Found Phys (2011) 41:1800-1809
DOI 10.1007/s10701-011-9579-7

Thomas Precession and the Bargmann-Michel-Telegdi
Equation

Krzysztof Rebilas

Received: 28 September 2010 / Accepted: 18 June 2011 / Published online: 6 July 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract A direct method showing the Thomas precession for an evolution of any
vector quantity (a spatial part of a four-vector) is proposed. A useful application of
this method is a possibility to trace correctly the presence of the Thomas precession
in the Bargmann-Michel-Telegdi equation. It is pointed out that the Thomas preces-
sion is not incorporated in the kinematical term of the Bargmann-Michel-Telegdi
equation, as it is commonly believed. When the Bargmann-Michel-Telegdi equation
is interpreted in curved spacetimes, this term is shown to be equivalent to the affine
connection term in the covariant derivative of the spin four-vector evolving in a grav-
itational field. It then contributes to the geodetic precession. The described problem
is an interesting and unexpected example showing that approximate methods used in
special relativity, in this case to identify the Thomas precession, can distort the true
meaning of physical laws.
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1 Introduction

In an inertial instantaneous rest frame of a moving (possibly accelerating) particle,
possessing a spin s, the spin dynamics is determined by the classical equation [1]:
ds ge . =,
=—s5 X B, 1
dt  2mc M
where B’ is the magnetic induction in the rest frame. To describe the dynamics of
a moving spin s, observed from the point of view of a laboratory system, one can-
not perform simply an identification B = BH + yB -y ,B x E, with B being the
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magnetic induction in the laboratory frame (,5 = ¥/c, where v is the instantaneous ve-
locity of the particle). This naive procedure leads, for an electron moving in a central
potential, to a spin-orbit coupling twice as large as the one required by the fine struc-
ture of hydrogen. Thomas [2] first noticed that if we connect an instantaneous inertial
rest frame R; with the moving particle at a moment ¢ (¢ denotes the time measured
in the laboratory frame) and next an instantaneous inertial rest frame R;14; at the
moment ¢ + dt, and R, 4; is obtained from R; by means of a pure boost, then from
the point of view of the laboratory point of view, the system R;;; appears to be ro-
tated [3—6] with respect to the system R, by an angle @rdt (the Thomas precession),
where:

s .z
> yc dp -

f—t — X . 2

“r y+1dt P )
The reason is that the successive boosts, from the laboratory frame to R; and next
from R; to R, 4, are in general not equivalent to a single boost but rather to a boost
plus a spatial rotation. Generally then Lorentz boosts do not form a proper subgroup
but, rather, generate the entire Lorentz group [7].

The Thomas precession is a purely kinematical effect but it influences the dynam-
ics of the spin as observed in the laboratory frame [1, 2, 8—11]. The proper equation
governing the movement of the spin in this system is:

d§) (dE) I T 7 2
— =|— +orxs=y  —sx B +wr xs, 3)
(dt in LAB dt Jin g, 2me
where we have made use of (1).

Another way to cope with the problem of the spin precession as seen from the
point of view of the laboratory frame is a theory proposed by Bargmann, Michel and
Telegdi (BMT) [12]. The spin is described by means of a four-vector S = (Sp, S)

about which it is assumed that it coincides with s in the rest frame of the particle, i.e.
has the form (0, 5). The law of motion for the four-spin is:

as®  ge 1 1 du*
== | FSs 4+ S U*(S F*U,) | — = U%( S — ). 4
dr 2mc|: ’3+c2 (52 w c? Yt X
torque kinematical term

where U% = y(c,v) and F @B is the electromagnetic field tensor. This is the most
general form of the BMT equation where the acceleration of the particle dU*/dt
can be caused by an arbitrary (not necessarily electromagnetic) force.

It is known that (4) gives the same experimental predictions as (3). However, a
theoretical problem of how the Thomas precession is incorporated into the BMT
equation (4) is not correctly resolved so far. The presence of the Thomas preces-
sion in the BMT equation is generally attributed to the special form of the right side
of (4) proposed by the BMT [1, 8, 11, 13]. The last term in (4) is purely kinematical
and contains acceleration. What is more, this is the only term in the BMT equation
in the case when the spin moves in the absence of the electromagnetic fields (for-
mally we put g =0 in (4) in this case). Certainly, if no electromagnetic fields are
present, the ordinary three-vector § performs only the Thomas precession (3), which
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strongly suggests that the term (—1/c¢>)U® S, (dU* /dt) in (4) is responsible for the
Thomas precession of the spin [1, 8, 13]. This however is not true. As it will be shown,
even if this kinematical term is eliminated in the BMT equation (by imposing on the
motion the additional constraint S, (dU*/dt) = 0) and the BMT equation becomes
dS®/dt = 0, the three-vector 5 still satisfies the equation of motion of the form:

ds - -
(—S) = &7 X 3, )
dt JinraB

i.e. undergoes the Thomas precession.

