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Abstract

We investigate the general properties of general Bayesian learning, where “general Bayesian learn-

ing” means inferring a state from another that is regarded as evidence, and where the inference is

conditionalizing the evidence using the conditional expectation determined by a reference probability

measure representing the background subjective degrees of belief of a Bayesian Agent performing the

inference. States are linear functionals that encode probability measures by assigning expectation

values to random variables via integrating them with respect to the probability measure. If a state

can be learned from another this way, then it is said to be Bayes accessible from the evidence. It

is shown that the Bayes accessibility relation is reflexive, antisymmetric and non-transitive. If every

state is Bayes accessible from some other defined on the same set of random variables, then the set

of states is called weakly Bayes connected. It is shown that the set of states is not weakly Bayes

connected if the probability space is standard. The set of states is called weakly Bayes connectable

if, given any state, the probability space can be extended in such a way that the given state becomes

Bayes accessible from some other state in the extended space. It is shown that probability spaces

are weakly Bayes connectable. Since conditioning using the theory of conditional expectations in-

cludes both Bayes’ rule and Jeffrey conditionalization as special cases, the results presented generalize

substantially some results obtained earlier for Jeffrey conditionalization.

1 Review of main results

In this paper we investigate the general properties of general Bayesian learning. By “general Bayesian

learning” we mean inferring a probability measure from another that is regarded as evidence, and

where the inference is conditionalizing the probability measure representing the evidence using the

conditional expectation determined by a reference probability measure that is interpreted as repre-

senting the background subjective degrees of belief of a Bayesian Agent performing the inference.

The investigation is motivated by the observation that the properties of Bayesian learning we

wish to determine do not seem to have been analyzed in the literature on Bayesianism on the level

of generality we aim at here. (For monographic works on Bayesianism we refer to [22], [3], [44]; for

papers discussing basic aspects of Bayesianism see [21], [19], [20]; the recent paper by Weisberg [43]

provides a compact review of Bayesianism). In particular, in this paper we take the position that

the proper general technical device to perform Bayesian conditioning is the theory of conditional

∗MTA Rényi Institute of Mathematics, Budapest, Hungary, gyz@renyi.hu
†Department of Philosophy, Logic and Scientific Method, London School of Economics and Political Science, Houghton

Street, London WC2A 2AE, UK, m.redei@lse.ac.uk

1



expectations. The concept of conditional expectation was introduced into probability theory by Kol-

mogorov in 1933 together with his axiomatization of probability theory, which has made probability

theory part of measure theory [27] (Doob [8] puts Kolmogorov’s work into historical context). Since

Kolmogorov’s work, conditioning using the theory of conditional expectations has become standard

in mathematics [9], [12], [1], [34], [2], [32]. Both the elementary Bayes’ rule (sometimes called “strict

conditionalization”) and Jeffrey conditionalization (also called “probability kinematics” [23]) can be

recovered as special cases of conditioning using the theory of conditional expectations; although,

somewhat surprisingly, the fact that Jeffrey conditionalization is indeed a special case of conditioning

via conditional expectations does not seem to be well known: Jeffrey does not refer to the theory

of conditional expectations when introducing his rule of conditionalization in [23], nor do standard

mathematical works on probability theory [12], [1], [34], [2], [32] mention Jeffrey conditionalization

when discussing the concept of conditional expectation.

Proper handling of conditioning via conditional expectation requires one to go beyond the frame-

work of additive measures on Boolean algebras and forces one to work with positive, normalized,

linear functionals (called “states”) that assign finite expectation values to random variables via inte-

grating them with respect to probability measures on the Boolean algebra. Viewed from this more

general perspective, conditioning can be regarded as a map in the state space that takes a state as

input and yields another, the conditioned state, as output. Conditioning is thus a map in the dual

space of the function space consisting of integrable random variables. Bayesian conditioning is dis-

tinguished among the logically possible conditioning maps in the dual space by the fact that it is the

dual of a specific map (a projection) on the function space representing the random variables that are

integrable with respect to the background probability of the Bayesian Agent. This projection on the

function space is the conditional expectation. Bayesian conditionalization based on the technique of

conditional expectations as conditioning device thus defines a two-place relation in the state space of

integrable random variables. We call this relation the “Bayes accessibility relation” (Definition 4.3).

The interpretation of the Bayes accessibility relation is that if a state is Bayes accessible from another,

then the Bayesian agent can infer this state from the evidence represented by the other state, where

the inference is a Bayesian upgrading using the technique of conditional expectation determined by

the Agent’s background probability. Characterizing the Bayes accessibility relation amounts then to

characterizing Bayesian learning in this general setting. This is what the present paper does.

The first result of the paper is that the Bayes accessibility relation is antisymmetric (Proposition

5.1). (The Bayes accessibility relation is trivially reflexive.) Antisymmetry of the Bayes accessibility

relation entails that a state space is not strongly Bayes connected: It is not true that any two states

are Bayes accessible from each other. In other words, Bayesian learning has a certain directedness

built into it: if a state can be learned from another that represents evidence, then the converse is

not true, Bayesian learning in the reversed direction is not possible (assuming that the two states are

different). This seems an intuitively attractive feature of Bayesian learning: what one can learn from

evidence cannot serve as evidence to learn the evidence itself.

We then ask the question of whether state spaces are weakly Bayes connected: is it true that

every state is Bayes accessible from some other state (Definition 6.1)? Weak Bayes connectedness

means that for every probability measure there exists some evidence from which the Bayesian Agent

can learn that probability by conditionalization with respect to his fixed background degree of belief.

Failure of weak Bayes connectedness means that, given the background measure of the Bayesian

Agent, there exist states (probability measures) that the Agent cannot learn via Bayesian upgrading

no matter what evidence formulated in the given state space he is presented with. Thus weak Bayes
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connectedness of the state space would be a sign of strength of Bayesian learning – failure of weak

connectedness sets a limit to Bayesian learning in the given context. We give a characterization of

weak Bayes connectedness of state spaces (Proposition 6.2). This result is used then to show that state

spaces of standard probability spaces are not weakly connected (Propositions 6.7 and 6.8). Standard

probability spaces include essentially all the probability spaces that occur in applications of probability

theory; in particular, probability spaces with a finite number of random events, and probability

theories in which probability is given by a density function with respect to the Lebesgue measure, are

standard. In fact, we prove more: in case of a standard probability space there exist an uncountably

infinite number of probability measures that are inaccessible for the Bayesian Agent (Propositions

6.10 and 6.11). Note that since conditioning now is with respect to conditional expectations, not

via the simple Bayes’ rule, the existence of Bayes inaccessible states has nothing to do with the well

known fact that a measure which is obtained from another via the simple Bayes’ rule will have to

take zero value whenever the prior measure takes on value zero and that therefore a lot of measures

(for instance all faithful probability measures) cannot be obtained as the result of conditionalizing

another measure via the simple Bayes’ rule. (A probability measure is faithful if all non-zero events

have non-zero probability. A faithful conditional probability measure appears in Example 7.2.)

Proposition 6.2, which characterizes weak Bayes connectedness, makes it possible to formulate a

condition sufficient to entail that a state space is weakly Bayes connected (Proposition 6.5). Based

on this latter condition we give an example of a probability space whose state space is weakly Bayes

connected. The significance for Bayesian learning of the probability space of this weakly Bayes

connected state space might be very limited however because it will be seen that the cardinality of the

Boolean algebra of this weakly Bayes connected state space is much larger than that of the continuum.

Thus, only Bayesian Agents capable of comprehending an enormous amount of propositions would be

in the position to have degrees of belief in every proposition in such a large set. Whether the notion

of Bayesian Agent should include Agents with such extraordinary mental skills, is questionable. In

the typical situations when one deals with probabilistic modeling, the concept of a Bayesian Agent

with more modest mental powers is sufficient. But in such contexts inaccessibility of certain states

via Bayesian inference is the general rule.

Failure of weak Bayes connectedness leads to the question of whether state spaces are weakly

Bayes connectable: Whether for every state (in particular for a state that is not Bayes accessible from

any other state in the given probabilistic framework) there exists a richer probability theory into

which the original can be embedded in such a way that the Bayes inaccessible state becomes Bayes

accessible from some state in the richer framework. We show that state spaces are weakly Bayes

connectable (Proposition 8.3). This result generalizes the ones obtained by Diaconis and Zabell for

the simple Bayes’ rule and for Jeffrey conditionalization [6] (also see [17]). Weak Bayes connectability

of state spaces means that everything that can be formulated by the Bayesian Agent in terms of a

given probability space, can in principle be learned by the Agent by Bayesian upgrading – provided

that the Agent is allowed to have access to a rich enough pool of evidence. We will call this latter

upgrading situation “Unlimited Evidence Upgrading” scenario, in contradistinction to the “Limited

Evidence Upgrading” situation, in which the evidence available to the Agent is restricted to the set

of all states on a given set of random variables. Thus under the Unlimited Evidence Upgrading

conditions a Bayesian Agent has unlimited Bayesain learning capacity.

Weak Bayes connectability of state spaces raises the question of whether state spaces are strongly

Bayes connectable: whether it is true that any state can be made Bayes accessible from any other by

embedding both into a larger state space (Problem 8.6). This problem remains open.
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We will also show that the Bayes accessibility relation is not transitive (Proposition 7.1). Non-

transitivity of Bayes accessibility means that while the Bayesian Agent might be able to learn a state

from another in several successive steps of upgrading, the Agent will not in general be able to cut short

the learning process by replacing the chain of steps leading to learning a state by a single Bayesian

learning move – failure of transitivity of Bayes accessibility means that “There is no Bayesian royal

road to learning”.

The proof of failure of transitivity of the Bayes accessibility relation reveals that the reason behind

this feature is the non-commutativity of general Bayesian upgrading via conditional expectations: the

result of upgrading more than once depends on the order of the upgradings. Non-commutativity of

Jeffrey conditionalization has been known for long and has been analyzed in a number of papers [5],

[13], [7], [16], [6], [39], [4], [41], [15], [42]. The result presented here shows that non-commutativity is a

general feature of general Bayesian learning; it is a feature that is linked to the very essence of Bayesian

upgrading via conditional expectations. Weisberg [41] (in harmony with others) diagnoses the source

of failure of commutativity of upgrading via Jeffrey conditionalization in what is called “rigidity” of

upgrading. Roughly put, rigidity is the feature that the conditioned state preserves the evidence. Re-

ferring to general, non-trivial results concerning characterization of conditional expectations we will

show that Weisberg’s diagnosis is deep and applies to general Bayesian learning as well. We will also

argue however that failure of commutativity of upgrading via conditional expectations is philosoph-

ically not as problematic as it might appear. The standard interpretation of non-commutativity of

upgrading using Jeffrey conditionalization is that it violates an important general norm of rationality

(which we dub here the “Norm of Epistemic Commutativity”): the demand that conclusions drawn

from some body of evidence should not depend on the order in which elements of that evidence are

presented. (For recent articulations of this interpretation of failure of non-commutativity see [41],

[15], [42]). We will argue that non-commutativity of the conditional expectations Bayesian upgrading

is based on should not be interpreted as violation of the Norm of Epistemic Commutativity. We also

will show that, under a proper understanding of the concept of evidence in a Bayesian upgrading, and

under a technically explicit specification of the Norm of Epistemic Commutativity in terms of condi-

tional expectations, general Bayesian learning (hence also Jeffrey conditionalization) does satisfy the

Norm of Epistemic Commutativity in spite of the upgrading being non-commutative.

The structure of the paper is the following. Section 2 fixes notation and recalls some basic defini-

tions and facts from the theory of conditional expectations. Section 3 defines conditional probability

in terms of conditional expectations and shows how elementary Bayesian upgrading and Jeffrey con-

ditionalization obtain as special cases of conditionalization via conditional expectation. Section 4

defines the Bayes accessibility relation, illustrates Bayes accessibility by an example that involves

conditionalization that cannot be handled by either simple Bayes rule or Jeffrey conditionalization.

