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Abstract 

This work investigates the ability of the human visual system to discrimi­

nate self-similar Gaussian random textures. The power spectra of such textures 

are similar to themselves when rescaled by some factor h > 1. As such, these 

textures provide a natural domain for testing the hypothesis that texture per­

ception is based on a set of spatial-frequency channels characterized by filters 

of similar shape. 

Some general properties of self-similar random textures are developed. In 

particular, the relations between their covariance functions and power spectra 

are established, and are used to show that many self-similar random textures 

are stochastic fractals. These relations also lead to a simple texture-generation 

algorithm that allows independent and orthogonal variation of several properties 

of interest. 

Several sets of psychophysical experiments are carried out to determine the 

statistical properties governing the discrimination of self-similar line textures. 

Results show that both the similarity parameter H and the scaling ratio h 

influence discriminability. These two quantities, however, are insufficient to 

completely characterize perceived texture. 

The ability of the visual system to discriminate between various classes of 

self-similar random texture is analyzed using a simple multichannel model of 

texture perception. The empirical results are found to be compatible with the 

hypothesis that texture perception is mediated by the set of spatial-frequency 

channels putatively involved in form vision. 
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Chapter 1 

Introduction 

One of the fundamental tasks of vision is the detection and recognition of ob­

jects in the surrounding environment. The surfaces of these objects often have 

characteristic textures distinguishing them from their surroundings. The ef­

fectiveness of a visual system is consequently increased if it can detect such 

structure. Indeed, many animals appear to make some use of texture — sur­

face markings often promote high visibility or provide camouflage in natural 

habitats [BrGr85]. 

Even though some form of texture perception is used by many simple organ­

isms, texture perception in general has proven difficult to analyze. Attempts to 

place it on a firm scientific basis have had only limited success. Various charac­

terizations of texture exist, but none appears capable of capturing all aspects 

of structural and statistical regularity. 

These difficulties arise in part because of the interdependence of texture 

perception and form perception. It is difficult to determine when the spatial 

structure of a surface is an intrinsic surface property, describable as texture, 

and when it is a collection of objects discriminable in their own right. For 
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example, a distant field of wheat is seen as a single textured surface; at closer 

range, the same field is distinguishable as a collection of individual plants. 

The transition from one description to the other has no well-defined boundary. 

Texture perception and form perception may therefore share a set of common 

mechanisms. 

These matters must be resolved before a computational theory of texture 

perception can be established. To this end, an interesting class of textures for 

investigation is the self-similar random textures. For these textures, any char­

acteristic present at a small scale is also present at a larger scale. Consequently, 

their spatial structure has no well-defined partition separating object boundary 

and intrinsic surface structure. 

1.1 Overview of the Thesis 

1.1.1 The Issues 

This work examines the ability of the human visual system to discriminate 

among self-similar random textures (figure l.l). The research hypothesis is that 

the performance of the human visual system in this domain can show whether 

common mechanisms underly both form perception and texture perception. In 

particular, evidence is sought that texture perception is based on measurements 

made in parallel on the set of spatially-filtered images constituting the basis of 

form vision. 

Self-similar random textures have their origin in the work of Mandelbrot 

on stochastic fractals [MaNe68][Mand82]. Formally, fractals are the class of 

mathematical objects that have a non-integral Hausdorff-Besicovitch dimension 

D (see appendix B). These objects may be either deterministic or stochastic. 
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Upper texture: H 
Middle texture: H 
Lower texture: H 

Discriminability = percentagi 

= 0.5, h -»• 1 
= 0.5, /i -> 1 
= 0.3, h -> 1 

i correct pairing 

Figure 1.1: example of texture display 



E - effectively self-similar random fields 
F - stochastic fractals 
N - self-similar noises 
R - random fields 
S - self-similar stochastic fractals 
M - self-similar random fields 

Figure 1.2: relation between fractals and random fields 

For surfaces in three-dimensional space, the value of D ranges between 2 and 3. 

When D —• 2, the surface is smooth and almost planar. When D —> 3, it appears 

extremely rough and jagged. The fractal dimension is therefore a measure of 

the roughness of a surface. For reasons of mathematical convenience, D is often 

expressed in terms of the similarity parameter H. For the stochastic fractals 

considered here, H — 3 — D, so that 0 < H < 1 (see appendix B). 

Many fractals are self-similar, matching themselves completely when 

rescaled by a scaling ratio h > 1. Self-similar stochastic fractals are widely 

used in computer graphics to generate highly realistic images of clouds, land-

forms, and plants (e.g., [Mand75][FoFu82][Mand82]). 

The self-similar random textures considered in this work are instances of 

self-similar random fields. The general class composed of such fields includes 
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several self-similar stochastic fractals and self-similar noises (figure 1.2). Also 

considered here are a class of effectively self-similar random fields, for which 

self-similarity holds only over a limited range of scales. Taken together, the 

self-similar and effectively self-similar random fields form a useful domain for 

determining the ability of the human visual system to detect self-similarity. In 

particular, they allow measurement of its sensitivity to quantities such as the 

similarity parameter H and scaling ratio h. 

1.1.2 Organization of the Work 

The work is divided into three distinct sections: 

1. Description of the properties of self-similar random fields, both in the 

spatial and the frequency domains. 

2. Empirical investigation of the ability of the human visual system to dis­

criminate among self-similar random textures. 

3. Interpretation of the empirical results in light of current theories of texture 

and form perception. 

a) Description of self-similar random fields 

In this work, attention is restricted to random fields that are stationary. By 

definition, the statistical properties of such fields remain invariant under trans­

lation. A stationary random field is often represented by its covariance function 

C(x), which describes the statistical correlation between the values of points 

separated by a displacement x. Another measure is the power spectrum S (k), 
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which describes the contribution to the random field of the harmonic at spatial 

frequency k (see appendix A). 

This work develops the relations between the covariance functions and power 

spectra of self-similar random fields. These relations are used to show that the 

class of self-similar random fields contains several stochastic fractals and self-

similar noises. It is also shown that H and h are insufficient to completely 

specify a self-similar covariance function and power spectrum. This implies 

that other quantities must also enter the description of a self-similar random 

field. 

The reformulation of stochastic fractals and self-similar noises provides the 

basis of a texture-generating algorithm. By taking the Fourier transform of 

a field of Gaussian random variables, it is possible to create a random field 

having a specific power spectrum, so that self-similar textures can be readily 

generated. This algorithm allows the independent and orthogonal variation of 

several properties of interest, including the similarity parameter H and scaling 

ratio h. 

b) Psychophysical experiments 

The texture-generating algorithm outlined above can produce a wide variety 

of self-similar random textures. Psychophysical experiments based on these 

textures are carried out to determine the discriminability of various statisti­

cal properties. Experiments are limited here to the class of monochromatic 

self-similar Gaussian line textures. These are formed by sweeping a horizon­

tal instance of a one-dimensional self-similar Gaussian stochastic process down 

through a finite vertical distance (figure 1.1). 
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Although simpler than fully two-dimensional textures, line textures 

are not trivial, having been used before in psychophysical research (e.g., 

[StJu72][RiPo74][Rich79]). Line textures have the advantage of allowing the set 

of possible texture elements to be reduced to a bare minimum (viz., straight-line 

segments together with their endpoints). More importantly here, an analytical 

treatment of many of their statistical properties is possible. Results obtained 

using these textures can form a basis for the treatment of the more general case. 

The texture-discrimination experiments involve a display composed of three 

line textures (figure 1.1). Two adjacent textures are from the same random 

field, while the third texture is an instance of a second field. Discriminability 

between the two fields is given by the percentage of correct pairings made over 

a series of presentations. 

Results show that no abrupt change in discriminability occurs between self-

similar fractals, self-similar noises, and effectively self-similar textures. They 

also show that H and h are insufficient to completely characterize the perception 

of all self-similar random textures. 

c) Analysis of empirical results 

The results of the texture-discrimination experiments are analyzed using a sim­

ple multiresolution model of texture perception. This model assumes that tex­

ture perception is based on measurements made in parallel on a set of filtered 

images of various spatial resolutions. The empirical results are consistent with 

the hypothesis that texture discrimination is based on measurements such as 

the relative contrast or the density of zero-crossings in each of these images. 
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The zero-crossings present at each level of resolution are the basic elements 

of visual perception in many theories of form vision (e.g., [Marr82]). As such, 

the results of the texture-discrimination experiments are consistent with the 

conjecture that texture perception and form perception share a set of common 

mechanisms. 

1.1.3 Arrangement of the Thesis 

A general framework for discussing the basic issues discussing texture perception 

is presented in chapter 2. It introduces basic concepts and definitions, briefly 

surveys the more popular methods of texture analysis, and examines several 

current models of texture perception. Chapter 3 develops the relation between 

the covariance functions and power spectra of self-similar random fields. 

The texture-discrimination experiments are presented in chapter 4. Chapter 

5 discusses the results using a multiresolution model of texture discrimination, 

and examines their significance for a general computational theory of texture 

perception. Chapter 6 summarizes the general conclusions reached, and sug­

gests some possible directions for future work. 

Appendix A is a short review of the basic concepts used in the analysis of 

time series and random fields. Appendix B introduces several of the main ideas 

of fractal geometry, emphasizing those aspects relevant to this work. Appendix 

C examines the effects a discrete spatial image and power spectrum have on per­

ceived texture, describes the generation of the textures, and briefly describes 

the calibration of the monitor used to display the textures. Appendix D is a ta­

ble containing the relative contrasts and zero-crossing densities of the reference 

textures used in the analysis of the texture-discrimination experiments. 
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Chapter 2 

Approaches to Texture 

Over the past few decades, rigorous bases have been established for several mod­

ules of low-level vision (e.g., shape-from-shading [Wood81], stereopsis [Grim81], 

and surface-boundary-from-velocity [Hild84]). In contrast, there has been lit­

tle apparent progress on other modules such as colour and texture perception. 

For texture perception, principles and techniques have remained largely ad hoc 

[Hara79][Jule84][GoDe85]. This may be due to the inherent complexity of the 

processes involved. Indeed, it has been argued that the underlying mechanisms 

may be so complex that no concise theoretical treatment of texture perception 

can ever be given [Marr77]. 

Nevertheless, some progress has been made. Although a complete theoretical 

treatment is not yet possible, previous results can be described within a common 

framework. This is based on a general characterization of texture perception. 
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2.1 A General Characterization of Texture 
Perception 

This section discusses the general nature of texture perception, emphasizing its 

contribution to early vision. Attention is restricted to monochromatic broad­

band images. Colour perception is considered to be a separate concern, and is 

not discussed here. 