The difficulty with identification of the Thomas precession in the BMT equation
emphasizes the fact that one can find also an attempt [11] to identify the Thomas
precession with the first term of the torque in (4), i.e. with (ge/2mc)F*# Sg (for
g=2).

The aim of this paper is to develop a method to derive the Thomas precession
directly for an arbitrary vector quantity, being a part of a four-vector (typically the
Thomas precession is shown for systems of reference). As a direct application of this
approach we point out a possibility to identify properly how the Thomas precession
is incorporated in the BMT equation. We show that the commonly used approximate
calculations (for B < 1), instead of exact ones, are the origin of the misleading inter-
pretation of the BMT equation.

2 Thomas Precession
The Lorentz transformation for the four-spin S = (S, 3‘) defined in the laboratory

frame and the four-spin s = (sq, 5) (with so = 0) defined in the inertial rest frame of
the particle is:

9=y (" —8.9), (6)
- )/2 - - - -
§=S+ B-$)B—ypS°. (7
y+1
The inverse relations are:
SO=y"+B-5), (8)
- )/2 - - -
S=5+ (B-5)B +vps’. )
y+1

Because s = 0, the above relations can be simplified. From (6) it follows that
S9=4.58 (10)
and (7) becomes:

5=S——"——(8-9)A. (11)
y
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However, the described below procedure requires to discern between the E contained
in the expression (10) for So and the ,5 from the Lorentz transformation (7). For our
purpose we will use then the transformatlons in the form of (6) and (7).

Let us introduce two unit vectors, one ] parallel to /3 and the other 7 perpendicular
to / such that § lies in the plane spanned by these two unit vectors. Note that [ and
n can serve as the base vectors in both reference frames—the laboratory and the
instantaneous inertial rest system—because both are defined in an invariant way as
far as these two systems are concerned. Clearly

I=p/8.
n-l=0, (12)
A2 =02=1

In effect § can be decomposed on the directions [ and A:

= 51l + sph. (13)
On the other hand, from (9) we get:
S = ysil + sph. (14)
The components of S then are:
Si=vysi, Sy = Sn. (15)

With help of (15), (13) can be now rewritten as:
- S N
5 =20+ S,h. (16)
Y

Equation (16) is a desired description of § by means of quantities used in the lab-
oratory system. Certainly, the unit vectors [ and A change in time and their change
contributes to the evolution of § as seen in the laboratory frame.

Substituting 8 = ﬁf to (7), we find that (7) is precisely equivalent to (16). There-
fore we conclude that (7), typically understood as the Lorentz transformation, can
also be treated as a representation of s in the laboratory frame. According to this
interpretation the E in (7) is no longer treated as a constant parameter of the Lorentz
transformation but as a changing in time quantity influencing the change of s from
the point of view of the laboratory frame. In the same way one can interpret (6).

Let us denote symbolically the Lorentz transformation described in (6) and (7) as
s = LS and perform the differentiation separating it into two terms:

(5)in LAB = LS‘L(/;):const + LS‘S:consl‘ (17)
The dot represents the differentiation d/dt and the condition L(,é) = const means

that the f standing in the Lorentz transformation operator is not differentiated.
Thanks to the differentiation L the whole right side of (17) actually represents the
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total rate of change of s from the point of view of the laboratory frame. Introducing
the reversed transformation S = L~ !s to the first term on the right side of the above
equation we obtain:

=L(L™! L7, ) e = ©in R (18)

LS‘L(E):const S>|L(/§)=c0nst =
i.e. the ordinary transformation of the four-vector S from the laboratory frame to the
instantaneous inertial rest frame of the particle R;.

In turn, the second term on the right side of (17) can be rewritten as:

—_ -1 —
LSZM[JU)*%: La+dnl— @) 1S, (19)
dt dt

where L(t) = L(,B(t)) and L(t + dt) = L(ﬂ(t + dt)). Because in general ﬁ(t) and
,3 (t + dt) need not be collinear, the sequence of the pure boosts L(t + dt)L~ 0
is known [1] to contain the Thomas precession. To calculate explicitly the term
LS| S—const WE NOtICE that:

LS|S=consl = (LSjl.S‘:const = (Sj|S:const (20)

and for the spatial part of LS Is—const» 1rOmM (7), we get:

- . y2 \ 5> o5 o
LS|y e =G = -8
|.§=<.0nst (S)\S:const ()/ + 1)('8

— 7BS° — yBS". 21)

Using the relations:

y =3B B,

2N 47 7
( Y )z(y+2)y (B-B) 22)

y +1 (v + 1)?