Section 5 proves that the Bayes accessibility relation is antisymmetric and discusses failure of strong

Bayes connectedness of state spaces. Section 6 analyses weak Bayes connectedness and proves that

state spaces of standard probability spaces are not weakly Bayes connected. Section 7 proves failure

of transitivity of Bayes accessibility and discusses both Weisberg’s rigidity analysis and why the Norm

of Epistemic Commutativity is in full harmony with Bayesian upgrading via conditional expectations.

Section 8 proves weak Bayes connectability of state spaces. Section 9 summarizes the main points

with some further comments.
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2 Conditional expectations

We fix some notation that will be used throughout the paper. (X,S, p) denotes a probability measure

space: X is the set of elementary events, S is a σ-algebra of some subsets of X, p is a probability

measure on S. Given (X,S, p), Ls(X,S, p) denotes the set of f : X → IR measurable functions such

that |f |s is p-integrable. Of special importance are the integrable (s = 1), the square-integrable

(s = 2), and the (essentially) bounded functions, the latter corresponds, formally, to s =∞. Since p

is a bounded measure, we have (cf. [38], [35][p. 71])

L∞(X,S, p) ⊂ L2(X,S, p) ⊂ L1(X,S, p) (1)

Identifying functions that are equal except on p-measure zero sets, one obtains the corresponding

spaces Ls(X,S, p) consisting of equivalence classes of functions (notice the notational difference be-

tween L and L). In what follows, in harmony with the usual mathematical practice, we use the

same letters f, g etc. to refer to both functions (elements of Ls(X,S, p)) and equivalence classes of

functions (elements of Ls(X,S, p)). The characteristic (indicator) functions χA of the sets A ∈ S are

in Ls(X,S, p) for all A ∈ S.
The probability measure p extends from S to a linear functional φp on Ls(X,S, p) by the integral:

φp(f)
.
=

∫
X

fsdp f ∈ Ls(X,S, p) (2)

The value of φp on a characteristic function χA of A ∈ S is just the p-probability of A:

φp(χA) =

∫
X

χsAdp =

∫
X

χAdp =

∫
A

dp = p(A) (3)

The map f 7→ ‖f‖s
.
= φp(|f |) defines a seminorm ‖ · ‖s on Ls(X,S, p) (only a seminorm because in

the function space Ls(X,S, p) functions differing on p-probability zero sets are not identified). The

linear functional φp is continuous in the seminorm ‖ · ‖s. The seminorm ‖ · ‖s becomes a norm on

Ls(X,S, p). The containment relation (1) is dense when Ls (s = 1, 2,∞) are considered as normed

spaces.

We denote by L1(X,S, p)] the set of all linear functionals on L1(X,S, p) that are positive φ(f) ≥ 0

if f ≥ 0, and normalized φ(1) = 1, where 1 denotes the characteristic function χX of the whole set

X. These functionals are called states, and these are the ones that define probability measures when

restricted to the (characteristic functions of elements of the) σ-algebra S and which thus encode

probability measures via the integral (2). Note that because of the requirement of boundedness, any

φ ∈ L1(X,S, p)] is continuous in the ‖ · ‖1-norm topology; thus the states are a proper subset of the

dual space L1(X,S, p)∗, the latter containing all ‖ · ‖1-continuous linear functionals.
The space of square-integrable random variables L2(X,S, p) is a Hilbert space with respect to the

scalar product 〈·, ·〉 defined by

〈f, g〉 .=
∫
X

fg dp f, g ∈ L2(X,S, p) (4)

For more details on the above notions (and other mathematical concepts related to Ls-spaces used

here without definition) see the standard references for the measure theoretic probability theory [29],

[1], [34], [2]. In particular, section 19 in [1] and Chapter 3 in [35] discuss further properties of the

function spaces Ls(X,S, p).
The central concept that the modern mathematical theory of conditionalization is based on is the

notion of conditional expectation:
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Definition 2.1 ([1] p. 445). Let (X,S, p) be a probability space, A be a σ-subalgebra of S, and pA
be the restriction of p to A. A map

E (· | A) : L1(X,S, p)→ L1(X,A, pA) (5)

is called an A-conditional expectation from L1(X,S, p) to L1(X,A, pA) if (i) and (ii) below hold:

(i) For all f ∈ L1(X,S, p), the E (f | A) is A-measurable.

(ii) E (· | A) preserves the integration on elements of A:∫
Z

E (f | A)dpA =

∫
Z

f dp ∀Z ∈ A. (6)

The A-measurability condition (i) should be thought of as a coarse-graining requirement: it

entails that E (f | A) is constant on minimal elements (atoms) in A (atoms in A need not be atoms

in S). Condition (ii) is the general form of the theorem of total probability: it requires that from the

conditional expectation one can recover the original expectation values (hence the original probability

p). For further discussion of the interpretation of properties of the conditional expectation see [1].

It is not obvious that, given an A, a conditional expectation E (· | A) exists but the Radon-

Nykodim theorem entails that it always does:

Proposition 2.2 ([1] p. 445; [2] Theorem 10.1.5). Given any (X,S, p) and any σ-subalgebra A of

S, a conditional expectation E (· | A) from L1(X,S, p) to L1(X,A, pA) exists.

Note that uniqueness is not part of the claim in Proposition 2.2 because the conditional expectation

is only unique up to measure zero:

Proposition 2.3 ([1] Theorem 16.10 and p. 445; [2] p. 339). If E ′(· | A) is another conditional

expectation then for any f ∈ L1(X,S, p) the two L1-functions E (f | A) and E ′(f | A) are equal up

to a p-probability zero set.

Different conditional expectations equal up to measure zero are called versions of the conditional

expectation. It follows that, considered as a map on L1(X,S, p), the conditional expectation is unique.

We use the notation E(· | A) to denote the conditional expectation E (· | A) when viewed as a map

on L1(X,S, p). The next proposition states some basic features of the conditional expectations.

Proposition 2.4 ([1] Section 34). A conditional expectation has the following properties:

(i) E(· | A) is a linear map.

(ii) E(· | A) is a projection:

E(E(f | A) | A) = E(f | A) ∀f ∈ L1(X,S, p) (7)

(iii) E(· | A) preserves the unit

E(1 | A) = 1 (8)

(iv) E(· | A) is a ‖ · ‖1-contraction: ‖E(f | A)‖1 ≤ ‖f‖1 (i.e. E(· | A) is continuous in the ‖ · ‖1-norm
topology).

Note that restricted to the Hilbert space L2(X,S, p) the conditional expectation E(· | A) is an

orthogonal projection on L2(X,S, p) with range L2(X,A, pA), a closed linear subspace of L2(X,S, p).
A deep result of the theory of conditional expectations is that Properties (i)-(iv) in Proposition

2.4 characterize the conditional expectation completely:
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Proposition 2.5 ([32], Theorem 3; [11], Corollary 1; [31] ). Suppose that the map T

T : L1(X,S, p)→ L1(X,S, p) (9)

is a linear, ‖ · ‖1-contractive projection preserving 1. Then there exists a σ-subalgebra A of S such

that T is a conditional expectation from L1(X,S, p) to L1(X,A, pA).

3 Conditional probability in terms of conditional expec-

tation

Let (X,S, p) be a probability space, A be a σ-subalgebra of S. Assume that φ′A is a ‖ · ‖1-continuous
linear functional on the subspace L1(X,A, pA) determined by a probability measure p′A given on

the subalgebra A via integral (cf. equation (2)). What is the extension φ′ of φ′A from L1(X,A, pA)

to a ‖ · ‖1-continuous linear functional on L1(X,S, p)? This question is the general problem of

statistical inference, and the answer to it is the concept of conditional probability: One is interested

in the expectation values φ′(f) of random variables f in L1(X,S, p) that are not in L1(X,A, pA) on

condition that the expectation values of functions g that are in the narrower set of random variables

L1(X,A, pA) are prescribed (are known) and are given by φ′A(g). In general there are many such

extensions. Bayesian statistical inference yields a particular answer which is based on Bayesian

conditioning via the conditional expectation determined by the probability p and the subalgebra A:

Definition 3.1 (Bayesian statistical inference). Let the extension φ′ of φ′A be

φ′(f)
.
= φ′A(E(f | A)) ∀f ∈ L1(X,S, p) (10)

where E(· | A) is the A-conditional expectation from L1(X,S, p) to L1(X,A, pA).

Note that because E(· | A) is a projection operator on L1(X,S, p) (Proposition 2.4), φ′ is indeed

an extension of φ′A, and because E(· | A) is ‖ ·‖1-continuous, the extension φ′ also is ‖ ·‖1-continuous.
Thus equation (10) defines an extension φ′ of φ′A indeed.

The notion of conditional probability of an event obtains as a special case of Bayesian statistical

inference so defined:

Definition 3.2. If B ∈ S then its (A, p′A)-conditional probability p′(B) is the expectation value

φ′(χB) of its characteristic function χB computed using the formula (10) containing the A-conditional
expectation:

p′(B)
.
= φ′(χB) = φ′A(E(χB | A)) (11)

Note that the value E(χA | A) of the conditional expectation E(· | A) on a characteristic function

χA is not a characteristic function: it is only an integrable function. This is why one has to go to

function spaces if one wants to define conditional probabilities using conditional expectations the way

specified by Definition 3.2.

We now show that both Jeffrey conditionalization and elementary conditionalization via the Bayes

rule are particular cases of the conditional probability defined via conditional expectations in the

manner given by Definition 3.2. To see this recall first a well-known fact from the theory of conditional

expectations:

Proposition 3.3 ([1] p. 446). Let (X,S, p) be a probability space. If the σ-subalgebra A of S
is generated by a countably infinite partition {Ai}i∈IN such that p(Ai) 6= 0 (i = 1, . . .), then the
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conditional expectation (5) can be given explicitly on the characteristic functions of L1(X,S, p) as

E(χB | A) =
∑
i

p(B ∩Ai)
p(Ai)

χAi ∀B ∈ S (12)

In particular, if S has a finite number of elements, then all conditional expectations are of the above

form (with a finite summation).

It follows that if state φ′A is given on A by fixing its values φ′A(Ai) = p′A(Ai) on the generating

sets Ai, then the (A, φ′A)-conditional probability of B ∈ S, B 6∈ A that Definition 3.2 specifies is

p′(B)
.
= φ′(χB) = φ′A(E(χB | A)) (13)

= φ′A

(∑
i

p(B ∩Ai)
p(Ai)

χAi

)
(14)

=
∑
i

p(B ∩Ai)
p(Ai)

φ′A(χAi) (15)

=
∑
i

p(B ∩Ai)
p(Ai)

p′A(Ai) (16)

which is the Jeffrey conditional rule [23].

Simple Bayesian conditioning is a special case of Jeffrey conditioning: If the Boolean algebra A is

generated by two non-trivial elements A,A⊥ and we take φ′A to be the special state on the Boolean

algebra A that takes the values φ′A(A) = 1 and φ′A(A⊥) = 0, then the Jeffrey conditionalization rule

(13)-(16) reduces to Bayes’ rule:

p′(B) =
p(B ∩A)

p(A)
(17)

In light of recovering Bayes’ rule this way as a special case of conditioning via conditional expectation

it becomes visible that the simple Bayes’ rule (17) is slightly deceptive: Bayes’ rule gives the impression

that it is the probability measure p that gets “upgraded in light of evidence A”. But in fact it is the

specific probability measure φ′A having the particular values φ′A(A) = 1 on A and φ′A(A⊥) = 0 on

A⊥ that gets “upgraded” (i.e. extended from the Boolean algebra A generated by A and A⊥) to a

probability measure on the whole σ-algebra S – the role of the probability measure p is to serve as

the background measure with respect to which the upgrading takes place. Thus Bayes’ rule conceals

somewhat the true logical structure of conditionalization, which is the following:

(i) The measure φ′A on the subalgebra A represents the conditioning conditions.

(ii) The extension φ′ of φ′A to the whole algebra S yields the conditional probability on condition

that the values of φ′ are prescribed on A.

