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Abstract The Interpolation Theorem, first formulated and proved by W. Craig fifty
years ago for predicate logic, has been extended to many other logical frameworks
and is being applied in several areas of computer science. We give a short overview,
and focus on the theory of software systems and modules. An algebra of theories
TA is presented, with a nonstandard interpretation of the existential quantifier ∃. In
TA, the interpolation property of the underlying logic corresponds with the quantifier
combination property ∃� ∃� S ≡ ∃(� ∪ �) S. It is shown how the Modulariza-
tion Theorem, the Factorization Lemma and the Normal Form Theorem for module
expressions can be proved in TA.

Keywords Interpolation · Modularization Theorem · Module algebra · Theory
algebra

1 Introduction

The applications of logic in computing science are manifold, ranging from electronic
circuit design to software design and automated reasoning: see Halpern et al. (2001)
for a survey. In this section, we shortly present the applications of the Interpolation
Theorem (Craig (1957)) in several areas of computing science, focusing on the logical
semantics of specification modules. In the rest of the paper, we develop the theory
algebra TA for a unified treatment of the applications of interpolation in this area.
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1.1 Applications of interpolation: a short overview

We first look at Automated Reasoning, a fruitful area for applications of the inter-
polation property. Generally speaking, the goal of automated reasoning is: given a
collection of formulas S and a formula A in the context of some logic L, determine
mechanically whether A follows from S. One way to attack this problem is to gen-
erate consequences of S until we obtain A. This may be computationally expensive,
especially when S is large. When L satisfies the interpolation property, a divide-
and-conquer strategy can be applied. To explain this, suppose that S = S1 ∪ S2.
The idea is to generate consequences B of S1 which we add to S2, while at the
same time we generate consequences of the extension of S2 thus obtained until A
pops up. Thanks to the interpolation property, we may restrict ourselves to B with
voc(B) ⊆ voc(S1) ∩ (voc(S2) ∪ voc(A)). This idea of splitting S can be repeated,
yielding a tree with nodes containing sets Si and edges labelled by signatures that
restrict the flow of formulae between adjacent sets. This idea has been worked out in
Amir (2002), MacCartney et al. (2003).

In Schlobach (2003, 2004), socalled optimal interpolation is used in the context of
terminology construction with description logics. The idea is to find, given concepts
C and D subsuming C , a concept I with |� C � I � D that can serve as an
explanation why D subsumes C . The interpolant I is optimal if not only voc(I ) ⊆
voc(C)∩voc(D), but when voc(I ) is minimal, i.e. there is no I ′ with |� C � I ′ � D
and voc(I ′) ⊂ voc(I ).

In McMillan (2003, 2005, 2006), interpolation is used to speed up symbolic model
checking. The goal is to check mechanically whether some temporal logic formula
holds in some finite-state model. For this purpose invariants are used to prove properties
about inductively defined objects; interpolation is used to filter out information that is
not relevant to proving the desired properties.

We turn to the theory of software systems. The realization of a software system can
be seen as the transition from a specification of the system (an abstract description
of its functionality) to an implementation (a computer program). One approach for
obtaining this transition is the method of stepwise refinement (see Wirth (1971)), which
we explain shortly.

We assume that the specification S0 is given as a collection of sentences in a logical
language L. The idea is that a refinement step brings us from a more abstract description
S0 to a more concrete description S1 via an interpretation κ of S0 into a conservative
extension T1 of S1. More precisely: a refinement of S0 is a specification S1 with the
following properties.

1. S1 has a conservative extension T1, i.e. if S1 
 A then T1 
 A, and if T1 
 B with
B in the language of S1, then S1 
 B. Notation: S1 � T1.

2. There is an interpretation κ : S0 → T1, i.e. a structure-preserving mapping (so
e.g. κ(A → B) = κ(A) → κ(B)) with T1 
 A for all A ∈ S0. Notation:
S0

κ→ T1.

So we have S0
κ→ T1 � S1, and we call this a refinement step.