one can perform the differentiation in (21) (we omit here the explicit result). Next we
express S by means of s using (8) and (9). After elementary calculations we find that

the terms proportional to (E . B) (,é -5) B cancel out, and from (21) we get:

- 2

. . 3 .
; y R - 5 03 y S = 02
LS = — — R S . . 23
|S:consl y + 1 [S X (IB X 13)] VS 13 7/ + 1 (:3 IB)S ﬁ ( )
Because s = 0:

2 .
LSIé—const - );_ 1 [E X (ﬂ X ﬂ)] (24)

or, recalling the definition (2):
=y C_[)T XSs. (25)
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Inserting our results (18) and (25) into (17) we arrive at:
)inLAB = (5)in R tyor xs, (26)

which is the result (3) that is typically derived indirectly, i.e. on the basis of the
behavior of systems of reference.

3 Thomas Precession and the BMT Equation

In the previous section s is treated formally as an element of the BMT theory. It is
the spatial part of the four-vector S (written in the rest frame) satisfying the condition
s = 0. Remaining within the BMT theory, to introduce dynamics to the purely kine-
matical relation (26), we refer to the BMT equation (4). Certainly, in the context of
(26), we need to know the BMT equation only in the rest frame R; where it reduces
(its spatial part) to (1). Thus (26) becomes:

Pintap = =5 x B'+ yor x5 . 27)
2mc
torque kinematical term

This equation and the original one (4) are completely equivalent; they both determine
behavior of the spin from the point of view of the laboratory frame but in (27) it is
expressed in terms the new variables, s instead of S. Structurally (27) resembles (4);
there is a term representing the torque and the kinematical term in the both equa-
tions. This suggests that the term y @7 X 5 exhibiting the Thomas precession in (27)
emerges from the kinematical term (—1/ AU (S, U o) present in (4). This however
is not true.

To make it evident, consider the special case with g = 0 and the additional con-
straint S, U* = 0 imposed on the particle motion. Then the BMT equation (4) be-
comes S = 0 and does not contain the kinematical term that is commonly regarded
as responsible for the Thomas precession. How is in this case the equivalent to the
BMT equation (27)? As $ =0, from (17) we get ($)inLAB = I;S|S:COnsl and using (25)
we get:

(5)inLAB =y &1 X 5. (28)

This is the spatial part of the simplified BMT equation, § = 0, but expressed in terms
of 5. As can be seen, despite the lack of the term (—1/ AUY(S, U M, 5 still undergoes
the Thomas precession. The term (—1/ AU (S, U *Y in the BMT equation cannot
then be understood as responsible for the Thomas precession.

In general, if we trace the derivation of (26) starting from the decomposition of
the differentiation (17), we see that the term y @7 x § in (27) comes solely from LS
(see (25)) where there is no space for any term from the BMT equation (4). Both
the torque and the kinematical term standing on the right side of the BMT equation
determine S so that they are incorporated into the term LS. As it has been shown,
the term LS does not yield y &7 x § but rather (5)iy &, (see (18)) that has nothing
in common with the Thomas precession. In effect, the whole right side of the BMT
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equation determining the value of S is completely irrelevant for the Thomas preces-
sion, which is additionally shown explicitly in (45). It appears that important is only
the Lorentz transformation L between S and s which introduces to the rate of change
of 5 the term LS (17) being directly equivalent to the Thomas precession.

An interesting additional remark can be made as concerns the relation of the BMT
equation to general relativity. The foundations of the spin dynamics in gravitational
fields were laid by Papapetrou [14] and Schiff [15] and recently an original approach
was presented by Obukhov, Silenko and Teryaev [16]. The BMT equation is com-
monly attributed to the case of electromagnetic fields accelerating particles and caus-
ing a torque on the spin. We want to show that the BMT equation can be also applied
to the gravitational fields within the framework of general relativity. The BMT equa-
tion for a particle accelerated solely by gravitational forces is:

dse 1 dU
N ] i § (29)
dt c? dt

In [16] it is suggested that an equation of the form dS%/dt = dD% SP can be inter-
preted as a correct equation of motion in curved spacetimes, i.e. as precisely equiva-
lent to DS /dt = 0. It follows then that in the BMT equation (29) one should iden-
tify:

C—2U°‘<S W):U”F%S . (30)
Let us prove that (30) is identically satisfied. Inserting U ”U,gFfA for dU, /dt and
using coordinates £/ of a local frame, the left side of this equation reads:

1 1
C—2U‘>‘S*U”Uﬁrv’3A = SU“S"U"Up

axP 92
& Ixvaxt
_ Ldx g pdipdal de 9
c? dr dt dt dg' dxVox*
0&1 9xVox*
=stu're,, (€1

which is precisely the right side of (30). The kinematical term of the BMT appears to
be equivalent to the affine connection term in the covariant derivative DS /dt for the
spin evolving in a gravitational field. It is then responsible for the geodetic precession
rather than for the Thomas precession.