(iii) p is the fixed background probability measure with respect to which the conditioned values are

obtained via (statistical) inference.

It must be emphasized that conditionalizing using the theory of conditional expectations in the

spirit of Definitions 3.1 and 3.2 is much more general than the Jeffrey conditionalization: First,

because a general A is not generated by a countable partition; and in such cases the A-conditional
expectation cannot be of the form (12). Second, the A-conditional expectation cannot always be given

explicitly, its existence is the corollary of the Radon-Nykodim theorem, which is a non-constructive,

pure existence theorem. Third, the formula (12) and hence the Jeffrey conditional, is not defined for

events Ai that have zero unconditional probability. But the theory of conditional expectations can

handle conditional probabilities with respect to a σ-subalgebra A that contain some p-probability zero

events. The standard example of conditioning with respect to probability zero events is obtaining the
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conditional probability distribution on the one dimensional slices of the unit square with the Lebesgue

measure giving the unconditional probability on the square [1][p. 432]. To illustrate the notion of

conditional probability obtained via conditional expectation we describe here this paradigm example

briefly.

Example 3.4. Let (X,S, p) be the probability space with X = [0, 1]× [0, 1] the unit square in two

dimension, S the Borel measurable subsets of [0, 1]× [0, 1] and p = l× l the Lebesgue measure on S,
where l is the Lebesgue measure on [0, 1]. Let C .

= [0, 1] × {z} be any horizontal slice of the square

at number z ∈ [0, 1] and B .
= b× {z} be a Borel set of the square with b a Borel set in the slice (see

the Fig. 3.4).

z
b

What is the conditional probability of B on condition C? Note that slices are measure zero sets in

the two dimensional Lebesgue measure and there are an uncountably infinite number of them, hence

neither Bayes rule nor Jeffrey conditionalization are applicable. Application of conditionalization

via conditional expectation to this situation is possible however and is the following. Consider the

σ-algebra A ⊂ S generated by the sets of form [0, 1] × A with A a Borel subset of [0, 1]. Note that

A contains the slices [0, 1] × {z} where z is a number in [0, 1]; these sets have measure zero in the

Lebesgue measure on the square. Then one can check by an elementary calculation that a version of

the A-conditional expectation E (· | A) is given explicitly by:

E (f | A)(x, y) =

∫ 1

0

f(x, y)dx ∀(x, y) ∈ [0, 1]× [0, 1] (18)

Inserting the characteristic function χB of B = b × {z} in the place of f in eq. (18) one obtains for

all (x, y) ∈ [0, 1]× [0, 1]:

E (χB | A)(x, y) =

∫ 1

0

χb×{z}(x, y)dx (19)

=

{
l(b), if y = z

0, if y 6= z
(20)

If p′A is the probability measure on the σ-algebra A such that

p′A(C) = p′A([0, 1]× {z}) = 1 (21)

p′A(C⊥) = p′A(([0, 1]× {z})⊥) = 0 (22)

then, by definition, the (A, p′A)-conditional probability p′(b×{z})) of B on condition C = [0, 1]×{z}
(i.e. on condition that p′A([0, 1]× {z}) = 1) can be calculated using (19):

p′(b× {z}) = p′A(E (χb×{z} | A)) (23)

=

∫
[0,1]×[0,1]

E (χb×{z} | A)dp′A (24)

= l(b) (25)
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Thus we have obtained that given any one dimensional slice C = [0, 1] × {z} at point z across the

square, the (A, p′A)-conditional probability of the subset b of that slice on condition that we are

on that slice (p′A(C) = 1) is proportional to the length of the subset b. This result is obtained

using the technique of conditional expectation with respect to a σ-subalgebra A some elements of

which have probability zero. Again: this result cannot be obtained using Bayes rule or using Jeffrey

conditionalization because there is an uncountably infinite number of disjoint slices, hence the algebra

A is not generated by a countable partition.

It should be noted that Jeffrey mentioned the issue of generalization of his rule of conditionalizing

in order to include the “continuous case” [23][Section 11.8]. It was also clear to him that “To discuss

the matter more rigorously and generally, it is necessary to use the notion of integration over abstract

spaces...” [23][p. 177]. But he did not seem to have worked out the general case systematically.

Nor did he refer to the theory of conditional expectations, which is precisely the theory developed

by Kolmogorov to cover the general case. Expositions of the mathematical theory of conditional

expectations, nowadays a standard topic in probability theory, also do not refer to Jeffrey condition-

alization. It is not clear to us why the connection has not been made, although, as we have seen, the

connection is straightforward.

4 The Bayes accessibility relation in terms of conditional

expectations

Definition 4.1. If φ is a state in L1(X,S, p)] then we say that φ is Bayes accessible for the Bayesian

Agent if there exists a σ-subalgebra A of S and a state ψA in L1(X,A, pA)] such that conditionalizing

ψA using the conditional expectation

E(· | A) : L1(X,S, p)→ L1(X,A, pA) (26)

we obtain φ, i.e. if we have

φ(f) = ψA(E(f | A)) for all f ∈ L1(X,S, p) (27)

The Bayesian interpretation of Bayes accessibility of φ is straightforward: The probability measure

p represents the background knowledge of the Bayesian Agent (pA is the restriction of p to A).
Suppose the Agent wishes to learn the state φ. If φ is Bayes accessible, then there exists a set of

propositions represented by a σ-subalgebra A of S such that from the evidence given by the state ψA
on the subspace L1(X,A, pA) determined by the subalgebra A and by the probability representing

the Agent’s background measure, the Agent can infer and thus learn the values of φ by Bayesian

statistical inference, i.e. by Bayesian upgrading using conditional expectations as the conditioning

device.

Example 4.2. As an illustration of Bayes accessibility consider the situation described in Exam-

ple 3.4: Suppose that the Bayesian Agent is told that points have been chosen randomly on the unit

square but the Agent is not told what the distribution of the points is, and he assumes that the

distribution is given by the uniform (Lebesgue) measure p on the square. (This uniform probability

measure represents the Agent’s background knowledge.) The Agent is then given the information

about what the expectation values of random variables depending on the outcome of choices of the

points restricted to Borel sets of horizontal slices [0, 1]×A are (which includes the information about

what the distribution of the points is on single horizontal slices). That is to say, the Agent is given,
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as evidence, a state φ′A on the σ-subalgebra A described in Example 3.4. The Agent is then asked to

infer the expectation values φ′(f) of random variables f on the whole square (which includes prob-

abilities φ′(χB) that the randomly chosen points lie in an arbitrary Borel subset B of the square).

Following the prescription of Bayesian statistical inference, the Bayesian Agent infers:

φ′(f) = φ′A(E(f | A)) (28)

where E(· | A) is the A-conditional expectation (cf. equation (18)). In particular, the Agent can infer

the conditional probabilities

p′(B) = φ′(χB) = φ′A(E(χB | A)) (29)

The state φ′ is thereby Bayes accessible for the Agent because from the evidence represented by

the state φ′A on the subalgebra A the Agent can infer φ′ by Bayesian inference using the theory of

conditional expectations determined by his background knowledge. Neither Bayes rule nor Jeffrey

conditionalization makes such an inference possible.

To investigate the features of Bayesian learning so defined it is useful to define a general Bayes

accessibility relation as follows:

Definition 4.3. If φ and ψ are states in L1(X,S, p)] then we say that φ is Bayes accessible from ψ

(which we denote by ψ E

 φ), if there exists a σ-subalgebra A of S such that conditionalizing ψ using

the conditional expectation

E(· | A) : L1(X,S, p)→ L1(X,A, pA) (30)

we obtain φ; i.e. if we have

φ(f) = ψ(E(f | A)) for all f ∈ L1(X,S, p) (31)

The relation of Definitions 4.1 and 4.3 is straightforward: Since the range of the conditional

expectation E(· | A) is the subspace L1(X,A, pA) of L1(X,S, p), from the perspective of Bayes

accessibility of φ from ψ only the values of ψ on L1(X,A, pA) matter. Thus, if there exists a state

ψA on the subspace L1(X,A, pA) from which φ can be obtained by conditioning using the conditional

expectation E(· | A) (and hence φ is Bayes accessible for then Agent), then φ can be Bayes accessed

from any extension of ψA to a state ψ on L1(X,S, p). Conversely, if for a state φ there exists a

state ψ in L1(X,S, p)] such that ψ E

 φ, then φ is Bayes accessible for the Bayesian agent in the

sense of Definition 4.1 because from the restriction ψA of ψ to L1(X,A, pA) the Agent can infer φ

by conditioning. Thus “φ is Bayes accessible from some ψ” is equivalent to “φ is Bayes accessible for

the Bayesian agent”.

The Bayes accessibility (Definition 4.3) defines a two-place relation in the state space L1(X,S, p)],
a subset of the dual space L1(X,S, p)∗ of the space of integrable random variables L1(X,S, p). This
Bayes accessibility relation is given by the dual E(· | A)∗ of conditional expectations E(· | A), where

the dual E(· | A)∗ of E(· | A) is defined by

L1(X,S, p)] 3 φ 7→ E(· | A)∗φ
.
= φ ◦ E(· | A) ∈ L1(X,S, p)] (32)

Investigating the general properties of general Bayesian learning amounts to determining the

features of E

 viewed as a two-place relation in the state space. This is what we do in the present

paper.
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5 Antisymmetry of the Bayes accessibility relation and

failure of strong Bayes connectedness of state spaces

It is obvious that E

 is reflexive: One has to take the identity map on L1(X,S, p) as the conditional

expectation E to access every state from itself.

Proposition 5.1. The relation E

 is antisymmetric.

Proof. Assume ψ E

 φ and φ
E

 ψ. Then there exist σ-subalgebras S1,S2 of S and conditional

expectations

E(· | S1) : L1(X,S, p)→ L1(X,S1, p1) (33)

E(· | S2) : L1(X,S, p)→ L1(X,S2, p2) (34)

Such that

φ(f) = ψ(E(f | S1)) ∀f ∈ L1(X,S, p) (35)

ψ(f) = φ(E(f | S2)) ∀f ∈ L1(X,S, p) (36)

Let E1 and E2 denote the orthogonal projections on L2(X,S, p) corresponding to the conditional

expectations E(· | S1) and E(· | S2). Equations (35)-(36) entail then

φ(f) = ψ(E1f) ∀f ∈ L2(X,S, p) (37)

ψ(f) = φ(E2f) ∀f ∈ L2(X,S, p) (38)

Equations (37)-(38) entail

φ(f) = ψ(E1E2E1f) ∀f ∈ L2(X,S, p) (39)

ψ(f) = φ(E2E1E2f) ∀f ∈ L2(X,S, p) (40)

and equations (39)-(40) entail that for all n ∈ IN we have

φ(f) = ψ([E1E2E1]nf) ∀f ∈ L2(X,S, p) (41)

ψ(f) = ψ([E2E1E2]nf) ∀f ∈ L2(X,S, p) (42)

Since φ and ψ are assumed to be ‖ · ‖1-continuous (41)-(42) entail:

φ(f) = ψ(
1

lim
n→∞

([E1E2E1]nf)) ∀f ∈ L2(X,S, p) (43)

ψ(f) = φ(
1

lim
n→∞

([E2E1E2]nf)) ∀f ∈ L2(X,S, p) (44)

where
1

lim denotes the limit in the ‖ · ‖1 norm.

Since E1 and E2 are projections on the Hilbert space H = L2(X,S, p), the limits of the operator

sequences [E1E2E1]n and [E2E1E2]n exist in the sense of the strong operator topology in the set of

all bounded operators B(H) on H, the limits are the same, and the limit is an element in the lattice

P(H) of all projections on H: it is the greatest lower bound E2 ∧E1 of the the projections E1 and E2

with respect to the standard ordering ≤ of projections in P(H) (Proposition 4.13 in [33]). So for all

f ∈ L2(X,S, p) we have

2

lim
n→∞

[E1E2E1]nf =
2

lim
n→∞

[E2E1E2]nf (45)

= (E2 ∧ E1)f (46)
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where
2

lim denotes the limit in the ‖ · ‖2 norm.

