follows we will conceive of ontology in the more modest sense.
When we speak of a theory’s being ontologically committed to objects satis-
fying a certain predicate, there will be no presupposition that the predicate
expresses a basic ontological property.

The formal semantics we set forth in the preceding section allows us to
introduce a useful piece of notation. Let us say that x is the possible value
of a singular PFO+ variable v just in case x is the object which the ordered-
pairs forming some plural variable assignment associate with v. Similarly,
we shall say that the Fs are the possible values of a plural PFO+ variable
vv just in case the Fs are the objects which the ordered-pairs forming some
plural variable assignment associate with vv. To forestall any ambiguities,
we shall always use ‘the Fs are the possible values of a variable’ to mean
that the Fs are together the possible values of a variable.29

With this machinery on board, we may set forth a criterion of ontological
commitment for PFO+ languages. We begin by emulating Quine’s original
proposal:

A theory couched in a PFO+ language is committed to the ex-
istence of an object satisfying a certain singular predicate if and
only if, some object satisfying that predicate must be admitted
as a possible value of one of the theory’s singular variables in
order for the theory to be true;

but to this we add:
29It is worth noting that the formal semantics for PFO+ languages which we set forth

in the appendix has the result that the range of the plural variables is abundant, in the
sense that, given any objects whatsoever, those objects are the possible values of a plural
variable.
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the theory is committed to the existence of objects satisfying
a plural predicate if and only if some objects satisfying that
predicate must be admitted as the possible values of one of the
theory’s plural variables in order for the theory to be true.

A PFO+ theory might be committed to the existence of elephants. This
will be the case whenever some object satisfying the singular predicate
‘Elephant(x)’ must be admitted as the possible value of a singular variable
in order for the theory to be true. But it could also be committed to the
existence of children who together carried the piano. This will be the case
whenever some objects satisfying the plural predicate ‘CarriedPiano(xx)’
must be admitted as the possible values of a plural variable in order for the
theory to be true—which is not to say that ‘CarriedPiano(xx)’ picks out a
‘basic’ ontological property, irreducible to properties expressed by singular
predicates.

An especially interesting case of plural ontological commitment is cardi-
nality. For instance, a theory is committed to the existence of infinitely many
things if some objects satisfying the plural predicate ‘InfiniteInNumber(xx)’
must be admitted as the possible values of a plural variable in order for the
theory to be true.30

We have seen that there is more to the task of assessing the ontological
commitments of a PFO+ theory than the question of what singular predi-
cates must be satisfied in order for a the theory to be true: there is also the
question of what plural predicates must be satisfied in order for the theory
to be true. In this sense, we have found that the subject-matter of ontology
is richer than expected. It is not that a PFO+ theory might be commit-
ted to unexpected objects. Rather, it is that PFO+ theories might bear
commitments of an unexpected kind—i.e. plural commitments—to familiar
objects.

11 A One-Sorted Language

The predicates of PFO+ languages are sharply divided into those which are
plural and those which are not. In this respect, PFO+ languages are a poor
mirror of English. For consider the following sentences,

(13) The children carried the piano;

30For more on the use of plural predicates to describe cardinality see my ‘Frege’s Unof-
ficial Arithmetic’.
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(14) John carried the piano

Intuitively, we are employing the same English predicate in (13) and (14),
first to say something about the children (collectively) and then to say some-
thing about John. For instance, we expect it to follow logically from both
(13) and (14) that the piano was carried. This intuition is not preserved
when we paraphrase (13) and (14) into a PFO+ language as

(13′) ∃xx(∀y(y ≺ xx ↔ Child(y)) ∧ CarriedPiano(xx)); and

(14′) CarriedPiano(John).

For ‘CarriedPiano(xx)’ and ‘CarriedPiano(x)’ are two different PFO+

predicates: the former is plural and the latter is not.
In order to do better justice to the intuition that (13) and (14) have a

predicate in common we may appeal to Boolos’s convention,31 and para-
phrase (14) as:

(14′′) CarriedPiano(πx [x = John]));

Now we get what we wanted because (14′′) shares the plural predicate
‘CarriedPiano(xx)’ with (13′).

