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On the Prospects for a Science of Visualization  

Ronald A. Rensink1 

Abstract   This paper explores the extent to which a scientific framework for 
visualization might be possible.  It presents several potential parts of a framework, 
illustrated by application to the visualization of correlation in scatterplots.  The 
first is an extended-vision thesis, which posits that a viewer and visualization sys-
tem can be usefully considered as a single system that perceives structure in a 
dataset, much like "basic" vision perceives structure in the world.  This characteri-
zation is then used to suggest approaches to evaluation that take advantage of 
techniques used in vision science.  Next, an optimal-reduction thesis is presented, 
which posits that an optimal visualization enables the given task to be reduced to 
the most suitable operations in the extended system.  A systematic comparison of 
alternative designs is then proposed, guided by what is known about perceptual 
mechanisms.  It is shown that these elements can be extended in various ways—
some even overlapping with parts of vision science.  As such, a science of some 
kind appears possible for at least some parts of visualization.  It would remain dis-
tinct from design practice, but could nevertheless assist with the design of visuali-
zations that better engage human perception and cognition. 
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1 Introduction 

Is there a best way to visually display a given dataset for a given task, and if so, 
can we find it?  Considerable effort has been expended on this issue over the 
years.2  The result has been a set of specialized disciplines concerned with the de-
sign of displays in various domains, such as cartography, diagram design, statisti-
cal graphics, visual interface design, and information visualization (e.g., [1, 2, 3, 
4]).  These disciplines have achieved considerable success, often resulting in de-
signs that are highly effective—i.e., that enable performance that is rapid, accurate, 
and relatively effortless [5].   

But many important questions remain unanswered.  What is the best way to 
measure how a given visualization works?  How could we find the perceptual and 
cognitive factors that limit its performance?  Could we determine if its design is 
optimal?  Answering such questions will require something more than intuition 
and post hoc measures.  And more than design guidelines.  It will require a 
framework that is systematic and rigorous—ideally, one that is scientific in the 
best sense of the word, sensitive to the nature of the visualization task, the compu-
tational issues involved, and the nature of the human viewer.  The issue consid-
ered here is the extent to which this might be possible for visualization.  Could 
it—or at least part of it—even be developed into a science? 

To answer this, it may first be worth considering what a science is.  Few disci-
plines are as systematic and rigorous as physics.  What then allows a domain to be 
considered a science?  One commonly-accepted criterion is for the domain to have 
a framework—a paradigm—that explicitly describes (i) a related set of entities in 
the world that are of interest, (ii) the kinds of questions that can be asked about 
them, and (iii) possible ways of answering these questions [6, 7].  In other words, 
a science is not so much a particular body of knowledge, but an organized way of 
thinking about a coherent set of issues.  A framework of this kind would ideally 
consist of a set of characterizations, theories and practices that are consistent with 
each other and connected by their reference to a common set of issues. 

In what follows, several potential elements of such a framework are proposed 
for visualization; as a test of their suitability and consistency with each other, each 
is applied to the case of correlation in scatterplots.3  The first concerns the issue of 
                                                                    
2 Historically, much of this work focused on graphic displays, which convey information using 
the geometric and radiometric properties of an image (as opposed to simple text alone).  Mean-
while, more modern work focuses on visual displays, which rely on the extensive use of visual 
intelligence for their interpretation.  For purposes here, graphic displays and visual displays are 
considered much the same, with the former term emphasizing the means, and the latter the ends. 
 

3 A single framework for all aspects of visualization (e.g., usability) is problematic, owing to 
the heterogeneous nature of the components (e.g., perceptual vs. motor mechanisms) and the 
possible lack of specificity in the tasks for which it might be used [32].  Discussion here focuses 
on a more restricted set of issues, viz., the extent to which visualization can enable a human to 
perceive some well-defined structure in a dataset.  This abstracts away from details of particular 
tasks, and so increases the chances of a systematic framework for at least some parts of visualiza-
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how visualization can best be characterized.  An extended-vision thesis is pro-
posed, which posits that the viewer and visualization system can be considered a 
single system that enables structure in a dataset to be perceived in much way as 
"basic" vision enables perception of structure in the world.  This characterization 
is then used as the basis of the next element: a more thoroughgoing approach to 
evaluation, informed by methodology drawn from vision science.  Turning to is-
sues of design, an optimal-reduction thesis is introduced, which states that an op-
timal visualization can be considered as one that reduces the given task to the most 
appropriate set of operations in the extended system.  The next element shows 
how this view can motivate ways of assessing the effectiveness of various design 
parameters, with the results providing insight into the underlying perceptual 
mechanisms. Finally, it is shown that these elements can be extended to several 
other kinds of visualization, and that some can even begin to overlap parts of vi-
sion science.  As such, it appears that at least some aspects of visualization can be 
handled in a more integrated and systematic way, one that can help make better 
use of the perceptual and cognitive abilities of the human viewer. 

1.1 The Need for a Systematic Framework 

Before considering particular elements, it may be helpful to say a few things 
about the need for a systematic framework in the first place.  It might be thought, 
for example, that such a framework is unnecessary: designers have long explored 
the space of possible designs, and by now have reasonably good intuitions about 
what is optimal, or at least highly effective.  Or it might be thought that we as ob-
servers have extensive (and perhaps privileged) experience with the operation of 
our visual systems, and so could authoritatively decide on the issues relevant for 
any particular design.   

But although our intuitions about design—especially those derived from long 
experience—are important, they are incomplete.  To begin with, many devices 
commonly used in static displays (e.g., box plots, small multiples) are relatively 
recent, so that intuition has had relatively little time to develop.  And ways of 
visualizing complex structures such as networks are not only recent, but involve a 
considerable degree of complexity, making the possibility of effective intuitions 
even less likely.  The same concerns apply equally well to dynamic displays and 
interactive systems (e.g., [8, 9]).  All these suggest a design space of such high 
dimensionality that it has not been—and may never be—completely explored. 
Guidelines are emerging to help with this (e.g., [10]).  But a systematic framework 
could help create such guidelines, and perhaps even go beyond them. 

It might be thought that a framework of some kind might be based directly on 
our beliefs about how we see.  But there are likewise limitations here.  For exam-
ple, although we have a strong impression that we build up a complete “picture” 

                                                                                                                                                           
tion.  Vision science uses a similar approach, focusing on well-defined functions rather than on 
ways that vision might help carry out some poorly-defined task [21]. 