We sketch an example (based on Maibaum et al. (1985)). Let S0 be a specification of
finite sets of natural numbers, with operations like union, intersection, cardinality, etc.
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Fig. 1 Diagram of the Modularization Theorem

Sets are not directly representable in computers, but we may consider sets as an ab-
straction of sequences, and hence refine the notion of sets to the notion of sequences.
So let S1 be a specification of finite sequences of natural numbers, with operations
like concatenation of two sequences, taking the first element of a list, etc. The idea is
now to extend S1 to T1 by adding definable predicates and functions, e.g. the unary
predicate ordered-sequence, and the binary function merge that combines two
ordered sequences into their ordered union. Such an extension with definable predi-
cates and functions is evidently conservative. Now it is possible to interpret S0 in T1:
sets are interpreted by sequences satisfying ordered-sequence, union of sets is
interpreted by merge, etc.

The idea of the method of stepwise refinement is to obtain, via a number of refine-
ment steps

S0
κ0→ T1 � S1

κ1→ T2 � S2 · · · Sn−1
κn−1→ Tn � Sn,

a specification Sn that is directly implementable (e.g. a logic program). A natural
question arises: is Sn a refinement of S0? Here the Modularization Theorem enters the
stage. It says that (under some mild conditions on S, T, U and κ) if T is a conservative
extension of S and U 
 κ(S), then there is a conservative extension V of U and a λ

that interprets T in V (see Fig. 1).
From the Modularization Theorem, the transitivity of � and the composability

of interpretations, it follows that a sequence of refinement steps can be reduced to
a single refinement step. In Theorem 1, we give a precise formulation and a proof
of the Modularization Theorem in Theory Algebra, using the Interpolation property
of the underlying logic. Our proof follows the lines of Veloso (1993). A general
modularization theorem involving category theory is presented in Dimitrakos and
Maibaum (2000).

Another important concept in the development of software systems is the notion
of a module. When systems and specifications become large, it is useful and often
even necessary to split them into smaller components called modules, which can be
developed independently. In the implementation of a module, one often uses items to
deal with specific implementation aspects (e.g. depending on hardware and software
platform issues), and these items should not be accessible by other modules. This
is accomplished by information hiding (also called encapsulation): the regulation of
the interaction between modules, usually realized by associating to each module an
interface that indicates which parts of the module are accessible by the rest of the
system.

Logically speaking, information hiding is a kind of existential quantification: if
we have a logical specification S containing an auxiliary function f that we want
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to hide, then we want to specify ‘there is an f such that S’, i.e. ∃ f S. When we
consider both information hiding and module composition, the question is how these
operations interact. Under what conditions on signature � and do they permute, i.e. do
we have ∃� (S ∪T ) = (∃� S)∪(∃� T )? This kind of questions is studied in Module
Algebra (MA), presented in Bergstra et al. (1990), which contains the operations S+T
(combination of modules S and T ) and � � S (exporting signature � from S). Export
is dual to hiding: � � S yields a module with interface �, so in other words all
signature elements in S that do not occur in � are hidden. In MA, a Factorization
Lemma and a Normal Form Theorem are proved. The first says that every extension
can be factorized in a conservative extension and a strengthening: if T 
 S then there
is a U with the same signature as S such that T conservatively extends U and U 
 S.
The Normal Form Theorem states that every module expression is equivalent to an
expression with at most one occurrence of the export operator �. For more details see
Theorems 2 and 3 below.

Several semantics for Module Algebra are considered in Bergstra et al. (1990), the
most interesting being the theory semantics, where theories embody the meaning of
modules. The Theory Algebra TA presented in the next section is inspired on the theory
semantics of MA, extended with interpretations. In TA, we derive the Modularization
Theorem, the Factorization Lemma and the Normal Form Theorem. We claim that TA
is definitely more perspicuous that MA, which has a rather extensive axiomatization.
TA and MA are compared in 3.1.

2 Theory algebra

2.1 Preliminaries

We assume some predicate logical language L to be given over some collection VOC =
PRED∪FUNC of predicate and function symbols (individual constants are identified
with function symbols with arity 0). We use A, B, C for formulae in L, and S, T for
theories, i.e. subsets of L. For predicate and function symbols in VOC we use p, q
and f, g, respectively. Subsets of VOC are called vocabularies and denoted by �,�.
voc(A), the vocabulary of A, is the collection of vocabulary elements occurring in A,
and voc(S) = ⋃{voc(A) | A ∈ S}.