This sort of move can be carried out quite generally. Whenever we have
singular and a plural PFO+ predicates which correspond to the same English
predicate, we can eliminate the former and have the latter do the work of
both. In fact, singular predicates with no corresponding plural can also
be eliminated. If ‘P(x)’ is a singular predicate, we may introduce a plural
predicate ‘P∗(xx)’ to play its role. All we need to do is pick ‘P∗(xx)’ so
that the following is true:

∀x∀yy[∀z(z ≺ yy ↔ z = x) −→ (P∗(yy) ↔ P(x))].32

Whenever this condition holds, we shall say that ‘P∗(xx)’ is a plural coun-
terpart of ‘P(x)’, and that ‘P(x)’ is the singular counterpart of ‘P∗(xx)’.

By bringing in plural counterparts, we have the option of eliminating all
singular variables and predicates from the language. We introduce the plural
predicate ‘xxi - xxj ’ as an abbreviation for ‘theyi are some of themj ’, and
set forth the following definition:

31See section 5.
32Besides requiring that it satisfy this condition, we may let ‘P∗(xx)’ behave as we

please, but the following seems like a natural further constraint:

∀xx[(P∗(xx) ↔ ∀y(y ≺ xx → P(y))].
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1(xx) ≡df ∀yy(yy - xx → xx - yy).

This guarantees that ‘1(. . .)’ is true of some objects just in case there is
only one of them—recall Boolos’s convention! We then apply the following
transformation:

• Tr(¬ϕ) = ¬Tr(ϕ);

• Tr(ϕ ∧ ψ) = Tr(ϕ) ∧ Tr(ψ);

• Tr(∃xxi(ϕ)) = ∃xx2i Tr(ϕ)

• Tr(∃xi(ϕ)) = ∃xx2i+1 (1(xx2i+1) ∧ Tr(ϕ));

• Tr(xi ≺ xxj)) = (xx2i+1 - xx2j);

• Tr(xi = xj) = (xx2i+1 - xx2j+1) ∧ (xx2j+1 - xx2i+1);

• if P∗ is the plural counterpart of P, Tr(P(xi1 , . . . , xim , xxj1 , . . . , xxjn))
=
P∗(xx2i1+1, . . . , xx2im+1, xx2j1 , . . . , xx2jn).

It is therefore possible to formulate PFO+ languages as one-sorted languages
consisting solely of logical connectives, parenthesis, and plural variables and
predicates. But one can continue to use singular variables and predicates
by employing the definitional equivalencies induced by our transformation:

• ∃xi(ϕ) ≡df ∃xxi (1(xxi) ∧ ϕ);

• xi ≺ xxj ≡df (xxi - xxj);

• xi = xj ≡df (xxi - xxj) ∧ (xxj - xxi);

• if P∗ is the plural counterpart of P,
P(xi1 , . . . , xim , xxj1 , . . . , xxjn) ≡df P∗(xxi1 , . . . , xxim , xxj1 , . . . , xxjn).

In English, it is natural to think of ‘something’ as a generic quantifier, and of
‘someone’ as specialized: ‘someone’ is a variant of ‘something’ which we use
to indicate that the objects we are quantifying over are persons. In a one-
sorted PFO+ language, we treat plural quantifiers as generic and singular
quantifiers as specialized in much the same way. Singular quantifiers are
variants of plural quantifiers which we use to indicate that the possible
values of a variable are always a single object. Similarly, in a one-sorted
PFO+ language we treat plural predicates as generic and singular predicates
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as specialized. Singular predicates are variants of plural predicates which
are used to indicate that the possible values of admissible arguments are
always a single object.