2.1.1 The Role of Texture Perception 

The functions of the early visual system include determining the location and 

spatial extent of objects in the surrounding environment, and providing higher-

level systems with enough information to identify the objects [Marr82]. Many 

sources of information are available to help with these tasks, including binocular 

disparity, accommodation, and motion. 

The surface structure of the objects themselves can also be exploited for 

these purposes. Surface structure is the intrinsic spatial organization of a sur­

face, together with its reflectance characteristics. It is largely determined by the 

basic physical and chemical composition of the object. Since many objects have 

a composition different from their surroundings, it follows that their surface 

structures should differ as well. These differences can help determine their lo­

cation and spatial extent in an image. An important task of texture perception 

is therefore the segmentation of an image into distinct regions. 

Texture can also assist in recovering three-dimensional shape. If a surface 

has an isotropic structure, its orientation can be determined from texture gra­

dients [Kend79] or from foreshortening effects [Breu80]. 

Information about surface structure can be put to further use. Since many 
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objects have a distinctive surface property, it would be advantageous for the 

low-level vision system to transmit a description of the surface to assist in 

higher-level identification or classification of the object. Another task of texture 

perception is therefore the extraction of information about intrinsic surface 

structure. 

Texture segmentation and shape-from-texture are not examined here. Dis­

cussion is limited to uniform textures on fiat, pre-segmented regions. Issues 

such as projection and foreshortening are bypassed, and attention focussed on 

the final task mentioned: the characterization of perceived texture. 

2.1.2 Perceived Texture 

The projection of a three-dimensional surface onto a two-dimensional image 

depends on the location, orientation, and illumination of the surface, as well 

as its intrinsic surface structure. In general, the effects of all these factors are 

confounded, so that surface structure cannot be completely recovered from an 

image. 

Nevertheless, a perceptual system can recover some of the surface structure. 

It is limited in this task by several factors, including its ability to determine 

three-dimensional structure from the image, and its ability to represent spatial 

information. Those aspects of surface structure determined from an image are 

referred to here as the perceived texture. The term resists an exact definition 

— it is used loosely here to refer to the intrinsic surface structure of a per­

ceived region not containing any perceived objects. The prohibition against 

perceived objects is essential if texture perception is to be studied apart from 

the perception of objects. 
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Perceived texture can be characterized in several different ways, depending 

on the complexity of the image and the conditions under which it is viewed. 

When an image is so disorganized that objects cannot be perceived in it without 

a considerable effort of will, it is commonly termed a random texture. Texture 

can be perceived in such images under all conditions. Some images contain 

spatial features that can be combined into simple objects when attended to 

consciously [Trei85]. To avoid the effects of conscious scrutiny, texture per­

ception must be limited to non-attentive viewing [Marr76]. When an image 

contains only a few items, these are often perceived as objects in their own 

right. To study texture using such images, it becomes necessary to consider 

texture perception as a pre-attentive process, taking place within the first few 

hundred milliseconds of image presentation [Jule75]. 

2.2 Methods of Texture Analysis 

One of the central problems in texture perception is to determine the particular 

aspects of surface structure that are most useful for identification and classifi­

cation. Although work has been done on coding principles applicable to these 

tasks (e.g., [Cael84]), a complete theoretical understanding of these issues has 

not yet been achieved. Empirical evidence is consequently of great value. In this 

regard, results obtained from the machine analysis of texture are of interest. 

Historically, several different approaches to texture analysis have been taken. 

This has led to a great variety of representations. Each emphasizes some partic­

ular aspect of an image, such as its periodicity, structural hierarchy, or intrinsic 

spatial features present. All approaches, however, describe a texture by its mi-

crostructure and macrostructure [Hara79][Breu80]. The microstructure is the 
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set of basic elements, or texels, that form the texture. The macrostructure is the 

set of spatial relations that exist between the microstructure elements. Differ­

ent approaches to texture analysis are characterized by the the microstructure 

and the macrostructure that they use. 

2.2.1 Spatial Approaches 

Spatial approaches treat texture as a collection of simple elements spread 

densely throughout a region. These elements form a continuum, parametrized 

by some co-ordinate system. Depending on the the continuum and the elements 

used, a spatial approach can be placed into one of three groups: point statistics, 

global transforms, or local transforms. 

In the first group, the continuum is taken to be a two-dimensional geometric 

space, and the elements are the individual points in the image. These methods 

describe texture by the statistics of the intensity values at these points. The 

second group involves global transformation of the original image (e.g., using 

the Fourier transform). The continuum is given by the transform space of the 

new representation. Each point in this space represents a specific pattern of 

intensity values in the original image. The third group of methods is based 

on local transformation. The continuum is a two-dimensional geometric space, 

while the texture element at each point describes the structure in the local 

neighbourhood. 

In all these approaches, the elements are parametrized by an underlying 

continuous space. The term 'spatial' is used here in this more general sense. 
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a) Point statistics 

This form of texture analysis is based on the statistics of the intensity values of 

individual points in an image. Images are generally assumed to be instances of 

ergodic random fields (see appendix A), whose spatial averages reflect ensem­

ble properties. The various methods used are distinguished by the statistical 

properties represented. 

The simplest representations involve first-order statistics, which are based 

on the histogram of the intensity values present. To reduce the effects of unequal 

lighting or poor instrument calibration, the averages and standard deviations 

(see appendix A) of the images analyzed are often set to common values. This 

destroys much of the first-order information. On occasion, however, informa­

tion from unequalized images is used. The earliest first-order representations 

(e.g., [Rose62][PrMe66][DaJo68]) made use of several properties, such as mode 

and skewness. However, first-order statistics generally contain little informa­

tion apart from that contained the average and standard deviation [AhDa77]. 

In current practice, these are often the only first-order quantities measured 

[Hara79]. 

First-order statistics cannot completely describe a texture, since they have 

no reference to the spatial arrangement of the elements. To capture this struc­

ture, higher-order statistics must be used. Second-order statistics are based 

on the frequency of the joint intensities of pairs of pixels separated by various 

displacements. Julesz [Jule62] made the conjecture that the discriminability of 

random-dot textures is completely determined by their second-order statistics. 

Over the years, this conjecture has inspired many analytic methods based on 

second-order statistics. 
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Measures based on such statistics were among the earliest used for texture 

analysis: Kaizer, in 1955, used the autocorrelation function C(u) as the basis of 

texture description [Hara79]. This function is the second-order moment of the 

joint probability density. For an image f(x,y) of dimensions Tx x Ty, it has the 

form 

^ ( t t i v ) = / / f{x + u,y + v)f(x, y) dxdy, 

where u is the horizontal displacement between the pair of pixels, and v the 

vertical displacement. 

A related function is the covariance function C(u), defined by 

C(u,v) = TrTTfT f j (f(x + u,y + v) - fi){f{x,y) - fi) dxdy, 

where n is the average intensity of the image (see appendix A). The two mea­

sures are related by 

C(xi, x2) = R{xu x2) - M 2 , 

showing that the second-order information they contain the same. 

Various properties of the covariance function are used for texture classi­

fication, including spatial moments, autoregression parameters, and concav­

ity/convexity of form [Laws80][ChKa81]. Measures based on the covariance 

function do not result in highly accurate texture analysis; other second-order 

quantities must be used as well [Laws80]. This agrees with the observation 

that for human perception, the mean, variance, and covariance function are 

insufficient to determine the perceived texture [PrFa78]. 

A more general system of second-order statistical features was proposed by 

Rosenfeld and Troy in 1970 [Hara79], and later developed by Haralick et al 

[HaSh73]. This approach is based on the grey level dependence matrix, which 
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describes the frequency of joint intensities of pixel pairs as a function of their 

spatial separation. This approach is a development of the Markov models first 

used by Julesz [Jule62], who analyzed texture using the transition probabilities 

between the values of neighbouring pixels. 

The grey level dependence matrix corresponds to the second-order joint den­

sity function of a stationary random field. As such, its description can be large: 

for an image of size n X n pixels with m grey levels per pixel, the complete ma­

trix would have a size of order n.2m2. Furthermore, few pixels are separated by 

displacements comparable to the size of the image. The determination of joint 

intensity distributions for such pixel pairs is therefore susceptible to statistical 

fluctuation. 

To overcome these drawbacks, a small set of features based on the grey 

level dependence matrix is used. Haralick et al [HaSh73] proposed a set of 14 

measures, one of which was the covariance. To further reduce the size of the 

description, only a few orientations and separation distances are chosen. The re­

sultant descriptions prove to be useful for texture identification, leading to over 

90% classification accuracy in certain texture domains [WeDy76][CoHa80a]. 

Less arbitrary methods of reducing the description size have been devel­

oped. An optimal set of pixel displacements can be determined by statistical 

tests on the matrices [ZuTe80]. These can lead to similar classification accuracy 

with fewer features. Absolute pixel values can also be discarded, keeping only 

the relative differences in pixel intensities [WeDy76]. Although generally not 

as powerful as the approach based on grey level dependency, the use of rela­

tive intensities leads to nearly similar classification accuracies in many texture 

domains [WeDy76][CoHa80a]. 
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Second-order information is also contained in the fractal dimension of the 

image [Pent83][MeYa84]. This quantity is determined by the rate at which 

the increment f(x + A) — f(x) increases as a function of displacement A (see 

appendix B). Using only the fractal dimensions measured in the x and y direc­

tions, classification accuracies of up to 85% can be achieved for several classes 

of natural textures [Pent83]. 

b) Global transforms 

Perhaps the simplest way to represent an image is to assign an intensity to each 

point. When searching for specific spatial patterns, however, it is often useful 

to determine a global transform. This describes an image in terms of a basis 

set of spatial functions. For example, the finite Fourier transform describes an 

image as a (possibly infinite) sum of sine and cosine functions. This transform 

makes clear the degree to which the image is periodic. 

Global transforms contain no explicit reference to spatial position — the 

image is described only in terms of the basis functions. If the basis set is 

complete, however, the transform contains all the information present in the 

original image [RoKa82]. 

Various transforms have been used for texture analysis, including Hadamard 

transforms, slant transforms, and Fourier transforms. Although their effective­

ness for texture discrimination appears to be similar [Kirv76], only the Fourier 

transform is widely used. 

The Fourier transform f(k, I) of a continuous image f(x, y) is given by 
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where k and / are spatial frequencies in the x and y directions respectively. This 

function is often written as a product, viz., 

where m(k,l) = /)| is the amplitude of the waveform, and <f>(k,l) is its 

phase. This class of representations emphasizes spatial periodicity. As such, it 

is most useful for the analysis of periodic patterns. However, it is also useful 

for random patterns as well. 