The provability relation S 
 A holds between theories and formulae as usual. We
write S 
 T for (S 
 A for all A ∈ T ) and 
 A for ∅ 
 A. Two theories are
equivalent, notation S ≡ T , if S 
 T and T 
 S. Provability is reflexive (S 
 A if
A ∈ S), transitive (if S 
 T and T 
 A, then S 
 A), and hence monotonic (if S 
 A
and S ⊆ T , then T 
 A).

2.2 Hiding

Theory Algebra TA is a algebraic theory about logical theories (i.e. subsets of L) with
three operations: union, hiding, and application of interpretations. We first focus on
hiding, postponing the treatment of interpretations. Hiding signature � from theory
S, denoted by ∃� S, is defined by
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∃� S = {A | S 
 A & voc(A) ∩ � = ∅}

so ∃� S is the collection of consequences of S that do not contain a vocabulary
element in �, and we have voc(∃� S) = VOC−�. The notation for hiding is chosen
to suggest that it behaves like existential (second order) quantification over vocabulary
elements, and we shall show that this is indeed the case. From this perspective, the
reader might expect restriction of A to the vocabulary of S in the definition of ∃� S, so
that voc(∃� S) = voc(S)−� would hold. That would be in line with our treatment in
Renardel de Lavalette (1991), but the present definition is more general, and we shall
show that it leads to a rather simple axiomatization where the role of the deduction
property and the interpolation property are clearly visible.

The axioms involving hiding are

Mon if � ⊆ � and S 
 T then ∃� S 
 ∃� T
Vac if voc(S) ∩ � = ∅ then S ≡ ∃� S
Distr if voc(S) ∩ � = ∅ then ∃� (S ∪ T ) ≡ S ∪ ∃� T
Comb ∃� ∃� S ≡ ∃(� ∪ �) S

Mon states the monotonicity of ∃ in both arguments: it implies that ∃ respects equiv-
alence, i.e. S ≡ T ⇒ ∃� S ≡ ∃� T . Both Mon and Vac (vacuous quantification)
follow directly from the definition of ∃ and the monotonicity of 
. For Distr (con-
ditional distribution) and Comb (quantifier combination), more is required. We shall
show that Distr corresponds to the deduction property:

if S ∪ T 
 A, then there is a U ⊆ L with
S 
 U , U ∪ T 
 A and voc(U ) ⊆ voc(T ) ∪ voc(A)

and Comb to the interpolation property:

if S 
 A, then there is a T ⊆ L with
S 
 T , T 
 A and voc(T ) ⊆ voc(S) ∩ voc(A)

We observe in passing that, by the compactness of 
, the deduction property given
above follows from ordinary deduction (if {A, B} 
 C then A 
 (B → C)). To see
this, assume S ∪ T 
 A and let {B0, . . . , Bn} ⊆ T satisfy S ∪{B0, . . . , Bn} 
 A, then
U := {(B0 ∧ . . . ∧ Bn) → A} satisfies the required properties.

Lemma 1 (Characterization of deduction) Distr is equivalent with the deduction
property.

Proof First we prove Distr from the deduction property. Assume � ∩ voc(S) = ∅.
Now ∃� (S ∪ T ) 
 S ∪ ∃� T follows from Mon and Vac, so we look at the
other direction S ∪ ∃� T 
 ∃� (S ∪ T ). We must show: if A ∈ ∃� (S ∪ T ) then
S ∪∃� T 
 A. So assume A ∈ ∃� (S ∪ T ), i.e. S ∪ T 
 A and voc(A) ⊆ VOC−�.
By the deduction property, we have U with T 
 U , S ∪ U 
 A and voc(U ) ⊆
voc(S) ∪ voc(A) ⊆ voc(S) ∪ (VOC − �) = VOC − �, (using � ∩ voc(S) = ∅ in
the last step). It follows that U ⊆ ∃� T , so indeed S ∪ ∃� T 
 A.

