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A method to derive Maxwell’s fields form Gauss’ law and
the Lorentz force law is presented. Additionally we assume
retardation of electric interactions and that the electric
field is independent of the time derivatives of the field-
source acceleration.
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Introduction

It is well known that the classical theory of electromagnetic
fields rests on four Maxwell’s equations and the Lorentz force
law. On the other hand, the Lorentz transformation estab-
lishes some relations between Maxwell’s equations (for example
Ampere-Maxwell law follows from Gauss’ law) and between the
electric and magnetic fields. It suggests that it is possible to
reduce the electromagnetic theory to fewer number of equations
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and in this way elucidate the basis of the theory.
This paper is an attempt to give a support to this idea. We

argue that the whole theory of electromagnetism may be based
essentially on two laws only, the Lorenz force law and Gauss’
law. However, besides these laws some additional reasonable
restrictions on the mathematical form of their solutions must be
introduced. In this work we show that the general Maxwell’s
fields can be developed from the following postulates:

Assumption 1. In any inertial reference frame the Lorentz
force law is valid:

~F = q ~E + q~v × ~B. (1)

Assumption 2. For all inertial reference frames the electric
field is determined by Gauss’ law:

~∇ · ~E =
1

ε0

∑
i

Qiδ (~r − ~rQi
) , (2)

Assumption 3. The contribution of the source charge to the
electric field at an observation point at time t depends on the po-
sition and motion of the charge at the retarded time only. The
retarded time is τ = t − Rret/c, where Rret is the distance be-
tween the retarded position of the charge Q, ~rQ(τ), and the
observation point ~r(t) at the moment t. This is equivalent to
assuming that any electric effect is transmitted through space
with the velocity c.

Assumption 4. The electric field does not depend on time
derivatives of the source position of order higher than the accel-
eration.

Note that from Assumption 2 follows that the electric field
will somehow depend on the position of the test particle (i.e.
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the point of observation of the field) but may not depend on the
test particle velocity or acceleration. The reason is that Gauss’
law does not contain any information about the test particle
dynamics so that the velocity or acceleration of the test particle
may never enter the solutions of Gauss’ law.

Assumption 3 can be regarded as a consequence of a postu-
late that the speed of interactions between charges must be a
Lorentz invariant. In such a case the instantaneous interactions
must be discarded because of the relativity of synchronism. In
turn, the only relativistically invariant speed of interaction is
the velocity of light, which leads just to the Assumption 3.

Assumption 4 has basically an operational meaning. It al-
lows us to find the simpler possible solutions of Gauss’ law. As
the solutions appear to be precisely Maxwell’s fields, this as-
sumption obtains the status of a general postulate.

One can find similar postulates in the work by Frisch and
Wilets [1] who use them to derive Maxwell’s fields as well. How-
ever the crucial solution (see their Eq. 21) is rather guessed
instead of being systematically developed. The authors empha-
size also the test-particle-velocity independence of the electric
field as a separate assumption, which is unnecessary if we pos-
tulate Gauss’ law. Other authors use alternative assumptions to
find Maxwell’s fields. Rosser [2] gets the electromagnetic poten-
tials merely for uniformly moving sources and then postulates
they are correct for accelerated ones. Tessman [3] method re-
quires Newton’s third law for steady state charge distributions.
Several authors [4-6] simply generalize Gauss’ law to a Lorentz
covariant four-vector form, which is a very strong and unjusti-
fied assumption. Among other conceptions to derive Maxwell’s
equations let as mention the work by Galeriu [7] in which the
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author obtains the homogenous equations from Stokes theorem
and the approach of Gersten [8] based on the quantum equation
for the wave function.

Comparing to the methods mentioned above our approach
represents a systematic mathematical reasoning without extraor-
dinary assumptions. The method may seem to be anachronistic
because we use three-vectors instead of tensors. But we want to
emphasize that having Gauss’ law referring to the electric field
3-vector as the only premise we are compelled to work within
3-dimentional formalism. Especially, because we have only one
of Maxwell’s equations, no four-vector potential (φ, ~A) may be
introduced to represent electromagnetic fields (note that one of

important relations for the vector potential ~A, ~B = ~∇ × ~A, is
based on the law ~∇· ~B = 0 we are deprived of in our approach).
Postulating that the theory must have a four-dimensional struc-
ture with a four-vector (φ, ~A) involved would be an extra as-
sumption we want to avoid.