150 Ronald A. Rensink 

of our surroundings, the visual system does not operate this way: instead of a 
dense accumulation of data, we instead likely use a dynamic, just-in-time repre-
sentation, where only a few coherent structures exist at any moment [11].  More-
over, evidence is increasing that conscious perception is only one aspect of how 
we see, with considerable visual intelligence in processes that operate without any 
conscious involvement [12].  As such, intuitions about vision—and more gener-
ally, about perception and cognition—are not enough to create a viable framework 
for this purpose.  Something more systematic is needed, something that can enable 
the effective use of knowledge about the main psychological factors involved,  

1.2 The Applicability of a Systematic Framework 

It might be argued that even if a systematic framework of some kind were pos-
sible, it would not be of much use: how could it be general enough to apply to 
domains as diverse as cartography and statistical graphics, yet specific enough to 
guide particular designs?  And what about new developments, such as a speedup 
in rendering, or a discovery about visual attention?  Wouldn’t the whole frame-
work need to be rebuilt each time they occur?  

In other design disciplines, the existence of a systematic framework for visuali-
zation is problematic neither in principle nor in practice. Architecture, for exam-
ple, has long had such a framework.  An architect can incorporate physical con-
straints into the design of a building, say, to guarantee that it will not fall over due 
to imbalances in weight distribution.  Doing so does not interfere with design in 
any real way—it does not prohibit anything that is physically viable.  Rather, con-
straints such as those based on physical forces or material properties can be ap-
plied to any design, determining whether it is viable, and sometimes even whether 
it is optimal.  There is no a priori reason why a similar approach would not also 
work for visualization.   

Indeed, some systematicity already exists in the design process for visualization.  
Guidelines exist for particular applications, such as designing a map or a graph 
(e.g., [1, 13, 14]); some even include explicit discussion of perceptual mecha-
nisms, so as to enable adaptation to particular circumstances (e.g., [2, 10, 15]).  A 
complementary approach starts with a particular perceptual mechanism and con-
nects it to various tasks (e.g., [16, 17]).  A third approach is based on general rela-
tions that exist between different kinds of tasks and different perceptual mecha-
nisms (e.g., [5, 18]).  However, none of these approaches is entirely quantitative, 
nor does it address all issues.  What is needed is something that incorporates the 
best of all these, and enables visualization to be treated in a comprehensive, inte-
grated way. 
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2 Extended Vision 

A first step towards a more systematic framework would be to characterize—as 
far as possible—exactly what visualization is.  Loosely speaking, visualization (in 
the sense considered here) can be described as the transforming of a problem into 
graphical form, so as to engage the visual intelligence of a human viewer.  Said 
another way, the goal of visualization is to translate a given problem into the lan-
guage of human vision and cognition.  The effectiveness of a given design—a 
given graphical representation—is then determined by the extent to which it can 
be created (typically, in near real-time) while enabling the most appropriate per-
ceptual and cognitive mechanisms to be engaged on the task at hand (cf. [5, 19]). 

Consider the ages and heights of a set of people.  When these are represented 
via position (Fig. 1a), several trends—such as height increasing with age up to 
about age 20—are immediately apparent.  In contrast, when these data are repre-
sented via length (Fig. 1b), these relations are virtually impossible to see.  The ef-
fective design somehow engages perceptual mechanisms that are more suitable for 
the task.  But what exactly does this mean?  
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Fig. 1  Different Graphical Representations.  (a) Age is represented by horizontal posi-
tion, height by vertical position; size of the graphic items is irrelevant.  Using this represen-
tation, the relation between age and height is immediately apparent.  (b) Age is represented 
by length above the interior line, height by length below; position of the items is irrelevant.  
Here, the relation between the two quantities is far less obvious, even though the data rep-
resented are the same.  

Addressing such questions in a meaningful way requires a characterization of 
visualization that can enable sufficient articulation of the underlying issues.  One 
such possibility is the extended-vision thesis: the viewer and the visualization sys-
tem can be considered a single information-processing system that enables the 
viewer to perceive structure in the given dataset much as they would perceive 
structure in the world using "basic" vision.  For such an "extended" system, the 
input is the dataset under consideration (the ages and heights of a group of people, 
say), the output some function of this input (correlation between age and height), 
and the contents of the graphical device an intermediate step that connects the 
human viewer to the machine component (Fig. 2).  
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Fig. 2  Extended Vision (Based on the example in Fig. 1).  Translation of a given task into 
perceptual and cognitive operations involves three stages: (1) transformation of the relevant 
aspects of the data into a graphical representation on a graphical device (e.g., a sheet of 
paper, or a computer display) 4,  (2) transcription of the graphical representation to a visual 
representation in the human viewer, and (3) further transformation and processing to de-
termine the structure present.  This latter step may be done entirely via visual mechanisms, 
although higher-level, conceptual operations may also be used for some tasks.  The result 
can then be reinterpreted in terms of the original data.  (If processors are available in the 
machine component, they may also carry out some initial processing of the data; this is es-
sentially what occurs in visual analytics.)   

                                                                    
4 In some cases (e.g., cartography), the “machine” component may be distributed over a sev-

eral different devices—and perhaps even the occasional human—with only the result contained 
in the display (e.g., a map).  From a functional point of view, such a configuration is still consid-
ered a single visualization system.  The performance of such “off-line” systems differs from “on-
line” systems only in one respect: because the time scales of the two components are quite dif-
ferent, the effectiveness of an off-line display can usually be assessed in terms of the speed, ac-
curacy, and effort exerted by the human component alone.  (Depending on the situation, how-
ever, it may be necessary to take into account such things as the cost of producing the display.) 
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An obvious difference between a basic and an extended system is that the pro-
jection of information onto the eye of the viewer moves from the initial stage to an 
intermediate one.  But the goal remains the same: extract useful structure in the 
underlying data.  Interestingly, selection of which data to examine (and perhaps 
process), along with its transformation into graphical form typically occurs via a 
sequence of stages—the visualization pipeline [5]—in largely the same way that 
human vision transforms light into a particular perceptual structure (cf. [20, 21]).  
As such, the architecture of an extended system is an "extended pipeline" created 
by the concatenation of all these processing stages, with each focusing on a differ-
ent aspect of the data (cf. [22]). 

Note that the information flow between processing elements need not be unidi-
rectional: feedback generally exists between elements in the machine component, 
as well as in human vision (cf. [5, 23]).  Feedback likewise exists between the 
human and machine elements in any system that is interactive, resulting in a rough 
architectural consistency throughout the entire system.  Indeed, the continual in-
teractions between the components of an extended system that occur during sen-
semaking [5] are highly analogous to the interactions between the components of a 
basic system that occur during visual perception [24, 25]. As such, the interactive 
aspects of visualization (central to e.g., information visualization or visual analyt-
ics) are captured by this characterization in a reasonably natural way.   