Since p is a bounded measure, by Jensen’s inequality one has ‖f‖1 ≤ ‖f‖2; hence the limit of the

sequences [E1E2E1]nf and [E2E1E2]nf also exists in the ‖ · ‖1 norm, and so for all f ∈ L2(X,S, p) we

have

1

lim
n→∞

[E1E2E1]nf =
1

lim
n→∞

[E2E1E2]nf (47)

= (E2 ∧ E1)f (48)

Equations (43)-(44) together with (47)-(48) entail:

φ(f) = ψ((E2 ∧ E1)f) ∀f ∈ L2(X,S, p) (49)

ψ(f) = φ((E1 ∧ E2)f) ∀f ∈ L2(X,S, p) (50)

Since Ei ≥ (E2 ∧ E1) (i = 1, 2), we have

Ei(E2 ∧ E1) = (E2 ∧ E1) i = 1, 2 (51)

equations (37)-(38) and (49)-(50) entail that for all f ∈ L2(X,S, p) we have

φ(f) = ψ((E2 ∧ E1)f) (52)

= φ(E2(E2 ∧ E1)f) (53)

= φ((E2 ∧ E1)f) (54)

= ψ(f) (55)

Thus φ is equal to ψ on L2(X,S, p). Since the L2(X,S, p) is ‖ · ‖1-dense in L1(X,S, p) and φ and ψ

are ‖ · ‖1-continuous, φ and ψ are equal on L1(X,S, p).

Antisymmetry of the Bayes accessibility relation E

 entails that state spaces are not strongly Bayes

connected in general: it is not true that any state φ in L1(X,S, p)] is Bayes accessible from any

other ψ in L1(X,S, p)]. If strong Bayes connectedness were a feature of a state space then every

state could be learned by the Agent by Bayesian upgrading from every other in the same state space:

Given any two states φ and ψ there would always exist a set of propositions (depending on φ of

course) such that knowing the values of ψ on elements of that set, the Agent could infer all values

of φ by conditionalizing ψ (with respect to the fixed background probability measure) on that set

of propositions. But antisymmetry of E

 entails that the only probability space that is strongly

Bayes connected is the trivial one with ∅ and X forming S. Thus in non-trivial state spaces Bayesian

learning has a certain directedness: if φ can be Bayes-learned from ψ, then ψ cannot be Bayes-learned

from φ. What can be Bayes-learned from some evidence, cannot serve as evidence to Bayes-learn the

evidence itself.

6 Are state spaces weakly Bayes connected?

Lack of strong Bayes connectedness of state spaces leads to the following definition:

Definition 6.1. A state space L1(X,S, p)] is called weakly Bayes connected if for every state φ in

L1(X,S, p)] there exists a state ψ in L1(X,S, p)] such that ψ 6= φ and φ is Bayes accessible from ψ.
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Are state spaces weakly Bayes connected? There is no general “yes” or “no” answer to this

question. We will see that some state spaces are, some others are not weakly Bayes connected. To

decide whether a state space is weakly Bayes connected is not a trivial task. For instance we do

not know whether a “small enough” state space is weakly Bayes connected (cf. Problem 6.6) (we

conjecture that it is not). We show here failure of weak connectedness of state spaces of typical

probability theories, and give an example of a weakly Bayes connected state space. To do this, we

have to separate the analysis of weak Bayes connectedness into two parts: considering first the state

space L2(X,S, p)] and then L1(X,S, p)]. We start with the L2-theory of Bayes connectedness of

state spaces.

Recall that two probability spaces (X1,S1, p1) and (X2,S2, p2) are isomorphic if there is an invert-

ible map f : X1 → X2 such that both f and f−1 are measurable, measure preserving maps. A closely

related notion is isomorphism modulo zero: (X1,S1, p1) and (X2,S2, p2) are isomorphic modulo 0 if

there exist sets A1 ⊆ X1 and A2 ⊆ X2 with p1(A1) = 0 = p2(A2) such that the probability spaces

(X ′1,S ′1,′ p′1) and (X ′2,S ′2, p′2) are isomorphic, where X ′1 = X1 r A1 and X ′2 = X2 r A2, S ′1, and S ′2
are the natural restrictions of the σ-algebras S1 and S2 obtained by removing the sets A1 and A2,

and where p′1 and p′2 are the restrictions of p1 and p2 to S ′1, and S ′2. If (X1,S1, p1) and (X2,S2, p2)

are isomorphic modulo 0, then Ls(X1,S1, p1) and Ls(X2,S2, p2) are isometrically isomorphic spaces

(because in Ls spaces functions differing on null sets are identified).

Let (X,S, p) be a probability space and A be a σ-subalgebra of S. We say that A and S are equal

modulo 0 if (X,S, p) and (X,A, p) are isomorphic modulo 0. A and S being not equal modulo zero

means that there is a set A ∈ S \A with p(A) 6= 0. Note that Ls(X,A, p) is always a closed subspace

of Ls(X,S, p) but equality of A and S modulo zero implies Ls(X,S, p) = Ls(X,A, p).
The next proposition formulates a condition that is equivalent to the weak Bayes connectedness

of L2 state spaces. Throughout L denotes the Lebesgue σ-algebra over the reals.

Proposition 6.2. L2(X,S, p)] is weakly Bayes connected if and only if there exists no function

f ∈ L2(X,S, p) which is positive f > 0, normalized ‖f‖2 = 1, and such that S and f−1[L] are equal

modulo 0, where f−1[L] =
{
f−1(A) : A ∈ L

}
with f−1 being the inverse image function of f .

Proof. By Riesz’s representation theorem ([1][p. 244]) for each state φ ∈ L2(X,S, p)] there exists a

positive, normalized function fφ ∈ L2(X,S, p) such that

φ(g) = 〈g, fφ〉 g ∈ L2(X,S, p) (56)

where 〈·, ·〉 denotes the scalar product in L2(X,S, p). Conversely: every positive, normalized function

f in L2(X,S, p) defines a state φf on L2(X,S, p) by φf (g) = 〈g, f〉 for all g ∈ L2(X,S, p).
Let φ, ψ ∈ L2(X,S, p)] be two states, fφ and fψ be the two functions in L2(X,S, p) that represent

them in the sense of Riesz’ representation theorem. If φ is Bayes accessible from ψ, then, by definition

of Bayes accessibility, there is a σ-subalgebra A of S such that

φ(g) = ψ(E(g | A)) for all g ∈ L2(X,S, p) (57)

Denoting by EA the operator on L2(X,S, p) that represents the conditional expectation E(· | A), and

using the Riesz representatives fφ and fψ of states φ and ψ, equation (57) can be re-written as

〈g, fφ〉 = 〈EAg, fψ〉 for all g ∈ L2(X,S, p) (58)

Since EA is an orthogonal, selfadjoint projection, equation (58) entails

〈g, fφ〉 = 〈EAg, fψ〉 = 〈g,EAfψ〉 for all g ∈ L2(X,S, p) (59)
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The equation 〈g, fφ〉 = 〈g,EAfψ〉 holds for all g ∈ L2(X,S, p) if and only if fφ = EAfψ. Thus we

can conclude that if φ is Bayes accessible from some state then fφ is in the range of an orthogonal

projection EA representing a conditional expectation. It follows that if the state φ is Bayes accessible

from a state different from φ, then its representing vector fφ must belong to a proper closed linear

subspace of L2(X,S, p) that has the form L2(X,A, p). Since the smallest closed linear subspace in

L2(X,S, p) to which fφ belongs is L2(X, f−1
φ [L], p), state φ is Bayes accessible from another state only

if f−1
φ [L] ⊂ S is a proper subalgebra which is not equal to S modulo 0 (for if f−1

φ [L] is a subalgebra

equal to S modulo 0, then L2(X, f−1
φ [L], p) is equal to L2(X,S, p)). Consequently, L2(X,S, p)] is

weakly Bayes connected only if there is no positive and normalized function f ∈ L2(X,S, p) such

that S and f−1[L] are equal modulo zero.

Conversely, suppose there exists no positive and normalized function f such that S and f−1[L]

are equal modulo zero. Then for every state φ the function fφ that represents φ in the sense of

the Riesz representation theorem, L2(X, f−1
φ [L], p) is a proper closed linear subspace of L2(X,S, p).

By Proposition 2.2 there exist then a conditional expectation E(· | f−1
φ [L]) from L2(X,S, p) onto

L2(X, f−1
φ [L], p) and (since L2(X, f−1

φ [L], p) is a proper subspace) also a positive, normalized func-

tion f ′ 6∈ L2(X, f−1
φ [L], p) such that fφ = E(f ′ | f−1

φ [L]). This entails 〈g, fφ〉 = 〈g,E(f ′ | f−1
φ [L])〉 for

all g ∈ L2(X,S, p), which is equivalent to φ = ψ ◦ E(· | f−1
φ [L]) where ψ is the state in L2(X,S, p)]

that is Riesz-represented by function f ′. Thus every state in L2(X,S, p)] is obtainable as a condi-

tioned state and so the state space L2(X,S, p)] is weakly Bayes connected.

Lemma 6.3. If there is an injective, positive and normalized function f ∈ L2(X,S, p), then L2(X,S, p)]

is not weakly Bayes connected.

Proof. If f : X → R is injective, then for all A ∈ S we have f−1(f(A)) = A. This entails f−1[L] = S
and the statement follows from Proposition 6.2.

To state the next proposition we need to recall the notion of a standard probability space. In-

tuitively, a probability space is standard if it is “the sum” of continuous and discrete parts, where

the continuous part is (measure theoretically) isomorphic to an interval with the Lebesgue (or Borel)

measure on it, and the discrete part is (measure theoretically) isomorphic to a measure space with

a σ-algebra that is either finite or is generated by a countably infinite set. To give a more precise

definition one has to define the sum (disjoint union) of measure spaces: Let (Xi,Si, pi) for i < n ∈ N

be finitely many measure spaces and suppose for convenience that the Xi’s are disjoint sets. Define a

σ-algebra S on X =
⋃
iXi as follows: Take a subset A ⊆ X to be in S if and only if A ∩Xi belongs

to Si for all i. Then the map p : S → R defined by

p(A)
.
=
∑
i

pi(A ∩Xi) for all A ∈ S (60)

is a measure and the measure space (X,S, p) is called the disjoint union of the measure spaces

(Xi,Si, pi). (For the elementary properties of a disjoint union of measure spaces we refer to [14][section

214K].) A probability space is called standard if it is isomorphic modulo zero to the disjoint union

of the Borel or Lebesgue measure spaces of a (possibly empty) interval, and a measure space with a

σ-algebra that is either finite or is generated by a countably infinite set (cf. Definition 4.5 in [30]). It

is not hard to see that the disjoint union of finitely many standard measure spaces is also standard.

Examples of standard probability spaces include all probability spaces with a finite or countably

infinite set of elementary events (“discrete” probability spaces) and the n-dimensional Euclidean spaces
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Rn with probability given by a density function with respect to the Lebesgue measure on Rn. Also

included are the probability spaces where X is a compact subset E of Rn and the probability on E

is given by a density with respect to the restriction of the Lebesgue measure to E. These probability

spaces cover essentially all applications of probability.

Proposition 6.4. Let (X,S, p) be a probability space. Then L2(X,S, p)] is not weakly Bayes

connected in the following (i)-(iii) cases:

(i) (X,S, p) is generated by a countable set of point masses, i.e. X is finite or countably infinite.

(ii) (X,S, p) is isomorphic to an interval with the Borel or Lebesgue measure.

(iii) (X,S, p) is a standard probability space.

Proof. (i) Suppose X is finite or countably infinite. In this case it is clear that there exists a

measurable, injective, positive and integrable f : X → R. By re-normalization we can also assume

that f is normalized. Then (i) follows from Lemma 6.3. For later purposes we note that such an f

can always be assumed to be bounded and hence to belong to L∞(X,S, p) ∩ L2(X,S, p). (Take for

instance X = N and f(n) = 1
n+1

.)