Now the other way round. Assume S ∪ T 
 A and define � := VOC − (voc(T ) ∪
voc(A)), U := ∃� S. Then voc(U ) = voc(T ) ∪ voc(A) and S 
 U , for

123



442 Synthese (2008) 164:437–450

S ≡ ∃∅ S 
 ∃� S = U . Also U ∪ T 
 A, for U ∪ T = ∃� S ∪ T ≡ ∃� (S ∪ T ) 

∃� A ≡ A. This ends the proof.

Lemma 2 (Characterization of interpolation) Comb is equivalent with the inter-
polation property.

Proof We begin with proving Comb. First we observe that ∃� ∃� S 
 ∃� ∃(� ∪
�) S ≡ ∃(S ∪ �) S follows from Mon and Vac. For the other direction, ∃(S ∪
�) S 
 ∃� ∃� S, we argue as follows. Let A ∈ ∃� ∃� S, i.e. ∃� S 
 A and
voc(A) ⊆ VOC − �. By the interpolation property, we find a T with ∃� S 
 T ,
T 
 A and voc(T ) ⊆ (VOC − �) ∩ (VOC − �) = VOC − (� ∪ �). Hence
T ⊆ {B | S 
 B & voc(B) ⊆ VOC − (� ∪ �)} = ∃(� ∪ �) S and we get
∃(� ∪ �) S 
 A.

Now we prove interpolation from Comb. Assume that S 
 A and define � :=
VOC − voc(S), � := VOC − voc(A), T := ∃(� ∪ �) S. Then voc(T ) = voc(S) ∩
voc(A) and S 
 T , for S ≡ ∃∅ S 
 ∃(� ∪ �) S = T . To see that T 
 A, we argue
as follows: T = ∃(� ∪ �) S ≡ ∃� ∃� S ≡ ∃� S 
 ∃� A ≡ A (using Vac in the
third step), which ends the proof.

2.3 Interpretations

As mentioned in 1.1, an interpretation is a structure-preserving mapping κ on terms
and formulae, i.e. κ commutes with the logical connectives and with the construction
of terms and atomic formulae. So e.g. κ(A ∧ B) = κ(A) ∧ κ(B), κ( f (t1, t2)) =
(κ( f ))(κ(t1), κ(t2)), κ(p(t)) = (κ(p))(κ(t)). An interpretation κ is fully character-
ized by an underlying mapping (which we also call κ) on vocabulary elements, that
maps k-ary function symbols f to λx1, . . . , xk .t (t some term) and n-ary predicate
symbols P to λx1, . . . , xn .A (A some formula).

We extend interpretation application to theories and signatures by

κ(S) = {κ(A) | A ∈ S}
κ(�) = ∪{voc(κ(s)) | s ∈ �}

It follows that voc and κ commute, i.e. voc(κ(S)) = κ(voc(S)). We define the domain
and range of an interpretation by

dom(κ) = {s ∈ VOC | s �= κ(s)}
rg(κ) = {voc(κ(s)) | s ∈ dom(κ)}

This is a nonstandard but useful definition of domain, viz. the collection of vocabulary
elements that are modified by interpretation κ . For technical reasons, we adopt the
following restriction on interpretations:

all interpretations considered satisfy dom(κ) ∩ rg(κ) = ∅
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As a consequence, we have dom(κ) ∩ voc(κ(S)) = ∅ for all S. Observe that this
restriction excludes interpretations with an inverse (except the identity).

A renaming is a special kind of interpretation: its underlying mapping sends function
symbols to function symbols, and predicate symbols to predicate symbols, and it is
injective on its domain. A renaming ρ has a pseudo-inverse ρ−1, satisfying

dom(ρ−1) = rg(ρ),
rg(ρ−1) = dom(ρ),
ρ−1(ρ(S)) = S for S with voc(S) ∩ rg(ρ) = ∅, and
ρ(ρ−1(T )) = T for T with voc(T ) ∩ dom(ρ) = ∅.