Because these interactive aspects involve a wide range of issues touching on 
much of cognitive psychology, they are not discussed in great detail here.  To keep 
discussion focused on the main question here—viz., the possibility of a science of 
visualization—emphasis is placed on "static" noninteractive aspects.  This reca-
pitulates the development of vision science, where color and form perception were 
investigated before more interactive—and generally, more complex—processes 
such as scene perception [11].  

3 Systematic Evaluation 

Another important element of any framework for visualization involves the issues 
related to evaluation.  Evaluation of visualization has taken on a variety of forms, 
ranging from careful quantitative measurement (e.g., [26]) to simple verification 
of basic functionality (see e.g., [27]).  Such variety is understandable: tasks differ 
in the degree to which they can be described quantitatively, and thus, the degree to 
which quantitative measures can be applied [28, 29].  And sometimes the goal is 
merely to verify that a given visualization can be used to some extent.  But if the 
goal is to carefully compare different designs to determine which is the best, or to 
understand why one works better than another, preference should be given to 
highly informative measurements.  But if so, what exactly should be measured, 
and how?   
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This is in general a complex issue, making it difficult to find definitive answers.  
Fortunately, however, decades of work in vision science have been spent on de-
veloping high-precision and robust techniques to measure how well graphical 
structures can be perceived (e.g., [8], Appendix C; [30], Appendix A).  The deep 
similarity between vision and visualization posited by the extended-vision thesis 
suggests that many of these approaches (along with their foundations in measure-
ment theory) could be applied almost directly to the evaluation of visualizations, 
resulting in the development of evaluation techniques with a high degree of utility.  
Said another way: vision science not only offers possible mechanisms to help with 
visualization design [8], but also possible methodologies.  

In what follows, this point will be illustrated via its application to scatterplots.  
Although scatterplots appear to be simple (at least, once learned), and are widely 
used to enable correlation to be easily seen (e.g., [1, 31]), relatively little is known 
about how well they work, or why.  As such, the evaluation of these provides an 
ideal example of what might be done.  

3.1 Task Specification 

The first step in a rigorous evaluation of a perceptual system—extended or not—
is a clear specification of its function.  In the case of scatterplots, something like 
“enable discovery of interesting structure in the data” might initially be thought 
sufficient.  But what does “interesting” mean?  Finding outliers?  Finding trends?  
If trends, is it correlation or something else?  And if correlation, what kind? 
Spearman? Pearson?  Some tasks are inherently vague; requests to “just find 
something interesting" are not uncommon [29, 32].  But a precise specification 
should be attempted whenever possible.  It can often be achieved. 

The next step is to determine an appropriate set of inputs for testing.  (In the jar-
gon of vision science, these would be the stimuli.)  Ideally, these are representative 
of the data encountered in everyday applications; failing that, they should at least 
have sufficient range to enable determination of how performance depends on 
various properties of interest.  In the case of scatterplots, inputs might be specified 
as a set of ordered (scalar) pairs drawn from a bivariate gaussian distribution with 
particular means, variances, and correlation, along with a particular number of 
pairs in each set.  The number of instances and viewers tested should be large 
enough to ensure sufficient statistical power in the results of the evaluation.  In 
addition, the representation used to display these values would require specifica-
tion of all properties pertaining to its graphical nature, such as dot size and color.  

The final step would then be to specify an appropriate set of measures by which 
performance could be evaluated.  In the case of scatterplots, evaluation would de-
termine how well the given representation supports the perception of correlation in 
the test dataset, based on measures such as accuracy, variability, and timecourse.  
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3.2 Accuracy 

One of the most basic performance measures (one often used in evaluating visu-
alizations) is accuracy: how well on average the extended system extracts struc-
ture from a given dataset.5  For the case of Pearson correlation r in scatterplots, 
various studies of accuracy have been carried out (e.g., [26, 33, 34]).  Almost all 
tested observers by asking for direct numerical estimates, viz., a number between 
0 and 1 corresponding to the correlation seen in the scatterplot.  (For a review, see 
[35]).  Several important results have been discovered this way, including the find-
ing that perceived correlation g tends to underestimate physical correlation r (es-
pecially for intermediate levels of correlation), and that essentially no correlation 
is perceived when |r| < .2.   

However, the use of direct numerical estimates is usually not optimal.  To begin 
with, its central assumption—that numbers can consistently be assigned to per-
ceived magnitudes—may be incorrect [36].  Indeed, assigning a number to a per-
ceived quantity is a somewhat unnatural task; human perception typically focuses 
on relations rather than absolutes [37].  Consequently, a better approach—one of-
ten used in vision science—might be bisection, a technique that takes advantage of 
the ability of humans to easily and accurately determine the midpoint of a struc-
ture.  In [38], for example, observers were shown a display containing two refer-
ence plots (one with a high level of correlation, one with a low) along with a test 
plot between these.  Observers adjusted the correlation of the test plot until it ap-
peared to be halfway between the correlations of the reference plots (Fig. 3).  

                        
    Reference plot 1   Test plot     Reference plot 2  

Fig. 3  Example of Bisection Task. Observers adjusted the correlation of the central test 
plot until its correlation was halfway between those of the reference plots.  Plots were 5° x 
5° in extent.  Here, the value of the test plot is r=0.74, corresponding to the subjective mid-
point g = 0.5.  

                                                                    
5 Although inaccuracies are usually caused by mechanisms in the human viewer, they can also 

be due to the machine component—e.g., insufficient sampling, or a bias in an algorithm.  Ac-
cording to the extended-vision thesis, the source is irrelevant: the measure of interest is based on 
the performance of the entire system.  For the most part, discussion here focuses on the human 
viewer, since this is typically the largest source of inaccuracy.  But if need be, the accuracy of the 
machine component could also be evaluated.  Similar considerations apply to other measures of 
performance. 
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Experiments were run with 20 observers, on scatterplots containing 100 dots.  In 
a first round of testing, observers judged the halfway point between the extremes r 
= 0 and r = 1.  (These corresponded to g = 0 and g = 1, respectively; the halfway 
point was g = 1/2).  A second round applied this test recursively, with each ob-
server now asked to find the value that appeared to be halfway between g = 0 and 
1/2, and the value between g = 1/2 and 1, resulting in estimates for g = 1/4 and g = 
3/4 respectively.  Finally, this method was applied again to determine the values 
for the subjective estimates g = 1/8, 3/8, 5/8, and 7/8.  All conditions were appro-
priately counterbalanced.  (For details, see [38]).  