(ii) Without loss of generality we can assume that (X,S, p) is the Lebesgue space ([0, 1],L, λ).

We wish to apply Lemma 6.3 again. It is easy to see that there is an injective, positive function

f : [0, 1] → R (take, for instance, the identity function id[0,1] on [0, 1]). Clearly f is measurable and

belongs to L2([0, 1],L, λ). To make it normalized, divide it by ‖f‖2. For later purposes we note

id[0,1] ∈ L∞(X,S, p) ∩ L2(X,S, p).
(iii) In this case (X,S, p) is isomorphic modulo zero to a disjoint union of a (possibly empty)

interval with Lebesgue or Borel measure and a countable (possibly empty) set of point masses. Take

the union of the two injective, positive functions obtained from cases (i) and (ii) and normalize it to

length 1. Then the result follows again from Lemma 6.3.

Proposition 6.4 shows that probability spaces are typically not weakly Bayes connected. This leads

to the question of whether weakly Bayes connected probability spaces exist at all. We show below

that they do by isolating a class of probability spaces which have weakly Bayes connected state spaces.

However, the spaces in that class are “very large”: Call a probability space (X,S, p) significantly large

if it is not isomorphic modulo zero to any space (X ′,S ′, p′) with S ′ having cardinality less than or

equal to the cardinality of the set L of Lebesgue measurable sets. Significantly large probability

spaces exist. Consider for instance the following example. Let X be any uncountable set, and S be

the family of sets A ⊆ X with the property that either A or its complement XrA is countable. Then

S is a σ-algebra of subsets of X, and its cardinality |S| satisfies |S| ≥ |X|. Consider the function

p : S → [0, 1] defined by p(A) = 0 if A is countable and p(A) = 1 if A is not countable. Then p is

a probability measure on S. If |X| > 22ℵ0 , then (X,S, p) is significantly large. This is because each

p-probability zero set is countable, and removing a countable set does not change the cardinality of

X. Recall that |L| = 22ℵ0 .

The next proposition motivates the definition of significantly large probability spaces.

Proposition 6.5. If (X,S, p) is significantly large, then L2(X,S, p)] is weakly Bayes connected.

Proof. S cannot be equal modulo zero to f−1[L] for any f ∈ L2(X,S, p), because in this case S
would be equal modulo zero to an algebra of cardinality |f−1[L]| ≤ |L|. Thus the result follows

directly from Proposition 6.2.
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Proposition 6.5 establishes a connection between weak Bayes connectedness of the state space of a

probability space and cardinality of the σ-algebra of the propositions over which the Bayesian Agent

defines probabilities. This proposition gives a sufficient condition for Bayes connectedness to hold:

the Boolean algebra of propositions must be larger than the σ-algebra in the set of (real) numbers

with respect to which measurability of the random variables is required. It remains open whether

this condition also is necessary however. We conjecture that it is.

From the perspective of Bayesian learning, the sufficient condition for weak Bayes connectedness

contained in Proposition 6.5 is very demanding: The Bayesian Agent must be able to comprehend a set

of elementary (atomic) propositions cardinality of which is way beyond even that of the continuum.

Whether one should allow such an extremely strong concept of Bayesian Agent, is questionable.

Proposition 6.5 and its proof also indicate in what way the demanding condition could in principle

be weakened: One can read Proposition 6.5 as saying that the cardinality of the σ-algebra in the

field in which the random variables take their value and with respect to which measurability of the

random variables are demanded give a lower bound on the cardinality of the σ-algebra of random

events for which weak Bayes connectedness can hold. To put it differently: the coarser the random

variables the smaller the minimal size of the σ-algebra of random events that allows in principle for

the corresponding probabilistic theory to be weakly Bayes connected. Thus, as long as one considers

real valued random variables in the standard interpretation as real valued maps that are required to

be Borel (or Lebesgue) measurable, the state spaces of usual probability theories will not be weakly

Bayes connected.

Propositions 6.4 and 6.5 also lead to the following open problem.

Problem 6.6. Is there a non-standard probability space (X,S, p) with cardinality |S| = |L| such
that its state space L2(X,S, p)] is weakly Bayes connected?

Next, we turn to the question of weak Bayes connectedness of L1-state spaces.

Proposition 6.7. If (X,S, p) is a standard probability space, then L1(X,S, p)] is not weakly Bayes

connected.

Proof. The proof is based on the following idea. Suppose L2(X,S, p)] is not weakly Bayes con-

nected. Then there is a positive, normalized function f ∈ L2(X,S, p) witnessing it: the state φf is

not accessible from any other L2-state (cf. the proof of Proposition 6.2). Since the dual space of

L1(X,S, p) is L∞(X,S, p), if f happens to belong to L∞(X,S, p) as well, then f defines a state φ in

L1(X,S, p)] via

φ(g) =

∫
fg dp for all g ∈ L1(X,S, p) (61)

We claim that such a φ is not Bayes accessible from any other state ψ ∈ L1(X,S, p)]; thus this state
will witness L1(X,S, p)] not being weakly Bayes connected.

To see that φ is not Bayes accessible recall that L1-states are L2-states as well because ‖·‖1 ≤ ‖·‖2
holds due the fact that p is a bounded measure. Consequently ‖ · ‖1-continuity of a state ψ ∈
L1(X,S, p)] implies ‖ · ‖2-continuity of ψ. Thus, if φ were Bayes accessible from ψ ∈ L1(X,S, p)],
then the same ψ (being an L2(X,S, p)-state as well) would show that the restriction φf of φ to

L2(X,S, p) is Bayes accessible; a clear contradiction. Thus all one has to prove is that there is a

function f ∈ L2(X,S, p) ∩ L∞(X,S, p) witnessing that L2(X,S, p)] is not weakly Bayes connected.

But this has essentially been done in the proof of Theorem 6.4.

Though probability spaces with finite Boolean algebras are standard hence their state spaces not

weakly Bayes connected, we include here another proof of violation of weak Bayes connectedness
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for the finite case. Wed do this for two reasons: First, because the proof in the finite case shows

more explicitly how violation of weak Bayes connectedness occurs. Second, the proof will display an

explicit prescription that can be used to obtain a lot of Bayes inaccessible states.

Proposition 6.8. The state space of L1(X,S, p) is not weakly Bayes connected if the cardinality of

the σ-algebra S is finite.

Proof. Let (Xn,Sn, pn) be a probability space with Xn having n <∞ number of elements and with

Sn being the Boolean algebra of the power set of Xn. Let L1(Xn,Sn, pn) be the associated function

space. Without loss of generality we may assume that the probability measure pn is faithful, i.e.

pn({xi}) 6= 0 for every i = 1, 2, . . . n. This is because in the function space L1(Xn,Sn, pn) functions

differing on pn-probability zero sets only are identified, hence if pn({xi}) = 0 then the characteris-

tic function χ{xi} of {xi} is the zero element in L1(Xn,Sn, pn). Consequently, L1(Xn,Sn, pn) and

L1(Xm,Sm, pm) will be equal, where (Xm,Sm, pm) (m ≤ n) is obtained from (Xn,Sn, pn) by leav-

ing out from Xn the pn-probability zero events and taking pm({xj}) = pn({xj}) on Xm whenever

pn({xj}) 6= 0. The probability measure pm is faithful then, and the state space of L1(Xn,Sn, pn)

is weakly Bayes connected in the sense of conditional expectations if and only if the state space

of L1(Xm,Sm, pm) is. Furthermore, if pn is faithful, then L1(Xn,Sn, pn) = L1(Xn,Sn, pn) and

E(· | C) = E (· | C) for any C-conditional expectation. Thus one can carry out the calculations involv-

ing conditional expectations E(· | C) in terms of the unique version E (· | C). This will be relied on

below.

Since Xn is finite, there exist only a finite number of non-trivial Boolean subalgebras Cl (l =

1, 2, . . . ,M) of Sn; non trivial meaning that Cl is not {∅, Xn} and is not the full Boolean algebra Sn.
Each Cl-conditional expectation E (· | Cl) has the form (cf. Proposition 3.3)

E (χB | Cl) =

K∑
k

pn(Alk ∩B)

pn(Alk)
χAl

k
(62)

where (for any fixed l) Alk (k = 1, 2, . . .K) is a partition of Sn and χB is the characteristic function

of B ∈ Sn. Assume that ψ E

 φ. Then for some Cl we have

φ(χB) = ψ(E (χB | Cl)) for all B ∈ Sn (63)

Since Cl is a non-trivial Boolean subalgebra of Sn, at least one Alk in Cl has more than one element

from Xn; so if

Alk = {xlk1 , x
l
k2 , . . . x

l
kl} (64)

then there exist two distinct elements xlk1 , x
l
k2

in Alk. Using (62) and keeping in mind that Alk form

a partition, we can calculate the probabilities φ(χ{xl
k1
}) and φ(χ{xl

k2
}) as follows:

φ(χ{xl
k1
}) = ψ(E (χ{xl

k1
} | Cl)) (65)

= ψ(

K∑
k

pn(Alk ∩ {xlk1})
pn(Alk)

χAl
k
) (66)

= ψ(
pn({xlk1})
pn(Alk)

χAl
k
) (67)

=
pn({xlk1})
pn(Alk)

ψ(χAl
k
) (68)

Clearly, φ(χ{xl
k2
}) can be calculated exactly the same way and we obtain

φ(χ{xl
k2
}) =

pn({xlk2})
pn(Alk)

ψ(χAl
k
) (69)
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Equations (65)-(68) and (69) entail that if ψ E

 φ with respect to the conditional expectation E (· | Cl),
then there exist elements xlk1 6= xlk2 such that

φ(χ{xl
k1
}) = pn({xlk1})

ψ(χAl
i
)

pn(Alk)
(70)

φ(χ{xl
k2
}) = pn({xlk2})

ψ(χAl
i
)

pn(Alk)
(71)

It follows (recall that pn is faithful) that if φ is such that

φ(χ{xi})

pn({xi})
6=
φ(χ{xj})

pn({xj})
i 6= j; 1 ≤ i, j ≤ n (72)

then ψ E

 φ cannot hold for any of the finite number of conditional expectations Cl.
That for any faithful pn there exists a φ for which (72) holds follows from the following

Lemma 6.9. Let a1, a2, . . . , an be real numbers in the semi-closed interval (0, 1] such that
∑n
i ai = 1.

Then there exist real numbers b1, b2, . . . , bn such that

bi ∈ (0, 1] i = 1, 2, . . . , n (73)
n∑
i

bi = 1 (74)

bi
ai

6= bj
aj

for all i 6= j; i, j = 1, 2, . . . , n (75)

Proof of Lemma: Simple induction: The case n = 2 is trivial. Assume (induction hypothesis) that

Lemma is true for n > 2. Let a1, a2, . . . , an+1 be numbers in (0, 1] such that
∑n+1
i ai = 1. Consider

the numbers a′i defined by

a′i
.
=

ai∑n
i ai

i = 1, 2, . . . , n (76)

Then a′i ∈ (0, 1], and
∑n
i a
′
i = 1, so by the induction hypothesis there exist numbers bi ∈ (0, 1]

(i = 1, 2, . . . , n) such that

n∑
i

bi = 1 (77)

bi
a′i

6= bj
a′j

for all i 6= j; i, j = 1, 2, . . . , n (78)

Which entails
bi

a′i
∑n
i ai

6= bj
a′j
∑n
i ai

for all i 6= j; i, j = 1, 2, . . . , n (79)

Hence
bi
ai
6= bj
aj

for all i 6= j; i, j = 1, 2, . . . , n (80)

Let

M = max
i

{ bi
ai

: i = 1, 2, . . . n
}

(81)

and choose bn+1 such that bn+1

an+1
> M . Then

bi
ai
6= bj
aj

for all i 6= j; i, j = 1, 2, . . . , n+ 1 (82)

Re-normalizing bi (i =, 1, 2, . . . n+ 1) by dividing each bi by
∑n+1
i bi in order to satisfy

∑n+1
i bi = 1

preserves (82). So the claim of Lemma is proved.
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The proof of Proposition 6.8 also reveals that there exist in fact a large number of probability

measures over a finite Boolean algebra that are Bayes inaccessible: There is not only one state φ in

L1(Xn,Sn, pn)] which satisfies equation (72) and hence is not Bayes accessible from any state: For

all small enough numbers ε the states φε such that

|φε(χ{xi})− φ(χ{xi})| ≤ ε for all i = 1, 2, . . . n (83)

also satisfy (72) and thus cannot be obtained via non-trivial conditionalization using conditional

expectations from any other state. Thus, we have:

Proposition 6.10. Given a fixed probability measure representing the background degree of belief

of the Bayesian Agent on a finite Boolean algebra, there exist an uncountably infinite number of

states that are not Bayes accessible for the Bayesian Agent.

