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 Abstract This article reviews some major episodes in the history of the spatial iso-
 morphism problem of dynamical systems theory (ergodic theory). In particular, by
 analysing, both systematically and in historical context, a hitherto unpublished letter
 written in 1941 by John von Neumann to Stanislaw Ulam, this article clarifies von
 Neumann's contribution to discovering the relationship between spatial isomorphism
 and spectral isomorphism. The main message of the article is that von Neumann's
 argument described in his letter to Ulam is the very first proof that spatial isomor-
 phism and spectral isomorphism are not equivalent because spectral isomorphism is
 weaker than spatial isomorphism: von Neumann shows that spectrally isomorphic
 ergodic dynamical systems with mixed spectra need not be spatially isomorphic.

 1 Introduction

 The aim of this article is to review some major episodes in the history of the spacial iso-

 morphism problem of dynamical systems. In particular, by publishing and analyzing
 (both systematically and in historical context) a hitherto unpublished letter1 written
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 1 In Sect. 3 we reproduce von Neumann's letter in full. Doing so, we follow von Neumann's nota-
 tion and terminology closely, and we keep his notation and terminology throughout the article when
 we review subsequent developments about the isomorphism problem although some of that notation
 and terminology has become outdated. One instance of such non-standard usage of words is 'spacial
 isomorphism' instead of 'spatial isomorphism'.
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 72 M. Rédei, С. Werndl

 in 1941 by John von Neumann to Stanislaw Ulam, this article aims to clarify von
 Neumann's contribution to discovering the relationship between spacial isomorphism
 and spectral isomorphism. The main message of the article is that von Neumann's
 argument described (in a sketchy way) in his letter to Ulam is the very first proof that

 spectral isomorphism and spacial isomorphism are not equivalent because spectral
 isomorphism is weaker than spacial isomorphism: von Neumann shows that spec-
 trally isomorphic ergodic dynamical systems with mixed spectra need not be spacially
 isomorphic.
 Dynamical systems are mathematical models of systems whose time evolution is
 deterministic, and these include physical systems described by classical mechanics
 and classical statistical mechanics. The origins of dynamical systems, especially the
 beginnings of ergodic theory, can be traced back to Boltzmann's work on the foun-

 dations of classical statistical mechanics in the second half of the nineteenth century
 (von Plato 1 99 1 ; Szász 1 996).

 Modern ergodic theory developed in the early 1930s; the articles of von Neumann
 (1932a,b,c) and Koopman and Neumann (1932) contributed substantially to the birth
 of this new discipline. More specifically, the isomorphism problem - the problem of
 classifying the equivalence classes of dynamical systems with respect to a natural
 notion of spacial isomorphism - was first formulated in von Neumann (1932c).
 The development that gave a decisive boost to dynamical systems theory, and which

 motivated in particular von Neumann to turn his attention to the study of the ergo-
 dic properties of dynamical systems, was the emergence of what has become called
 'the Koopman formalism': dynamical systems theory in terms of functional analysis.
 Koopman (1931) observed that to each dynamical system there corresponds a group of
 unitary operators on the associated Li Hubert space. Hence the properties of dynam-
 ical systems can be analyzed in terms of Hubert space operator theory. The Koopman
 formalism proved to be very powerful and successful. Many stochastic properties of
 dynamical system (such as ergodicity and different types of mixing) could be fully
 characterized in terms of the Koopman operators associated with the dynamical sys-
 tem. This success raised the hope that the isomorphism problem could also be solved
 with this technique. Von Neumann (1932c) introduced a very natural notion of spectral
 isomorphism between Koopman representatives of dynamical systems, and he proved
 that for a restricted class of ergodic dynamical systems (those with pure point spec-
 trum) spectral isomorphism is equivalent to spacial isomorphism. He also conjectured
 that this is true in general. If this were true, it would have shown that the technique of
 the Koopman formalism is exhaustive in the sense of being strong enough to describe
 every probabilistic aspect of dynamical systems.

 It turned out, however, that the situation is much more complicated, and a long
 and intricate history of research on the relation of spectral isomorphism to spacial
 isomorphism ensued after von Neumann's 1932 article. A key event in this history is
 von Neumann's proof in his 1941 letter to Ulam that spacial isomorphism is stronger
 than spectral isomorphism. Von Neumann never published his proof but his result
 was referred to in important later publications on the problem. Given the signifi-
 cance of the isomorphism problem, von Neumann's letter is an important historical
 document. Also, understanding von Neumann's proof is helpful in putting later devel-
 opments into perspective. As it will be seen, von Neumann's presentation of the proof
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 On the history of the isomorphism 73

 in his letter is sketchy, and we will fill in the details in order to make the proof
 understandable.

 By giving a review of some major episodes in the history of the isomorphism prob-
 lem we also hope to contribute to the extremely meager literature on the history of the

 isomorphism problem: while the literature on the history of ergodic theory is rich and

 there are a number of articles discussing specifically von Neumann's contribution to
 it (see Mackey 1990; Omstein 1990; Zund 2002 and the references therein), we are
 not aware of any historically oriented article devoted exclusively to the isomorphism
 problem, although some articles on the history of ergodic theory mention it (e.g.,
 Mackey 1990; Lo Bello 1983).

 The structure of the article is the following. Section 2 recalls some definitions,
 including the Koopman formalism, defines the spacial isomorphism problem and states
 the main result on the problem that had been known before 1941 - von Neumann's
 1932 result. In Sect. 3 von Neumann's letter is reproduced without any comments on
 its content. Section 4 gives a detailed reconstruction of von Neumann's proof, filling
 in the (sometimes very large) gaps. Section 5 reviews how von Neumann's result was
 referred to in the mathematics literature. Section 6 is a collection of important more
 recent results on the isomorphism problem. The article is concluded with Sect. 7 where

 we highlight the historical significance of von Neumann's letter.

 2 The isomorphism problem and von Neumann's 1932 result

 First, we recall some definitions that will be needed for the ensuing discussion, using

 notation that is compatible with that in von Neumann's letter, (φ, Σφ, μ, S) is a (dis-
 crete)2 dynamical system if фъ is a set (called the phase space), Σφ is a σ -algebra of
 subsets of 0, μ is a measure on Σ^ with μ(φ) = 1, and S : φ - ► φ is a bijective
 measurable function such that also S~l is measurable.4

 The definition of spacial isomorphism captures the idea that dynamical systems are
 equivalent from a probabilistic perspective.

 2 We only focus on discrete-time systems because von Neumann's letter and all the relevant results are
 about them. (The only exception are the notions and results in von Neumann (1932c) discussed in this
 and the next section. They are formulated for continuous-time systems but can easily be transferred to
 discrete-time systems.)

 3 '0' is the notation von Neumann uses in his letter for the phase space (cf. Sect. 3). This differs from
 modern usage (where '0' is usually reserved for functions).

 4 We also assume, as is standard in ergodic theory, that (φ,Σψ, μ) is a Lebesgue space (cf. Petersen 1983).
 (φ, Σφ, μ) is called a Lebesgue space if either φ is countable or there is a measure space (Κ, Σχ, ν),
 where К = [a, b) ç R is an interval, Σ^ is the Lebesgue σ -algebra and ν the Lebesgue measure, such
 that the following holds: There is a countable set W ç φ, there is a Kq ç К with v(Kq) = 1, there is a
 00 Я Φ with β(Φθ) = 1 and there is a bijective function с : Фо' W -> Ko such that

 (i) с(Л)еЕд: forall ΑεΣψ, Α Ç0o'W,
 (ii) c~l(B) e Σ^ for all ß e ΣΚ,Β с Ко,
 (iii) v(c(A)) = μ(Α) for all A e Σφ, A ç </>0'W.