Results are shown in Fig. 4.  Consistent with the results of other studies, an un-
derestimation of correlation appears, especially around r = 0.6.  The results are 
also broadly consistent with two previous proposals for perceived correlation: the 
square function g(r) = r2 [33, 34], and a more complex double-power function g(r) 
= 1 – (1-r)a(1+r)b, where a and b are free parameters [39].  But the data were pre-
cise enough to show that a better fit was with the logarithmic function  
  g(r) = ln(1–br) / ln(1–b)    (1) 

where b is a real number such that 0 < b < 1; g(r) = r when b = 0 [38]. 
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Fig. 4  Perceived Correlation via Bisection.  The curve describing the perceived correla-
tion is g(r) = ln(1–br) / ln(1–b); best fit to data is for b = 0.88.  The straight line g(r) = r is 
for comparison; accuracy is based on the difference between this function and g(r).  Note 
the severe underestimation of correlation, especially around r = 0.6. 

The accuracy for a given design can be determined by the difference between 
this function and the physical correlation r.  Note that it can be described by a sin-
gle value (b), covering the entire range of correlations possible.  A measure can 
even be determined based on the relative frequency at which various correlations 
might be encountered in a task [38]. 
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Interestingly, eq. (1) is a form of Fechner's law, which states that perceived 
magnitude is proportional to the logarithm of physical magnitude; it applies to the 
perception of several simple properties, such as brightness [40].  To make this 
more explicit, eq. (1) can be rewritten as 

  g(u) = ln(u) / ln(1–b)    (2) 
where 0 < b < 1, and u = 1–br, the distance away from complete correlation.  The 
dependence on u suggests that the relevant factor may be related to the dispersion 
of the dots in the scatterplot, rather than correlation per se.  As such, the greater 
sensitivity of the bisection technique not only provides a better estimate of accu-
racy (and possibly, a better way to describe it), but also begins to cast some light 
on the underlying mechanisms.   

3.3 Variability 

Although accuracy is important for evaluation, other measures are also useful.  
One of these is variability, the extent to which the extended system gives the same 
answers when given the same data.  (Recall that the mean values of these deter-
mine accuracy.)  Equivalently, it describes the discriminative power of the sys-
tem—i.e., its ability to distinguish between data values that are somewhat similar.  
Variability can also provide insight into the maximum and minimum values the 
system might provide, and how often these might occur. 

For scatterplots, variability can be assessed by an approach commonly used in 
vision science: determining how much two properties must differ in order to be 
discriminated, i.e., to see that they are not the same.  More precisely, for any ob-
jective correlation r, the goal is to find the just noticeable difference (jnd), the 
value of Δ for which correlations r and r ± Δ can be discriminated 75% of the time 
([30], Appendix A).  The greater the jnd, the greater the separation needed to see 
that two scatterplots have different correlations, and thus, the greater the variabil-
ity. 

Variability was evaluated this way using 20 observers, on scatterplots contain-
ing 100 dots each [38].  A set of base correlations was examined, ranging from r = 
0 to r = 1 in increments of 0.1.  For each base correlation, two side-by-side scat-
terplots were shown—one with the base, the other with a variant correlation.  Ob-
servers were asked to select the scatterplot appearing to be more highly correlated 
(Fig. 5).  All conditions were appropriately counterbalanced.  (For details, see 
[38]).  
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Fig. 5  Example of Discrimination Task.  Observers are asked to choose which scatterplot 
is more highly correlated.  Plots were 5° x 5°.  In this example, base correlation is 0.8; jnd 
is from above (i.e., the variant against which the base is tested has a higher correlation). 

The results of this test are shown in Fig. 6.  Here, the absolute value of the jnd is 
plotted against the adjusted correlation rA, the average correlation of the scatter-
plots being compared (rA = r + jnd(r)/2).  Portrayed this way, two patterns become 
evident.  First, there is no dependence of the absolute value of the jnd on the direc-
tion of the variant—the same value is found regardless of whether the variant has 
a correlation higher or lower than the base.  Second, a striking linearity exists in 
the way that jnd depends on adjusted correlation.  This behavior can be described 
to a high degree of precision by 
  jnd(r) = k (1/b – rA)     (3) 
where k and b are real numbers such that 0 < k, b < 1.  Note that for both k and b, 
smaller values denote lesser variability, in that jnd is lower.  

1.00.50
base correlation r A  (adjusted)

ju
st

 n
ot

ic
ea

bl
e 

di
ff

er
en

ce

0.2

0.1

0

from above

from below

 
Fig. 6  Discriminability of Correlation in Scatterplots.  White dots indicate that estimates 
are made by comparing a scatterplot with the base correlation against a higher correlation; 
black dots indicate that the comparison is made against a lower correlation.  As is evident, 
these give the same estimates.  Best fit of slope k is k =-0.22. Error bars denote standard er-
ror of the mean.  Importantly, the value of b for the best-fitting line (b = 0.91) is similar to 
the value of b for accuracy (b=0.88). 
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Interestingly, as in the case of accuracy, the relevant variable appears to be the 
distance away from complete correlation.  Indeed, eq. (3) can be rewritten  
  jnd(u) = k u       (4) 
where 0 < k < 1, and, as before, u = 1–br, with 0 < b < 1.  This is a form of We-
ber’s Law, which states that jnd is proportional to perceived magnitude; this ap-
pears to hold for the perception of several simple physical properties, such as vi-
bration frequency and brightness [40]. In any event, the simplicity of this behavior 
allows variability to be described by just two scalar values: k and b.  

Under some conditions, Weber's law for discrimination leads to Fechner's law 
for perceived quantity [41].  This appears to be the case for correlation, in that not 
only do both laws hold, but they are systematically related, with the value of b for 
perceived quantity having much the same value as its counterpart for discrimina-
tion [38].  Thus, only two values (k and b) are needed to describe accuracy and 
variability.  

3.4 Timecourse 

Although accuracy and variability are sometimes all that needs to be evaluated, 
other aspects of performance can also be important.  One of these is timecourse, 
the minimum time needed to extract a structure from a dataset, such that more 
time will not lead to further improvement in performance.  Although there may be 
delays in the machine component, speed of performance is usually limited by the 
human viewer.  As such, measuring the minimum time needed to determine a 
structure from its graphical representation will often be an important part of 
evaluation.  Not only can the result inform decisions about timing in dynamic dis-
plays, but it may also provide some information about the underlying mechanisms.  
Indeed, studies of timecourse are a common way to investigate various aspects of 
visual perception [30]. 