A similar proposition can be stated for all standard probability spaces, as well: the proof of

Propositions 6.4 and 6.7 reveals that the functions f ∈ L∞(X,S, p) ∩ L2(X,S, p) witnessing non

weak Bayes connectedness of the state spaces Ls(X,S, p)] (s = 1, 2) can be chosen infinitely many

different ways. This leads to the next proposition.

Proposition 6.11. Given a fixed probability measure representing the background degree of belief

of the Bayesian Agent on a standard probability space, there exist an uncountably infinite number

of states that are not Bayes accessible for the Bayesian Agent.

We give here an example of a Bayes inaccessible state in the situation described in Example 4.2,

which involves a standard probability space:

Example 6.12. Let (X,S, p) be the space where X is the unit square (0, 1)×(0, 1), S is the Lebesgue

measurable subsets of X and p is the two-dimensional Lebesgue measure on S. We display a state

φ ∈ L1(X,S, p)] which cannot be Bayes accessed from any other state.

Real numbers in the open unit interval (0, 1) can be uniquely represented by their decimal expan-

sion with the convention that these must not end with an infinite string of 9’s. Let f : (0, 1)×(0, 1)→ R

be defined by f(x, y) = z if and only if x = 0.x1x2x3 . . ., y = 0.y1y2y3 . . . and

z = 0.x1y1x2y2x3y3 . . . (84)

This f is a measurable one-to-one mapping between the unit interval and the unit square (for the

measurability of f we refer to Problem 147 in [26]). It is clear that f is positive, bounded, integrable,

so h .
= f/‖f‖1 is a positive, normalized, and injective function. By Lemma 6.3 and the proof of

Proposition 6.7 any injective, positive and normalized function h ∈ L2(X,S, p) ∩ L∞(X,S, p) gives

rise to a state φ ∈ L1(X,S, p)] via

φ(g) =

∫
hg dp for all g ∈ L1(X,S, p) (85)

and Lemma 6.3 and the proof of Proposition 6.7 also show that such a state is not Bayes accessible

from any other state.

To sum up: Lack of weak Bayes connectedness of typical state spaces means that there exist

probabilities on σ-algebras that are not Bayes accessible for the Bayesian agent in the given framework:

Given the agent’s background degree of belief on the fixed set of propositions, the agent cannot infer all

probability measures via a Bayesian upgrading (using conditional expectations as conditioning device)

no matter what evidence he is provided with – if by evidence is meant specifying a probability measure

on some proper σ-subalgebra of the fixed set of all propositions. This shows the limits of Bayesian
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learning under the condition that the evidence available for the Agent is restricted to probability

measures on σ-subalgebras of a fixed Boolean σ-algebra. Call this Restricted Evidence Upgrading.

Given the limits of Bayesian learning as displayed by Propositions 6.8 6.7 and 6.4 characterizing

Restricted Evidence Upgrading, one can ask if the Bayesian Agent can go beyond these limits if the

available evidence is not restricted to probability measures on σ-subalgebras of a fixed σ-algebra.

This issue will be investigated in section 8. The next section deals with the problem of transitivity

of the Bayes accessibility relation.

7 The Bayes accessibility relation is not transitive

Proposition 7.1. The Bayes accessibility relation E

 on L1(X,S, p)] is not transitive if the σ-algebra
S has more than 4 elements.

Proof. We show that there exist three states ψ, φ and ρ in L1(X,S, p)] such that ψ E

 φ and φ E

 ρ

hold but ψ 6 E ρ. (After this proof, an explicit elementary example of such states will be given, see

Example 7.2.)

Let A and B be two σ-subalgebras of S such that there exist elements A ∈ ArB and B ∈ BrA
such that A∩B = C 6= ∅. Note that if S has more than four elements, then there exist σ-subalgebras

A and B of S with this property: If S has more than 4 elements, then it has at least 8 elements, and

thus there are elements A and B lying in a general position; that is to say, there exist elements A

and B for which the following conditions hold:

A 6⊆ B, B 6⊆ A, A ∩B 6= ∅, A ∪B 6= X (86)

Let A and B be the σ-subalgebras generated by A and B, respectively

A =
{
∅, A,A⊥, X

}
, B =

{
∅, B,B⊥, X

}
(87)

Then A 6= B, and A and B with the assumed property exist.

Let EA and EB be the two projections on the Hilbert space L2(X,S, p) corresponding to the

A-conditional and B-conditional expectations E(· | A) and E(· | B), respectively. The set of all

projections on L2(X,S, p) form an orthocomplemented, orthomodular lattice (see e.g. [25], [33]),

where orthomodularity is the property that for any two projections Q and R one has

if Q ≤ R then R = Q ∨ (R ∧Q⊥) (88)

Applying (88) to Q = [EA ∧ EB] and R = EA and R = EB, we obtain

EA = [EA ∧ EB] ∨ (EA ∧ [EA ∧ EB]⊥) (89)

EB = [EA ∧ EB] ∨ (EB ∧ [EA ∧ EB]⊥) (90)

Since [EA ∧EB] is orthogonal to both (EA ∧ [EA ∧EB]⊥) and to (EB ∧ [EA ∧EB]⊥), and since the join

of orthogonal projections is equal to their sum, equations (89)-(90) can be written as

EA = [EA ∧ EB] + (EA ∧ [EA ∧ EB]⊥) (91)

EB = [EA ∧ EB] + (EB ∧ [EA ∧ EB]⊥) (92)

The product EAEB is a projection if and only if EA and EB commute as operators. Relations (91)-(92)

show that EA and EB commute if and only if their parts outside their intersection are orthogonal, i.e.

if and only if (EA ∧ [EA ∧ EB]⊥) and (EB ∧ [EA ∧ EB]⊥) are orthogonal. But (EA ∧ [EA ∧ EB]⊥) and
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(EB ∧ [EA ∧ EB]⊥) are not orthogonal because by assumption there exist elements A ∈ A and B ∈ B
such that A 6∈ B and B 6∈ A, so the characteristic functions χA and χB of the elements A ∈ A and

B ∈ B are in the range of the projections (EA ∧ [EA ∧EB]⊥) and (EB ∧ [EA ∧EB]⊥), respectively, and

by the condition A ∩B = C 6= 0, for the L2 scalar product 〈χA, χB〉 of χA and χB we have

〈χA, χB〉 =

∫
X

χAχBdp =

∫
X

χCdp = p(C) 6= 0 (93)

where we used that p is faithful on L2(X,S, p).
Since the product EAEB is not a projection, it is not equal to any projection EC that would

represent a conditional expectation E(· | C) defined by a σ-subalgebra C of S. Thus for any such

projection EC there is an element f ∈ L2(X,S, p) ⊂ L1(X,S, p) such that

EAEBf 6= ECf (94)

The state space L1(X,S, p)] is separating: for any f 6= g in L1(X,S, p), there exists a state ψ in

L1(X,S, p)] such that ψ(f) 6= ψ(g), so there is a state ψ such that

ψ(EAEBf) 6= ψ(ECf) (95)

It follows that defining states φ and ρ by

φ(f)
.
= ψ(E(f | A)) (96)

ρ(f)
.
= φ(E(f | B)) (97)

we have ψ E

 φ and φ E

 ρ but ψ E

 ρ does not hold.

We illustrate failure of transitivity of the Bayes accessibility relation with the following example.

Example 7.2. We give an explicit example of a probability space and three states φ, ψ and ρ in its

state space such that φ E

 ψ, ψ E

 ρ but φ E

 ρ does not hold.

LetX3 = {x1, x2, x3}, S3 be the power set ofX3, and p3 be the uniform measure onX3: p3({xi}) =
1
3
(i = 1, 2, 3). There are three non-trivial Boolean subalgebras of S, they are:

C1 = {∅, {x1}, {x2, x3}, X3} (98)

C2 = {∅, {x2}, {x1, x3}, X3} (99)

C3 = {∅, {x3}, {x1, x2}, X3} (100)

E(· | C1), E(· | C2) and E(· | C3) are the three conditional expectations from L1(X3,S3, p3) to

L1(X3, Ci, p3) (i = 1, 2, 3). These conditional expectations are given on the characteristic functions

χB of B ∈ S by

E(χB | C1) =
p({x1} ∩B)

p({x1})
χ{x1} +

p({x2, x3} ∩B)

p({x2, x3})
χ{x2,x3} (101)

E(χB | C2) =
p({x2} ∩B)

p({x2})
χ{x2} +

p({x1, x3} ∩B)

p({x1, x3})
χ{x1,x3} (102)

E(χB | C3) =
p({x3} ∩B)

p({x3})
χ{x3} +

p({x1, x2} ∩B)

p({x1, x2})
χ{x1,x2} (103)

Let φ be the state on L1(X3,S3, p3) defined by the following probabilities:

φ(χ{x1})
.
=

1

2
φ(χ{x2})

.
=

1

6
φ(χ{x3})

.
=

2

6
(104)
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Let ψ and ρ be the states on L1(X,S, p) which are defined by

ψ(f)
.
= φ(E(f | C1) (105)

ρ(f)
.
= ψ(E(f | C2) (106)

So φ E

 ψ and ψ E

 ρ hold by the very definition of these states. We claim that φ E

 ρ does not hold

however. To see this, one can explicitly compute the values of ρ, they are:

ρ(χ{x1}) =
3

8
ρ(χ{x2}) =

1

4
ρ(χ{x3}) =

3

8
(107)

One also can compute explicitly the values of φ(E(χB | Ci)), for B ∈ L1(X3,S3, p3) for each Ci-
conditional expectation i = 1, 2, 3: For the elementary event B = {x1} these values are:

φ(E(χ{x1} | C1)) =
1

2
(108)

φ(E(χ{x1} | C2)) =
5

12
(109)

φ(E(χ{x1} | C3)) =
1

3
(110)

Thus

φ(E(χ{x1} | Ci)) 6= ρ(χ{x1}) for all i = 1, 2, 3 (111)

and since Ci, (i = 1, 2, 3) are the only non-trivial Boolean subalgebras of S3, on can conclude that

φ
E

 ρ does not hold.

Failure of transitivity of E

 in means that “There is no Bayesian royal road to learning” in general:

Even if a state ρ can be learned from another state φ by several successive Bayesian upgradings using

conditional expectations, this step-by-step learning cannot be shortcut in general by a single Bayesian

upgrading on a single evidence.

The proof of failure of transitivity shows that lack of transitivity of the Bayes accessibility relation

is due to the fact that the Hilbert space projections representing the conditional expectations on the

square integrable random variables do not commute as operators. This non-commutativity has been

noticed by a number of authors in connection with upgrading using Jeffrey conditionalization [13],

[7], [36], [37], [10], [28], [39], and it has been subject of analysis of a string of recent papers [41], [15],

[40], [42]. Now we see that it is a general feature of conditionalizing via conditional expectations.