Mathematical simplicity of our method is achieved because of
performing the main considerations in the frame S

Vret=0
in which

the retarded velocity of the accelerating source is zero. What
is more, in the frame S

Vret=0
we use the spherical coordinates.

Thanks to symmetry of the kinematical situation some of the
spherical components of the fields appear to vanish. In this way
Gauss’ law written in the spherical coordinates becomes quite
simple and the total electric field may be easily determined. In
turn, to obtain the magnetic field we notice that the validity of
Gauss’ law in any frame appears to be equivalent to the Ampere-
Maxwell law: ~∇× ~B−∂ ~E/c2∂t = ~j/c2ε0. The Ampere-Maxwell
law allows us to find the magnetic field in the frame S

Vret=0
.

Next, the electromagnetic fields for an arbitrarily moving source
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are obtained by performing the Lorentz transformation of fields
established in S

Vret=0
to an appropriate system of reference.

Uniformly moving source

If in a frame S ′ the source is at rest (with acceleration equal
to zero), the postulated Gauss’ law is equivalent to Coulomb’s
law. Then the electric field is:

~E ′ =
Q

4πε0

~R′

R′3 , (3)

where ~R′ = ~r′ − ~r′Q.

To obtain the force ~F exerted by the source charge Q when
it moves with a constant velocity ~V it is enough to perform the
Lorentz transformation of the force ~F ′ = q ~E ′ from the rest frame
S ′ of the charge Q to a system of reference S moving with the
velocity −~V with respect to S ′. As the result we obtain [9]:

~F = ~F ′
‖ + γ ~F ′

⊥ + γ~v ×
(

~V

c2
× ~F ′

)
, (4)

where γ = (1− V 2/c2)−1/2, ~v is a velocity of the charge q mea-
sured in the frame S and the indices ‖ and ⊥ refer to the di-

rections parallel and perpendicular to the velocity ~V . The last
equation may be rewritten as follows:

~F = q ~E + q~v ×
(

~V

c2
× ~E

)
, (5)

where
~E ≡ ~E ′

‖ + γ ~E ′
⊥ (6)
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defines the electric field in the frame S. In Eq. (5) there has
appeared also the magnetic field:

~B ≡
~V

c2
× ~E (7)

Using Eqs. (3) and (6) we can find the field ~E in an explicit

form. To have the field ~E expressed by means of the quantities
from the frame S we have to transform ~R′ to the frame S re-
membering about Assumption 3. It means that the position ~rQ

of the charge Q must be taken at the retarded moment τ :

~r ′‖ = γ
(
~r(t)‖ − ~V t

)
, ~r ′⊥ = ~r(t)⊥, (8)

~r ′Q‖ = γ
(
~rQ(τ)‖ − ~V τ

)
, ~r ′Q⊥ = ~rQ(τ)⊥, (9)

~R ′
‖ = γ

(
~r(t)‖ − ~rQ(τ)‖ − ~V (t− τ)

)
= γ

(
~Rret‖ − ~V Rret/c

)
,

~R ′⊥ = ~r(t)⊥ − ~rQ(τ)⊥ = ~Rret⊥, (10)

where, as we see, there appeared the retarded relative position
~Rret = ~r(t)− ~rQ(τ). It is easy to show also that:

R ′ = γ(Rret − ~Rret · ~β) (11)

Inserting the above relations to Coulomb’s field (3) and using
the definition (6) we get:

~EV =
Q

4πε0

[
~n− ~β

γ2(1− ~β · ~n)3R2

]

ret

, (12)

c©2007 C. Roy Keys Inc. – http://redshift.vif.com



Apeiron, Vol. 14, No. 4, October 2007 470

where: ~βret = ~V /c is the source charge (actual and retarded)

velocity and ~nret = ~Rret/Rret. Now we find the magnetic field

from the definition (7). Note that for the field ~EV it is equivalent
to the relation:

~B =
~nret

c
× ~E. (13)

Accelerating source

Let in a reference frame S
Vret=0

the source charge Q be at
rest at the retarded moment but have at this instant a retarded
acceleration ~aret. Let us introduce the spherical system of coor-
dinates (r, θ, φ) with the origin placed at the retarded position
of the source Q and the polar angle θ measured with respect to
the direction of ~aret (see Fig. 1).