Returning to the case of scatterplots, the form of the laws describing perform-
ance suggests that correlation is—or at least, is associated with—a perceptually 
simple property.  As such, it might be determined extremely quickly.  To examine 
this possibility, discrimination was measured for scatterplots shown for controlled 
amounts of time [42].  Here, scatterplots were presented sequentially instead of 
side-by-side; the first was presented for 100, 400, or 1600 milliseconds (ms) be-
fore being followed by a mask that effectively stopped it from being processed 
further.  A second scatterplot was then presented and remained on until the ob-
server responded  (Fig. 7).  Jnds for these were measured as before.  
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Fig. 7  Measurement of Timecourse of Correlation Perception. Plots were 5° x 5° in ex-
tent.  Observers were asked to choose which scatterplot is more highly correlated b=0.88). 

Results for 20 observers are given in Fig. 8.  These show jnd to be linear for all 
timescales examined. Performance for the 400 ms and 1600 ms conditions was 
almost identical.  Performance for the 100 ms condition showed a slight deteriora-
tion, but was otherwise much the same, indicating that the process was largely 
complete by that time.  As such, these results indicate that correlation in scatter-
plots can indeed be determined by the visual system quite rapidly—likely within 
the 150 milliseconds typical for processes such as object recognition and estima-
tion of averages (e.g., [43, 44]). 
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Fig. 8  Discrimination as a Function of Presentation Time (data from [42]).  Error bars 
denote standard error of the mean.  Note that performance is virtually identical for the 400 
and 1600 ms presentations.  Although performance for 100 ms differs to some extent, it is 
still fairly similar, with a high degree of linearity. 
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4 Optimal Reduction 

Although the extended-vision thesis can help understand what visualization is, and 
more systematic techniques can help with evaluation, they cannot address all is-
sues dealing with visualization, such as those concerned with optimal visual repre-
sentation.  For example, even when a clear specification of a task exists, they still 
cannot help specify what an optimal representation might be, or whether a particu-
lar representation is the best one possible.  Of course, it may often be that an opti-
mal representation simply does not exist.  But it is nevertheless worth investigat-
ing the extent to which such representations might exist and might be found, or 
failing that, at least determine the extent to which representations would be able to 
avoid as many poor features as possible. 

Traditionally, guidelines have been a major way to improve the likelihood of 
good design (e.g., [2, 8, 10]).  And the relative suitability of a representation can 
be determined to some extent simply by evaluating a set of alternatives and select-
ing the one that yields the best performance.  But such approaches cannot guaran-
tee that a particular design is the best one, much less give a complete account of 
why it would (or would not) be optimal.  

It is therefore worth returning to a more abstract perspective.  As mentioned in 
Section 2, visualization can be characterized as the transformation of an original 
problem of finding abstract structure into one of finding geometrical structure.  
Once this geometrical structure has been found (by whatever means), it can be re-
interpreted in terms of the original dataspace.6  Considered in this way, visualiza-
tion is essentially a similarity transform—a commonly-used technique that trans-
forms a given representation into one that enables solutions to be more easily 
found [45].  More precisely, it reduces the given problem to a simpler one.  

This view then suggests that the issue of optimal representation might be ap-
proached in terms of an optimal-reduction thesis: the optimality of a particular de-
sign can be usefully viewed in terms of its ability to reduce a task to the most suit-
able set of operations in the extended system.  (Note that this includes the 
processes used in the transformations themselves, many of which would be part of 
the machine component.)  A given task can generally be reduced in various ways; 
in some sense this is similar to an exercise in programming, where different algo-
rithms are used.  However, different algorithms require different amounts of time 
or space (e.g., [46]); different kinds of processing elements create different levels 
of noise.  Only a few possible designs—perhaps just one—will engage the most 
appropriate mechanisms [19].  The goal of the design process is to find this.  

                                                                    
6 This assumes that the viewer can interpret the visual (or possibly other) representations used 

as a correlation.  Developing such a “return route” to enable the inverse mapping may be an im-
portant part of training.  Note that some of the performance limitations could occur at this stage, 
rather than the formation of the visual result proper. 
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To make this a bit more concrete, return again to the example of correlation.  
Correlation can be determined not only via scatterplots of different designs (in-
volving different kinds of axes or symbols, say), but also via devices such as par-
allel coordinates, bar charts, and line graphs [31].  The choice of representation 
determines the particular reduction—i.e., the particular processes used.  Apart 
from the algorithms needed to create it, use of a scatterplot might involve opera-
tions in the human viewer such as grouping, determination of shape, and perhaps 
measurement of aspect ratio.  Meanwhile, parallel coordinates might require iso-
lating the lines between corresponding elements and determining the variance of 
their orientations.  The goal for design is then to search through the space of pos-
sible processes to find those that lead to performance that is fastest, most accurate, 
and requires least effort from the viewer.  

4.1 Operations Inventory 

Perhaps the most direct way to approach design based on the optimal-reduction 
thesis is via an operations inventory.  This would be a catalog of all possible op-
erations (in both the human and the machine component) that could be applied in a 
given visualization.  The description of each would include things such as its asso-
ciated costs (in terms of e.g., time and space) and performance on various kinds of 
inputs.  The goal would be to find the sequence of operations from this inventory 
that led to the fastest performance for the given task, consistent with constraints on 
overall performance (accuracy and variability, say).  Finding this sequence would 
still be a problem, but it would at least be a more objective and well-defined one.  
In some ways, it would be similar to the problem faced by a compiler—viz., re-
ducing a process to a given set of machine operations, such that it is carried out as 
quickly as possible. 

Operations in the inventory could be organized into several sets. One might 
comprise basic elementary geometric and radiometric operations that could be di-
rectly applied to an image, e.g., grouping, determining the convex hull of a set of 
points, following a curve, finding the point of maximum intensity in a given re-
gion.  More complex methods constructed from these could then form a second 
set—e.g., finding the set of similar shapes among items with various sizes and ori-
entations.  The inventory could also include constraints on interactions between 
operations, such as which ones cannot be applied concurrently.  It might even con-
tain a library of optimal—or at least relatively efficient—procedures that could be 
used for any visualization task (cf. [47]); another (not necessarily disjoint) set 
might contain tasks that can be carried out on the basis of visual operations alone 
[48].  Note that many operations could be carried out either by the machine or by 
the human (e.g., a figure could be rotated either graphically or mentally).  In such 
cases, the particular choice would result from considering the costs and perform-
ance limitations with respect to the entire task.  
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Of course, the search for an optimal reduction will succeed only to the extent 
that such a reduction actually exists.  It might be, for example, that instead of a 
single candidate, a family of candidates exists, corresponding to different trade-
offs [49].  Or even if a unique candidate exists, it may not be possible to find it in 
reasonable time if the space of possible designs is too large.  But as with intracta-
ble problems in general, however, there could exist a systematic approach to at 
least some aspects of the problem (e.g., [50]), or that would find candidates that 
are at least adequate [51].  