 â Springer
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 74 M. Rédei, С. Wemdl

 Definition 1 Two dynamical systems (0, Σ^, μ, S) and (ψ, Σψ, ν, Τ) are called spa-
 dally isomorphic if there are measurable sets φο ç φ and ψο ζ ψ with the properties
 1. and 2. below and a bijection с : </>o -> Ψο satisfying 3.(i)-(iii):

 1. Wo) с 0o, Τ(ψο)£Υο;
 2. μ(φ'φο) = Ο, ν(ψ'ψο) = Ο;

 3. (i) с and с"1 are measurable with respect to
 Σφο:={Αηφο'ΑΕ Σφ) and Σψ0 :={ΒΠψο' В е Σ^},

 (ii) v(c(A)) = μ(Λ) for all A e Σφο,
 (iii) c(5(jc)) = T(c(x)) for all jc € φ0.

 Spacial isomorphism was first defined in von Neumann( 1932c). Von Neumann's
 (1932c) article also was the first that called for a classification of dynamical systems
 up to spacial isomorphism - this is the spacial isomorphism problem. The spacial iso-
 morphism problem is widely regarded as one of the most important problems, if not
 the most important problem, of ergodic theory (cf. Halmos 1956, 96; Halmos 1961,
 75; Petersen 1983, 4; Rohlin 1960, 1). This is understandable because ergodic theory
 is the theory of the probabilistic behaviour of dynamical systems; it is thus a crucial
 question which systems are equivalent from the probabilistic perspective.

 There are two main ways to approach this problem. First, one tries to find spacial
 invariants (properties which are the same for spacially isomorphic dynamical systems)
 which show that certain kinds of dynamical systems are not spacially isomorphic. Sec-
 ond, one aims to find a sufficiently large number of invariants which, taken together,
 provide sufficient conditions for systems to be isomorphic.

 Next we briefly describe the Koopman formalism, which will lead to the notion of

 spectral isomorphism of dynamical systems. Given a dynamical system (</>, Σ0, μ, 5)
 consider the Hubert space L2WO of complex-valued square integrable functions on
 φ. The operator

 U : Ь2(ф) -* L2(0), U(f) = f(S(x))

 is called the Koopman operator of (0, Σ^, μ, S). Koopman (1931) showed that the
 Koopman operator is unitary (cf. Arnold and Avez 1968). The spectrum of the Koop-
 man operator U is called the spectrum of the dynamical system.

 Definition 2 Two dynamical systems (0, Σ^, μ, S) and {ψ, Σψ, ν, Τ) are called
 spectrally (or unitary) isomorphic if their Koopman operators U and V are unitarily
 equivalent, i.e. if there is a unitary operator W between Ьг(ф) and Lity) such that
 U = W*VW.

 Spectral invariants are properties which are the same for spectrally isomorphic dynam-
 ical systems. Obviously, the spectrum of a dynamical system is a spectral invariant: two

 dynamical systems cannot be spectrally isomorphic if they have different spectrum.
 However, having the same spectrum does not entail that they are spectrally isomorphic
 (Halmos 1951, 75).

 What is the relation of spectral and spacial invariants? Are they identical? If yes,
 then spacial isomorphism is equivalent to spectral isomorphism. These questions were

 £} Springer
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 raised by von Neumann ( 1 932c). An affirmative answer to the question about the equiv-

 alence of spectral and spacial isomorphism would mean that the Koopman formalism
 can deal with all the probabilistic questions about dynamical systems (cf. von Neumann
 1932c; Halmos 1957).
 The main result on this problem before von Neumann's 1941 letter to Ulam was

 presented in von Neumann's (1932c) seminal article. The article starts by listing sev-
 eral properties of dynamical systems which are spacial invariants but are also spectral
 invariants and hence can be characterized completely in terms of the Koopman rep-
 resentatives of dynamical systems. We recall here two of the most prominent of these
 properties and their spectral characterizations.

 A dynamical system (0, Σφ, μ, S) is called (cf. Petersen 1983)

 Ergodic: (or metrically transitive): if it does not have non-trivial S-invariant
 measurable sets, i.e. ifthereisnoset A € Σφ,Ο < μ(Α) < 1, such
 that S (A) = A.
 Spectral characterisation of ergodicity: 1 is a simple proper value5
 of the Koopman operator U.

 Weakly mixing: if for all A , В е Σφ we have

 ι '-1
 Дт> - X MS1 (Α) Π В) - μ(Α)μ(Β)' = 0.

 Spectral characterisation of weak mixing: 1 is the only proper value
 of the Koopman operator and this proper value is simple.

 The focus of von Neumann 1932c then turned to the question about the relationship
 between spacial and spectral isomorphism. It is obvious that if (φ, Σφ, μ, S) and
 (ψ, Σ^, ν, Τ) are spacially isomorphic, then they are spectrally isomorphic: if с is the
 spacial isomorphism, then W defined by

 W(f^)) = f(c-'if))

 sets up the spectral equivalence of the dynamical systems. This implies that spectral
 invariants, such as the spectrum of a system, are also spacial invariants. Thus the
 question to answer was whether the converse is true.

 To tackle this question, von Neumann (1932c) distinguished between several types
 of spectra of dynamical systems. A dynamical system (</>, Σφ, μ, S) is said to have
 pure point spectrum if the proper functions of the Koopman operator U form a basis of

 L2Í0). A dynamical system has pure continuous spectrum if the only proper functions
 of its Koopman operator are 8 1 , δ € С. A dynamical system has mixed spectrum if it
 has neither a pure point spectrum nor a pure continuous spectrum.

 5 'Proper value' and 'proper function' are also called 'eigenvalue' and 'eigenfunction', but we follow here
 (and throughout the article) von Neumann's terminology in his letter (see Sect. 3). 'Proper value' and 'proper
 function' also is the terminology in the literature we will refer to (e.g. Halmos 1949, 1956). A proper value
 «5 is simple (also called 'non-degenerate') if the proper functions belonging to δ span a one-dimensional
 subspace in Z,2(0)·

 £} Springer
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 76 M. Rédei, С. Werndl

 Von Neumann then proved the following theorem.6

 Theorem 1 Let (φ,Σφ, μ, S) and (-ψ, Σψ, ν, Τ) be ergodic dynamical systems with
 pure point spectrum. Then the dynamical systems are spacially isomorphic if, and only
 if, they are spectrally isomorphic (von Neumann 1932c).

 It is easy to see that spectrally isomorphic systems have the same proper values. Thus
 Theorem 1 tells us that ergodic systems with pure point spectrum are spacially iso-
 morphic precisely when they have the same proper values.
 Theorem 1 was the main result on the isomorphism problem before von Neumann'
 1941 letter. The theorem shows that for ergodic systems with pure point spectrum
 the Koopman formalism can deal with all probabilistic questions about dynamical
 systems. To the best of our knowledge, nothing was known about the other cases of
 a mixed spectrum and continuous spectrum before the 1941 letter. Yet in these early
 days of ergodic theory it was sometimes conjectured that, in general, dynamical sys-
 tems are spacially isomorphic just in case they are spectrally isomorphic (cf. Halmos
 1961, 77). Even von Neumann (1932b), when discussing systems with pure continuous
 spectrum, states that results similar to Theorem 1 can be expected in this case.
 Let us now turn to the next step in the history of the isomorphism problem, viz. von

 Neumann's letter.