The equalizer E(κ) of interpretation κ is a theory which expresses that f equals κ( f ),
and p is equivalent to κ(p), for all function symbols f and predicate symbols p in
the domain of κ:

E(κ) = {∀�x(p(�x) ↔ κ(p)(�x)) | p ∈ dom(κ) ∩ PRED} ∪
{∀�x( f (�x) = κ( f )(�x)) | f ∈ dom(κ) ∩ FUNC}

We observe that voc(E(κ)) = dom(κ) ∪ rg(κ). The following axioms characterize
interpretations and their equalizers:

MonInt if S 
 T then κ(S) 
 κ(T )

EqP S ∪ E(κ) ≡ κ(S) ∪ E(κ)

EqM 
 κ(E(κ))

MonInt (monotonicity of interpretations) is a well-known property of predicate logic
(and most other logics): observe that it implies that interpretations preserve equiva-
lence, i.e. S ≡ T ⇒ κ(S) ≡ κ(T ). EqP is the fundamental property of the equalizer;
it follows from E(κ) 
 t = κ(t) ∧ (A ↔ κ(A)), which is proved straightforwardly
with induction over t and A. EqM implies that E(κ) is minimal, i.e. it is (modulo
≡) the weakest theory satisfying EqP. For if S ∪ E ′ ≡ κ(S) ∪ E ′ for all theories S,
then E(κ) ∪ E ′ ≡ κ(E(κ)) ∪ E ′ in particular, so by EqM E ′ 
 E(κ). For EqM, the
restriction to interpretations with dom(κ)∩ rg(κ) = ∅ is essential: if e.g. κ(p) = ¬p
then E(κ) ≡ ⊥.

2.4 Properties of TA

Before we turn to the theorems, we formulate and prove some useful properties.

S 
 ∃� S (1)

∃� ∃� S ≡ ∃� ∃� S (2)

∃� S ≡ ∃(� ∩ voc(S)) S (3)

if � ∩ voc(S) ∩ voc(T ) = ∅ then ∃� (S ∪ T ) ≡ ∃� S ∪ ∃� T (4)
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Property (1) follows from S ≡ ∃∅ S 
 ∃� S, a direct consequence of Vac and
Mon; (2), quantifier shift, is a direct consequence of Comb and the commutativity of
∪; and (3) is proved using � = (� ∩ voc(S)) ∪ (� − voc(S)), Comb and Vac.

For (4), the conditional distribution of ∃ over ∪, we reason as follows:

∃� (S ∪ T )

≡ {� = � ∪ (� ∩ voc(T )) and Comb}
∃� ∃(� ∩ voc(T )) (S ∪ T )

≡ {Distr, using that � ∩ voc(S) ∩ voc(T ) = ∅ is given}
∃� (S ∪ ∃(� ∩ voc(T )) T )

≡ {(3)}
∃� (S ∪ ∃� T )

≡ {Distr, using � ∩ voc(∃� T ) = � ∩ (VOC − �) = ∅}
∃� S ∪ ∃� T

We continue with some properties of interpretations κ and renamings ρ:


 ∃dom(κ) E(κ) (5)

κ(S) 
 ∃dom(κ) S (6)

if voc(S) ∩ rg(ρ) = ∅ then ∃dom(ρ) S ≡ ∃rg(ρ) ρ(S) (7)

if � ∩ (dom(κ) ∪ rg(κ)) = ∅ then κ(∃� S) ≡ ∃� κ(S) (8)

To see that (5) holds, observe that (1) implies E(κ) 
 ∃dom(κ) E(κ), so with MonInt
we have κ(E(κ)) 
 κ(∃dom(κ) E(κ)); but 
 κ(E(κ)) (EqM) and κ(∃dom(κ) E(κ))

= ∃dom(κ) E(κ), and we conclude 
 ∃dom(κ) E(κ).
Equation (6) can be read as the instantiation property of ∃, when we interpret κ(S)

as a substitution instance of S with respect to the function and predicate symbols
in dom(κ). To see that it holds, observe that κ(S) ≡ κ(S) ∪ ∃dom(κ) E(κ) ≡
∃dom(κ) (κ(S) ∪ E(κ)) 
 ∃dom(κ) S, using (5), Distr and EqP, respectively.