Another limitation is that although there are many models of perceptual and 
cognitive processes in humans [52], much is still unknown [30].  As such, the 
evaluation of candidate designs will not be able to take everything into account.  
Nevertheless, existing knowledge might still enable candidates to be found that, 
even if not optimal, are still likely to be good.  

4.2 General Representational Principles  

A complementary approach to design—one that may overcome some of the limi-
tations of an operations-based approach—is to focus not on operations, but on 
form, viz., the form of the graphical representation.  Indeed, design has often re-
lied on guidelines that essentially constrain the set of candidate representations 
considered (e.g., [10, 15, 53]).  Many of these guidelines were developed for par-
ticular applications, such as tables and graphs.  And although they are very impor-
tant in these areas, they are often of limited generality.  As such, they need to be 
complemented by a set of more general guidelines that would apply to any visu-
alization. 

A more general approach of this kind could be based entirely on (i) general in-
formation-processing principles, and (ii) well-established knowledge about the 
perceptual or cognitive mechanisms of the human viewer [18].  The result would 
be a set of general representational principles (GRPs) that focuses not on a par-
ticular representation for a particular task, but on properties that any graphical rep-
resentation should have for any task.  Examples of these include:  

• Invertibility.  The graphical representation must support a 1:1 mapping 
between data values and the visual representations in the viewer.  (For 
example, greater value along some data dimension would map to greater 
contrast, or to greater height.)  If different values mapped to the same 
representation, information would be lost.  Conversely, if different visual 
structures corresponded to the same data value in the context of a single 
task, different visual processes would be involved, causing interference.  

• Distinctness.  Values that need to be distinguished for the task must map 
onto visual representations that are distinct.  (For example, if it is impor-
tant to notice that two values are different, they must map to contrasts or 
positions that can easily be seen as different.)  Otherwise, important in-
formation would be lost, or at the very least, performance would be 
slowed.  
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• Uniformity.  Values along a single data dimension must map onto a single 
visual dimension, such as height, colour, or orientation.  If different vis-
ual dimensions were used, different processes would become involved; 
both information and time would be lost trying to combine the results of 
these.  

• Ordering.  Data values that are ordered in some way must map to a visual 
property that is similarly ordered over the relevant range.  (For example, 
greater value could map to greater height, if mapped to orientation or 
color, only a subset could be used, since these properties are cyclic.)  If 
this is not done, the ability of the visual system to use perceptual order 
cannot be harnessed; indeed, if it operates against its natural ordering, 
performance could degrade substantially.  

• Separability.  Data involving separate dimensions must map to visual 
properties that are separable—i.e., can be attended separately (e.g., size 
and orientation).  Otherwise, these values may become parts of a percep-
tually integrated structure, with the separate components then being diffi-
cult to access. 

Such principles are not entirely new—several comprise the basis (often un-
stated) for much of good design (cf. [8, 18]).  For example, the principle of sepa-
rability is obeyed in the effective scatterplot of Fig. 1a, which uses the separable 
properties of horizontal and vertical for each data dimension.  In contrast, the inef-
fective scatterplot of Fig. 1b violates this principle, using properties that become 
parts of a perceptually integrated structure—viz., the upper and lower parts of the 
structure corresponding to each glyph.  Likewise, the principle of ordering has of-
ten been recommended for displays (e.g., [8, 18]), and the principle of distinctness 
is related to that of the smallest effective difference [54].  What is proposed here is 
that such principles be explicitly distinguished from task-specific constraints and 
identified as a distinct group.  Moreover, given that they are based on universal 
considerations, it may also be possible to develop and organize them in a more 
systematic way (cf. [55]), or give them a more quantitative character.  

GRPs constrain the kinds of transformations permitted between data values and 
graphical representations, eliminating many possible reductions right from the 
start.  And because they are general, they will tend to be consistent with each 
other; the simultaneous use of several such principles will not lead to a clash, but 
to a more tightly-bounded space of possibilities, increasing the chances for an ef-
fective design.  Such principles could also be easily combined with more task-
specific ones, guiding design for particular applications.  



On the Prospects for a Science of Visualization 165 

5 Assessment of Alternative Designs 

Given the difficulties faced in searching through all the alternatives possible for a 
design, and the fact that much is still unknown about the perceptual and cognitive 
mechanisms involved, the search for optimal—or even good—designs must be 
supplemented by empirical assessment.  As in the case of evaluation, however, it 
may be possible to carry out such assessments in a relatively systematic way, in-
formed in part by elements of vision science.  These not only can suggest particu-
lar techniques, but also some of the design parameters to consider.  Indeed, if al-
ternatives are examined in an appropriate way, the results can also provide 
considerable insight into the mechanisms involved.  

5.1 Different Parameter Values 

To see how performance can be assessed for different values along a single de-
sign parameter, consider the issue of how many dots—or more precisely, sym-
bols—a scatterplot should display.  Too many would cause overplotting, where 
important information is crowded out.  Displaying only a randomly-chosen subset 
of data points would solve this.  But how many should be selected?  Too few 
would cause correlation to be conveyed poorly. Consequently, it would be useful 
to know how performance depends on the number of dots displayed. 

To investigate this, accuracy and variability was measured for a set of scatter-
plots containing various numbers of dots (12, 24, 48, 100, and 200), with the other 
parameters remaining fixed (Fig. 9) [56].  Evaluations were similar to those de-
scribed in Section 3.  The form of the laws governing accuracy and variability 
meant that only a few correlations needed to be tested: accuracy could be meas-
ured via the physical correlation corresponding to a perceived correlation of 1/2 
(the first phase of the approach outlined in Section 3), while variability was meas-
ured using just three base correlations.  This meant that all conditions could be 
tested on a single observer within a single experimental session.  Such a within-
observer design allows a far more sensitive measure of the effects of a parameter 
(in this case, number), in that it minimizes noise caused by the use of different ob-
servers [57].  

Results for 12 observers are shown in Fig. 10.  No differences were found in 
subjective perception (and thus, accuracy) for the various numbers of dots.  (A 
slight difference appeared for n = 200, but was not statistically significant.)  As 
might be expected on the basis of sampling, variability decreased as more dots 
were shown, but stabilized at 48 dots.  Given that a within-observer design was 
used, this result provides strong evidence that performance is not affected as long 
as the number of dots is 48 or more (up to 200), at least for the kind of dots tested 
here.  A similar approach could also be used to investigate the upper limit, viz., 
how many dots can be displayed until overplotting begins to be a problem. 
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Fig. 9  Examples of Tests of Number of Dots.  For each observer, accuracy and variability 
was measured for each condition, and then compared. 