 3 Von Neumann's 1941 letter: the text

 The letter below was written by John von Neumann to Stanislaw Ulam (the first
 page of the original is shown in Fig.l). Von Neumann and Ulam were not only col-
 leagues but friends as well. This explains the informal tone and chatty style of the letter

 and the references to personal matters. Ulam and von Neumann corresponded on a
 number of issues (both scientific and non-scientific) over many years. A selection of
 von Neumann's letters to Ulam was published in Rédei (2005). One of these, not fully
 dated but most likely written in 1939, touches upon the isomorphism problem briefly
 (Rédei 2005, 252-253): Ulam's attention is called to the article van Neumann (1932c),
 and in particular to the theorem that systems with pure point spectrum are spacially
 isomorphic if, and only if, they are spectrally isomorphic (Theorem 1). This letter
 suggests that von Neumann did not yet know in 1939 that spacial and spectral isomor-
 phism do not always go together and, in particular, that he had not yet discovered the
 result described in the 1941 letter.

 To the best of our knowledge, the 1941 letter has not been published. The original,
 hand-written version is in the Ulam articles, in the Archives of the American Philosoph-
 ical Society, Philadelphia, U.S.A. The language of the letter is English. We reproduce
 it below without comments and keeping the original spelling. The content of it will
 be analyzed in detail in the next section.

 6 For a modern proof, see Halmos (1957, 46-50). This result is also discussed by the more historically
 oriented articles Halmos (1949), Halmos (1957), Mackey (1974, 197), Mackey (1990), Reed and Simon
 (1980, Sect. VII.4), Rohlin (1967, 2 and 5) and Weiss (1972, 672-673).

 4y Springer
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 Fig. 1 First page of von Neumann's 1941 letter

 November 1, 1941.

 Dear Stan,

 this is one of my periodic apologies (or should I say almost periodic apologies?) "for
 writing you only now". I have spent the last month - among other extracurricularia -
 in diligent search for your home adress, of which I possessed at least two autographic
 specimens, but I seem to have mislaid them beyond the hope of recovery. So I write
 you now to the University - but with earnest entreaties to send me your adress quickly,
 because we need it for vitally important purposes.

 Your letter was so overflowing with ideas, that I have to follow it in my answer, in

 an altogether unoriginal way.

 I can prove, as you state, that two ergodic transformations

 χ-+Ξχ(ιηφ) and γ-+Τγ(ϊηψ), (1)

 where the unitary operators

 Uf(x) = f (Sx) (in L2(<t>)) and Vg(y) = g (Ty) (inL2(VO) (2)

 α Springer
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 78 M. Rédei, С. Wemdl

 have the same spectra (i.e. are spectrally isomorphic), need themselves not be spacially
 (0 «* ψ) isomorphic. This is impossible for pure point spectra, my example has a
 mixed spectrum, for pure continuous spectra the question remains open.
 My trick is this:

 Let F be a family of functions f(x) (in φ) with |/(*)| = 1. Then denote by F' the
 family of all functions g(x) (in φ) with |g(jt)| = 1 and g(Sx) = f(x)g(x), f(x) in
 F. (Everything "up to л; -sets of measure 0".)
 Now,7 as 5 is ergodic, Y consists of all constants (of absolute value 1), 1" of all
 proper functions of £/. Clearly, 1 с ť с 1" с 1'" с .... Whether or not 1" = 1"', is
 a spacial invariant of 5, which is in no obvious way determined by its spectrum. But:

 (a) For a pure point spectrum it must be determined by the spectrum, since then the
 spectrum is known to determine 5 up to a spacial isomorphism.

 (β) For a pure continuous spectrum it is equally worthless, since then Y = 1", hence
 1" = Y".

 Thus the chance for this invariant arises when there is a mixed spectrum.
 Now let φ be the space of all μ, υ (both modi), with Lebesgue measure. Choose a

 fixed, irrational y, and define

 S(n,iO = (n + y,t; + iO. (3)

 (This example was constructed sometime ago by Halmos, for a different purpose.)
 It is easy to show, that S has this spectrum

 I) A simple point spectrum e2niky ,k = 0, ±1, ±2, ....
 II) An everywhere infinitely multiple, Lebesgue measure spectrum, covering all of

 |λ| = 1

 Y' consists precisely of all e2jTiku, к = 0, ±1, ±2, . . .. Y" contains e2niv. Hence
 Υ' φ 1"'.

 Consider on the other hand any ergodic transformation

 w -+ Rw (in Ω) (4)

 which has this spectrum:

 Γ) A simple point spectrum 1.
 IT) Same as II) above.

 (E.g. the Hopfe one: w = (xn |n = 0, ±1, ±2, . . .), Rw = (xn+{ | n=0, ±1,
 ±2, . . .) - each jc„-s range being ±1.)
 Define

 Г(м, w) = (μ + γ, Rw). (5)

 In this paragraph, and throughout von Neumann's letter, 1 stands for the constant function on 0, taking
 the value 1 € R. This is slightly confusing because the symbol refers both to a function and the real number

 'one'; however, the context will always make clear what 1 stands for. Also note another slight abuse of
 notation in this paragraph and in the letter: The previous paragraph defines F1 for a set F of functions.
 However, von Neumann shortens {1}' to ť in case where F = {1}, and the same holds for higher primes.
 So, for instance, {{I}'}' is denoted by 1" etc.

 Ö Springer
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 Then it is easy to show that Τ has the same spectrum I)+II) as S. And a simple com-
 putation gives 1'" = 1" = set of all e2niku, к = 0, ±1, ±2, . . ., i.e. Г = 1'". Thus, 5
 and Τ are spacially non-isomorphic.
 Re Kakutani: K. has decided to stay on. He has an I.A.S. stipend for 1941/42. If the

 war should force him to remain beyond Sept. 1942, we will do everything humanly
 possible for him. If he could be elected to the Harvard Society of Fellows, that would
 be super-excellent. Did you find out from Henderson whether there is any chance of
 this? I will be too glad to do anything, to write to anybody, etc. - if there is a chance
 of achieving something.

 Norberts resignation from the Academy: I have no idea whether he has resigned or
 not. I remember that he used to talk about it 2-3^ years ago. I think it is nonsense.

 Many thanks for the invitation to talk at Madison, including the Mammon. I have
 no way to foresee the future in this slightly opaque century - but I hope that I may get

 Midwest again before too long - but I don't know for the moment when or how.

 Many congratulations to your + Oxtobys early article, which appeared so late in
 the "Annals". It is really a pleasure to read it.

 My respectful homage to Françoise, God knows that my similarity to Riquet á la
 Houppe (if any - which I doubt) is rigorously exterior. I am a miserable sinner, and
 I never rescue maidens, except for base and egoistical motives. But her high - and
 utterly undeserved - consideration thrills me to the core of my being.

 I am also highly pleased by the Russian campaign, although I fear that it will be like
 Old Times - i.e. 1914-191 7 - when the german wore Russia down after 2-3 years. But
 they will probably not be able to get rid of some kind of war in that direction - more
 or less like honorable Sino- Japanese incident.

 I suppose that Schickelgruber is licked alright, but it will be a long and bloody affair.
 And as to the US: You know what the court physician said to the German prince when
 his wife bore him a daughter: "Majestät werden sich nochmal bemühen müssen."