Many ways exist to form equivalence classes of images based on their Fourier 

features, but only a few have been seriously investigated. Although the phase is 

important for images with global structure [JuBe83], the information it contains 

is generally of little use for classifying textures [Eklu79]. Some texture models 

are based on the sum of a few narrow-band sources of noise [Scha80], but only 

a few of these have been explored. Most approaches follow the lead of Lendaris 

and Stanley [LeSt70], who used the power spectrum of the image as the basis 

of texture analysis. 

These approaches are based on the partitioning of frequency space into bins 

of varying shape. Description of a texture is given by the summed contribu­

tions of the power spectrum in each of the partitions. Three distinct types 

of partitioning are commonly used [CoHa80a]: annular rings, angular wedges, 

and parallel slits (figure 2.1). Annular rings provide a representation based on 

spatial frequency alone. Each ring corresponds to waveforms of arbitrary ori­

entation, with frequency within some bounded range. Angular wedges allow a 

description of the directionality of the texture: each wedge corresponds to those 

waveforms oriented between two specified angles. The parallel-slit geometry is 

formed by a series of narrow, parallel rectangular regions. These are useful for 
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(a) annular rings (b) angular wedges (c) parallel slits 

Figure 2.1: spectral partitions 

detecting one-dimensional structure at a given orientation. 

Fourier-based representations have been used for accurate classification of 

many natural textures [LeSt70][Bajc73][WeDy76], but in general are less useful 

than the statistical representations [CoHa80a]. 

c) Local transforms 

This type of texture analysis is based on the local structure present at each point 

in the image. This is done using local transforms, which extract information 

from the neighbourhood surrounding each point. The form of these transforms 

depends on the the local structure considered relevant. 

The results of several different transforms can be incorporated as feature 

planes into a composite description [Laws80]. Each element of the microstruc-

ture is then described by a vector quantity. These feature vectors can be given 

new bases in a generalized feature space, and be condensed down into a space 

of fewer dimensions. The various representations can be characterized by the 

local transform and the feature space used. 
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The earliest local transforms were spatial transforms, obtained by convolving 

a spatial filter over the image. Rosenfeld [Rose62] used the one-dimensional first-

order derivative of an image as a basis for texture analysis. Classification was 

done via the first-order statistics of these derivatives. Linear filters emphasizing 

such shapes as lines, wedges, and spots have also been used [Hawk70]. 

More recent approaches use sets of general spatial filters. Laws [Laws80] 

uses a complete basis set of 3 x 3 and 5x5 masks, that describe averaging, 

first-differencing, and second-differencing operations. These filters are sums 

and differences of Gaussian functions [PiRo83]. By using texture energy mea­

sures based on the first-order statistics of the resulting elements, a classification 

accuracy of over 90% has been obtained for many classes of natural texture. 

Such accuracy generally depends on an appropriate choice of resolution size for 

the masks [Dumo85]. Methods have been developed [Ade83] to automatically 

select the best filter masks. 

Another class of local transforms are the textural transforms introduced by 

Haralick [Hara75][Hara79]. The value of each element in the transformed image 

is a function of the grey level dependence matrix for the neighbourhood that 

surrounds it. Analysis is based on the first-order statistics of the elements of 

the transformed image. Accuracy is generally not as good as when the statistics 

of spatial transforms are used [Laws80]. 

d) General performance 

Methods based on spatial approach have several common strengths and weak­

nesses. To begin with, they are all highly sensitive to the values of the intensities 

in an image — small changes to these values can lead to large changes of de-

20 



scription. Such variations are almost always present between different images 

of the same texture, owing to uneven lighting, lack of camera calibration, etc. 

Some robustness can be instilled by equalizing the image histograms, so that 

all values are equally distributed [Hara79]. 

Methods based on local transforms must specify in advance the size of the 

neighbourhoods used. This renders texture description dependent on scale. 

More recent approaches, such as the fractal-based descriptions of Peleg et al 

[PeNa84], use measurements made at multiple scales of resolution to achieve a 

degree of scale-independence. 

Another drawback is the inability of spatial approaches to capture the struc­

ture of higher-order groups of texture elements. This results largely from the 

homogeneous treatment of texture elements they employ. 

In spite of these problems, spatial approaches are widely used. To begin 

with, they are indifferent to the pattern contained in the image — the com­

putational resources required depend only on the size and the number of grey 

levels of the image. Furthermore, the descriptions are easily formed, so that 

many different measures can be created. These can then be combined into 

composite measures that lead to some of the highest classification accuracies 

yet achieved: over 80% for general classes of texture, and over 90% for more 

restricted domains [Hara79][Laws80]. 

2.2 .2 S t r u c t u r a l A p p r o a c h e s 

Many images are highly regular in their spatial structure. Structural approaches 

take advantage of this regularity by restricting the ways in which basis functions 

can be combined. The resulting constraints enable compact descriptions to 
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be made. Such representations generally involve only a few microstructure 

elements, arranged in patterns generated by a set of placement rules. Equivalent 

images are exactly those that can be described by the same microstructure and 

placement rules. 

Although the possibility of such approaches has been discussed for many 

years (see, e.g., [Hawk70]), their development is a recent occurrence. Two 

groups of structural methods have been developed. In the first group, texture 

is considered to be composed of identical elements arranged in regular fashion 

throughout the plane. The second set makes use of syntactical techniques, 

representing texture as a parsing of the image. 

a) Regular placement 

These methods analyze texture by partitioning space into contiguous regions of 

identical spatial structure. The patterns in these regions form the microstruc­

ture of the texture. They may have a complex form, often being hierarchically 

composed of sub-elements [MaSa82]. The macrostructure is a two-dimensional 

periodic lattice, whose nodes describe the locations of the texture elements. 

Any image with a periodic structure can be partitioned this way [CoHa80b]. 

Two strategies are commonly used to create such descriptions: bottom-up 

and top-down. In the bottom-up approach, grouping processes are used to 

form the basic elements, while a clustering operation uses the locations of their 

centers to determine the macrostructure [MaSa82]. Such techniques can correct 

for missing of erroneous elements in the image, but generally remain extremely 

sensitive to noise, blur, and geometric distortion [MaMi83]. 

Most of these limitations can be bypassed by using top-down techniques. 
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The periodicity of the elements is first determined. This can be done via the grey 

level dependence matrices [CoHa80b][ZuTe80], or by Fourier analysis [MaMi83]. 

Elements can then be determined via region growing from the nodes of the 

macrostructure lattice. 

Although not suitable for general use, these techniques can provide 

structural descriptions of many periodic and nearly periodic patterns. 

[CoHa80b][MaMi83]. 

b) Syntactic approaches 

This approach is an outgrowth of picture grammars [Rose71]. A set of termi­

nal symbols, made up of spatially-connected pixels, specifies the microstructure 

elements. A set of non-terminal symbols specifies the placement rules. Each 

non-terminal symbol corresponds to a fixed, two-dimensional template specify­

ing the relative locations of several other terminal and non-terminal symbols. 

Such an approach is reminiscent of the grammars used for the syntactic analysis 

of languages. Indeed, the structural approach has been consciously developed 

along such lines — analysis is based on a parsing of the visual texture. 

The various grammars differ in their specification of the terminal and non­

terminal symbols. Shape grammars [BaBr82,ch6] use complex geometrical 

shapes for their terminal symbols. The placement rules are local in nature; 

they are represented by non-terminal markers that allow several adjacent sym­

bols to be combined. 

A more complete separation of microstructure and macrostructure is 

achieved in tree grammars [FuLu78]. The placement rules have the form of 

two-dimensional trees; these are combined to form the macrostructure of the 
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texture (figure 2.2). Texture elements are then inserted into the resulting ar­

rangement of terminal markers. To make this approach feasible, an image is 

first segmented into an array of rectangular windows, each of which is then 

analyzed. This is done to avoid the effect of large-scale warps of an ideal tex­

ture. Small-scale perturbations are handled by using a stochastic grammar, 

in which the placement rules can be selected nondeterministically. Combining 

these with an error-correcting bottom-up parser allows reasonably good dis­

crimination among several classes of natural textures with large-scale structure 

[Fu82,chl2]. 

More complex approaches analyze the structure of the elements themselves. 

This is done by using levels of different grammars, the terminal symbols of one 

level being the starting symbols of the next one down [Jaya79]. The resulting 

descriptions are hierarchical in form, the placement rules at each level describing 

corresponding groupings in the image. Placement rules can also be recursively 

applied to scaled-down versions of themselves, resulting in descriptions with an 

infinitely many structural levels. Such grammars can be used to describe the 

self-similar deterministic fractals (see appendix B), that have similar spatial 

features at all levels of detail. 

c) General performance 

A purely structural approach is unsuitable for domains where few constraints 

exist on spatial structure, for spatial regularity is lost, and the descriptions 

become much larger. Furthermore, such descriptions are sensitive to noise in 

the image, a small perturbations in the image often leading to a large change 

in its description. To avoid some of these drawbacks, Zucker [Zuck76] proposed 
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Figure 2.2: example of tree grammar analysis 
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that there are two aspects of any natural texture: an ideal regular texture that 

forms its deep structure, and a spatial mapping that distorts it into the surface 

structure appearing in the image. This model of texture has led to several 

syntactic methods of texture analysis (e.g., [Fu82,chl2]). 

Even for highly regular structures, a large amount of syntactic ambiguity 

is inevitable — many possible grammars exist for any given spatial pattern 

[Zuck76]. Before a structural description of a texture can be given, several a 

priori decisions must be made about its structure. When this is feasible (e.g., 

for classification of biological tissues), structural approaches prove useful for 

texture analysis. 

2.2.3 Structural-Spatial Approaches 
These approaches are hybrid, attempting to combine the best aspects of struc­

tural and spatial methods. As for a structural approach, microstructure ele­

ments are considered to be sparsely distributed throughout the image. The 

relations between them, however, are analyzed using spatial techniques. Local 

spatial structure can therefore be concisely described without imposing large 

constraints on the overall global structure of the texture. 

Structural-spatial approaches characterize texture as a sparse set of 

spatially-ordered, structured elements. Each element is generally represented 

by a feature vector, whose values are obtained from the surrounding neighbour­

hood. These neighbourhoods are generally non-overlapping regions of finite 

extent, which may or may not form a partition of the plane. 

Structural-spatial approaches can be divided into two groups, depending on 

how they characterize the neighbourhoods. The first group considers neighbour-
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hoods as being contiguous areas of uniform grey level. The second group de­

fines neighbourhoods using local extrema. All approaches can be characterized 

by the information extracted from each neighbourhood, and by the statistical 

properties of the resulting texture elements. 

a) Uniform areas 

One of the simplest ways of specifying neighbourhoods is to partition the image 

into a set of unidirectional grey level runs. These runs are defined as maximal 

collinear strings of constant grey level, oriented in some given direction [Gall75]; 

they are described by their run length, direction, and grey level. Description of 

a texture is based on the joint occurrence of grey level and run length in each 

direction. To reduce the size of a description, a set of five features is computed 

for each direction. These are similar in many ways to some of the measures 

developed by Haralick et al [HaSh73]. In general, run-length measures are not 

as useful as second-order statistics [WeDy76][CoHa80a]. 