Property (7) is proved in two steps. Assume that voc(S) ∩ rg(ρ)= ∅, so
ρ−1(ρ(S))= S. First we observe

∃dom(ρ) S

 {S = ρ−1(ρ(S)), and (6)}

∃dom(ρ) ∃dom(ρ−1) ρ(S)

≡ {dom(ρ−1) = rg(ρ), and (2)}
∃rg(ρ) ∃dom(ρ) ρ(S)

≡ {Vac using dom(ρ) ∩ voc(ρ(S)) = ∅}
∃rg(ρ) ρ(S)

So we have ∃dom(ρ) S 
 ∃rg(ρ) ρ(S) for all ρ and S, hence ∃dom(ρ−1) ρ(S) 

∃rg(ρ−1) ρ−1(ρ(S)) in particular: this proves the other direction of (7), using dom
(ρ−1) = rg(ρ), rg(ρ−1) = dom(ρ) and ρ−1(ρ(S)) = S.

Finally we prove (8), the conditional permutation of κ and ∃:

κ(∃� S)

≡ {(5) and Distr, using dom(κ) ∩ voc(κ(∃� S)) = ∅}
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∃dom(κ) (κ(∃� S) ∪ E(κ))

≡ {EqP}
∃dom(κ) (∃� S ∪ E(κ))

≡ {Distr using � ∩ voc(E(κ)) = � ∩ (dom(κ) ∪ rg(κ)) = ∅, and (2)}
∃� ∃dom(κ) (S ∪ E(κ))

≡ {EqP}
∃� ∃dom(κ) (κ(S) ∪ E(κ))

≡ {Distr, using dom(κ) ∩ voc(κ(S)) = ∅, and (5)}
∃� κ(S)

We introduce the export operator � as an abbreviation:

� � S = ∃(VOC − �) S

So � � S = {A | S 
 A & voc(A) ⊆ �}, the collection of consequences of S with
vocabulary in �; also voc(� � S) = �. We have the following useful property for
switching between ∃ and �:

if voc(S) − � = voc(S) ∩ � then � � S ≡ ∃� S (9)

which follows from (3) and the definition of �. With �, we can reformulate the
definition of � (conservative extension):

T � S iff S ≡ voc(S) � T

which we use in the proofs of the theorems in the next subsection.

2.5 Theorems

Theorem 1 (Modularization) Let theories S, T, U and interpretation κ be given with
voc(S) ⊆ voc(T ), voc(T ) ∩ voc(U ) = ∅, dom(κ) = voc(S) and rg(κ) ⊆ voc(U ).
Then the following pushout property holds:

if T � S, S
κ→ U, then there is a minimal V with T

κ→ V, V � U

Proof Assume T � S and S
κ→ U , i.e. voc(S) � T ≡ S and U 
 κ(S). We shall

show that V := U ∪ κ(T ) satisfies T
κ→ V and V � U , and that it is the least V

doing so. V 
 κ(T ) is evident, so T
κ→ V . For V � U , i.e. voc(U ) � V ≡ U , we

argue as follows, using � := voc(T ) − voc(S).

voc(U ) � V
≡ {definition of V }

voc(U ) � (U ∪ κ(T ))

≡ {(9) using voc(U ∪ κ(T )) − voc(U ) = � = voc(U ∪ κ(T )) ∩ �}
∃� (U ∪ κ(T ))

≡ {Distr, using � ∩ voc(U ) = ∅}
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U ∪ (∃� κ(T ))

≡ {(8), using � ∩ (dom(κ) ∪ rg(κ)) = ∅}
U ∪ κ(∃� T )

≡ {(9), using voc(T ) − voc(S) = � = voc(T ) ∩ �}
U ∪ κ(voc(S) � T )

≡ {S � T is given, i.e. voc(S) � T ≡ S}
U ∪ κ(S)

≡ {S
κ→ U is given, i.e. U 
 κ(S)}

U

To show that V is minimal wrt. 
, assume that T
κ→ V ′ and V ′ � U , i.e. V ′ 
 κ(T ) and

U ≡ voc(U ) � V ′; this last equivalence implies V ′ 
 U , so we have V ′ 
 U ∪ κ(T ),
i.e. V ′ 
 V .

The next theorem is called the Factorization Lemma in Bergstra et al. (1990): every
extension can be split in an enrichment and a refinement. An enrichment is a conserv-
ative extension, and a refinement T of S is defined in Bergstra et al. (1990) by: T 
 S
and voc(T ) = voc(S) (observe that this differs from the notion of refinement that we
use in this paper).