Thinking of PFO+ languages as one-sorted therefore eliminates the need
for an account of the relation between singular quantification and predi-
cation and plural quantification and predication. The former are simply a
special case of the latter. It also eliminates the need for separating the on-
tological commitments of PFO+ theories in two. Our criterion reduces to
the following:

A theory couched in a PFO+ language is committed to the exis-
tence of objects satisfying a plural predicate if and only if some
objects satisfying that predicate must be admitted as the possi-
ble values of one of the theory’s plural variables in order for the
theory to be true.

Singular ontological commitments are now a special case of plural ontological
commitments: a one-sorted PFO+ theory is committed to the existence of an
elephant if objects satisfying the plural predicate ‘1(xx) ∧ Elephants(xx)’
must be admitted as the possible values of a plural variable in order for the
theory to be true.

12 Back to First-Order Languages

In this section we will consider the prospects of treating one-sorted PFO+

languages as first-order languages.33

As far as syntactic structure is concerned, one-sorted PFO+ languages
are no different from their first-order counterparts—the fact that bold fonts
are used for predicates and double letters for variables is of no importance
whatsoever. But there is an important semantic difference. Whereas a plural
variable assignment may associate several objects with a PFO+ variable, a
first-order variable assignment always associates a single object with a first-
order variable.

If we are to treat one-sorted PFO+ languages as first-order languages,
we must therefore modify our formal semantics so that, with respect to an
assignment, each variable is associated with precisely one ‘plurality’. This
is the easy part. The hard part is elucidating the status of ‘pluralities’.

Intuitively, what we want is a relation ‘/’ which holds of the plurality of
Fs and the plurality of Gs just in case each of the Fs is one of the Gs. This

33The basic insight is due to Vann McGee.
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allows us to say of a plurality x that it is atomic just in case ‘x / y’ holds
of every plurality y such that ‘y / x’. We can therefore have it that the role
that was played by the Fs on our original semantics is played on the new
semantics by the plurality with precisely the Fs as atoms. (The same goes
for the special case in which there is only one F: the role that was played
by an object x on the original semantics is played on the new semantics by
the plurality with x as its unique atom). And, on the new semantics, ‘-’ is
interpreted as /.

In order for pluralities to meet these constraints, they must form an
atomic mereology over /, in which the atoms are the objects in our original
domain of discourse.34 It follows that there must be more pluralities in
our new domain of discourse than objects in our original domain.35 If our
original domain consists of absolutely everything, this gives rise to a serious
difficulty: there must be more pluralities in our new domain than there are
objects in existence.

This conclusion might be regarded as a reductio for the view that it is
possible to quantify over absolutely everything. Such a perspective is forced
upon proponents of the view that any language displaying the inferential
behavior of a one-sorted PFO+ language must have the semantic features
of a first-order language.36 Alternatively, one may retain the thesis that
it is possible to quantify over everything and abandon the idea of treating
one-sorted PFO+ languages as first-order languages.

Friends of the latter approach can still enjoy some of the benefits of
treating one-sorted PFO+ languages as first-order languages. For they can
regard singular quantifiers ranging over pluralities as syntactical abbrevi-
ations for plural quantifiers ranging over objects, and predicates applying
singularly to pluralities as syntactical abbreviations for predicates applying
plurally to objects.

Doing so allows us to avoid the awkwardness of plural idioms in prac-
34In general, the Fs form an atomic mereology over R just in case they meet the following

conditions: (a) R is transitive, (b) if x is one of the Fs, then some atomic F bears R to x
(as before, we say that an F (call it y) is atomic just in case every F (call it z), such that
z bears R to y is also such that y bears R to z), and (c), if each of the As is an atomic F,
then the As have a unique R-fusion (that is, there is a unique F, x, such that each of the
As bears R to x and any F, y, which bears R to x is such that some A bears R to y).