Extensions of this approach to two-dimensional regions of constant grey 

level have been used for texture analysis [MaBr77][ToSH82]. Properties used 

for classification include the area, elongation, and grey level of the regions. Clas­

sification accuracies of over 80% can be achieved for several classes of natural 

texture [ToSh82]. 

b) Local extrema 

Local extrema in an image form the basis for several structural-spatial meth­

ods of texture analysis. For one-dimensional extrema, the only features are 

height and width; these are measured using the neighbouring extrema. For two-
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dimensional extrema, neighbourhood boundaries can be formed in a variety of 

ways. One possibility is to associate with each extremum a reachability set, a 

set of points that can be reached from it along a monotonically increasing or 

decreasing path. Various properties such as its size, mean, and variance could 

be used [Hara79]. Such an approach, however, has not yet been thoroughly 

investigated. 

One-dimensional local extrema form the basis for an extremely efficient tech­

nique for texture analysis — the max-min method [MiMy77]. The image is first 

smoothed to eliminate small fluctuations, and the logarithm taken to render 

the description independent of absolute intensity. Local extrema are then de­

termined, being thresholded by a value of T above/below the neighbouring 

pixels. Description is given by the density of extrema for various values of T. 

Such a method is extremely fast, and has a classification accuracy comparable 

to those based on grey level dependence matrices [MiMy77]. 

Texture analysis has also been based on the local maxima of images filtered 

with the Laws masks [PiRo83]. Using only the first-order statistics of these 

maxima, a classification accuracy can be achieved that equals that of the original 

texture energy measures. This shows that the local maxima alone may contain 

all the essential information in texture [PiRo83]. 

Generalized co-occurrence matrices [DaJo79] describe texture using the re­

lations between the local extrema present in an image. These matrices have a 

form much like the grey level dependence matrices, but their features are much 

more general: the joint occurrence of any property of neighbouring extrema 

can be used. When properties of local maxima of smoothed images are used 

in these matrices, classification accuracies can be achieved that are higher than 
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those obtained using grey level dependency measures [DaJo79]. 

c) General performance 

Structural-spatial analyses combine some of the best aspects of spatial and 

structural methods. Descriptions are readily determined, and are generally ro­

bust under small geometric distortions of the image. Furthermore, the analyses 

are also robust under monotonic changes of grey level. 

Methods based on areas of uniform grey level, however, are sensitive to noise 

in the image. Smoothing the image would help somewhat, but the application 

of a smoothing filter would tend to alter the distribution of grey levels in many 

parts of the image, especially in areas near a boundary. This type of analysis 

is therefore inherently sensitive to noise. 

Descriptions based on local structure are more suitable for texture analysis. 

Since the locations of extrema are invariant under monotonic transformations 

of grey level, descriptions tend to be robust, even under local filtering of the 

image. In addition, the classification accuracies of these methods are among 

the highest yet achieved [GoDe85]. This shows that local extrema can form the 

basis for robust and accurate analysis of texture. 

2.3 Models of Texture Perception 

Texture perception has been investigated using several psychophysical tech­

niques. These generally involve restricted domains of synthetic textures, which 

are designed to isolate the spatial structure relevant to perceived texture. Al­

though limited in scope, these methods have yielded valuable information about 

the ability of the human visual system to perceive texture. 
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Three different approaches to studying texture perception have been devel­

oped. Each is based on a somewhat different model of the process, and has 

its own distinctive character. Although some parts of the various models con­

flict, the three approaches are largely complementary, each modelling somewhat 

different aspects of a highly complex process. 

2.3.1 Spatial-Feature Models 

This approach concentrates on determining the spatial features that influence 

perceived texture. Texture perception is considered to be a pre-attentive pro­

cess, occurring within the first few hundred milliseconds of presentation. Em­

phasis is placed on determining the necessary and sufficient conditions for two 

adjacent texture fields to be pre-attentively discriminable. This may equiva-

lently be viewed as establishing the conditions under which two textures are 

perceptually identical, or metameric. This approach tends to be somewhat 

phenomenological in nature — little emphasis is placed on determining the 

underlying mechanisms involved. 

The spatial-feature approach has its origins in the work of Julesz [Jule62] 

on the discrimination of random Markov textures. Based on these results, the 

conjecture was made that third- or higher-order statistics are irrelevant for tex­

ture discrimination. For textures with elements not locally distinguishable, the 

Julesz conjecture still appears to hold [PrFa78][Gaga81]. Second-order mea­

sures sufficient for discrimination are not known in general. The mean and 

variance, together with the covariance function, are not sufficient to describe 

texture completely [PrFa78]. 

All counterexamples to the original Julesz conjecture involve texture ele-
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merits that are distinguishable locally [JuGi73][CaJu78]. This observation has 

led to the hypothesis that perceived texture depends only on the first-order den­

sities of a specific set of localized spatial features [ Jule75] [ Jule81] [Beck82]. These 

textons are localized geometric shapes with simple properties; they include end-

points, elongated blobs, lines of various widths and lengths, and line-crossings. 

Texton properties include colour, binocular disparity, and orientation [Jule81]. 

Since only first-order densities are involved, the relative positions of textons to 

each other should not affect pre-attentively perceived texture. This prediction 

agrees with experiment [JuBe83][Jule84]. 

Textons have much in common with the set of pre-attentively distinguishable 

features found by Treisman [Trei85]. However, they are not to be identified with 

the elements of form vision, since they are considered to be part of a separate 

pre-attentive visual system [Jule84]. 

The texton theory, as developed by Julesz, has been largely based on the 

perception of simple texture elements scattered sparsely throughout an image 

— no algorithm need be given of how the descriptions are calculated. If the 

perception of more natural textures is to be understood, however, the determi­

nation of this process is essential. Caelli [Cael84] has taken a few steps toward 

this goal, showing that textons are members of a more general class of coding 

units. 

2.3.2 Symbolic-Structure Models 

A model of texture perception more concerned with underlying algorithm and 

mechanism is that proposed by Marr [Marr76][Marr82]. Texture perception is 

considered to be a non-attentive process, employing the same grouping oper-
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ations and symbolic structures as used in form vision. As such, there is no 

separation between segmentation and classification. Texture discrimination is 

only one aspect of texture perception that can be treated using this approach 

— texture flow and grouping can be modelled as well. 

As described by Marr, the basic elements of texture are exactly the basic 

elements of the primal sketch: blobs, endpoints, and lines. Each is represented 

by a token describing its size, location, contrast, orientation, etc. Various ag­

gregation processes use local properties such as common orientation to create 

higher-level symbolic structures. This grouping can be done recursively, build­

ing up highly complex elements. 

Texture discrimination is assumed to be based on the first-order density 

of the symbolic structures present locally. Such an approach can account for 

many of Julesz's results [Marr76]. In addition, several classes of metameric 

textures with different second-order statistics can be identified via the first-order 

statistics of virtual lines [Scha78]. These lines are purely symbolic structures, 

connecting pairs of dots in the primal sketch. More generally, they can connect 

arbitrary elements of the primal sketch [Marr82]. Virtual lines can also be used 

to show how local processes can cause the Moire effect or texture flow seen in 

Glass patterns [Stev78]. 

The symbolic-structure approach has proven difficult to develop, largely ow­

ing to its inherent complexity. Even the tokens are difficult to ascertain [Rile8l]. 

The operation of the grouping processes must also be reconciled with the in­

difference of perceived texture to the relative positions of the texture elements. 

More recent approaches (e.g., [Zuck84]) have tended to explain many of these 

processes by simple spatial operations applied to simple spatial elements. 
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The symbolic-structure and spatial-feature approaches are similar in several 

ways. Both make use of a basic set of simple elements that, apart from the line-

crossings included by Julesz, are of much the same form. The properties that 

these elements have are also similar. For simple textures, then, these two models 

generally make similar predictions about which textures are discriminable. 

Ontologically, however, these basic elements are distinct: primal-sketch el­

ements are the basis of (attentive) form vision, while textons are part of a 

completely separate pre-attentive system. This is reflected in the distinction 

drawn between pre-attentive and non-attentive perception. The elements of 

the symbolic-structure approach, being part of a more powerful form vision 

system, can be grouped into higher-level features that may enter the descrip­

tion of a texture. The spatial-feature approach, on the other hand, explicitly 

rejects constructive processes as having a role in texture perception [Jule84], In 

this view, texture perception involves only detection processes based on a set 

of simple spatial features. 

2.3.3 Spatial-Frequency Models 

This approach models the attentive perception of random textures using a set 

of parallel spatial-frequency channels. Each channel describes the convolution 

of the original image with a specific filter. By studying the apparent similarity 

of various random textures, some insight can be gained into the structure of 

these filters, since similar textures should be exactly those that have similar 

properties in each channel. 

Spatial-frequency channels have their origin in the work of Campbell and 

Robson [CaRo68]. From studies on threshold spatial vision, Wilson et al 
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[WiBe79] [WiGe84] determined the shape of the channel filters as being the 

siims and differences of several Gaussian functions. Since the Fourier transform 

of a Gaussian function is another Gaussian function, the general form of these 

filters are similar in both the spatial and the frequency domains. A set of 4 - 6 

filters is postulated, the individual filters being nearly identical in shape, and 

differing in size from each other by a factor of approximately two. 

Richards and Polit [RiPo74] were the first to explain perceived texture using 

spatial-frequency channels. They established that only four different combina­

tions of spatial frequencies are needed to serve as the basis functions of a per­

ceptual space for line textures. Any line texture can therefore be perceptually 

matched by an appropriate linear combination of these functions; this suggests 

that there exist four physiological spatial filters mediating texture perception. 

Interestingly, the shapes of these filters correspond closely to those later 

determined by Wilson et al [WiBe79] from work on threshold vision. These 

filters have also been shown to form a possible basis for the grouping of texture 

into classes of apparent similarity [HaGe78][HaGe81], 

The spatial-frequency approach has several inherent advantages and disad­

vantages for texture representation. On the positive side, the descriptions are 

reliable [MaMo84]: they are easy to compute, are invariant under translation 

and rotation, vary continuously with change in the image, and capture infor­

mation at several levels of detail. In addition, a metric can be established to 

determine the distance separating two dissimilar textures. On the other hand, 

this approach leaves unspecified the characteristic features (if any) being mea­

sured in each channel. This makes it difficult to generalize from line textures 

to the fully two-dimensional case. Furthermore, many shapes are possible for 
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the filters characterizing the channels, so that assumptions must be made about 

their form. Unless firm links can be established between texture perception and 

other aspects of vision, any spatial-frequency model must contain a large degree 

of arbitrariness. 