 Klari hopes for an epistle from you. It seem to be a difficult piece of accounting-
 letters. She has had a rather unpleasant eye-trouble lately - probably over-strain - and
 it is still not quite over.

 I am writing a book on games and economics with the economist O. Morgenstern.
 Whadayasay.
 Also a lot whatnots on operator theory, for which I have a monopoly in production

 as well as in consumption. So that's that.
 Please remind me to Françoise.
 With the best from both of us

 hoping to hear from you soon
 as ever John.

 4 Von Neumann's 1941 letter: explanation of the proof

 In the letter von Neumann shows that spectrally isomorphic dynamical systems with

 a mixed spectrum need not be spacially isomorphic. He starts with the following con-
 struction (see paragraphs 4-5). Consider an ergodic dynamical system (φ,Έψ, μ, S).
 Recall that Ь2(ф) is the set of all complex- valued square-integrable functions on φ.

 © Springer
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 Given a family F of functions / e Li{<j)) whose absolute value is always 1 (i.e.
 |/(дс)| = 1 for all χ e φ), let Ff be the family of functions g e L2WO whose absolute
 value is always 1 (i.e. |g(jt)| = 1 for all χ € φ) where there is an / e F such that

 g(Sx) = f(x)g(x). (6)

 Let 1 denote the function f(x) = 1 for all χ e 0, and consider Y (see footnote
 7). For ergodic dynamical systems the only invariant functions (i.e. functions g with
 g(S(x)) = g(x)) are the constants (Arnold and Avez 1968). Hence Y is the set of all
 constant functions of absolute value 1. Thus 1" is the set of all proper functions of U
 of absolute value 1. Clearly, for any sets G, #, if G с Я, then С с Н'. Let us call
 the functions in Y' ', l//r, Yin . . . generalised proper functions with generalised proper
 values 1', 1", 1'" . . ..8 Because lçi'.lçi'ç 1" с 1"' . . ..
 Von Neumann states (see paragraphs 3 and 5) that whether 1 " = 1 '" is in no obvious

 way determined by the spectral properties. What is clear is that for spacially isomor-

 phic dynamical systems (0, Σ^, μ, S) and (ψ, Σ^, ν, Τ) either for both Γ = 1'"
 or for both Υ' φ Υ". This is so because for spacially isomorphic systems their uni-
 tary operators are related via U = W*VW where W(f) = f(c~l(y)). Therefore,
 V(g) = fg if, and only if, V(W(g)) = W(fg) = W(f)W(g), and hence g is a
 generalised proper function of (0, Σ^, μ, S) if, and only if, W(g) is a generalised
 proper function of (-ψ, Σ^, у, Г).
 Von Neumann's idea now was to find two dynamical systems which are spectrally

 isomorphic but where for one system 1" = Y" and for the other Υ' φ Υ", implying
 that they are not spacially isomorphic. Note that this strategy will not work for ergo-

 dic systems with pure point spectrum because for those systems spacial and spectral
 isomorphism are equivalent. Spectrally isomorphic systems have the same proper val-
 ues; hence this strategy will also not work for systems with pure continuous spectrum
 because their only proper functions are 8 1 , 8 € C, and thus 1 ' = 1 " = 1 "'. Hence von

 Neumann focused on systems with mixed spectrum and constructed two spectrally
 isomorphic dynamical systems having mixed spectrum such that for one 1" = Y"
 holds, and for the other 1" φ Υ" holds.

 Consider (see paragraph 6) the dynamical system where φ = [0, 1) χ [0, 1), Σ0 is
 the Lebesgue σ -algebra, μ is the Lebesgue measure and

 S(w, υ) = (м + y (modi), ι; + w (modi)) (7)

 for a fixed irrational γ. It is shown for this system that 1" φ Υ" .

 8 In the literature they are called like this (Abramov 1964,Halmos 1949,Halmos 1956,Rohlin 1960). They
 have been first introduced when proving the result of von Neumann's letter (see Sect. 5). This terminology
 is motivated as follows: '" are proper functions of absolute value 1 with proper values V of absolute value
 1, and the generalised proper functions and proper values are obtained by allowing / in Eq. 6 to be not just
 the constant functions but any function in 1" or 1'", etc. From unitarity it follows that the absolute value of
 any proper value of the Koopman operator is 1 . It suffices to consider proper functions of absolute value 1
 because for ergodic systems the absolute value of any proper function g is constant, i.e. |g(jt)| = с for a
 constant с for all χ e φ (Arnold and Avez 1968, 26).

 Ö Springer
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 It is well known (see paragraph 7) that the functions

 gk,m(u,v) = e27Tikue27rivm k,meZ

 form an orthonormal basis of L2WO (Arnold and Avez 1968; Halmos 1956). We have

 U(gk,,n)=e27Tikygk+m,m;

 hence g^o> & € Z, are proper functions. Let #0 be the closed subspace in L2WO
 generated by {gk,o ' к eZ]. The functions hk := g*,o> к e Z, form an orthonormal
 basis of Ho. Thus U restricted to Ho has pure point spectrum with proper functions
 hk and proper values e2jtlky - this is point I) referred to by von Neumann in the letter.

 Now by applying U, the functions gki,n for m φ 0 get permuted among themselves
 and multiplied by constant factors. We get rid of these constant factors by setting

 fk,m=ok,mgk,m4 тИ1ак,п = (УеЬЧук)&-т)' *, m € Z, m ^ 0. (8)

 A simple calculation yields U(fk,m) = fk+m,m- Since 'акц,п' = 1, the functions /*,,„
 are still an orthonormal set. We can label the functions fkjtn such that we obtain a

 sequence of functions Α,-j, i' j e Z, with U(hij) = hi+'j. The subspace generated
 by hij is the orthogonal complement Hq~ of Ho in L2WO, and A,-j is an orthonormal
 basis of #q-.

 An operator О is said to have an infinitely multiple homogeneous Lebesgue measure
 spectrum if there exists an orthonormal basis bij, /, j e Z, with O(bij) = bi+'j
 (Arnold and Avez 1968, pp. 28-30; Cornfeld et al. 1982, Appendix 2). Consequently,

 U acting on Hq- has an infinitely multiple homogeneous Lebesgue measure spec-
 trum - this is point II) referred to by von Neumann.

 Let us show that there are no other proper functions of absolute value 1 besides
 Sgk ,0, 'S' = 1. Suppose that g(u, v) is a proper function with proper value λ. Because
 gictm is an orthonormal basis, we can expand g as

 g (II, V) = ^Xk,mgk,m(u, υ), Xk,m € С.
 к, m

 Then

 U g = Yäe2"i<k-m)r 'Xk-m.mgk.m = ^Xk,,ngk,m· (9)
 k,m k,m

 Thus 'xk-m,m' = '^Xk,m' for all k, m. It is well known (e.g. Halmos Halmos 1951,
 20) that if κ, Kj are elements in an Hubert space with Kj pairwise orthogonal, then

 J^jKj = κ if, and only if, Xy- ''kj''2 converges. Hence ^ m 'xk,m'2 converges,
 implying that xk,m = 0 whenever m φ 0. Therefore, Γ - the set of proper functions
 -consists of 8e27riku, '8' = 1Д g Ζ. Because for g = e2niv we have

 g(S{u,v)) = e2*i<u+v)=e2*iug'

 V" contains e2niv. Consequently, 1" φ 1'".
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 Consider (see paragraph 8) a dynamical system (Ω , Σω , ρ , R) with Koopman oper-
 ator X where

 (i) <51, |<5| = 1, 8 € C, are the only proper functions with absolute value 1;

 (ii) X acting on Hf-, where H' is the subspace generated by the function 1, has
 infinitely multiple homogeneous Lebesgue measure spectrum.