35Provided our original domain contains more than one object.
36It is important to note, however, that the reductio is not generally forced upon propo-

nents of the view that any language with the inferential behavior of a first-order language
must have the semantic features of a first-order language. There is room for arguing that,
on account of ‘-’, one-sorted PFO+ languages do not have the inferential behavior of
first-order languages.
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tice, while retaining the expressive richness of PFO+ languages. It is also
provides us with a useful way of picturing the ontological commitments of
PFO+ theories. We concluded in section 10 that there is more to the task of
assessing the ontological commitments of a PFO+ theory than the question
of what singular predicates must be satisfied in order for a the theory to
be true: there is also the question of what plural predicates must be sat-
isfied in order for the theory to be true. In this sense, we found that the
subject-matter of ontology is richer than expected. By regarding singular
talk of pluralities as shorthand for plural talk of objects, we can represent
this unexpected richness in a different way. Instead of speaking of a new
(plural) kind of commitment to the inhabitants of our ontology—the realm
of objects—we may speak of a familiar (singular) kind of commitment to
the inhabitants of our plethology—the realm of pluralities.37

It is worth emphasizing that our terminological manoeuvre does not
license the use of plural quantification over non-atomic pluralities. Singular
quantification over pluralities is a relabelling of English plural quantification.
What plural quantification over pluralities would call for is a relabelling of
super-plural English quantification, and no reason has been given here to
think that super-plural English quantifiers exist.

Throughout the remainder of this essay we will consider a family of ap-
plications for PFO+ languages. Our discussion will not depend on whether
they receive a plural two-sorted interpretation (as in section 7), a plural
one-sorted interpretation (as in section 11), or a faux first-order interpre-
tation (as in the present section). We assume the former for the sake of
concreteness.

13 Applications

13.1 Second-Order Logic

A second-order formulation of standard (Zermelo-Fraenkel) set theory is
highly desirable. It enables us to express the general principles underlying
the first-order schemes of separation and replacement.38 In addition, Vann
McGee has shown that, when our domain of discourse consists of absolutely
everything, there is an extension of second-order set theory that charac-

37I use ‘plethology’ instead of ‘plethynticology’, which is introduced in ?, mainly because
it is easier on the English speaker’s ear, but also because ‘πλÿηθoς’ is a noun, whereas
‘πληθυντικóς’ lends itself to adjectival uses.

38For more on the expressive limitations of first-order languages and the role of second-
order languages in overcoming them, see chapter 5 of Shapiro (1991).
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terizes the set-theoretic universe up to isomorphism.39 Yet there is some
debate as to whether it is legitimate to use second-order languages for the
study of set theory. The reason is that, on one standard interpretation—
Quine’s interpretation—second-order languages are nothing but ‘set-theory
in sheep’s clothing’.40 More precisely, they are two-sorted first-order lan-
guages in which variables of the first sort range over the elements of a cer-
tain set S, and variables of the second sort range over the subsets of S.41

Second-order languages are therefore useless when our variables range over
objects which are too many to form a set. And this is certainly the case in
the intended interpretation of set theory.

It is tempting to overcome this difficulty by taking second-order lan-
guages to be class-theory in sheep’s clothing, that is, by understanding
them as two-sorted first-order languages in which variables of the first sort
range over the elements of a certain class C, and variables of the second
sort range over the sub-classes of C. Doing so, however, only postpones our
difficulties. For, in making second-order languages available for the study
of set-theory, we have made them unavailable for the study of class-theory,
which now takes center-stage.

Fortunately, Boolos has given us a new way of interpreting second-order
logic, one which does not run into trouble when our variables range over ob-
jects which are too many to form a set. Boolos’s original proposal involves a
translation method from second-order formulas into English,42 but we may
obtain identical results by introducing the following definitional equivalen-
cies into PFO languages:

• Xi(xj) ≡df xj ≺ xxi;

• ∃Xi(ϕ) ≡df ∃xxi(ϕ) ∨ ϕ∗,
where ϕ∗ is the result of substituting pxj 6= xjq everywhere for pXi(xj)q
(or its notational variants).

The complication in our second definition is needed to accommodate the fact
that, although ‘∃X∀y¬X(y)’ is a theorem of second-order logic, ‘∃xx∀y¬y ≺
xx’ is necessarily false (since it is impossible for there to be some objects
such that no object is one of them).