This work examines one possible link, investigating whether texture per­

ception is based on measures such as the relative contrasts and zero-crossing 

densities in each of the filtered images. In this regard, the near-identity of the 

postulated filters under rescaling suggests that it is interesting to examine the 

discrimination of self-similar random textures. Assuming spatial-frequency fil­

ters of the form proposed by Wilson and Gelb [WiGe84], analysis shows that the 

texture-discrimination results are consistent with the multiple-channel model. 

The use of spatial-frequency channels to model texture perception is com­

patible with the assumptions of the other two approaches. If the frequency 

bandwidth of a filter is sufficiently large, the corresponding convolution mask 

can have arbitrarily fine resolution in the spatial domain. As such, the features 

present in these multiresolution images may be precursors for the basic elements 

of the spatial-feature and symbolic-structure approaches. 

Multiresolution representations have been successfully used for modelling 

several other aspects of vision [Grim81][Terz82][Burt84]. Whether such an ap­

proach also provides a good model for texture perception remains to be seen. 
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Chapter 3 

Self-Similar Random Textures 

Increased attention has recently been given to the modelling of random textures 

by self-similar stochastic fractals (e.g., [Pent83][MeYa84]). Such objects, intro­

duced by Mandelbrot [MaNe68] [Mand82], have a self-similar structure — any 

characteristic present at a small scale is also present at a larger scale (see ap­

pendix B). Their spatial structure is therefore complex, with no well-defined par­

tition existing between object boundary and intrinsic surface structure. Many 

random textures can be accurately described as fractals, and calculation of their 

fractal dimension (see appendix B) has led to classification accuracies as high as 

85% [Pent83][PeNa84]. Furthermore, the fractal dimension of a surface appears 

to correlate closely with its perceived roughness [Pent84]. 

In order to investigate the ability of the human visual system to discriminate 

among random textures with different fractal properties, it is useful to relate 

these properties to more conventional descriptions of texture. This chapter 

shows how this can be done. It also shows how textures with fractal properties 

can be viewed as special cases of a more general class of self-similar random 

textures. These are made up of instances of ra-dimensional random fields with 
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power spectra S(k) such that for some h,H,i £ 

[S(hk) - 7«(o)l = h-n-2H[s(k) - ^(0)], 

where A; is the spatial frequency, and 6(0) is the Dirac delta function. 

This work examines the factors affecting the discriminability of self-similar 

random textures. A straightforward algorithm is developed to generate such 

textures for use in the psychophysical experiments described in chapter 4. 

3.1 General Properties 

All statistical properties of a stationary Gaussian random field are completely 

governed by its mean n and covariance function C(x), or equivalently, by its 

mean (i and power spectrum S(k). Intuitively, any self-similar structure in such 

a field must be reflected in some form of self-similarity in its covariance function 

and power spectrum. 

This section examines the form of the covariance function and power spec­

trum for self-similar random fields. Since self-similarity is characterized here by 

a two-point measure, third- and higher-order statistics are not relevant. The 

restriction that the field be Gaussian can be therefore be relaxed. In what 

follows, the field f (x) is taken to be any n-dimensional stationary random field. 

3.1.1 Self-Similar Stochastic Fractals 

A self-similar stochastic fractal a(x) is characterized by the equation 

a(xx + h(x2 - xi)) - a(xi) = hH[a(x2) - a(x*i)], 

for some h, H 6 3ft, h > 1 (see appendix B). When a(x) is a random field f (x), 

its description can be recast into more conventional form. This reformulation 
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allows description of various properties in both the spatial and the frequency 

domains. Such a treatment shows that such fractals are special cases of self-

similar random fields. 

a) Self-similar covariance functions 

Theorem 1: A stationary random field has a covariance function C(x) such 

that within some range A < \x\ < A 

C(hx) - C{6) = h2H[C{x) - C(0)]; h, H e 9c, h > 1 

iff within that range the field behaves as a stationary stochastic fractal, with 

scaling ratio h, and similarity parameter H . 

Proof: If the random field f ( x ) is stationary, the behaviour of its increments 

can be described by 

f ( x x + h(x2 - x \ ) ) - f ( x x ) = w(h,H,x)[f ( x 2 ) - f ( x i ) ] 

where x\ and x*2 are arbitrary points, x = x 2 — X\, and w(h,H,x) is a function 

as yet undetermined. Taking the variance of both sides and using the symmetry 

of the covariance function yields 

[C{hx) - C(0)] = w{h,H,xf[C{x) - C(0)]. 

When A < | x | < A, w(h, H, x) can be identified as hH; the random field therefore 

exhibits fractal behaviour in this range. 

Conversely, if the field exhibits fractal behaviour, its increments are such 

that 

f ( x : + h(x2 - x x ) ) - f ( x x ) = hH[f{x2) - f ( X i ) ] ; A < | x | < A. 
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C ( x ) C ( x ) 

A A 

(a) H = 0.85, h->l 

A A 

(b) H = 0.85, h = 2 

Figure 3.1: examples of self-similar covariance functions 

Taking the variance of both sides leads to a covariance function of the appro­

priate form. • 

Thus, a stationary random field has self-similar fractal behaviour iff its co-

variance function is of the form given in theorem 1. Figure 3.1 shows a few 

possible shapes for C(x) in the one-dimensional case. 

In higher dimensions, the random field is not necessarily isotropic, for C(x) 

need not be rotationally symmetric. Indeed, the values of h and H may vary 

as a function of the direction of the displacement x. The general case, however, 

is not developed here. Instead, the random fields are assumed isotropic. 

The upper and lower cutoff scales are denoted by A and A respectively. 

Taking the limits A —*• 0 and A —• oo, the field becomes a true stochastic 

fractal, self-similar over all spatial scales. Given some initial displacement x0, 

it follows from self-similarity that the difference C(x) — C(0) is proportional to 
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h2H} for displacements of the form x = h'x0, j G Z. As j —»• oo, this difference 

increases without bound, forcing C(x) to become increasingly negative (figure 

3.1). Since a covariance function is subject to the constraint that the variance 

C(0) > |C(x)| [Papo84,ChlO], it follows that a random field with true self-

similar behaviour must have an infinite variance. 

To avoid such divergences in any physical realization, the fractal behaviour 

of a texture must be limited to some finite spatial range. This can be achieved 

by multiplying a true self-similar covariance function by a window function 

wp(x), where p > 0 is a measure of the window size. The function wp(x) may 

take such forms as e - a N 2

 o r sinc(/?|x|), where a,(3 G 9c > 0. By appropriate 

choice of window parameters, self-similar behaviour of arbitrary accuracy can 

be achieved in any finite spatial range |x| < A. At scales below this range, where 

theorem 1 still holds, the random field may be be considered a true fractal. 

b) Self-similar power spectra 

Theorem 2: Let f(x) be a stationary ra-dimensional random field with a power 

spectrum S(k) bounded above by A\k\~n~2H + n6(0) for some A,H,r) G 9c, 

0 < H < 1. If S(k) approaches a form such that 

[S{hk) - 7 (̂0)] = h -n-2H [s(£)-7*(o)]; h>i 

for some 7 G 9c, then the behaviour of f (x) approaches that of a true stochastic 

fractal, with scaling ratio h, and similarity parameter H. 

Proof: Consider the function 

a 
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The central area < a of S(k) has been deleted, and its Fourier transform 

obtained. This transform can be rewritten as a function of radial distance 

k — \k\ and n — 1 angular parameters. Since S(k) < A\k\~n~2H, its integral over 

the n — 1 angular parameters is bounded by Bk~2H~x, where B G 3t is some 

finite number. When a > 0 and H > 0, the integral over radial distance k is 

also finite. Since Sa(0) is finite, Sa[x) must exist for all x. 

Subtracting the term Sa(0) and rescaling yields 

Sa{hx) - Sa{0) = h~n r S(k/h)[exp{i2n{x-k)} - l]dk. 
J ha 

Due to the term [exp{i27r(x • k)} — 1], the contribution of 76(0) to any integral 

is zero. Since ^6(0) does not influence later developments, the value of 7 may 

conveniently be set to zero. Substituting the term hN+2HSa(k) — Sa(k/h) into 

the above integral then leads to 

Sa{hx) - 5o(0) = h2H[Sa{x) - 5o(0)] - h2H S{k)[exv{i2n{x • k)} - l}dk. 
J a 

This last term describes the error from true self-similarity. Owing to the 

symmetry of S(k), the sine component of Sa(x) is zero. The exponential can 

therefore be replaced by a cosine. For a\x\ « 1, the magnitude of the error 

term obeys the inequality 

\h2H / a
a f c S(k)[cos(27rx • k) - l]dk\ < \h2H f?h S(k){2irx • k)2dk\ 

< \87rn+lh2H f^swdxikyk^dk] 

< |87r'l+1fe2ifA/0

a',Jk-n-2if(|x|fc)2A;"-1(fJfc| 

= 8nn+1A\h2 - h2H\{2 - 2JH r)-1a2"2 / f|x|2. 

This last result shows that the deviation in Sa(x) from true self-similarity has 

an upper bound that goes as the square of the distance from the origin. For 
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any given amount of error, then, a spatial range \x\ < A can be found within 

which Sa(x) has asymptotically self-similar behaviour. 

Decreasing the value of a reduces the size of the error term, since H < 1. 

The range of self-similarity behaviour shown by Sa(x) correspondingly increases. 

Since 

lim5«(x) = R(x) = C{x) + fj.2, 
a—»0 

it follows that the behaviour of C(x) approaches 

\C{hx) - C(0)] = h2H[C{£) - C(0)]. 

Theorem 1 may then be invoked to show that the field exhibits self-similar 

fractal behaviour within a range that increases without bound as a —* 0. 

As noted above, the value of 7 has no effect upon self-similarity. Since the 

mean ju of a random field contributes only a term (J?S(0) to the power spectrum 

(see appendix A), this implies that the self-similar behaviour of the field is 

indifferent to the value of its mean. • 

For a one-dimensional power spectrum such that 

[S(hk) - 7*(0)] = h-^lSik) - 7^(0)], 

it follows from theorem 2 that the corresponding random field is a self-similar 

fractal with similarity parameter H. When h —*• 1, the fractal becomes self-

similar under all scaling ratios. Setting 7 = 0, this reduces to Mandelbrot's 

result, which states that S(k) oc k~x~2H (see appendix B). 