 For instance, let Ω be the set of all bi-infinite sequences w = (. . . w-', tuo, w' . . .)
 with Wi either - 1 or 1 . Let Σ ω be the σ -algebra generated by the semi-algebra of sets

 cZ'jnn={w € Ω | w/!=ei

 (10)

 Let ρ be the unique extension to a measure on Ω of the pre-measure defined by

 ρ (C£) = *.··**·

 where p-' and p' are real numbers with p-' + p' = 1, 0 < /?_i, p' < 1. Finally,
 let R be defined by

 R(... ш_ь too, wi·..) = (...wo, wi, W2·..)·

 The dynamical system (Ω, ΣΩ, ρ, R) is called a Bernoulli shift on the symbols -1
 and 1 (cf. Werndl 2009a). It is a standard result that it satisfies (i) and (ii) (Arnold and
 Avez 1968, 29-32).

 Consider (see paragraphs 8-9) the dynamical system {ψ, Σ^, ν, Τ) where ψ =
 [0, 1) χ Ω, Σ^ denotes the product σ-algebra, ν is the product measure and

 Г(м, w) = (u + γ (mod 1), R(w)). (11)

 Let V be the Koopman operator of (ψ, Σψ, у, Τ). Let dk^m(w), к, m € Ζ, be the
 orthonormal set of functions with X(dk,m) = dk+'4m and which, together with 1,
 form an orthonormal basis of Ζ,2(Ω) (because of (ii) above, such a set exists). Define

 й*(и, u>) = e2nihu and /?/,*,w(w, u;) = e2niludkym, к, I, me Z.

 /i* and /?/,*,w form an orthonormal basis of Ьг(у) because dk,m and 1 form an ortho-
 normal basis of L2(Q) and e27riku form an orthonormal basis of L2([0, 1)), and for
 the spaces of square integrable functions Ьг(У) and Li(Z) with orthonormal bases
 yi(u) and Zj(w), yi(u)zj(w) form an orthonormal basis of Ьг(У χ Ζ) (Alicki and
 Fannes 2001, 47). Clearly, V(hk) = e2nikYhk. Thus /i* are proper functions with
 proper values e2niky, and V restricted to the closed subspace Fo generated by the
 hk has pure point spectrum (this is point I) referred to by von Neumann). One easily
 verifies that V(pixm) = e2jTilY piM.Um. We get rid of the constant factors by setting
 tixm = e27rilkYpiXm. Clearly, V(i/,*,m) = //д+ι,/η. The set of pairs (fc,m)canbeput
 into one-to-one correspondence with Z. If hi j is used to denote i/,*,m whenever (/, m)
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 corresponds to y, V(hij) = ïii+'j. Consequently, V acting on Fq- has an infinitely
 multiple homogeneous Lebesgue measure spectrum (this is point II) referred to by
 von Neumann).

 Recall that A* and A/ j with U(hij) = Ay+ij form an orthonormal basis of L2Í0)
 and that hk and hij with V(hij) = hi+'j form an orthonormal basis of Li(y).
 Clearly, the operator defined by

 W I Y^otkhk + Σ#,Α; ) := Σα*** + Σ ΑΆ. α<> А.у € C' (12> ' Λ ij ) к ij
 is unitary. Hence (0, Σψ, μ, 5) and (ψ, Σψ, ν, Г) are spectrally isomorphic.
 Now (see paragraph 9) we already know that for (0, Σψ, μ, S) it holds that

 Γ φ Y". It remains to show that for (ψ, Σψ, y, Τ) we have Γ = 1'", implying that
 (0, Σψ, μ y S) and (^, Σ^, ν, Γ) are noř spacially 18отофЬю. For (ψ, Σ^, ν, Γ) the
 set I" consists of all proper functions of absolute value 1. Because spectrally isomor-
 phic systems have the same proper values, the proper functions are 8e2niku, '8' = 1.
 If g € 1'", then g(u + χ, R(w)) = 6e27likug(u, w) for some к e Z. Let us expand
 g(u,w) in terms of the dk,m-

 g(u, W) = Щ(и) + У 'nk,m(u)dk,m(w)-
 k,m

 Then

 g(u + y, Rw) = no(u + κ) Η- Σ/1*-Ι^(|1 + Y)dk,m(w) and

 áe2ir'*"g(M, ш) = áe2ir/bno(M) + ^ае2тЬ«Е,и(«)4,т(ш). (13)
 к, m

 Consequently,

 пк-',т(и + у) = 8e27Tikunk,n(u). (14)

 Taking the norms of both sides of (14) yields ||л*_1,т|| = ||л*,т|. Recall that if
 /c, Kj are elements in an Hubert space with kj pairwise orthogonal, then £/ kj = κ

 if, and only if, Xy· ''kj''2 converges. Hence ^k m 'nk%m' converges and because
 |K-i,m || = ''пк,т I , nkjm = 0 for all к, m 6 Ζ and g(w, w) = по(м). Equation 13
 imply that

 no(u + y) = 8e27Tikun0(u).

 It is well known that {#/(") ·= e2nilu : / e Z}, form an orthonormal basis of
 L2((0, 1]). Hence ло(и) = Σ/ oiůi(u), οι e C. Then

 n0{u + Y) = ^oie2nilYůi{u) and ^2jr/bn0(w) = Σ5ο/-^/(μ)* (15)
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 Consequently, 'oi-k' = 'oi' for all /. This implies that к = 0 because Σι '°ι'2 con"
 verges and the O[ cannot be all 0. But for k = 0, g is a proper function of V. Thus
 1" = 1"'.

 5 Von Neumann's 1941 letter: literature referring to the result

 To summarise, the proof in von Neumann's 1941 letter shows that for dynamical sys-
 tems with mixed spectrum spectral isomorphism does not imply spacial isomorphism.
 The letter is the first document with a proof that spectral isomorphism does not imply

 spacial isomorphism. One would have expected that von Neumann went on to publish
 this result. However, this never happened, and we do not know why. In order to place
 the letter in historical context and to later assess in Sect. 7 the importance of it, we
 need to discuss the extant mathematical literature that refers to the result of the letter.

 Two of Halmos' publications are relevant here. First, Halmos (1949), in a survey of
 recent advances in ergodic theory, remarks that for mixed spectrum systems it can be

 shown that spectral isomorphism does not imply spacial isomorphism (the remark is
 three paragraphs long). To quote: "This construction has not been published so far - it
 is the result of joint work by von Neumann and myself (Halmos 1949, 1025). No
 proof is presented but a few details are given, which make clear that Halmos refers to
 the result of the letter. Namely, he states that the dynamical systems which are spec-

 trally but not spacially isomorphic are the systems (0, Σ0, μ, S) and (тД, Σ^, υ, Τ)
 mentioned in the letter (see Sect. 4). Moreover, he states that the proof is based on the

 newly introduced notions of generalised proper values and generalised proper func-
 tions. Halmos' (1949) remark is important for three reasons: it gives a few details of
 the proof, it shows that the result in the letter was joint work by von Neumann and
 Halmos and that they intended to publish it, and it suggests that generalised proper
 values and generalised proper functions were first introduced by von Neumann and
 Halmos.