39See McGee (1997)
40See Quine (1986).
41However, the model-theory for second-order languages must differ from that of two-

sorted first-order languages. I owe this observation to Gabriel Uzquiano.
42See Boolos (1984).
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On this interpretation, second-order formulas are definitional variants of
PFO formulas. Hence, in contexts where the expressive power of second-
order ZFC is important, PFO languages turn out to be excellent languages
of regimentation.

A point is worth mentioning. So far we have accounted only for monadic
second-order variables. But, as Boolos points out, relation variables can be
incorporated into his scheme by appealing to ordered pairs.43

13.2 Model Theory for Second-Order Languages

A standard model for the first- or second-order language of set theory is an
ordered pair 〈D, I〉. Its domain, D, is a non-empty set, and its interpretation
function, I, assigns a binary relation on D to the two-place predicate letter
‘ε’. A sentence is then said to be valid if it is true in all standard models.

It is a familiar point that this does not correspond to our intuitive notion
of validity. What we would really like to say is, roughly, that a sentence is
valid if it is true no matter what its domain of discourse is, and no matter
how its non-logical vocabulary is interpreted. But there are no standard
models corresponding to certain domains of discourse and interpretations of
‘ε’. For instance, there is no model 〈D, I〉 such that D contains all sets and
I assigns to ‘ε’ the set of all pairs 〈x, y〉 for x a member of y, because it is
a theorem of ZFC that there is no set of all sets and that there is no set
of all pairs 〈x, y〉 for x a member of y. Among other things, this opens the
alarming possibility of a false sentence which is true in all standard models.

There is therefore no immediate guarantee of the adequacy of standard
model theory. If it does turn out to be adequate it will be in virtue of
non-trivial set-theoretic principles, not merely in virtue of our definitions.

In fact, it is possible to improve upon the standard model theory. By
building upon Boolos’s work,44 Gabriel Uzquiano and I have set forth a
formal semantics for second-order set theory that is intuitively adequate.45

We proceed by rejecting the idea that the domain of a model must be a
set of objects. Instead we focus attention on the objects themselves, and
let them function as our domain. Accordingly, we reject the idea that the
interpretation function of a model must be a set of ordered-pairs. We let the

43Treat p∃Rn
i ϕq as a notational variant for p∃Xiϕq, and pRn

i (x1, . . . , xn)q as a nota-
tional variant for pXi(〈x1, . . . , xn〉)q (where ‘〈. . .〉’ is the ordered n-tuple function). For
more on polyadic second-order logic, see Rayo and Yablo (2001).

44See Boolos (1985a).
45See Rayo and Uzquiano (1999). Similar ideas have been set forth in unpub-

lished manuscripts by Josep Macià Fabrega and Byeong-Uk Yi. See also section 6.1 of
Shapiro (1991).
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ordered-pairs themselves provide an interpretation for ‘ε’. To accommodate
these changes, we take the satisfaction predicate to be a plural predicate
‘Sat(x, yy, zz)’.46 Thus, although our formal semantics cannot be formu-
lated within a PFO language, it can easily be captured within a PFO+

language.
With an intuitively adequate model theory at hand, it is natural to ask

whether every intuitively satisfiable set of second-order formulas is satisfied
by some standard model. A version of this proposition was first set forth by
Georg Kreisel, and is commonly referred to as Kreisel’s Principle.47

Alternative formulations of Kreisel’s Principle—often under the guise of
Reflection Principles—have played a significant role in the development of
set theory. Nonetheless, the literature suggests that (without the aid of
proper classes) there is no way of expressing Kreisel’s Principle within a
PFO (or second-order) language.48 On the other hand, it is easily captured
within PFO+ languages. All we need is the plural predicate ‘Sat(x, yy, zz)’,
from our novel formal semantics.