Any self-similar power spectrum of the form given in theorem 2 will cor­

respond to a stationary stochastic fractal. Examples of such generalized one-

dimensional spectra are shown in figure 3.2. 
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(a) H = 0.20, h -> 1 (b) H = 0.00, h = 2 

Figure 3.2: examples of self-similar power spectra 

Note that the scaling ratio h can vary independently of the similarity pa­

rameter H, and that their values can be common to a wide variety of spectral 

shapes. 

3.1.2 Self-similar Noises 

The restriction 0 < H < 1 in theorem 2 stems from the requirement that the 

corresponding random field exhibit fractal behaviour. If this requirement is 

dropped, the only constraint governing H is that the covariance function C(x) 

exists. Since the power spectrum remains self-similar, it follows that some form 

of self-similarity must also exist in the random field. 

Theorem 3: Let f(x) be a stationary ra-dimensional random field with a power 

spectrum S(k) bounded above by A\k\~n~2H + n6(0) for some A,H,rj £ 3t, with 

—n/2<H<0. If S(k) is the linear combination of a finite number of monotonic 
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functions, and is such that when \i = 0 

[S(hk) - i6(0)} = h -n-2H [S(fc)- 7 £(0)]; h>l, 

for some 7 (E 9c, then f (x) has a covariance function C(x) such that 

\C{hx) - 7] [C(x)- 7]; x^O 

for any value of the mean \i of the field. 

~ —* 

Proof: To show that C(x) = S(x) exists, consider the case where S(k) is a 

monotonic self-similar function of Partition fc-space into the regions: 
i) \k\ < a 

—* 

ii) \k\ > a, k{ < a, « = l,2,...,n 

m) ki > a, i = 1,2, ...,n 
—* 

where the A;,- are the components of k, and a 6 9c is some positive value. Since 

must also be finite. 

The value of S(k) over region (ii) is bounded from above by A\k\~n~2H. Since 

S[k) is integrated over a finite range of fc-space, and |A;| > a, the contribution 

from region (ii) is finite as well. 

The contribution from the third region can be expressed as 

H < 0, the integral of S(k) over region (i) 

is finite. This implies that 
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Let the n components of the displacement vector x be represented by 

Xi,x2,... ,£„. Owing to the rotational symmetry of S(k), there is no loss of 

generality by assuming that all components of x are non-zero. Using the sym­

metry of the cosine function, the contribution of region (iii) can then be written 
roo roo 
I ... I S(k) cos(xiA;i)... cos(xnA;n)(iA;i... dkn. 

J a J a 

When —n/2 < H, S(k) becomes a bounded, monotonically decreasing func­

tion in this region. Since k2 = Z),A:2, monotonicity also holds for each single 

component A;,-. The integral along any dimension i, 
roo 

J S(k) cos(xiki)dki 

is therefore finite, owing to the monotonicity of S(k) and the periodic symmetry 

of cos(xfc) about zero when x ̂  0. The entire integral over all n dimensions 

must therefore also be finite. 

Since the contributions of all three regions are finite when x ̂  0, S (x) must 

exist for all non-zero x. By the linearity of Fourier transformation, the Fourier 

transform S(x) must also exist if S(k) results from the linear combination of 

several monotonically increasing or decreasing functions. 

To obtain the formal relation between the self-similar behaviour of S(k) and 

C(x), consider the case it — 0. The formal relation between S(k) and C(x) (see 

appendix A) yields 

C0(x) -1 = J[S0(k) - i6(0)) exp{i'27r(x • k)}dk, 

where the subscript denotes that this holds only for the case n = 0. Rescaling 

by some h > 1 leads to 

C0{hx) - 7 = h~nJ[S0 - i6{0)]{k/h) exp{i27r(x • k)}dk. 
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Direct substitution of [S(k) - 76(0)] = h,-n-2H[S{k/h) - 76(0)] into this expres­

sion yields the result for \i = 0. 

The effect of setting the mean /z of a random field to a non-zero value 

is to add a term n26(0) to the power spectrum S0(k) (see appendix A). The 

covariance function of the field is (see appendix A) 

C{x) = j S(k)exp{i2n(x-k)}dk - fj,2, 

so that 

C ( x ) - 7 = f[S{k) - {7 +»2)6{0)}exp{i2ir(x-k)}dk 

= J[S0(k) - 76(0)] exp{t'27r(x • k)}dk 

= C 0 (x ) -7 . 

This shows that the mean fi of the random field has no effect on the self-similar 

behaviour of the covariance function. • 

Thus, when the similarity parameter H has the values — ra/2 < H < 0, a 

different type of self-similar random field results. These fields do not exhibit 

true fractal self-similarity: their covariance functions have the same type of 

self-similarity as their power spectra. Such random fields were first brought 

to attention by Mandelbrot [MaNe68], under the name of fractional Gaussian 

noises. The fields developed here are a generalization of these. They will be 

referred to as self-similar noises. 

Fractional Gaussian noise is a one-dimensional random field, or stochastic 

process. Its power spectrum has the form S(k) = C/r|A;| - 1 - 2 J 9 r , where CH is an 

arbitrary constant, and —1/2 < H < 0 (see appendix B). The scaling ratio h 

approaches unity, so that the power spectrum is self-similar over all scales. The 
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Fourier transform of Cg\k\ 1 2H can be evaluated via [GrRy65:3.762] 

J x~1+p cos(ax)dx = a_/3r(/3) COS(/?TT/2); 0 < (3 < 1 

to yield a covariance function of the form 

c W = r ( 2 g + i ) l ( - g , ) ' " ' " , ; "5<*<*>• 

The self-similar behaviour of fractional Gaussian noise therefore agrees with the 

general results of theorem 3. 

3.1.3 Effectively Self-Similar Textures 

In general, any physical structure exhibits self-similar behaviour only within a 

certain range of spatial scales. For example, a coastline cannot have a definite 

structure at scales less than the size of a grain of fine sand, and is limited at the 

other extreme by the size of the Earth. The concept of true self-similarity must 

therefore be replaced by the notion of effective self-similarity : the similarity of 

measurements made over a limited range of scales. If this range falls well within 

the limits set by the upper and lower cut-off scales A and A, there will be little 

difference in measurements made on true and effectively self-similar structures. 

This notion of effective self-similarity can be used to develop a general class 

of random fields. The power spectra characterized by 

\S[hk) - 7̂ (0)] = h-n-2H[S{k) - i6{0)] 

correspond to well-defined random fields when — n/2 < H < 0 and 0 < H < 1. 

Outside this range, their Fourier transforms do not necessarily exist. If the 

power spectrum is required to be self-similar only between the limits (j and fi, 

however, this consideration does not apply — if Ŝ A;) approaches zero quickly 
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enough, as k —• 0 and k —• oo, the similarity parameter 7J may take on any real 

value, positive or negative. Such spectra describe a general class of effectively 

self-similar random fields. 

The effectiveness of this self-similarity has an obvious dependence on the 

cut-off scales of the spatial structure being measured and the resolution of the 

measuring function used. For the human visual system, the greatest sensitivity 

to spatial frequency lies within the range 0.1 cyc/deg to 30 cyc/deg [CaRo68]. 

To be effectively self-similar, then, the random field need only have a power spec­

trum self-similar over this range of frequencies. Workers in computer graphics 

have discovered that such effectively self-similar fields are perceived as having 

much the same qualitative structure as fractals and self-similar noises [HaBa84]. 

3.2 Texture Generation 

While suitable for the generation of many self-similar random tex­

tures, the fractal-generating algorithms described in the literature (e.g., 

[Mand75][FoFu82][HaBa84]) are not flexible enough to allow independent vari­

ation of all stochastic parameters of interest. More conventional techniques for 

producing random textures (e.g., [PrFa78][Scha80][Gaga81]), on the other hand, 

allow virtually complete control of statistical properties, but their specifications 

have usually lacked a direct connection to fractal properties. Such a connection, 

however, has been established in section 3.1, where various characteristics of self-

similar random fields have been cast into terms involving covariance functions 

and power spectra. This provides a basis for generating self-similar random tex­

tures via the Fourier transformation of random variables. The Fourier approach 

has been used previously to generate conventional textures (e.g.,[Scha80]) as well 
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as the Fourier-Brown-Wiener fractals [Mand82], but the framework established 

here allows production of a much larger class of self-similar textures. 

3.2.1 Basis of the Algorithm 

The generation of a one-dimensional Gaussian random field f (x) can be based 

on Fourier transformation, viz., 

/

oo 
m(fc)z(fc) exp{i27rA;x}d/:, 

-oo 

where the z(k) are a one-dimensional field of identical, independent, zero-mean, 

delta-variance Gaussian random variables, and m(k) is a modulating function. 

The power spectrum of f(x) is S(k) = |m(A;)|2; its covariance function C(x) 

is the Fourier transform of S(k). The field f(x), being a linear combination 

of independent Gaussian variables, is a stationary, zero-mean Gaussian random 

field, completely specified by C(x) [Papo84]. This entails that f (x) is completely 

specified by m(k), an easily-controllable quantity. 

The generation of random self-similar textures, as developed here, is based 

on this result. Various one-dimensional random fields (i.e., stochastic processes) 

can be generated by specifying different forms for m(fc). The resulting images 

then need only be swept down through a finite distance to produce the line 

textures. 

In what follows, only continuous functions are discussed. Any physical real­

ization of an image, however, must be both bounded and discrete; its spectral 

representation must have a similar constraint. In Appendix C, it is shown 

that self-similarity can be effectively captured by discrete images. Textures can 

therefore be generated by the Fourier transformation of discrete unit-variance 

Gaussian random variables modulated by a discrete function m*. 
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3.2.2 Specification of Statistical Properties 

A wide variety of random fields have a power spectrum S(k) such that 

[S{hk) - 7̂ (0)] = h-1-**^) - 7̂ (0)]. 

For the case h —> 1, S(k) must be proportional to k~l~2H. For other values of h, 

its form is underconstrained, and various statistical properties can be specified 

independently of H and h. 

The shape of <S"(A:) may be specified by using a fixed template function P(k) 

to describe its values over the range \l,h), where h > 1 is to be the scaling 

ratio. This pattern is then repeated for all intervals [h*, h'+1),j 6 Z, with P(k) 

being geometrically scaled up or down by hS~l~2H^', and its argument adjusted 

accordingly. This leads to a spectrum of the form 

s(k) = c P d * ! / ^ ^ " 1 " " 0 ' ; h? < \k\ < h3+1, 

where j is the integer denoting the particular interval, and c is an arbitrary 

positive constant. The template function P(k) is an arbitrary bounded function, 

constrained to be positive. The resultant spectrum is obviously self-similar; an 

example is given in figure 3.3. From theorems 2 and 3, such a power spectrum 

describes a fractal when 0 < H < 1, and a self-similar noise when —1/2 < H < 

0. 