   
    (a) Accuracy                    (b) Variability 

Fig. 10  Performance as a Function of Number of Dots (data from [56]).  (a) Accuracy, 
as described by the measure b, derived from perceived correlation.  (b) Variability, as de-
scribed by the measure k.  Each condition used the same set of observers. 

More generally, a systematic approach of this kind can be used for the assess-
ment of any design parameter.  For example, in a study examining the effect of dot 
(symbol) luminance, color, and size [56], observers were tested over a wide range 
of values for each parameter, along with a condition in which the values were 
mixed (Fig. 11). 

Each parameter was tested separately, with 12 observers per parameter.  Results 
showed an interesting amount of invariance: for all parameters tested, value had 
no measurable effect on either accuracy or variability [56].  Thus—at least for 
purposes of conveying correlation—designs varying along these dimensions ap-
pear to be equivalent.   

Such invariance is also informative in terms of the possible mechanisms that 
underlie correlation perception in scatterplots.  The indifference to size, for exam-
ple, rules out the involvement of simple operations such as blurring, since the 
overall shape of the dot cloud does not seem to matter greatly.  Instead, it suggests 
that the operations involved may rely primarily on the locations of the centers of 
the symbols. 

 



On the Prospects for a Science of Visualization 167 

 
(a) Different values of luminance 

 
(b) Different values of size 

Fig. 11  Examples of Tests of Parameter Values.  (a) Luminance.  Here, four different values 
were tested, along with a condition in which they were equally mixed.  (b) Size.  Again, four dif-
ferent values were tested, along with a condition in which they were equally mixed.   For each of 
these, accuracy and variability was measured and compared across observers. 

5.2 Other Dimensions  

This way of assessing alternative designs can in principle be applied more gen-
erally—for example, assessing designs that use different dimensions.  To clarify 
what is meant here, note that a scatterplot represents the first data dimension by 
horizontal position and the second by vertical; for both data dimensions, space 
"carries" information.  But it may be that carriers need not be spatial—several per-
ceptual dimensions (or "visual variables") exist that are similar to position in many 
ways [8, 18, 30].  It might therefore be possible to use these dimensions to convey 
correlation, provided they obey the GRPs of Section 4.  

As an example of this, consider "augmented stripplots" where the first data di-
mension is represented via horizontal position (as for scatterplots) and the second 
data dimension via size (diameter); correlation is then conveyed via the relation 
between these two properties (Fig. 12).  Note the interaction here between visuali-
zation and vision science: the use of dimensions other than space is suggested by 
findings from vision science about perceptual dimensions; in return, the extent to 
which these dimensions can be used in a visualization design lets us learn more 
about their nature. 

Owing to their isomorphism with scatterplots, augmented stripplots can be 
evaluated via the same kinds of techniques.  Accuracy and variability were tested 
for a group of observers [56] based on correlations over the range 0 to 1, in incre-
ments of 0.1.  Preliminary results from 18 observers are shown in Fig. 13.  
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Fig. 12 Examples of Augmented Stripplots.  Upper figure has correlation r = 1; lower 
figure has correlation r = 0. 

Interestingly, both accuracy and variability appear to obey laws that are quite 
similar to those for scatterplots.  Among other things, this means that the assess-
ment of different values of design parameters in these kinds of visualizations can 
be simplified: since only a few scalars (k and b) are sufficient to describe perform-
ance, only a few base correlations need to be tested.  It also suggests that the per-
ception of correlation in augmented stripplots is much the same as is it in scatter-
plots, perhaps reflecting an ability more general than previously believed.  It 
remains an open question as to the mechanisms involved in these kinds of repre-
sentations, and which other properties might also result in such behavior.  But the 
approach sketched here is clearly capable of suggesting interesting new directions 
of research, and then examining them. 
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Fig. 13 Performance for Augmented Stripplots (data from [56]). (a) Accuracy, as given 
by perceived correlation.  Best-fit line to results is for b=0.91 (cf b = 0.88 for scatterplots).  
(b) Variability, as given by jnd. Best-fine line is for k=0.26 and b = 0.86 (cf. k = 0.22 and b 
= 0.91 for scatterplots).  Both measures were obtained using the same set of observers. 
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6 Limits of the Framework 

The preceding sections have shown how several sets of issues in visualization—
pertaining to both theory and practice—can be addressed by systematic ap-
proaches that can be considered parts of a common framework.  These approaches 
can help us understand how visualizations work, how they might be evaluated, and 
even to some extent how they might be designed.  But this has been shown in de-
tail only for those aspects pertaining to correlation in scatterplots.  Returning now 
to the question that motivated this paper: to what extent is a systematic frame-
work—perhaps even a science—possible for visualization in general? 

Clearly, the elements discussed here do not cover all aspects of visualization.  
For instance, issues concerning the nature and role of interaction have not been 
discussed in any great detail.  More fundamentally, perhaps, little has been said 
about what would constitute an adequate explanation for why a particular visuali-
zation works (cf. vision science, where standards of explanation are much more 
developed [21]).  The elements proposed here also say little about how an optimal 
design could actually be found, or even how to tell if one exists in the first place.  
And little consideration has been given to the nature of the design process itself 
(cf. [58, 59, 60]). 

But the goal of this paper is simply to get a sense of whether at least some as-
pects of visualization could be handled via a scientific framework, and if so, what 
this might look like.  The discussion here has shown that systematic and coherent 
approaches can be developed to address several important issues concerning the 
study and design of visualizations.  The central issue now becomes the extent to 
which these elements could be developed into a framework of greater range and 
power. 

6.1 Generality  

The proposals here have largely used as their touchstone the determination of cor-
relation in scatterplots.  This was done primarily to show that these proposals are 
consistent with each other, and are useful for at least one real-world domain.  In a 
way, this use of scatterplots is like the use of fruit flies by geneticists to speed up 
their investigation of complex systems: focus on a real system complex enough to 
involve the issues at hand, but simple enough to be studied in a relatively straight-
forward way.  The issue now is the extent to which the approaches outlined above 
can be generalized to more than just these "fruit flies". 

In regards to scatterplots themselves, these approaches could likely be used to 
investigate design parameters of various kinds—not only properties of individual 
symbols, but aspects such as the size and shape of the cloud formed by the set of 
datapoints.  They could also be used to examine issues such as the effect of out-
liers on performance, or the presence of a second group of symbols representing 
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an irrelevant population.  Again, such investigations would likely yield not only 
important knowledge about how well scatterplots work, but also additional in-
sights into the mechanisms involved. 