Theorem 2 (Factorization lemma) If T 
 S, then there is a U such that T � U,
U 
 S and voc(U ) = voc(S).

Proof Easy: take U = voc(S) � T and the result follows, using that voc(U ) =
voc(voc(S) � T ) = voc(S).

Theorem 3 (Normal Form) Any theory expression built from theories and the opera-
tors ∪, ∃ and �, can be rewritten in an equivalent expression containing no � and at
most one occurrence of ∃ (or: no ∃ and at most one occurrence of � ).

Proof Without loss of generality, we assume that VOC is large enough, i.e. contains,
for every k, infinitely many predicate and function symbols with arity k not occurring
in the theory expression under consideration.

The idea is: first replace all occurrences of � by ∃ using �� S ≡ ∃(voc(S)−�) S,
then push all occurrences of ∃ outwards using the combination property

∃� S ∪ ∃� T ≡ ∃(� ∪ �) (S ∪ T ) (10)

and finally combine all occurrences of ∃ using ∃� ∃� S ≡ ∃(�∪�) S (i.e. Comb) to
obtain one occurrence of ∃ (which may be converted to � via ∃� S ≡ (VOC−�)�S).

To realize this idea, we have to prove (10). However, it turns out that (10) only
holds under the condition that voc(S) ∩ � = voc(T ) ∩ � = ∅, which does not hold
in general. We shall use renamings to enforce the required disjointness, but first we
prove (10) under the condition voc(S) ∩ � = voc(T ) ∩ � = ∅:

∃(� ∪ �) (S ∪ T )

≡ {(4) using (� ∪ �) ∩ voc(S) ∩ voc(T ) = ∅}
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∃(� ∪ �) S ∪ ∃(� ∪ �) T
≡ {Comb }

∃� ∃� S ∪ ∃� ∃� T
≡ {Vac using voc(S) ∩ � = voc(T ) ∩ � = ∅}

∃� S ∪ ∃� T

We shall show how to enforce the condition voc(S) ∩ � = voc(T ) ∩ � = ∅ with
help of renamings. Let S, T, �,� be given. Now take σ, π with dom(σ ) = �,
dom(π) = �, (rg(σ )∪ rg(π))∩ (voc(S)∪voc(T )) = rg(σ )∩ rg(π) = ∅: such σ, π

can always be found, thanks to the assumption at the beginning of the proof. Then
rg(σ ) ∩ voc(π(T )) = rg(π) ∩ voc(σ (S)) = ∅ and

∃� S ∪ ∃� T
≡ {dom(σ ) = �, dom(π) = �}

∃dom(σ ) S ∪ ∃dom(π) T
≡ {(7), using that voc(S) ∩ rg(σ ) = voc(T ) ∩ rg(π) = ∅}

∃rg(σ ) σ (S) ∪ ∃rg(π) π(T )

≡ {(10) using rg(σ ) ∩ voc(π(T )) = rg(π) ∩ voc(σ (S)) = ∅}
∃(rg(σ ) ∪ rg(π)) (σ (S) ∪ π(T ))

This ends the proof of the Normal Form Theorem.

3 Final remarks

3.1 Comparison with module algebra

As was explained in Sect. 1, TA is inspired on Module Algebra (MA) with the theory
semantics as defined in Bergstra et al. (1990). An important difference between TA
and MA, which is responsible for the relatively simple axiomatization of TA, is the
nature of the semantic objects. In MA with the theory semantics, these are formula
sets S ⊆ L that are 
-closed with respect to their vocabulary, i.e. they satisfy

S = {A | S 
 A, voc(A) ⊆ voc(S)} (11)

and the equality relation is literal identity. In TA, however, the semantic objects are
arbitrary theories S ⊆ L, with provable equivalence ≡ as equality relation.