The square root m(k) of S(k) is the modulating function required to generate 

the random field f(x). By suitable design of S(k), therefore, several statistical 

properties can be independently specified. Among these are: 
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S(k) H 
o k 

1/h 1 h 

Figure 3.3: example of template construction 

Similarity parameter 

The similarity parameter H, closely related to the fractal dimension D (see 

appendix B), can have any real value. The choice of H determines whether 

f (x) is a true fractal, a self-similar noise, or an effectively self-similar random 

field. 

Scaling ratio 

The scaling ratio h can be given any value greater than unity. In the limit h —> 1, 
it leads to a random field self-similar for any scaling ratio, i.e., S(k) oc k~x~2H. 

Otherwise, it may be specified independently of H and P{k). 

Variance 

All self-similar textures ideally have an infinite variance. In practice, however, 

any random field is only effectively self-similar, having a finite variance. This 

quantity can be varied by altering the value of c. 
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Moments 

Different moments of S (k) — or equivalently, of C(x) — can be obtained by 

changing the form of the template function P(k). Again, this can be done 

without altering the values of the similarity parameter and scaling ratio of the 

random field. 
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Chapter 4 

Texture-Discrimination 
Experiments 

This chapter describes the psychophysical experiments carried out to determine 

aspects of self-similar random textures relevant to human visual perception. 

The experiments used a two-alternative forced-choice (2AFC) method to mea­

sure the discriminability of line textures taken from different parent ensembles. 

4.1 General Format 

4.1.1 Subjects 

Two volunteers participated in the experiments. Subject A, the author, had 

vision corrected to normal. Subject B had uncorrected normal vision, and was 

unaware of the purpose of the experiments. 

4.1.2 Stimuli and Apparatus 

All stimuli were composed of three rectangular line textures, placed one above 

the other (figure 4.1). The dimension of each rectangle was 128 x 256 pixels, 

or 7.5 cm x 15 cm. A dark border of width 16 pixels surrounded each texture, 
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Figure 4.1: display format 

separating it from its neighbours. This array was surrounded by a uniform field 

with a luminance equal to the average value of the textures. 

Each display contained line textures from the two classes being investigated. 

Two of the three textures came from the same class (i.e., they were generated 

using the same spectral parameters), while the third was an instance of the 

other random field. A set of 20 different instances was generated for each class. 

Selection and positioning of the instances in a given display were done randomly, 

subject only to the constraint that textures from the same class be adjacent. 

This meant that the task of the subject was to pair the middle texture with 

either the top or the bottom texture. 

Stimulus patterns were displayed on a Hitachi HM-2719B-C-11 monitor. 

Each texture had an average luminance of 30.0 cd/m2 and contrast of 0.7 (see 

appendix C). The distance from the subject to the screen was set to approxi-
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mately 200 cm, so that each texture subtended an angle of 2° X 4°. The textures 

consequently had half-power bandlimits of 0.12 cyc/deg and 31.9 cyc/deg (see 

appendix C). 

4.1.3 Presentation 

At the start of an experiment, subjects were presented with a display similar 

to the stimulus pattern, but with rectangles of uniform intensity in place of 

the textures (figure 4.2(a)). The luminance of these rectangles was set equal to 

the average luminance of the textures. This minimized any effects of sudden 

luminosity changes in the display when line textures replaced the rectangles in 

a presentation. 

Each presentation of a stimulus pattern was preceded by an acoustic warning 

signal. This was followed by a visual warning signal: a one-second flash of four 

white squares on the display (figure 4.2(b)). 

One second later, the stimulus pattern was displayed (figure 4.2(c)). The 

presentation lasted for five seconds, after which the line textures were replaced 

by the original uniform rectangles. Subjects were then asked whether the upper 

or lower pair of textures appeared more similar. Following standard psychophys­

ical practice [GrSw66], they were subsequently informed of the correctness of 

their response by the experimenter. To avoid biasing the responses, the exper­

imenter did not know the correct answer until after the response of the subject 

had been recorded. 

The duration of stimulus presentation was found not to affect the perfor­

mance of the subjects. Several presentation intervals, ranging from 3 seconds 

to 9 seconds, were tested. Performance did not vary significantly. 
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(c) line textures (d) uniform rectangles 

Figure 4.2: presentation sequence 
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To measure the discriminability between two classes of texture, subjects were 

given a series of consecutive presentations, each involving randomly-selected el­

ements of the two classes. To accustom subjects to this format, a set of learning 

trials was first performed. Subjects were then given sets of 50 consecutive pre­

sentations, each set done in a single sitting. For most textures, two sets of trials 

were used, each set tested on a different day. Discriminability of the two ran­

dom fields was measured by the fraction of correct responses in the combined 

set. 

4.2 Similarity Parameter 

The first set of experiments was designed to measure the discriminability thresh­

old AHg for textures of different similarity parameter H. When 0 < H < 1, 

this quantity is closely related to the fractal dimension D (see appendix B) of 

the texture, viz., 

D = 3 - H. 

These experiments determined the discrimination thresholds AHe of sev­

eral self-similar textures with h —> 1. In accord with common psychophysical 

practice [GrSw66], this was taken to be the difference in similarity parameters 

separating textures distinguishable 75% of the time. 

4.2.1 Procedure 

A set of self-similar line textures was generated for each of four reference classes. 

These textures had H £ {—1/2,0,1/2,1} and h —• 1. Each reference class was 

tested against eight classes of comparison textures with similar h but different 

57 



H. The similarity parameters of the comparison sets were greater than those 

of the reference classes, and were separated in steps of 0.025 from each other. 

The discriminability between each reference and comparison class was de­

termined in the fashion outlined in section 4.1. Fifty presentations were given 

to each subject for every pair of classes tested. Examples of two different com­

parison classes used against reference class H = 0 are shown in figure 4.3. 

To test for symmetry of discriminability about the reference values, a second 

set of observations was collected from subject A. This set was similar to the first, 

except that the similarity parameters of the comparison classes were below the 

reference values. 

4.2.2 Results and Discussion 

The eight points obtained for each reference class were used as the basis for 

a psychometric function xp(H,AH), describing the percentage correct identifi­

cation as a function of the reference value H, and the difference AH. Probit 

analysis [Finn7l][McKl85] was used to determine the threshold values (75% cor­

rect identification) for each of these curves. By convention, AH is taken to be 

positive for comparison textures with values of H higher than those of their 

reference classes. 

Results are shown in table 4.1. Performance was consistent for both subjects. 

The chi-square values were calculated, and used to determine the quantity p, 

the probability of error in the fit of the curve. The values of p show that the 

ip(H, AH) calculated from the data have tolerably good fits to lognormal form. 

The threshold value AHg was found to generally decrease with increasing 

H. Results were similar for both positive and negative thresholds, except that 
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Upper texture: H — 0.00, h —• 1 
Middle texture: H = 0.30, h -» 1 
Lower texture: If = 0.30, h —• 1 

A H = 0.30 > A-H* = 0.17 

Discriminability = 88% 

(a) textures above threshold difference AHg 

Figure 4.3: line textures above and below discrimination threshold 
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Upper texture: H = 0.00, h —• 1 
Middle texture: H = 0.00, h 1 
Lower texture: H = 0.10, /i —» 1 

Aif = 0.10 < AH9 = 0.17 
Discriminability = 56% 

(b) textures below threshold difference AHe 

Figure 4.3 (continued) 
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the negative thresholds tended to have somewhat lower magnitudes. 

These results have two major implications. First, there appears to be no 

appreciable perceptual distinction between fractals and self-similar noises. The 

positive and negative thresholds for H = 0 involve fractals and self-similar 

noises respectively; no large difference was found in their values. Furthermore, 

the threshold values for the self-similar noise (H = —1/2) showed no great 

deviation from the general pattern common to all other self-similar textures. 

The results also show that line textures that have an effective spectral self-

similarity behave in much the same way as do true self-similar textures. The 

two discrimination thresholds for H = —1/2 have nearly similar values, even 

though the negative threshold was measured using textures with H < —1/2. 

Similarly, the positive threshold for H = 1 has a magnitude virtually equal to 

that of its negative counterpart, in spite of being based on comparison textures 

with H > 1. 

In summary, then, the results of this experiment show that self-similar line 

textures with h —• 1 give rise to a continuum of perceived textures. No large 

changes in discriminability occur when stimuli change from fractals to self-

similar noises to effectively self-similar textures. 

4.3 Scaling Ratio 

The scaling ratio h is the minimum factor by which a self-similar texture can 

be compressed or expanded to match itself statistically (see appendix B). Con­

sequently, such a texture will also match itself under rescaling by factors of h? y 

j E Z. A second set of experiments was carried out to measure the sensitivity 
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discrimination thresholds — subject A 

H positive AHg
a Pb negative AHe p 

-0.5 0.19 ±0.03 0.01 0.22 ±0.04 0.33 

0.0 0.17 ±0.02 0.07 0.22 ±0.04 0.25 

0.5 0.17 ±0.02 0.27 0.20 ±0.03 0.19 

1.0 0.10 ±0.02 0.07 0.07 ±0.01 0.33 

discrimination thresholds — subject B 

H positive AH$ P negative AHe P 

-0.5 0.17 ±0.02 0.38 _ c — 

0.0 0.15 ±0.02 0.38 — — 

0.5 0.17 ±0.02 0.22 — -

1.0 0.10 ±0.02 0.60 - -

"(tolerances are for 5% error) 
'(probability of deviation from lognormal form) 
c(dash indicates experiment not performed) 

Table 4.1: discriminability of similarity parameter H 
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of the human visual system to this quantity when H was kept fixed. 

As was shown in chapter 3, the form of S(k) for a self-similar random field is 

not uniquely specified by H and h when h > 1. To examine the discriminability 

of h, arbitrary choices must be made for the shape of the pattern function P(k). 

Several different shapes - hopefully representative - were investigated. 

4.3.1 Procedure 

A set of reference textures {UJJ} with h —* 1 was generated for the values 

H G {—1/2,1/2}. These textures have power spectra SuH[k) oc k~1_2H, and 

are therefore spectrally self-similar over all scaling ratios. Each set served as a 

reference for comparison against other textures of similar H. Discriminability 

was measured using one hundred presentations for each pair of texture classes 

compared. 