 Second, the only publication we have found where a similar proof of the result of
 the letter is given is relatively late in 1956 in Halmos' 'Lectures on Ergodic Theory'
 (in the Chapter 'Generalized Proper Values'). There are no remarks to the effect that

 a similar construction was used by von Neumann and Halmos to first show that spec-
 tral isomorphism does not imply spacial isomorphism. (Halmos might not have felt
 the need to include such commentary in lecture notes.) As already stated, Halmos'
 proof is similar to the one in the letter, but there are also differences, most impor-
 tantly the following: first, the requirements on R(w) differ. Von Neumann requires
 that (Ω, Σω, ρ, Я) has (i) pure continuous spectrum and that (ii) the Koopman opera-
 tor acting on Hj*~, where H' is the subspace generated by the function 1 , has infinitely
 multiple homogenous Lebesgue measure spectrum. The example he gives is the two-
 shift on the symbols 1 and -1. Halmos (1956) requires R(w) to be more specific and
 different from the two-shift, namely to be a mixing system on the unit circle such that

 (i) and (ii) hold.9 Second, von Neumann calculates that 1'" φ 1" for 5(w, v) and that
 1"' = 1" for Г(м, w). Halmos instead focuses on the least positive integer, not ruling

 Clearly, this difference is inconsequential because all that is needed for the proof are (i) and (ii).
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 out infinity, such that 1 with η dashes equals 1 with η + 1 dashes, and he calculates that

 this number is 3 for 5(w, v) and 2 for T(u, w). Third, Halmos explicitly constructs
 the spectral isomorphism. Von Neumann only shows that the spectra of (φ,Σφ, μ, S)
 and (ψ, Σψ, ν, Τ) are the same, and he seems to have inferred from this that they
 are spectrally isomorphic, which is easy to show in this case. (Yet in general it is
 not true that systems with the same spectrum are spectrally isomorphic - see Halmos
 1951, 75.) Finally, unsurprisingly, Halmos's proof is relatively detailed whereas von
 Neumann's proof in the letter is sketchy.

 Another publication referring to the result of the letter is Anzai (1951). Among
 other things, this article proves the same result as the letter, viz. that spectrally iso-
 morphic dynamical systems with mixed spectrum need not be spacially isomorphic.
 However, both the non-isomorphic dynamical systems and the methods used to prove
 the result are entirely different from the ones in letter. Interestingly, in the introduction

 one finds the following acknowledgements:

 The author is much indebted to Professor Kakutani for his kind discussions

 [...]. Further he taught the author that Professor J. von Neumann had proved
 the following theorem: The ergodic transformation T(x, y) -> (jc -f y, χ + y)
 on the torus is spectrally isomorphic to the direct product transformation of the
 translation χ -> χ + γ on the circle and the shift-transformation on the infinite
 dimensional torus 2, though these transformations are not spacially isomorphic
 to each other. This fact has been the stimulation in obtaining the results of
 Sect. 6. (Anzai 1951,84)

 Clearly, Anzai is here referring to the result of the letter. His quote makes clear that
 von Neumann had told Kakutani about that result. Von Neumann's letter contains a

 paragraph about Kakutani (see the paragraph beginning with 'Re Kakutani'), telling
 us that Kakutani has decided to stay in the US and that if the war continues, they will

 try to help him as much as they can.
 Abramov ( 1 962), a article in Russian published in English two years later (Abramov

 1964), contains a proof of the result that totally ergodic10 dynamical systems are spa-
 cially isomorphic if, and only if, their generalised proper values and generalised proper
 functions are equivalent (see Sect. 6 for more on this). In the introduction he refers
 to Halmos (1949) and remarks that generalised proper values and generalised proper
 functions "were introduced by von Neumann and Halmos [...], who proved with these
 concepts the existence of spectrally equivalent but metrically nonisomorphic automor-
 phisms with mixed spectrum" (Abramov 1964, 37). Clearly, he refers here to the result
 in the letter but no further details about the proof are given and there is no indication
 that he knew more than what was announced in Halmos (1949).

 Finally, Rohlin (1960) briefly mentions generalised proper values and generalised
 proper functions and states that in this way one can show that spectrally isomorphic
 systems need not be spacially isomorphic. However, no further details are given and
 there is no indication who proved the result. Because generalised proper values and

 10 A dynamical system (φ, Σφ, μ, S) is totally ergodic if (φ, Σφ, μ, S') is ergodic for all / e Z'{0}.
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 functions are mentioned, it seems likely that Rohlin refers to the result of the letter,
 but it remains unclear what he knew about it.

 Let us now report the main results on the isomorphism problem after the publication
 of the letter.

 6 The main results after Von Neumann's 1941 letter

 From 1942 until today a large number of various articles on the spacial isomorphism
 problem have been published, and much research is still being done on this problem
 nowadays. Thus we can only provide a summary of the most important results on the
 isomorphism problem after the publication of the letter. Our discussion will be chro-
 nological, and we will particularly focus on those results that are relevant to assess
 the importance of the letter later in Sect. 7.

 In 1942, shortly after the letter had been written, von Neumann and Halmos pub-
 lished a article with a further contribution to the isomorphism problem. Their main
 result is about the same class of systems as Theorem 1, Viz. ergodic systems with pure
 point spectrum.

 Theorem 2 Every ergodic dynamical system (0, Σ^, μ, S) with pure point spectrum
 is spacially isomorphic to a rotation on a compact Abelian group (von Neumann and
 Halmos 1942 ).n

 The importance of this theorem is that it provides a normal form for the class of ergodic

 systems with pure point spectrum, and thus it can be used to answer many questions
 about this class. An interesting corollary should also be mentioned:

 Corollary 1 Every ergodic dynamical system (0, Σ^, μ, S) with pure point spec-
 trum is spacially isomorphic to its inverse, i.e. to (φ,Σφ, μ, S~l) (von Neumann and
 Halmos 1942).

 The next important contribution to the isomorphism pťoblem was Anzai (1951). As
 already mentioned in Sect. 5, Anzai (1951) proves the same result as von Neumann's
 letter, viz. that there are spectrally isomorphic dynamical systems with mixed spec-
 trum which are not spacially isomorphic. However, the non-isomorphic dynamical
 systems as well as the construction of the proof are very different from the ones in the
 letter.

 Up to now none of the results were on systems with pure continuous spectrum.
 Systems with pure continuous spectrum are generic among all dynamical systems
 (comeagre in the strong neighbourhood topology) (Halmos 1944). Therefore, the out-
 standing open problem concerning the isomorphism problem was to classify systems
 with pure continuous spectrum, and, in particular, to find out whether for these systems

 11 For an accessible proof, see Halmos (Halmos 1957, 46-50). The more historically oriented articles
 Halmos (1949), Halmos (1957), Mackey (1974, 197-198) and Weiás (1972, 672-673) also discuss this
 result.