If true, Kreisel’s Principle guarantees the adequacy of standard model
theory. But only its restriction to first-order formulas is provable within
standard set theory. In its unrestricted second-order form, it is demonstra-
bly independent from the standard axioms of second-order set theory (if
consistent with them).49

We may therefore rest assured that standard first-order model theory is
adequate. In particular, the first-order version of Kreisel’s Principle guar-
antees that every first-order sentence which is true in all standard models
is true.50 However, without the unrestricted version of Kreisel’s Principle,
we have no assurance that standard second-order model theory is adequate.
For all we know, there is a false second-order sentence which is true in all
standard models. Because of this, our novel formal semantics is a significant
improvement over standard second-order model theory.

Without further logical resources, it is not possible to extend our formal
semantics to encompass PFO+ languages.51 Intuitively, the problem is that
there are ‘too many’ possible semantic values for plural predicates.

46Variable assignments are dealt with as in section 9.
47See Kreisel (1967) pp. 152-7.
48An excellent discussion is provided in chapter 6.3 of Shapiro (1991).
49See Shapiro (1991), chapter 6.3.
50This also follows from the first-order Completeness Theorem, which is not available

in the second-order case.
51Yi (unpublished) provides a formal semantics for PFO+ languages. Unfortunately, Yi

appeals to an ‘interpretation function’ that exceeds the resources of PFO+ languages.
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PFO+ regimentation might therefore turn out to be unstable in the
strong sense that it may not be generally possible to formulate the notion of
truth-in-a-model for a given PFO+ language in another PFO+ language.52

In contrast, we know that first-order languages are stable in this respect. We
have just seen that the first-order version of Kreisel’s Principle legitimizes
the use of standard first-order model theory, which can be formalized in a
first-order language. To attain strong stability, a friend of PFO+ regimen-
tation might be tempted to postulate a strengthened version of Kreisel’s
Principle. But such a move would presumably require some sort of indepen-
dent motivation.

Fortunately, we have seen in section 9 that PFO+ languages turn out to
be stable in the weaker sense that a Tarskian definition of truth for a given
PFO+ language can be defined in another PFO+ language.

14 Conclusions

We have assumed that it is possible to quantify over absolutely everything,
and found that certain English sentences containing collective predicates
resist both first-order and PFO paraphrase. To capture such sentences we
introduced PFO+ languages, which may contain arbitrary plural predicates.

PFO+ languages turn out to be tremendously fruitful. They allow us
to give a formal semantics for second-order languages and state important
set theoretic propositions; they also provide us with natural formalizations
for English plural definite descriptions and generalized quantifiers. I be-
lieve this makes a solid case for the use of PFO+ languages as languages of
regimentation.

In leaving first-order regimentation behind, we were led to enrich Quine’s
criterion of ontological commitment. It emerged that PFO+ theories can
bear commitments of an unexpected kind—i.e. plural commitments—to
familiar objects. In this sense, we discovered that the subject-matter of
ontology is richer than one might have thought.

We noted that the unexpected ontological richness can be accounted for
in different ways. On one construal, the singular is regarded as a special
case of a plural and, accordingly, plural ontological commitments are taken
to be the only kind of ontological commitments a PFO+ theory can have.53

52This is not to be confused with the fact that a (sufficiently strong) PFO+ language
cannot be used to formulate its own formal semantics.

53For their many helpful comments, I would like to thank Richard Cartwright, Roy
Cook, Matti Eklund, Adam Elga, Michael Glanzberg, Richard Heck, Øystein Linnebo,
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Appendix

1 Formal Characterization of PFO languages

Let a PFO language (short for plural first-order) consist of these symbols:
(a) logical connectives: ‘∃’, ‘¬’ and ‘∧’; (b) singular variables: ‘x1’, ‘x2’,
etc.; (c) plural variables: ‘xx1’, ‘xx2’, etc.; (d) logical predicates ‘=’ and ‘≺’;
(e) singular non-logical predicates: ‘P1

1’, ‘P1
2’, . . . , ‘P2

1’, ‘P2
2’, . . . , etc.; and

(f) auxiliaries: ‘(’ and ‘)’. The formulas of PFO languages are defined as
follows:

• pxi = xjq, pxi ≺ xxjq and pPn
i (xj1 , . . . , xjn)q are formulas;

• if pϕq and pψq are formulas then so are p∃xi(ϕ)q, p∃xxi(ϕ)q, p¬ϕq
and p(ϕ ∧ ψ)q;

• nothing else is a formula.