It means that in this frame the radius vector ~r = ~Rret. Note
also that in S

Vret=0
all the derivatives over the spatial coordinates

at the observation point are equal to the derivatives over the
components of the retarded relative position of the observation
point ~Rret:

∂/∂r = ∂/∂Rret, ∂/∂θ = ∂/∂θret, ∂/∂φ = ∂/∂φret. (14)

To prove this let us take for example ∂/∂r = (∂/∂Rret)(∂Rret/∂r).
Since Rret =

√
(~r − ~rQ(τ))2 we get:

∂Rret/∂r =
~r − ~rQ(τ)√
(~r − ~rQ(τ))2

·
(

∂~r

∂r
− ∂~rQ(τ)

∂r

)
= ~nret·

(
~nret − ∂~rQ

∂τ

∂τ

∂r

)
= 1

(15)

because ∂~rQ/∂τ = ~Vret = 0. Similar calculations apply for the
other components, which ends our proof.
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Figure 1. Spherical coordinates in the frame S
Vret=0

. At the retarded

moment the source charge Q is at the origin of the frame and its retarded

velocity is zero. As shown below, at the observation point the electric field

has two components, ~EV along the radius vector and ~Ea in the direction of

θ̂. In turn, the magnetic field ~B has only the φ-component.

So, while working in the frame S
Vret=0

, the values of coor-
dinates (r, θ, φ) are equivalent to the values (Rret, θret, φret) of

the retarded relative vector radius ~Rret; and similarly for the
respective spatial derivatives. To shorten notation we will omit
during the calculations the index ”ret” and will write simply R,
θ and φ remembering that we deal with the retarded quantities.
The same refers to the notation of the retarded acceleration.
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Electric field

According to Gauss’ law the divergence of the field ~E must van-
ish everywhere, except at the source. In the spherical system of
coordinates we have then for the observation points outside the
source:

~∇ · ~E =
2

R
ER +

∂ER

∂R
+

cos θ

R sin θ
Eθ +

1

R

∂Eθ

∂θ
= 0, (16)

Note that because the electric field does not depend on the test
particle velocity and due to symmetry of this kinematical situ-
ation in the frame S

Vret=0
the electric force q ~E may act only in

the plane of ~a and ~R. It means that the electric field cannot
have the third component Eφ.

Now suppose the component ER depends on the retarded
acceleration of source ~a. In such a case there would occur in Eq.
(16) a term ∂ER(~a)/∂R ∼ (∂~a(τ)/∂τ)(∂τ/∂R) = (∂~a(τ)/∂τ)(−1/c),
i.e. a term proportional to the time derivative of acceleration.
To have the divergence of ~E equal to zero this term must be can-
celed out by some other term proportional to the time deriva-
tive of acceleration. This additional term cannot come from the
derivative ∂Eθ(~a)/∂θ ∼ (∂~a(τ)/∂τ)(∂τ/∂θ) because ∂τ/∂θ = 0.
To ensure vanishing of the divergence of the electric field there
should be in Eq. (16) a term proportional to the time derivative

of acceleration coming from the field ~E itself, i.e. form the terms
containing the components ER and Eθ. But it is excluded on
the basis of Assumption 4. It follows then that our initial as-
sumption cannot be satisfied, that is the component ER cannot
depend on the acceleration of source. (Important is, however,
that there is no obstacle for the component Eθ to depend on ac-
celeration because, as we have shown, the term proportional to

c©2007 C. Roy Keys Inc. – http://redshift.vif.com



Apeiron, Vol. 14, No. 4, October 2007 473

∂~a(τ)/∂τ coming form ∂ ~Eθ(~a)/∂θ is multiplied by ∂τ/∂θ = 0,
so it does not occur in the divergence.)

Looking for the electric field produced by the accelerating
source charge we assume its form is:

~E = ~EV + ~Ea (17)

where ~EV is given in Eq. (12) and ~Ea is a component of the
field depending on the retarded acceleration. From the previous
discussion follows that ~Ea has only the θ-component in the frame
S

Vret=0
. In turn, from Eq. (12) we get that in this frame ~EV

has only the R-component equal to Q/4πε0R
2. To have the

partial derivatives of ~EV one have to differentiate the expression
given in Eq. (12) and not forget that ~Vret ≡ ~V (τ). Because
the retarded moment τ depends on the retarded position of the
source, we have to differentiate also the retarded velocity. For
example ∂~V (τ)/∂R = (∂~V (τ)/∂τ)(∂τ/∂R) = ~a (−1/c). After
differentiation we put βret = 0. As the result we get:

∂EVR

∂R
= − Q

2πε0

(
1

R3
+

a cos θ

c2R2

)
, (18)

∂EVR

∂θ
= 0. (19)

Using the last equalities and remembering that in the frame
S

Vret=0
ER = EVR

and Eθ = Eaθ
, Gauss’ law (16) obtains the

form:
Q

2πε0

a cos θ

c2R2
=

cos θ

R sin θ
Eaθ

+
1

R

∂Eaθ

∂θ
. (20)

The last equation is extremely simple and its solution is:

Eaθ
=

Q

4πε0

a sin θ

c2R
. (21)
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This is the only component of ~Ea so we can rewrite the last
equation in vector form as (see Fig. 1):

~Ea =
Q

4πε0c2

[
~n× (~n× ~a)

R

]

ret

. (22)

In effect the total electric field measured in the frame S
Vret=0

is:

~E =
Q

4πε0

[
~n

R2

]

ret

+
Q

4πε0c2

[
~n× (~n× ~a)

R

]

ret

(23)

Precisely, the first term on the right side should be written as:

~EV =
Q

4πε0

[
~n− ~β

γ2(1− ~β · ~n)3R2

]

ret

with βret = 0, (24)

to show that any differentiation of the field ~EV must refer also
to the retarded velocity.

Magnetic field

To find the magnetic field we use the Ampere-Maxwell law ~∇×
~B−∂ ~E/c2∂t = ~j/c2ε0 in the area outside the point source charge
where the current density ~j is zero. As proved in Appendix, this
law is a consequence of Gauss’ law postulated in Assumption 2.

Let us first imagine a test particle that moves with a velocity
~v in the plain defined by the retarded radius ~R and the retarded
acceleration ~a. Then the only directions that are meaningful are
restricted to the plain of ~R and ~a (still we are in the frame S

Vret=0
,

thus the retarded velocity of the source is zero); so the magnetic

force q~v× ~B, for any direction of velocity ~v lying in the plain of
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~R and ~a, may act only in that plane. It means that the magnetic
field ~B may have only the φ-component. But ~B does not depend
on the test particle velocity ~v (it follows from the fact that ~B
may be expressed, via the Ampere-Maxwell law, by means of the
test-particle-velocity-independent field ~E). Thus our conclusion

that ~B has in S
Vret=0

only the φ-component we have deduced for
the specially chosen velocity ~v must be generally valid for any
possible direction of ~v.

To determine the field ~B it is enough to consider the R-
component of the Ampere-Maxwell law written in the spheri-
cal coordinates. The R-component of the Ampere-Maxwell law
(with ~j = 0) is:

1

c2

∂ER

∂t
=

1

R

∂Bφ

∂θ
+

cos θ

R sin θ
Bφ. (25)

Let us recall that only ~EV contributes the R-component to the
total field ~E. From Eq. (24) we know precisely what the field
~EV is, so we can find the left side of the above equation:

1

c2

∂ER

∂t
=

1

c2

∂EVR

∂t
=

Q

2πε0

a cos θ

c3R2
. (26)

Thus now Eq. (25) becomes an explicit equation for Bφ:

Q

2πε0

a cos θ

c3R2
=

1

R

∂Bφ

∂θ
+

cos θ

R sin θ
Bφ. (27)

The solution of the above equation can be easily found and we
get:

Bφ =
Q

4πε0

a sin θ

c3R
. (28)
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This is the only component of the field ~B in the frame S
Vret=0

.

Comparing to Eq. (21) we se that the value of ~B differs from

the value of ~Ea only by the factor 1/c. Taking into account the

directions of these fields we can express ~B by ~Ea as follows (see

Fig. 1): ~B = ~nret/c× ~Ea. But because the component ~EV of the
total field (17) has the direction of ~nret, thus one can substitute

in the expression for ~B the total field ~E:

~B =
~nret

c
× ~E, (29)

which is identical to Eq. (13) we have found for the uniformly
moving source.