The operators of MA are S+T (combination of modules S and T ), ��S (export of
a signature � from module S), T(�) (the minimal module with signature �) and r.S
(renaming module S with r ). Only involutive renamings r are allowed, i.e. satisfying
r(r(S)) = S. In the theory semantics, the operators are defined as follows:

S + T = {A | S ∪ T 
 A & voc(A) ⊆ voc(S) ∪ voc(T )}
� � S = {A | S 
 A & voc(A) ⊆ � ∩ voc(S)}
T(�) = {A | 
 A & voc(A) ⊆ �}

r.S = {r(A) | A ∈ S}
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It is easily verified that the operators of MA preserve 
-closure with respect to the
vocabulary, i.e. property (11). Here the restriction to involutive renamings is essential.

The operators of MA are definable in TA:

S + T = (voc(S) ∪ voc(T )) � (S ∪ T )

� � S = (� ∩ voc(S)) � S

T(S) = voc(S) � ∅
Moreover, the combination and export operators of MA and TA appear to be equivalent:
S + T ≡ S ∪ T and � � S ≡ � � S. The first equivalence follows from Mon and
Vac, so without using deduction or interpolation of the underlying logic. The second
equivalence � � S ≡ � � S, however, requires Comb and hence interpolation. As
a consequence, the theorems formulated in 2.5 also hold when we read + for ∪ and
� for �.

The axioms of MA involving interpolation are

E3 � � (T(�) + S) = T(� ∩ �) + � � S
E4 if voc(S) ∩ voc(T ) ⊆ � then � � (S + T ) = � � S + � � T

E3 follows from the interpolation property, but E4 requires the following strong
interpolation property:

if S ∪ T 
 A, then there is a U ⊆ L with
S 
 U , U ∪ T 
 A and voc(U ) ⊆ voc(S) ∩ (voc(T ) ∪ voc(A))

This property is equivalent to the conjunction of the deduction property and the
ordinary interpolation property that we formulated above. There is, however, no
axiom in MA that corresponds to the deduction property only. In TA, E3 follows
from � � S ≡ � � S and � � ∅ ≡ ∅, and E4 is equivalent to (4).

3.2 Uniform interpolation

In TA, the following uniform interpolation property holds:

for every S and � ⊆ voc(S), there is a theory U with
S 
 U , voc(U ) ⊆ � and
for all T : if S 
 T and voc(S) ∩ voc(T ) ⊆ �, then U 
 T .

This is easily proved with U := � � S, using Mon, Vac and Comb. So ordi-
nary interpolation in the underlying logic yields uniform interpolation in TA. On
the other hand, uniform unterpolation in the underlying logic is equivalent with
the property hiding preserves finiteness: if S is finite, then there is is a finite T with
T ≡ ∃� S.

3.3 Alternatives for predicate logic

We developed TA with predicate logic as the underlying logic, but we only used the
reflexivity and transitivity of 
, the preservation of 
 under interpretations, and the
deduction and the interpolation property. This means that any other logic with these
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properties can be used as underlying logic. But if we e.g. replace predicate logic by
equational logic, we must give up Comb, for equational logic has the interpolation
property (see Rodenburg (1991, 1992), Renardel de Lavalette (2005)) but not the
deduction property. We give a counterexample: it is evident that

f (a) = b, f (c) = d, a = c 
 b = d

so according to the deduction property there should be a collection U of equations
with f (a) = b, f (c) = d 
 U , U ∪ {a = c} 
 b = d and voc(U ) ⊆ {a, b, c, d}. But
such a U does not exist in the language of equational logic.

3.4 Conclusion

We presented TA, an algebraic theory about logical theories with the operators union,
hiding and application of interpretations. TA has seven axioms: five follow from
natural properties of the derivability relation 
, the two other axioms correspond
exactly with the deduction property and the interpolation property of the underlying
logic, respectively. The operator ∃ (hiding) satisfies several properties of existen-
tial quantification: quantifier shift ∃� ∃� S ≡ ∃� ∃� S, vacuous quantification
voc(S) ∩ � = ∅ ⇒ ∃� S ≡ S, existential instantiation κ(S) 
 ∃dom(κ) S and
conditional distribution voc(S) ∩ � = ∅ ⇒ ∃� (S ∪ T ) ≡ S ∪ ∃� T . TA captures
several important properties that are relevant for the logical semantics of specification
modules, among them the Modularization Theorem.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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