Analyzing the source of non-commutativity of Jeffrey conditionalization, Weisberg finds it in what

he calls the “rigidity” of upgrading:

“Strict Conditionalization and Jeffrey Conditionalization are both rigid, meaning that they

preserve the conditional probabilities on the evidence. When we apply Strict Conditional-

ization to evidence E, q(H|E) = p(H|E). Similarly, if we apply Jeffrey Conditionalization

to the partition {Ei}, then q(H|Ei) = p(H|Ei) for each Ei.” [41][p. 806]

(cf. also [42][p. 125]). Formulated in the terminology of the present paper, rigidity is simply the

feature of upgrading that the state φ and the conditioned state φ ◦ E(◦ | A) coincide when restricted

to the subspace L1(X,A, pA). In other words, rigidity is the feature that the Bayesian learning

consists in extending the probability measure that represents the evidence. Weisberg’s claim that

this requirement is indeed crucial and responsible for non-commutativity can be strengthened by

extending it to the general situation by the following reasoning:

Suppose one wishes to preserve commutativity of learning by replacing upgrading via conditional

expectation with an upgrading procedure that is characterized by a map T on the set of integrable

functions L1(X,S, p) which is not assumed to be a conditional expectation: Given a state φ, the
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composition φ ◦ T would be the upgraded (“conditionalized”) state under the new upgrading rule. It

is a minimal requirement that (i) T is linear and ‖ · ‖1-continuous (otherwise φ ◦ T is not a state);

also (ii) T should be unit preserving T1 = 1 (i.e. preserve the characteristic function χX of the

whole set X of elementary random events) otherwise φ ◦ T would not be normalized hence again not

a state. The crucial observation is that if in addition to (i) and (ii) the upgrading rule is rigid, i.e. it

has the feature that there is a (closed linear) subspace H in L1(X,S, p) such that the T -conditioned

states φ ◦T coincide with the pre-conditioned states φ on H for every φ, then T must be the identity

on H. But then by the deep result characterizing conditional expectations (Proposition 2.5) the

subspace H must be of the form L1(X,A, pA) with some σ-subalgebra A of S and T must be the

conditional expectation from L1(X,S, p) onto L1(X,A, pA). In short: the rigidity requirement on

upgrading forces the upgrading to be a conditional expectation quite generally. This entails that the

representatives of rigid upgradings will be orthogonal projections on the Hilbert space L2(X,S, p)
determined by the given probability theory, and these projections do not commute in general. This

in turn entails failure of transitivity of the Bayes accessibility relation by Proposition 7.1.

Failure of transitivity of upgrading (equivalently: non-commutativity of upgrading) is generally

regarded as intuitively problematic because, as the standard reasoning goes, the result of upgrading a

probability measure on the basis of some evidence should not depend on the order in which elements

of the evidence is presented to the Agent. In Weisberg’s formulation:

“[A] commonly held desideratum is commutativity, the view that the order in which infor-

mation is learned should not matter to the conclusions we ultimately draw, provided the

same total information is collected.” [41][p. 794]

Whether the desideratum, which we shall refer to as the “Norm of Epistemic Commutativity”, is

reasonable as a general requirement, can be debated. We do not wish to argue for or against it here.

We will argue however that the failure of commutativity of upgrading in general Bayesian learning

which Proposition 7.1 is based on should not be interpreted as a violation of the Norm of Epistemic

Commutativity. Quite on the contrary: We will show that, identifying “information” with evidence in

Bayesian learning, a careful articulation of the Norm of Epistemic Commutativity in connection with

Bayesian learning shows that the Bayesian statistical inference based on conditional expectations

satisfies this norm.

Recall that the evidence in Bayesian learning is a single state (probability measure) regarded

as defined on a subspace L1(X,A, p) of L1(X,S, p), where A is a σ-subalgebra of the σ-algebra S
that represents the whole set of propositions (section 5). As was seen in the proof of Proposition

7.1, the non-commutativity of Bayesian learning is the following phenomenon: Let A and B be two

Boolean σ-subalgebras of S. The Agent infers state ψ ◦ E(· | A) from state ψ (viewed as evidence on

L1(X,A, p)) by upgrading ψ via the conditional expectation E(· | A). Then the Agent considers the

restriction of the upgraded state ψ ◦ E(· | A) to the subspace E(· | B) as new evidence, and upgrades

this state, this time by the conditional expectation E(· | B), to infer state ψ ◦ E(· | B) ◦ E(· | A). If

the Agent does these upgradings in the reversed order, obtaining state ψ ◦ E(· | A) ◦ E(· | B), then in

general (i.e. for some states ψ) we have

ψ ◦ E(· | B) ◦ E(· | A) 6= ψ ◦ E(· | A) ◦ E(· | B) (112)

Should this be viewed as violation of the Norm of Epistemic Commutativity? We argue that it should

not. Our line of reasoning is the following: We take the uncontroversial inference rule of elementary

propositional logic (modus ponens), and we will repeat with this inference rule the (analogue of the)

above steps of Bayesian statistical inference that has led to non-commutativity. It will be seen that
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modus ponens also violates commutativity exactly in the sense in which Bayesian statistical inference

does. Then we articulate the Norm of Epistemic Commutativity in terms of elementary classical logic

using modus ponens, and show that the modus ponens does satisfy the Norm. Finally, we formulate

the Norm of Epistemic Commutativity for the Bayesian statistical inference along the lines of the

formulation for modus ponens, and refer to some theorems on conditional expectations which show

that the Norm also holds for Bayesian statistical inference.

Consider the usual inference rule (modus ponens) in elementary propositional logic. In the termi-

nology of the Boolean algebra S determined by a zeroth order language of a propositional logic, if A
is a set of propositions from S that does not contain a contradiction, then the set of all propositions

one can infer from A using modus ponens is the proper filter F (A) in S generated by A [18]. Let

A and B be two sets of propositions in S. Regarding A as evidence, one can infer F (A) from this

information. Following the logic of Bayesian statistical inference, one can then restrict the inferred

information F (A) to the part that is contained in the set B. This way one obtains a new evidence

set F (A)∩ B. This new evidence can then be used to infer F (F (A)∩ B) in a second inference move.

Performing two such inferences in the reversed order, starting with B, one obtains F (F (B) ∩ A). It

is clear that in general one has:

F (F (A) ∩ B) 6= F (F (B) ∩ A) (113)

This is precisely the kind of non-commutativity displayed by the non-commutativity of the upgrading

via conditionalizing using conditional expectation (expressed by inequality (112)). But the inequality

(113) does not represent a violation of the Norm of Epistemic Commutativity by the inference in

classical propositional logic because the Norm of Epistemic Commutativity is not expressed by the

equality F (F (A)∩B) = F (F (B)∩A); rather, compliance of modus ponens with the Norm of Epistemic

Commutativity is expressed by the following proposition:

Proposition 7.3. Let A be any set of propositions and let Ci (i = 1, . . .) be any sequence of subsets

of A such that Ci ⊂ Cj if i < j and ∪iCi = A. Then we have:

F (∪iCi) = ∪iF (Ci) (114)

This proposition says that given any set A of total information, we can take any part C1 of that

total information; can draw the consequences of the information contained in this partial set C1,
and we can then add to this partial information further information from A step by step in any

order, each time drawing the consequences of the expanded but still partial set Ci. Then the sum

of the consequences drawn from the partial information sets is always the same and is equal to the

consequences we can draw from the total information.

Proof.[of Proposition 7.3]

The containment F (∪iCi) ⊇ ∪iF (Ci) is obvious. If A ∈ F (∪iCi) then there is a finite set

{A1, A2, . . . An} ⊂ ∪iCi such that A1 ∩ A2 ∩ . . . ∩ An ⊆ A (the set {A1, A2, . . . An} contains the

premises in A from which A can be deduced). Since {A1, A2, . . . An} is finite and ∪iCi = A, there is

a j such that {A1, A2, . . . An} ⊆ Cj . But then A ∈ F (Cj) and thus also A ∈ ∪iF (Cj).

For Bayesian statistical inference the analogue of the epistemic commutativity of the modus ponens

expressed by Proposition 7.3 holds: Consider the sequence Ci (i = 1, . . .) of σ-subalgebras of S such

that Ci ⊂ Cj for i < j, and let A be the σ-algebra generated by ∪iCi (denoted by Ci ↑ A). If

ψ ∈ L1(X,S, p) is a state that is viewed as evidence on L1(X,A, p) and one performs a Bayesian
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upgrading ψ ◦ E(· | A), then one could perform this learning from the “total information” also step-

by-step by doing the upgradings ψ ◦ E(· | Ci) for all i = 1, 2, . . .. This is because E(f | Ci) converges

to E(f | A) in ‖ · ‖1-norm (for all f in L1(X,S, p)) as Ci ↑ A (Theorem 35.6 in [1]). Note that in this

series of upgradings any two conditional expectations also commute as operators because Ci ⊂ Cj (for
i < j) entails E(E(· | Cj) | Ci) = E(· | Ci) (“tower property” of conditional expectations [1][Theorem

34.4])), which in turn entails the commutativity of the Hilbert space projections representing E(· | Cj)
and E(· | Ci).

To summarize: Non-commutativity of the conditional expectations determined by different con-

ditioning Boolean subalgebras does not indicate failure of the Norm of Epistemic Commutativity.

One can in fact show that the Norm of Epistemic Commutativity holds for Bayesian upgrading based

on the technique of conditional expectations. Thus while one might have very good reasons to look

for upgradings different from the general Bayesian one (which includes Jeffrey conditionalization),

violation of the Norm of Epistemic Commutativity does not seem to be one of the justified reasons.

8 Bayes connectability in terms of conditional expecta-

tions

Failure of weak Bayes connectedness of state spaces displays the limits of Bayesian learning under

Limited Evidence Upgrading: the evidence available for the Agent is limited to probability measures

on σ-subalgebras of the fixed σ-algebra on which the Agent’s background probability is given. It is

natural however to ask what the Agent can learn via conditionalization using conditional expectations

if he is allowed access to potentially unlimited evidence. To investigate this question, we define first

the concept of extensions of state spaces.

Definition 8.1. We say that the state space L1(X ′,S ′, p′)] extends the state space L1(X,S, p)] if

the following hold:

(i) There is a measurable, measure preserving map h : X ′ → X such that its inverse image function

f−1 induces a σ-algebra embedding h−1 : S → S ′.

(ii) The σ-algebra embedding preserves the probability: For all A ∈ S we have p(A) = p′(h−1(A)).

If (i)-(ii) hold, then the embedding of S into S ′ via f−1 can be lifted to an isometric embedding

h̄ : L1(X,S, p) → L1(X ′,S ′, p′) by defining h̄ in the natural way: For a function f ∈ L1(X,S, p) let

h̄(f) = f ◦ h (see the figure below). Since h is measurable, we have h̄(f) ∈ L1(X ′,S ′, p′).

X R

X ′ R

f

h id

f ◦ h

Note that h̄ is isometric because

‖h̄(f)‖1 =

∫
X′
|f ◦ h|dp′ =

∫
X

|f |dp = ‖f‖1 (115)

The image of h̄ is thus a closed subspace in L1(X ′,S ′, p′); hence for each state φ ∈ L1(X,S, p)]

there is a corresponding state φ̄ ∈ h̄
(
L1(X,S, p)

)] such that

φ̄
(
h̄(f)

)
= φ(f) for all f ∈ L1(X,S, p) (116)
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By the Hahn–Banach theorem φ̄ extends to a continuous linear functional φ′ ∈ L1(X ′,S ′, p′)]. Notice
that φ̄ can have many such extensions, in general. Any such φ′ is called an extension of φ.

Definition 8.2. The state space L1(X,S, p)] is called weakly Bayes connectable if there is a state

space extension L1(X ′,S ′, p′)] such that each φ ∈ L1(X,S, p)] has an extension φ′ ∈ L1(X ′,S ′, p′)]

which is Bayes accessible from some ψ ∈ L1(X ′,S ′, p′)], ψ 6= φ′.

The above definition is a significantly generalized version of the definition given by Diaconis and

Zabell [6][section 2.1]. Accordingly, the proposition below generalizes Theorem 2.1 in [6].