Electromagnetic fields in general

To get the most general solution for the fields produced by accel-
erating source with non-zero retarded velocity ~Vret it is enough
to transform the force given by Eq. (1) from the rest frame
S

Vret=0
to some frame S ′′ in which the source has the required

retarded velocity. Passing to the frame S ′′ we transform the
force (1) according to the relation (4), where ~V = ~Vret. In effect
we get again the Lorentz force:

~F ′′ = q ~E ′′ + q~v′′ × ~B′′, (30)

where ~E ′′ and ~B′′ are related to the fields ~E and ~B from the
frame S

Vret=0
as follows [1]:

~E ′′ = ~E‖ + γ ~E⊥ − γ~Vret × ~B, (31)

~B′′ = ~B‖ + γ ~B⊥ +
γ

c2
~Vret × ~E, (32)
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where γ = (1 − V 2
ret/c

2)−1/2 and the indices ‖ and ⊥ refer to

the directions parallel and perpendicular to the velocity ~Vret.
We encourage the reader to verify himself by direct calculations
that:

~B′′ =
~n′′

c
× ~E ′′, (33)

which shows that the law (29) is Lorentz covariant.

Inserting the fields ~E and ~B given by Eqs. (23) and (29)
into Eq. (31), transforming also coordinates and acceleration to
the frame S ′′, we can obtain the electric field in the frame S ′′.
The calculations are elementary but very tedious and there is
no need to present them here in more detail. The final result is
(dropping primes):

~E =
Q

4πε0

[
~n− ~β

γ2(1− ~β · ~n)3R2

]

ret

+
Q

4πε0c2

[
~n× (~n− ~β)× ~a

(1− ~β · ~n)3R

]

ret
(34)

and the field ~B is determined by Eq. (29). We have then arrived
at the general solutions of Maxwell’s equations.

Summary

We have shown that Maxwell’s fields may be obtained from
Gauss’ law and the Lorentz force law with help of additional
conditions imposing mathematical restrictions on the possible
solutions of Gauss’ law. Although the classical methods to solve
Maxwell’s equations based on the introduction of the electro-
magnetic potentials are very concise and elegant, and we do not
attempt to replace them by our own method, the conceptual
virtue of alternative attitudes consists in showing a deeper basis
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of Maxwell’s theory. One of the examples is the idea presented
in this work to reduce Maxwell’s equations in essence to Gauss’
law only, which suggests the major role of this law among the
other Maxwell’s laws of electromagnetism.

Appendix

Let us prove that the validity of Gauss’ law in any inertial
reference frame entails that in any frame the Ampere-Maxwell
law must also be true.

Assume a reference frame S ′ is boosted along the x-axis of a
frame S with a velocity ~V . Then:

x = γ(x′ + V t′), t = γ(t′ + V x′/c2), y = y′, z = z′. (35)

The respective derivatives transform as follows:

∂

∂x′
= γ

(
∂

∂x
+

V

c2

∂

∂t

)
,

∂

∂t′
= γ

(
∂

∂t
+ V

∂

∂x

)
. (36)

According to Assumption 2 Gauss’ law is satisfied both in a
frame S, that is:

~∇ · ~E =
ρ

ε0

(37)

and in the frame S ′:
~∇′ · ~E ′ =

ρ′

ε0

. (38)

Due to charge conservation law the continuity equation ~∇ ·
~j+∂ρ/∂t = 0 holds in any frame. It can be written in a covariant
form ∂µJ

µ = 0, which shows that Jµ = (cρ,~j) is a four vector.
If so, its components transform as follows:

ρ′ = γ(ρ−V jx/c
2), j′x = γ(jx−V ρ), j′y = jy, j′z = jz. (39)
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In turn, from Eq. (31) we find the transformation of the electric
field:

E ′
x = Ex, E ′

y = γ(Ey − V Bz), E ′
z = γ(Ez + V By). (40)

Now we can express the primed quantities in Gauss’ law (38)
by the unprimed ones. Using Eqs. (36, 39, 40) we obtain:

γ

(
∂

∂x
+

V

c2

∂

∂t

)
Ex+

∂

∂y
γ(Ey−V Bz)+

∂

∂z
γ(Ez+V By) =

1

ε0

γ(ρ−V jx/c
2).

(41)

Three terms on the left side combine to γ ~∇· ~E while on the right
side there occurred a term γρ/ε0. On the basis of Eq. (37) these
terms cancel out and from Eq. (41) we have:

1

c2

∂Ex

∂t
+

∂By

∂z
− ∂Bz

∂y
= − 1

c2ε0

jx, (42)

or (
~∇× ~B

)
x
− 1

c2

∂Ex

∂t
=

jx

c2ε0

. (43)

If the frame S ′ was boosted in an arbitrary direction, we would
have obtained the last equation in the general vector form:

~∇× ~B − 1

c2

∂ ~E

∂t
=

~j

c2ε0

, (44)

which is the desired Ampere-Maxwell law.
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