If ϕ is a PFO formula, we shall let it abbreviate the (subscripted) English
sentence Tr(ϕ), where Tr(. . .) is defined as follows:

• Tr(p¬ϕq) = ‘it is not the case that’ _ Tr(pϕq);

• Tr(pϕ ∧ ψq) = ‘it is both the case that’ _ Tr(pϕq) _ ‘and’ _
Tr(pψq);

• Tr(p∃xi(ϕ)q) = pthere is an objecti such thatq _ Tr(pϕq);

• Tr(p∃xxi(ϕ)q) = pthere are some objectsi such thatq _ Tr(pϕq);

• Tr(pxi = xjq) = piti is identical to itjq;

• Tr(pxi ≺ xxjq) = piti is one of themjq;

in addition, non-logical predicates are to be translated into English in ac-
cordance with their intended interpretations. As it might be, Tr(pP 1

1 (xi)q)
= piti is redq, and Tr(pP 2

1 (xi, xj)q) = piti is bigger than itjq.
As an example, note that (15) turns out to abbreviate something equiv-

alent to (16),

Charles Parsons, Michael Rescorla, Bob Stalnaker, Gabriel Uzquiano, Steve Yablo and
an anonymous referee. Most of all, I would like to thank Vann McGee. Portions of this
paper were written during the tenure of an AHRB research fellowship, for which I am very
grateful.
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(15) ∃xi∃xxj(xi ≺ xxj);

(16) there is an objecti and some objectsj such that iti is one of themj .

The expressions ‘→’, ‘↔’, ‘∀’ and ‘∨’ are defined as usual. Also, we
will sometimes use variables ‘x’, ‘y’, ‘z’, . . . instead of ‘x1’, ‘x2’, . . . , and
variables ‘xx’, ‘yy’, ‘zz’, . . . instead of ‘xx1’, ‘xx2’, . . . . Finally, we may use
predicates such as ‘Red’ and ‘Bigger’ in place of the non-logical predicate
letters such as ‘P 1

1 ’ or ‘P 2
1 ’, and define constants and non-logical function

letters out of relations in the ordinary way. A formal semantics for PFO
languages is provided in section 13.2.

2 Formal Characterization of PFO+ languages

Let PFO+ languages be the result of extending PFO languages with plural
predicate letters: pP〈m,n〉

1 q, pP〈m,n〉
2 q, . . . (for 0 ≤ m and 0 < n). We then

add the following clause to our characterization of formulas:

• pP〈m,n〉
i (x1, . . . xm, xx1, . . . , xxn)q is a formula.

Plural predicates are to be understood as collective English predicates, in
accordance with their intended interpretations. As it might be, Tr(pP〈0,1〉

1 (xxi)q)
= ptheyi are scatteredq, and Tr(pP〈1,2〉

1 (xi, xxj , xxk)q) = piti is between
themj and themkq. In practice we shall use predicates such as ‘Scattered’
and ‘Between’ (in bold font) in place of plural predicates such as ‘P〈0,1〉

1 ’
and ‘P〈1,2〉

1 ’.

3 Generalized Quantifiers

Let Tr(ϕ) be the following transformation, from a first-order language with
generalized quantifiers to an appropriate PFO+ language:

• Tr(pxi = xjq) = pxxi - xxj ∧ xxj - xxiq;

• Tr(pP(x1, . . . , xn)q) = pP(x1, . . . , xn)q;

• Tr(pψ ∧ ξq) = Tr(pψq) ∧ Tr(pξq);

• Tr(p¬ψq) = ¬Tr(pψq);

• Tr(p∃xi(ψ)q) = pπxi [Tr(ψ)] - πxi [xi = xi]q;
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• Tr(p[Qxi : ξ](ψ)q) = pQ∗(πxi [Tr(ξ) ∧ Tr(ψ)], πxi [Tr(ξ)])q
(where p[Qxi : ξ]q is the basic quantifier p Q of the thingsi that are
ξq, and pQ∗q is the plural predicate corresponding to the determiner
pQq).