 Ô Springer

This content downloaded from 141.201.229.3 on Wed, 13 Dec 2017 18:25:11 UTC
All use subject to http://about.jstor.org/terms



 On the history of the isomorphism 87

 spectral isomorphism implies spacial isomorphism. Kolmogorov eventually made pro-
 gress on this question. According to Sinai (1989), in 1957 in a seminar in Russia
 Kolmogorov first presented examples of systems with pure continuous spectrum which
 are spectrally isomorphic but not spacially isomorphic. This construction was then
 later published (Kolmogorov 1958, 1986; Sinai 1959). Let us outline Kolmogorov's
 proof.12

 As a first ingredient, motivated by his work on information theory, Kolmogo-
 rov introduced a new spacial invariant - nowadays called the Kolmogorov-Sinai
 entropy. A partition a = {a,- 1 1 = 1, . . . , η) of (0, Σφ, μ) is a collection of
 non-empty, non-intersecting measurable sets that cover ф: щ C' qíj = 0 for all
 i φ j and φ = U?=iai· Dynamical systems and information theory can be
 connected as follows: each χ g φ produces, relative to a partition a (a cod-
 ing), an infinite string of symbols . . .x-2X-'xox'X2 · · · in an alphabet of к let-
 ters via the coding Xj = щ if, and only if, S-i(x) G α/, j e Z. Interpreting
 the system (0, Σ^, μ, S) as the source, the output of the source are these strings
 . . . jc_2*- 1*0*1*2

 then Я (a, T) :=

 lim '/n У -μ(α/ο Π Sah ... Π 5/1"1α//ΐ_1) 1οβ(μ(α/ο ... Π S""1«,·,,.,)) (16)
 η- »οο ■ 4

 Í;€{1,.. .,*),()<./ <Л-1

 measures the average information which the system produces per step relative to a
 as time goes to infinity (Frigg and Werndl 201 1 ; Petersen 1983, pp. 233-240; Werndl
 2009b). Now

 h(T) :=sup{H(a,5)} (17)
 a

 is the Kolmogorov-Sinai entropy of (φ, Σψ, μ, S). It measures the highest average
 amount of information that the system can produce per step relative to a coding. It
 is easy to see that spacially isomorphic systems have the same Kolmogorov-Sinai
 entropy.

 The second ingredient in the proof were Bernoulli shifts. In the modern frame-
 work of probability theory an independent process, i.e. a doubly-infinite sequence of
 independent rolls of an η-sided die where the probability of obtaining к is pk ,k e
 Ň := {Ni, . . . , Nn], with Σ2=ι Ρ* = 1» is modeled as follows. Let Ω be the set of all
 bi-infinite sequences w = (. . . tu_i, wq, w' . . .) with w/ e Ň, corresponding to the
 possible outcomes of an infinite sequence of independent trials. Let Σβ be the set of

 12 This proof is standardly given to outline Kolmogorov's contribution (e.g. Halmos 1961; Rohlin 1967;
 Weiss 1972), but it is based on a definition of entropy introduced by Sinai (1959). According to Sinai
 (1989), this proof corresponds closely to the one Kolmogorov gave in this seminar. The proof Kolmogorov
 published - Kolmogorov (1958) - was different from the one in the seminar. Most importantly, its defini-
 tion of entropy was based on a theorem that turned out to be wrong (Kolmogorov 1986), and so later Sinai
 (1959) definition was adopted.
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 all sets of infinite sequences to which probabilities can be assigned, and let μ be the
 probability measure οηΣ^.13 Define the shift:

 R : Ω -► Ω /?((. ..ш_1,ш0, Ш1 ...)) = (...wo, wi, w2...). (18)

 (Ω, Σω, ρ j R) is called a Bernoulli shift with probabilities p' , . . . , pn.

 A dynamical system (0, Σ^, μ, 5) is a Lebesgue system if there exists an ortho-
 normal basis of L2WO formed by the function f(x) = 1 for all χ e φ, and the
 functions fij, i, j e Z, such that U(fij) = //j+i for all 1, 7 (Arnold and Avez
 1968, pp. 28-30). !4 Clearly, Lebesgue systems have pure continuous spectrum and it
 is easy to see that they are spectrally isomorphic.15 A simple calculation shows that
 all Bernoulli shifts are Lebesgue systems, and hence Bernoulli shifts are spectrally
 isomorphic (Arnold and Avez 1968, pp. 30-31). However, it can be calculated that
 the Kolmogorov-Sinai entropy of the Bernoulli shift with probabilities p' ,...,/?„ is
 Σ?=ι Pi log(Pi) and thus takes a continuum of different values. Consequently:16

 Theorem 3 There is a continuum of dynamical systems which are spectrally isomor-
 phic but not spacially isomorphic.

 This result by Kolmogorov was hailed as the major breakthrough since von Neumann's
 earlier work and stimulated much further reserach (cf. Halmos 1 96 1 , pp. 75-77 ; Rohlin
 1967, p. 45, Sinai 1989, pp. 834-835; Weiss 1972, pp. 674-676).

 Another contribution which should be mentioned is Abramov's (1962) article in
 Russian which was published in English two years later (Abramov 1964). This article
 is important because it uses generalised proper values and generalised proper functions
 as introduced in von Neumann's letter (cf. Sect. 4) to provide sufficient conditions for

 spacial isomorphism. Let us explain. For a dynamical system (0, Σ^, μ, S) denote
 the sequence of generalised proper functions 1", l//;, 1"" ... by gL G', G1",... and

 the sequence of generalised proper values 1', 1", 1'" ... by #^, #?, Hi.... It is easy
 to see that the G£ and Щ, η > 1, are groups under multiplication (Halmos 1956,
 57). Generalising the notion of a pure point spectrum, Abramov (1962) introduced
 the definition that a dynamical system (0, Σ^, μ, S) has quasi-discrete spectrum if

 G Φ = U„>i Сф forms a basis of L2WO·

 13 In detail: Σ^ is the σ -algebra generated by the cylinder-sets

 The sets have probability p(C.^"j™) = рьх Pk2 · · · Pkm since the outcomes are independent, ρ is defined
 as the unique extension of β to a measure on Σ^.

 14 (0, Σ^, μ, 5) is a Lebesgue system if, and only if, <51, 'δ' = 1, are the only proper functions with

 absolute value 1, and (ii) S acting on //j1, where Η ,χ is the orthogonal complement of the subspace
 Hi generated by function 1, has infinitely multiple homogeneous Lebesgue measure spectrum (cf. the
 discussion of paragraph 7 of von Neumann's letter).

 15 See Equation (12) for the construction of the spectral isomorphism.

 This result is also discussed by the more historically oriented articles and chapters Halmos (1961, pp.
 75-77), LoBello (1983), Mackey (1974, p. 200), Reed and Simon(1980, p. 239), Rohlin (1967, p. 45) Sinai
 (1963, p. 68),Sinai (1989, pp. 834-835) and Weiss (1972, pp. 674-676).
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 As a next step, Abramov formalised the idea that dynamical systems have equiva-
 lent generalised proper values and generalised proper functions. Before we state the

 definition, note that the function ζ)φ : //£+1 -> H^ ßtf>(/) = /W> (*))//(*) is
 a group homomorphism. Now the generalised proper values and generalised proper
 functions of the dynamical systems (</>, Σ^, μ, S) and {ψ, Σ^, ν, Τ) are equivalent

 if there exists a group isomorphism L of the group Ηψ = U„>i#£ to the group
 Щ = υη>'Ηψ suchthat

 L(/) = / for all feHl (19)
 L{Hp = H^ /i€N, (20)
 00 = L"1ov,L. (21)

 The main result of Abramov (1962) can now be stated.

 Theorem 4 Totally ergodic dynamical systems (φ,Σψ, μ, S) and (ψ, Σψ , ν, Τ) with
 quasi-discrete spectrum are spacially isomorphic if, and only if, the generalised proper
 values and generalised proper functions of the dynamical systems are equivalent.