Proposition 8.3. State spaces L1(X,S, p)] are weakly Bayes connectable.

Proof. Let φ be a state in L1(X,S, p)]. We have to construct a state space extension L1(X ′,S ′, p′)]

such that the extension φ′ ∈ L1(X ′,S ′, p′)] of φ ∈ L1(X,S, p)] is Bayes accessible from some ψ ∈
L1(X ′,S ′, p′)]. The idea of the proof is the following. We take as the extension of L1(X,S, p) the

product of L1(X,S, p) with another probability space (Y,B, q). The product structure defines a

conditional expectation to the components in the product in a canonical manner, and it also makes

possible to extend states defined on the components in different ways. We display two extensions

of φ that will be shown to be related to each other via conditioning with respect to the canonical

conditional expectation.

Let (Y,B, q) be the Lebesgue measure space over the unit interval and consider the usual product

space

(X × Y,S ⊗ B, p× q) (117)

where p× q is the product measure: (p× q)(A×B) = p(A)q(B).

The function

X × Y 3 (x, y) 7→ h(x, y)
.
= x ∈ X (118)

is a measurable, measure preserving map and its inverse image induces a σ-algebra embedding h−1 :

S → S ′, since for all A ∈ S we have

h−1(A) = A× Y ∈ S ′ (119)

p(A) = p′(A× Y ) = p(A)q(Y ) (120)

h can be lifted to an isometric embedding h̄ : L1(X,S, p)→ L1(X ′,S ′, p′) by the definition

h̄(f) = f̄ = f ◦ h f ∈ L1(X,S, p) (121)

In what follows, for notational convenience we write L1(X) and L1(X × Y ) instead of the longer

L1(X,S, p) and L1(X ′,S ′, p′), and, to make notation easier to read, we write
∫
dx and

∫
dy instead

of
∫
dp and

∫
dq.

The general definition of extension of state spaces (Definition 8.1) in the present context means

that if φ ∈ L1(X)] is a state, then φ′ ∈ L1(X × Y )] is its extension if for all f ∈ L1(X) we have

φ′
(
f̄
)

= φ
(
f
)

(122)

If α ∈ L1(Y )] is a state in the second component of the product space (117), then we define the

α-extension of φ (denoted by φα) to be a state in L1(X × Y )] by setting for any f ∈ L1(X × Y )

φα(f)
.
= α

(
y 7→ φ(x 7→ f(x, y))

)
(123)
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Then φα is an extension of φ because for each f ∈ L1(X) we have

φα(f̄) = φα(f ◦ h) = α
(
y 7→ φ(x 7→ (f ◦ h)(x, y))

)
(124)

= α(y 7→ φ(x 7→ f(x))) = α(y 7→ φ(f)) (125)

= φ(f) · α(y 7→ 1) = φ(f) · α(1) = φ(f) (126)

A particular state α is given by α(g) =
∫
Y
g dy (for all g ∈ L1(Y )). For this α the α-extension φα of

φ is

φ̄(f) =

∫
Y

(
y 7→ φ

(
x 7→ f(x, y)

))
dy (127)

Take the σ-subalgebra A =
{
A × Y : A ∈ S

}
of S × B (which is isomorphic to S). Then the

A-conditional expectation is

E(f | A)(x, y) =

∫
Y

f(x, y) dy (128)

We claim that for any α ∈ L1(Y )] the state φ̄ is Bayes accessible from φα using the A-conditional
expectation as upgrading device; i.e. that we have

φ̄(f) = φα(E(f | A)) (129)

To show this, note first that, since the dual space L1(X,S, p)∗ is L∞(X,S, p) ([24][Theorem 1.7.8 ]),

there is a function g ∈ L∞(X) such that

φ(f) =

∫
X

f(x)g(x) dx for all f ∈ L1(X) (130)

Then for all f ∈ L1(X × Y ) we have

φ̄
(
f
)

=

∫
Y

(
y 7→ φ

(
x 7→ f(x, y)

))
dy (131)

=

∫
Y

∫
X

f(x, y)g(x) dxdy (132)

Using the formula (128) giving the conditional expectation E(· | A) and changing the order of integrals

below (allowed by Fubini’s theorem) we can calculate then

φ
(
E(f | A)

)
= φ

(
x 7→

∫
Y

f(x, y) dy
)

=

∫
X

∫
Y

f(x, y) dy g(x) dx (133)

=

∫
X

∫
Y

f(x, y)g(x) dy dx =

∫
Y

∫
X

f(x, y)g(x) dx dy (134)

=

∫
Y

(
y 7→

( ∫
X

f(x, y)g(x) dx
))

dy (135)

=

∫
Y

(
y 7→

(
x 7→ φ(x 7→ f(x, y)

))
dy (136)

= φ̄
(
f(x, y)

)
(137)

Using (133) and (137) the claim (i.e. equation (129)) follows easily:

φα
(
E(f | A)

)
= α

(
y 7→ φ(E(f | A))

)
(138)

= α
(
φ̄(f)

)
(139)

= φ̄(f)α(x 7→ 1) (140)

= φ̄(f)α(1) = φ̄(f) (141)

To complete the proof one has to show that there exists an α in L1(Y )] such that φα 6= φ̄. But this

is clear: take any continuous, non-constant function t : Y → R for which
∫
Y
t(y) dy = 1 and put

α(g) =
∫
g(y)t(y) dy.
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Thus we proved that φ has different extensions φ̄ and φα such that

φ̄
(
f
)

= φα
(
E(f | A)

)
(142)

Proposition 8.3 shows that a Bayesian agent can learn in principle everything that can be for-

mulated in terms of a probability measure on a fixed σ-algebra – provided the Agent has access to

a potentially unlimited supply of evidence. In this sense a Bayesian Agent has unlimited learning

capacity.

Note that it is not part of our claim that the additional evidence the Agent needs to have in

order to learn a Bayes inaccessible state must be formulated in terms of the product extension of

the original probability space the proof of Proposition 8.3 uses. Other extensions might very well

transform a Bayes inaccessible state into a Bayes learnable one. It is even to be expected that Bayes

learnability of a state via extending might depend sensitively on how the agent extends the original

probability space to accommodate new knowledge.

One may wonder whether state spaces are Bayes connectable in a stronger sense than specified

by Definition 8.2; i.e. whether it holds that given any pair of states φ and ψ in L1(X,S, p)] such that

φ is not Bayes accessible from ψ there exists an extension in which φ is Bayes accessible from ψ. To

give the precise definition of strong Bayes connectability of state spaces, we define first the concept

of in principle Bayes accessibility:

Definition 8.4. Given a state space L1(X,S, p)], a state φ in it is called in principle Bayes accessible

from another state ψ 6= φ if there exists a state space extension L1(X ′,S ′, p′)] of L1(X,S, p)] such
that the extension of φ from L1(X,S, p) to L1(X ′,S ′, p′) is Bayes accessible from the extension of ψ

from L1(X,S, p) to L1(X ′,S ′, p′).

Definition 8.5. The state space L1(X,S, p)] is called strongly Bayes connectable if any state φ is

in principle Bayes accessible from any other state ψ.

Problem 8.6. Are state spaces strongly Bayes connectable?

We do not know the answer to the above question.

9 Summary and closing comments

Bayesian learning is a particular way of inferring unknown probabilities from known ones. The

specificity of this kind of learning is that the inference is conditionalizing: the inferred probability

measure is obtained by conditionalizing the known probability measure. We argued in this paper

that conditionalizing should be carried out in terms of conditional expectations. We have seen that

conditionalizing using this technique, which is standard in mathematics, includes both the elemen-

tary Bayes rule and Jeffrey conditionalization as special cases. We have shown that adopting this

viewpoint leads naturally to regarding conditionalization as a two-place relation E

 in the state space

determined by the reference probability measure representing the background subjective degrees of

belief of a Bayesian Agent. The interpretation of ψ E

 φ is that the Agent can learn the probabilities

given by φ from the evidence represented by probabilities given by ψ; where “learning φ from ψ”

means “conditionalizing ψ one obtains φ”. Finding out the properties of the relation E

 amounts to

characterizing Bayesian learning in its abstract, general form.
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We have proved that the Bayes accessibility relation E

 is reflexive, antisymmetric and non-

transitive. The proof of non-transitivity of Bayesian learning revealed that this feature is intimately

related to the non-commutativity of upgrading probability measures via conditional expectations

determined by different conditioning σ-algebras. This non-commutativity has been noticed and ana-

lyzed extensively in the literature in the special case of Jeffrey conditionalization, and it is typically

found to be a conceptually very problematic feature of conditionalization via Jeffrey rule. The alleged

difficulty is that non-commutativity of upgrading violates what we called in this paper the “Norm

of Epistemic Commutativity”: this norm requires that when an Agent draws the consequences of

a whole set of information, it should not matter in what order the elements of the information set

are presented to the Agent. We argued that interpreting non-commutativity of conditionalization

via conditional expectation as violation of the Norm of Epistemic Commutativity is not justified. A

technically explicit specification of the informal Norm of Epistemic Commutativity in terms of condi-

tional expectations shows that the Norm of Epistemic Commutativity is in fact satisfied by upgrading

via conditional expectations.

We also have investigated the connectivity properties of state spaces with respect to the Bayes

accessibility relation E

 . We have shown that state spaces are typically not weakly Bayes connected.

That is to say, we proved that, given a measure representing the background degrees of belief of

a Bayesian Agent, there exist states (probability measures) that cannot be learned by the Agent

from any evidence the Agent is capable of formulating within the confines of a given probability

measure space. Unlike failure of transitivity of the Bayes accessibility relation, failure of weak Bayes

connectedness seems to pose a very serious challenge for Bayesian learning: The existence of Bayes

inaccessible states (we have proved that there exist an uncountably infinite number of such states

in the typical cases) means that an Agent’s background measure might prohibit the Agent from

learning the “true” probability measure. If the true probability measure happens to be one of the

Bayes inaccessible ones, the Agent cannot learn it by conditionalizing. Thus the Agent’s background

knowledge proves to be crucial from the perspective of what the Agent can in principle learn from

possible evidence. In particular, the state spaces of standard probability measure spaces are not

weakly Bayes connected. This is a very large class that includes most applications. In these probability

theories the true probability measure to be learned might remain inaccessible for the Bayesian Agent.

A Bayesian Agent might try to overcome the epistemological difficulty posed by Bayes inaccessible

states by widening the probabilistic framework in which Bayes inaccessible states are present. This

strategy involves enlarging the σ-algebra of propositions stating features of the world, extending the

background probability to the enlarged set, and looking for evidence about (probabilities of) some

subset of the enlarged Boolean algebra – all this in the hope of becoming able to Bayes-learn those

probabilities in the broader framework that are inaccessible in a narrower probability theory. We

showed that such a strategy is in principle viable: a Bayes inaccessible state becomes Bayes learnable

from some state after a suitable embedding of the original probability space into a larger one. Thus,

a Bayesian Agent has unlimited learning capacity if he is allowed to expand the propositional base

of possible evidence. It is even possible to enlarge the probability space into one in which Bayes

inaccessible states do not exist and thus every probability is Bayes learnable from some evidence: We

showed that state spaces of large enough probability spaces are weakly Bayes connected. A Bayesian

Agent can only do such an extension however if he is capable of comprehending a very large amount of

propositions: The σ-algebra of the probability space which could be shown having a Bayes connected

state space had cardinality larger than the cardinality of the set of Lebesgue measurable subsets of

real numbers. Since the cardinality of the set of Lebesgue measurable sets itself is already beyond
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the continuum, one needs an extremely strong concept of Bayesian Agent to allow for this option.

A Bayesian Agent with a more modest mental capacity has to be aware however that he is on an

unended quest: for him in every probability space he is able to comprehend there exist probability

statements that might be true but he only can learn them from evidence that can be gathered only

by going beyond the framework in which the true probability is formulated. Whether the concept

of a powerful Bayesian Agent is reasonable, and whether the notion of a modest Bayesian Agent is

attractive, we do not wish to try to decide here.
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