4 Remarks and Conclusions

The decomposition of the differentiation made according to (17) has appeared to be
useful in demonstrating the Thomas precession for the spin vector s and identify-
ing this effect in the BMT equation. It is worth explaining the origin of the com-
mon mistake of ascribing the Thomas precession to the kinematical term in the BMT
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equation. In Appendix we give a detailed discussion aimed to compare directly the
approximate approach to the BMT equation accessible in the literature and the ex-
act one offered in this paper. It is shown that the approximate method leads, within
its limits, to a qualitatively correct result but the approximations used entail incorrect
identification of the Thomas precession in the BMT equation. This is an extraordinary
and unexpected situation when approximations made in special relativity distorts the
theoretical meaning of the physical law.
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Appendix: Two Ways of Showing the Thomas Precession in the BMT Equation
A.1 Approximate Method

The most clear presentation (using approximate calculations) of how the Thomas pre-
cession is incorporated into the BMT equation can be found in [8]. The dynamics of
the spin for a scalar field or for the electromagnetic field formally eliminated (g = 0)
is described by the BMT equation in the form:

ds® 1 du*
=——U“ <S,\—). (32)

dt c? dt

An approximate version of this equation, based on the simplification 8 < 1, is:
dS/dt ~ BS - (df/dr). (33)

We can add to the both sides of this equation the term —d /dt(% E B . 5’) and obtain:

o -5 - oo oo =
ds/dt — d/dt(E,B,B . S) ~pBS-(dp/dt) — d/dt(iﬂﬂ . S)
1 - S o
~ E[(d,B/dt) x Bl x S. 34)
The left side is the rate of change of the vector:
o g Lo o
S=S—§ﬂﬂ~5, (35)

[note that this is a simplified version of (11), as expected], so that (34) is the evolution
of 5 in the laboratory frame:

- | S PR B .
(ds/dtyinas > S [(dB/dt) x fI x S = S[(dB/dt) x f] x s ~wr x5, (36)
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exhibiting the Thomas precession. According to the derivation of (36), the kinemati-
cal term E S-d ,5 /dt) partially (because a half of it is canceled out by the respective
term from the expression —d /dt(% /§ B . 3’), see (34)) contributes to the term repre-
senting the Thomas precession.

A.2 Exact Method

Analogous but performed without any approximations transformations lead to a com-
pletely different conclusion as concerns the participation of the kinematical term of
the BMT equation in the Thomas precession. The spatial part of (32) precisely is:

5

S=y2B5-5. (37)
To introduce s we add to the both sides the term —(#(3 . 3‘)5) (see (11)):

l»_ y ->'—>-> _ 2a—>-'—>_ ]/ ﬁ-—rd
S (—y—i—l(ﬂ S)ﬂ) Y°BS-B <—7/+1('3 S)ﬂ>, (38)

and the left side represents (§)in LAB (the B is treated as a quantity changing in time):

(5)inLAB = 12BS - ,5 - <#(5 : 3’)/é) (39)

Deriving the difference 5 — S from (7) and (10), we have identity:

—(L@? : E)E) = ( .55 yBSO). (40)
y+1 y+1

The differentiation can be made in two steps:

(2569~ Bst
y+1 4

V2 2wz 20 V2 oz w20
= -$)B—yBS + -$)B—yBS
<y+1(ﬁ )B—vB >L(/§)=const <y+1(ﬁ )B—vB )

(41)

S=const

On the basis of (7), we have:

=Gk — Oinras =—(Sinras.  42)
L(B)=const

( .55 Bsoj
y+1 v

where the last equality follows from the fact that g = 0. In turn, again thanks to (7),
we get:

( v’ (B-§>B—w§so)
y+1

= LS‘S:const = (s)‘S=c0ng[ =Yy wr xS, (43)
S=const
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where the last equality has already been proved earlier (26). Finally then the last term
in (39) is

—(Lué’ - 3)5) = —(S)inLAB + ¥ Or X § (44)
y +1
and (39) becomes:

)inra =y2BS - B — (SinLaB + ¥ &1 X 5§ =y &r X 5. (45)

The last equality follows from (37) that makes the kinematical term y? /§ S- B be can-

celed out by the term—(g)in LAB. Although (45) is consistent with the approximate
result (36), here the term representing the Thomas precession does not emerge from

the kinematical term ;/2,5 S B . The Thomas rotation comes solely from the terms
necessary to perform the transformation from S to 5. This fact is veiled in the ap-
proximate approach where the kinematical term is canceled out only partially and
seems to contribute to the Thomas precession.
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