 Recall von Neumann (1932c) result that ergodic dynamical systems are spacially iso-
 morphic if, and only if, their proper values coincide (cf. Theorem 1). Theorem 4 is
 analogous to this result in the sense that systems with equivalent generalised proper
 values and generalised proper functions are spacially isomorphic. One can then also
 prove an analogue of Theorem 2, namely that every totally ergodic dynamical system
 of quasi-discrete spectrum is spacially isomorphic to an affine transformation on a
 compact connected Abelian group (Parry 1971). However, Theorem 4 is also very
 different from Theorem 1 : spectrally isomorphic systems do always have equivalent
 generalised proper values and generalised proper functions; hence for systems with
 quasi-discrete spectrum spectral isomorphism does not imply spacial isomorphism.17
 The notions of generalised proper values and generalised proper functions introduced
 by von Neumann in the letter proved to be very fruitful, and Abramov (1962) work
 highlights this.
 Another important contribution is Choksi (1965). Recall that von Neumann (1932)

 had proven that for ergodic systems with pure point spectrum spacial and spectral iso-
 morphism are equivalent (Theorem 1). It was often believed, or at least hoped (e.g. von
 Neumann 1932c, p. 495), that this theorem could be extended to nonergodic dynami-
 cal systems by invoking von Neumann's ergodic decomposition theorem, saying that
 any dynamical system can be decomposed in ergodic parts. Choksi (1965) dashed this
 hope when he showed that for non-ergodic systems with pure point spectrum spectral
 isomorphism does not imply spacial isomorphism.
 Finally, Ornstein's work needs to be mentioned. Since Kolmogorov's groundbreak-

 ing contribution to the spacial isomorphism problem in the late 1950s, it had been

 17 Totally ergodic systems with quasi-discrete spectrum have either pure point spectrum or a mixed spec-
 trum consisting of the proper values and a infinitely multiple homogenous Lebesgue measure spectrum (cf.
 Sect. 4). All mixed-spectrum systems with the same proper values are spectrally isomorphic, but they need
 not be spacially isomorphic (Abramov 1962).
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 an open question whether, for certain systems, having the same Kolmogorov-Sinai
 entropy would be a sufficient condition for spacial isomorphism. In particular, the
 question arose whether Bernoulli shifts with the same Kolmogorov-Sinai entropy are
 spacially isomorphic. This question was answered in the positive by Ornstein's land-
 mark work in the 1970s. In particular, Ornstein proved the following celebrated result
 (Ornstein 1970; see also Ornstein 1974). 18

 Theorem 5 If a Bernoulli shift with probabilities p',...,pn and a Bernoulli
 shift with probabilities q',...>qm have the same KolmogorovSinai entropy, i.e.
 Σ?=ι Pi l°g(P/) = Σ7=ι Qj tosto./)» tnen tney are spacially isomorphic.

 Combined with Kolmogorov's result, this means that Bernoulli shifts are spacially
 isomorphic if, and only if, they have the same Kolmogorov-Sinai entropy. Ornstein
 developed many new techniques and so his work simulated much further research.
 Indeed, as already mentioned above, the isomorphism problem continues to be an
 active and lively research area. We have now presented the major developments on the
 isomorphism problem since von Neumann's 1941 letter. Now we are in a position to
 return to von Neumann's letter and to comment further on its historical importance.

 7 Concluding remarks

 We will conclude the article by highlighting what we regard as the three major reasons
 why the letter is historically important. First, von Neumann 's 1941 letter to Ulam is the

 earliest document containing a proof of the result that spectral isomorphism does not
 imply spacial isomorphism. Clearly, the letter also contains the earliest proof showing
 that for systems with mixed spectrum spacial and spectral isomorphism do not always
 go together. Without the letter, the earliest document establishing that spectral isomor-
 phism does not imply spacial isomorphism would be Anzai (1951). This led some like
 LoBello (1983) to claim, erroneously as we know now from von Neumann's letter,
 that it was Anzai ( 1 95 1 ) who first established this result. From our discussion it is clear

 that instead Halmos and von Neumann should be credited with this. Furthermore, the

 letter is also the earliest document in which the notions of generalised proper values
 and generalised proper functions are introduced. As we have seen in Sect. 6 (see, in
 particular, the work by Abramov 1962), these notions proved fruitful: they were later
 employed in many articles to make progress on the isomorphism problem.
 Second, as discussed above, Halmos (1949) remarks that he and von Neumann have

 first shown that spectral isomorphism does not imply spacial isomorphism, and Anzai
 (195 1) and Abramov (1962) briefly remark that von Neumann and Halmos proved that
 for mixed spectrum systems spectral isomorphism does not imply spacial ismorphism.
 However, without the letter, apart from Halmos (1949) comment that the proof relies
 on generalised proper values and proper functions, it remained unclear how the proof
 proceeded. To be sure, there exists one document containing a proof of the result of the
 letter based on generalised proper functions and proper values, viz. Halmos (1956),

 18 This results is also discussed by the more historically oriented articles Lo Bello (1983), Sinai (1989)
 and Weiss (1972).
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 and one could have guessed that this was von Neumann and Halmos' original proof.
 However, there is no commentary in Halmos (1956) explaining how his proof relates
 to the one that he and von Neumann had intended to publish. Consequently, some
 uncertainty remained about the construction of the original proof. Von Neumann 's
 letter removes this uncertainty and presents us with the original proof
 Related to this, most of the extant articles on the history of ergodic theory do not

 address the question of when it was first shown and who first showed that spectral
 isomorphism does not imply spacial isomorphism (e.g. Mackey 1974, 1990; Reed and
 Simon 1980, Sect. VII.4; Sinai 1989; Weiss 1972). The presentation of the history
 of the isomorphism problem in some of these publications potentially leave one with
 the impression that it was Kolmogorov who first proved this result when he showed
 that systems with Lebesgue spectrum need not be spacially isomorphic (Kolmogorov's
 contribution was discussed in Sect. 6) (Reed and Simon 1980, Sect. VII.4; Weiss 1972).
 Indeed, as mentioned above, the only article we have found in which a correct answer
 to the "when and who?" question is given is the mathematics article Halmos (1949).
 It seems likely that a major reason why this question has often not been addressed is
 the following: Halmos' (1949), Anzai (1951) and Abramov (1962) remarks are very
 brief and left unclear how exactly the original proof proceeded, and hence this episode
 of the history of the ismorphism remained obscure. We hope that the publication of
 the letter and the story around it will make this important episode more widely known

 and more widely discussed.
 Third, the letter highlights von Neumann's contribution to the isomorphism prob-

 lem. Up to the present day, this contribution has usually been taken to be (i) the
 introduction of the notion of isomorphism and the formulation of the isomorphism
 problem (cf. von Neumann 1932c); (ii) the results in von Neumann (1932c), in par-
 ticular, the proof that for ergodic dynamical systems with pure point spectrum spacial

 and spectral isomorphism are equivalent (cf. Theorem 1); and (iii) the results in von
 Neumann and Halmos (1942), in particular, the proof that any ergodic pure point
 spectrum system is spacially isomorphic to a rotation on a compact separable Abelian
 group (cf. Theorem 2) (cf. Halmos 1957; Sinai 1989; Weiss 1972). The letter shows
 that this is not all: von Neumann, together with Halmos, was also the first to prove
 that spectrally isomorphic dynamical systems need not be spacially isomorphic. Fur-
 thermore, the letter also highlights that von Neumann and Halmos were the first to
 introduce the important notions of generalised proper values and generalised proper
 functions. As discussed in Sect. 6 (see, in particular, the work by Abramov 1962),
 these notions proved very fruitful in later work on the isomorphism problem.
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