A rather cumbersome induction on the complexity of formulas shows
that, if ϕ is a sentence from a first-order language with generalized quanti-
fiers, then ϕ and Tr(ϕ) are equivalent.

4 Definitions of Truth and Satisfaction for PFO+ Languages

We work within a PFO+ language. For the sake of simplicity, we assume
that the domain of discourse of the metalanguage is the same as the domain
of discourse of the object language. Let ‘Assignment(xx)’ abbreviate the
following:

∀y(y ≺ xx → ∃z(y = 〈v, z〉 for v a variable)) ∧
∀v (v is a singular variable → ∃!z(〈v, z〉 ≺ xx)) ∧
∀v (v is a plural variable → ∃z(〈v, z〉 ≺ xx))

Next, define the satisfaction predicate ‘Sat(ϕ, yy)’ implicitly, by way of
the following axioms:

• Sat(p¬ψq, yy) ↔ ¬Sat(pψq, yy);

• Sat(pψ ∧ θq, yy) ↔ Sat(pψq, yy) ∧ Sat(pθq, yy);

• Sat(p∃xiψq, yy) ↔ ∃tt [Assignment(tt) ∧ ∀v ((v is a variable ∧ v 6=
pxiq) →
∀w(〈v, w〉 ≺ yy ↔ 〈v, w〉 ≺ tt)) ∧ Sat(pψq, tt)];

• Sat(p∃xxiψq, yy) ↔ ∃tt [Assignment(tt) ∧ ∀v ((v is a variable
∧ v 6= pxxiq) →
∀w(〈v, w〉 ≺ yy ↔ 〈v, w〉 ≺ tt)) ∧ Sat(pψq, tt)];

• Sat(pxi ≺ xxjq, yy) ↔ ∀z(〈pxiq, z〉 ≺ yy → 〈pxxiq, z〉 ≺ yy);

• Sat(pP(xi)q, yy) ↔ ∀z(〈pxiq, z〉 ≺ yy → P∗(z)), where ‘P∗(. . .)’ is a
translation of ‘P(. . .)’ into the metalanguage;

• Sat(pP(xxi)q, yy) ↔ ∀zz∀w((〈pxxiq, w〉 ≺ yy ↔ w ≺ zz) → P∗(zz)),
where ‘P∗(. . .)’ is a translation of ‘P(. . .)’ into the metalanguage.

Finally, truth is defined in terms of satisfaction in the usual way:

True(ϕ) ≡def ∀yy (Assignment(yy) → Sat(ϕ, yy)).
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Davidson, D. (1967) “The Logical Form of Action Sentences.” Reprinted in
Donald Davidson, Essays on Actions and Events.

Davidson, D. (1980) Essays on Actions and Events, Clarendon Press, Ox-
ford.

Dummett, M. (1981) Frege: Philosophy of Language, Harvard, Cambridge,
MA, second edition.

Heck, R. (2000) “Syntactic Reductionism,” Philosophia Mathematica 8:3,
124–149.

Higginbotham, J. (1998) “Higher-Order Logic and Natural Language,” Pro-
ceedings of the British Academy 95, 1–27.

Higginbotham, J., and B. Schein (1989) “Plurals,” Nels XIX Proceedings,
GLSA University of Massachusetts, Amherst .

Kreisel, G. (1967) “Informal Rigour and Completeness Proofs.” In Irme
Lakatos, Problems in Philosophy of Mathematics.

Lakatos, I., ed. (1967) Problems in the Philosophy of Mathematics, North
Holland, Amsterdam.
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