Importantly, these approaches do not depend on anything particular to scatter-
plots or to correlation.  They could therefore be applied to correlation as conveyed 
by other kinds of representation, such as bar charts, parallel coordinates, or line 
graphs [31].  Likewise, they could also be applied to other descriptive statistics, 
such as means and variances.  They could even be applied to tasks such detection 
of outliers or the detection of two different populations in a given dataset.  A con-
siderable amount of work would be required to carry out such studies, but at least 
the general outlines of the approach are clear.  

One possible limit, however, is the complexity of the structures (and related op-
erations) to be visualized.  For example, applying these approaches to the visuali-
zation of connectivity patterns in networks might lead to issues that are too com-
plex to resolve, or at least, resolve in a reasonable amount of time.  On the other 
hand, it appears that some kinds of complex structure can be effectively handled 
via metaphor, which engages the appropriate higher-level cognitive processes 
(e.g., [61]); if so, evaluation techniques for these might be modeled on those used 
in cognitive science.  Settling this issue is an important goal for future work.  It is 
likely connected the general issue of the extent to which different kinds of infor-
mation can be represented visually [62]. 

Another possible limit is the extent to which approaches developed for "static" 
aspects of visualization can apply to dynamic aspects such as interaction.  Interac-
tion has its origins in the fact that there is often too much information to be dis-
played at any time, requiring an active process of exploration [5, 63].  A parallel 
situation exists in visual perception, where the inability to represent more than a 
fraction of the visual input in stable form means that vision must rely on a dy-
namic system in which objects are represented in a "just-in-time" manner [11].  
This parallelism may explain why interaction can be such a natural activity if 
visualization is designed correctly; indeed, GRPs can be developed towards this 
end [64].  Going beyond this would not only require knowledge of how scenes are 
perceived, but also why a viewer might represent a particular object at a particular 
time.  It is increasingly clear that these issues are complex.  Whether they are in-
surmountable remains an open question.   

6.2 Visualization, Vision, and Science 

Given that at least some of what has been proposed here could likely be general-
ized further, to what extent could it also be developed into a truly scientific 
framework, or even an outright science of visualization?  

As mentioned earlier, a science is essentially an organized way of thinking 
about a connected set of issues.  Looking at visualization in terms of issues, at 
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least three such sets can be identified.7 Some appear able to support the develop-
ment of a science; others do not. 

The first set concerns visualization as artifact—i.e., as a system that already ex-
ists.  Issues here include determining its characteristics, ascertaining how it works, 
and describing how it relates to others like it (i.e., taxonomy).  Work has been 
done on some of these issues—e.g., taxonomies of data types [65], operation types 
[63], and algorithms [66]—and things could likely be developed further in these 
directions.  Indeed, according to the extended-vision thesis, visualization systems 
can be treated much the same as basic vision systems, with a similar handling of 
basic entities, questions, and methodologies.  In the case of vision (or biology 
more generally), coherence in subject matter is obtained in part by the need for 
systems to be reasonably effective at what they do, creating a tendency to con-
verge on common architectures [21, 67, 68].  Similar pressures clearly exist on 
visualization systems.  As such, the coherence needed for a science almost cer-
tainly exists.  Moreover, it appears likely that systematic approaches could be de-
veloped for many tasks that are well-defined (such as correlation perception), re-
sulting in an artifact-level science of visualization.  Several of the approaches 
discussed here could be part of this.  It is unclear how many such "islands" of 
well-defined tasks (or subtasks) could be handled this way, but if vision science is 
any guide, there would be quite a few.  

A very different set of issues concerns the practice (or activity) of design—e.g., 
how to design a visualization that enables discovery of interesting structure in 
some set of high-dimensional data.  Such activity is generally regarded as not a 
science [69]: the immense space of possibilities, the often ill-defined nature of 
what is requested of the system, and the need to include subjective factors such as 
aesthetic preferences make it difficult to carry out via a simple set of approaches.  
Design as applied to visualization inherits this [29, 32].  (For example, even defin-
ing a clear purpose for a visualization system can be difficult—if not impossible—
in some circumstances [32].)  But although this design practice of visualization 
cannot be a science, parts of it could nevertheless be made more systematic; effec-
tive design methods (cf. software programming) could make good use of what is 
known in related sciences—including the "islands" of the artifact-level science of 
visualization—as well as any other kinds of relevant knowledge.  (Several of the 
approaches discussed in Sections 4 and 5 could be part of this.)  The result would 
be an open-ended activity similar in many ways to engineering, architecture, or 
any other organized design discipline [69].  

A third set of issues concerns the nature of the design process (as opposed to is-
sues that arise during a design activity).  For example, how can design itself be 
characterized?  Which aspects of the design process can be formalized, and which 
cannot?  What kinds of design processes have been developed, and how do they 
relate to each other?  It has been suggested that such issues could be the basis for a 

                                                                    
7 Other issues exist, such as those concerned with visualization as a technology [32].  How-

ever, these are not directly relevant to concerns about the nature of a scientific framework, and so 
are not discussed here. 
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science under some circumstances [70]; a few studies (e.g., [59, 60]) are possible 
beginnings of this in the context of visualization.  The extent to which these de-
velopments will eventually result in a design-level science of visualization (or 
equivalently, a science of visualization design) is currently unclear.  But there ap-
pear to be no a priori objections standing in the way. 

Finally, it should be mentioned that the proposals discussed here also point to-
wards the possibility of even closer connections between visualization and vision 
science.  Knowledge about perceptual mechanisms can be usefully applied to 
visualization (e.g., [5, 9]), and Sections 3 and 5 show this to be true for methodol-
ogy as well.  But there is still another connection that appears to be emerging.  In 
Section 5, it was shown that systematic techniques could be used to determine 
how the number of dots in a scatterplot affects the accuracy and variability of cor-
relation estimates.  Although this was a study of how performance depended on 
different values of a design parameter (the number of dots), it could also be 
viewed as a controlled experiment in vision science, with the results shedding a bit 
of light on the mechanisms involved.  Similar considerations apply to the other 
examples in that section, such as the study of how correlation can be conveyed by 
size as well as by position.  More generally, then, if researchers in visualization 
expand their set of techniques to include those typically used by vision scientists 
(while keeping the same kind of stimuli), while vision scientists expand their set 
of stimuli to include those typically used by visualization researchers (while keep-
ing the same kind of methodologies), the possibility arises of a class of studies that 
belong in both fields, with results of genuine interest to each. 
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