A set of comparison textures Auh was generated for each of the similarity 

parameters H G {-1/2,1/2}, and scaling ratios h G {1.73,2.0,3.0,4.0}. The 

spectrum SAHh(k) of these textures was based on a template function of the 

form 

PAH<M = - hk»rY\i - c o s c ^ - ^ p ) ] ; k*r < k < her, 
where the base frequency k^se was set to 1/128 cyc/deg. Zeroes of SAlih(k) 

consequently occurred at the frequencies h'k^se, j G Z. Such a power spectrum 

is a series of relatively narrow peaks that increase in width and spacing as 

k —•oo (figure 4.4(a)). 

Both subjects were also tested on a second family of comparison textures 

{BH,?I}- The power spectrum SBHh(k) of these textures was similar to SAah(k), 
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S ( k ) 

O 8 1 6 24-
k ( c y c / d e g ) 

(a) power spectrum SAfIh(k) for H — —1/2, h = 2.0 

o a 1 6 2 4 
k ( c y c / d e g ) 

(b) power spectrum SBHyh{k) for H = —l/2,h — 2.0 

O 8 1 6 24-
k ( c y c / d e g ) 

(c) power spectrum SCHh{k) for H = —1/2, h = 2.0 

Figure 4.4: power spectra for {An,h}, {BH,h}, and {Cnih} 
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but with kb£at = so that the peaks of SBlth (k) fell midway between 

the peaks of SBHh(k). Figure 4.4(b) shows the spectrum SBHh(k) for H — 1/2, 

h - 4.0. 

The discriminability of a third family of textures {Cff,h} was also tested 

using subject A. These textures were similar to the {AH^}, but with a template 

function of the form 

pcBA(k) = - c o B ( 2
( l-i )tp)] ; kcae^k<hkcse> 

where kg" = kb^ae. The power spectrum ScH>h{k) for H = 1/2, h = 4.0 is 

shown in figure 4.4(c). Since kg86 = kb^se, the zeroes of these two functions 

coincide. 

4.3.2 Results and Discussion 

Results are shown in Table 4.2. Again, performance was consistent for both 

subjects. In all cases tested, textures became more discriminable as the differ­

ence in h increased. The exact shape of the template function did not greatly 

affect the results. Textures with H = —1/2, however, were more discriminable 

for a given difference Ah than were those with H = 1/2. 

These results show that the similarity parameter H — or equivalently, the 

fractal dimension D — is not the only second-order quantity relevant to dis­

criminability. Although having little effect when H = 1/2, the value of h does 

influence discriminability when H = —1/2. 

Interestingly, the scaling ratio does not have a large effect on discriminability 

when its value is two or less. White noise (H = —1/2, h —• 1) is virtually 

indistinguishable from textures with power spectra composed of pulses spaced 
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H = -l/2 percentage correct a — subject A 

h {UH} vs {AHIH} » {UH} VS {BH,H} {UH} VS {CHTH} 

1.73 64 ±4.8 55 ±5.0 56 ±5.0 

2.00 70 ±4.6 61 ±4.9 55 ±5.0 

3.00 80 ±4.0 69 ±4.6 64 ±4.8 

4.00 93 ±2.5 91 ±2.9 72 ±4.5 

H = -1/2 percentage correct — subject B 

h {UH} vs {AH,H} {UH} VS {BH,H} {UH} VS {CHTH} 

1.73 61 ±4.9 50±5.0 _ c 

2.00 68 ±4.7 61 ±4.9 

3.00 78 ±4.1 76 ±4.3 

4.00 92 ±2.7 93 ±2.6 — 

"(tolerances represent ±1 standard error) 
'(reference {UH} has h —• 1) 
c(dash indicates experiment not performed) 

Table 4.2: discriminability of scaling ratio h 
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H = 1/2 percentage correct a — subject A 

h {UH} vs {AHIH} B {UH} VS {BH,H} {UH} VS {CH,H} 

1.73 52 ±5.0 49±5.0 47 ±5.0 

2.00 61 ±4.9 62 ±4.9 59 ±4.9 

3.00 69 ±4.6 62 ±4.9 67 ±4.7 

4.00 77 ±4.2 64 ±4.8 69 ±4.6 

H = 1/2 percentage correct — subject B 

h {UH} vs {AH,H} {UH} VS {BH,H} {UH} VS {CH,H} 

1.73 53 ±5.0 58±4.9 _c 

2.00 56 ±5.0 52 ±5.0 — 

3.00 61 ±4.9 64 ±4.8 — 

4.00 61 ±4.9 59 ±4.9 -

"(tolerances represent ±1 standard error) 
'(reference {UH} has h —• 1) 
c(dash indicates experiment not performed) 

Table 4.2 (continued) 
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apart by a factor of two; when the pulses are spaced apart by a factor of four, 

however, discriminability is increased dramatically (figure 4.5). 

4.4 Discriminability of Other Properties 

To examine whether the second-order quantities H and h are sufficient to char­

acterize the perception of self-similar random textures, a final set of experiments 

measured the discriminability of textures with identical H and h, but with dif­

ferent template functions P(k) for their power spectra. 

4.4.1 Procedure 

The textures in the families {AJJ^}, {BH,H}, and {CH,K} were tested against 

each other for all combinations involving similar H and h. Subject A made the 

full range of observations H G {-1/2,1/2}, h G {1.73,2.0,3.0,4.0}. Subject B 

was tested on the range H G {—1/2,1/2}, h G {2.0,4.0}. Again, each pair of 

classes was tested using one hundred presentations. 

To determine the effect of a different compression of the power spectrum, 

a fourth family of textures {Djj>4} was generated for H G {—1/2,1/2}, h = 4. 

These had the same form of template function as the {Aji,h}, but with kpse set 

to §A T̂e. These sets were tested for discriminability against the classes AJJ^ 

and C H i 4 . 

4.4.2 Results and Discussion 

Results are given in Table 4.3. Performance of both subjects again remained 

consistent. Textures with similar H and h were found to be discriminable. This 
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Upper texture: Bjj,h, H = —0.50, h = 4 
Middle texture: Ug, H = —0.50, h —* 1 (white noise) 
Lower texture: UJJ, H = —0.50, h —• 1 (white noise) 

Discriminability = 91% 

s ( k ) 

O 8 1 6 2 4 
k ( c y c / d e 

white noise {BHh} 

(a) comparison of white noise and {BJJ^} for H = —0.5, h = 4 

Figure 4.5: white noise vs {BH,H} 
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Upper texture: UH, H = - 0 . 5 0 , h —• 1 (white noise) 
Middle texture: UH, H = —0.50, h —• 1 (white noise) 
Lower texture: Bn,h, H = —0.50, h = 2 

Discriminability = 61% 

S ( k ) 

white noise 

(b) comparison of white noise and {BHih} for H = —0.5, h = 2 

Figure 4.5 (continued) 
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discriminability generally increased as H decreased or h increased. As in the 

previous experiment, discriminability was always low when h was two or less. 

These results show that H and h are not the only second-order quantities 

relevant to the perception of self-similar random textures. Other quantities, 

dependent on P(k), must also be involved. This is consistent with the obser­

vation that when h —» oo (i.e., when the texture is no longer self-similar), the 

function P(k) completely describes the power spectrum. From the low discrim­

inability between textures with h < 2, however, it follows that a difference in 

the template functions does not generally suffice for high discriminability of the 

corresponding textures. 
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H = -1/2 percentage correct 0 — subject A 

h {AH,h} vs {BH,h} {BHIH} VS {C h,4 {CH,h} vs {AH^} 

1.73 51 ±5.0 53 ±5.0 48 ±5.0 

2.00 50 ±5.0 65 ±4.8 75 ±4.3 

3.00 85 ±3.6 87 ±3.4 76 ±4.3 

4.00 97 ±1.7 86 ±3.5 99 ±1.0 

h {AH,h} vs {DHIH} {DHIH} vs {CHth} _ 4 

4.00 98 ±1.4 57 ±5.0 — 

H = -1/2 percentage correct — subject B 

h {AH,h} vs {BHIH} {BH,H} VS {CH>h} {C„,h} VS {AH,k} 

2.00 70 ±4.6 56 ±5.0 67 ±4.7 

4.00 100 ±0.0 88 ±3.2 97 ± 1.7 

h {AH,H} VS {£>*,„} {DH,K} VS -

4.00 100 ±0.0 60 ±4.9 -

"(tolerances represent ±1 standard error) 
'(dash indicates experiment not performed) 

Table 4.3: discriminability of template function P(k) 
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H = 1/2 percentage correct ° — subject A 

h {AHih} vs {BHih} {BHth} vs {CHth} vs {Atf.J 

1.73 47 ±5.0 46 ±5.0 50 ±5.0 

2.00 54 ±5.0 65 ±4.8 54 ±5.0 

3.00 69 ±4.6 58 ±4.9 76 ±4.3 

4.00 78 ±4.1 76 ±4.3 73 ±4.4 

h {AH,h} vs {DH>h} {DHth} vs {CH>h} _ b 

4.00 77 ±4.2 53 ±5.0 — 

H = 1/2 percentage correct — subject B 

h {AH,h} vs {BHth} {BH,h} vs {CH<h} {CH,h} vs {AHih} 

2.00 47 ± 5.0 55 ±4.9 51 ±5.0 

4.00 58 ±4.9 81 ±3.9 76 ±4.3 

h {AHih} vs {DH,h} vs {C*,*} -
4.00 73 ±4.4 59 ±4.9 -

"(tolerances represent ±1 standard error) 
6(dash indicates experiment not performed) 

Table 4.3 (continued) 
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Chapter 5 

Discussion 

The central goal of this work is to determine aspects of self-similar random 
textures perceived by the human visual system. Results from the preceding 
chapter show that both the similarity parameter and the scaling ratio have an 
influence on perceived texture, but that they are insufficient to characterize it 
completely. Some implications of these results for a general model of texture 
perception are now examined. 

Since neither the texton theory nor the symbolic-structure approach are 
sufficiently developed to allow quantitative predictions to be made about the 
discriminability of random line textures, discussion is focussed on the relevance 
of the results for spatial-frequency models. The quantitative nature of these 
models allows the results to be checked for compatibility with the hypothesis 
that texture perception is mediated by measurements made on each of several 
parallel spatial-frequency channels. 
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channel 

peak 
frequency 
(cyc/deg) 

h oi(deg) <r2(deg) a3(deg) 

A 0.8 0.267 0.000 0.198 0.593 0.000 

B 1.7 0.333 0.000 0.098 0.294 0.000 

C 2.8 0.894 0.333 0.084 0.189 0.253 

D 4.0 0.894 0.333 0.059 0.132 0.177 

E 8.0 1.266 0.500 0.038 0.060 0.076 

F 16.0 1.266 0.500 0.019 0.030 0.038 

Table 5.1: values of constants for spatial-frequency channels 

5.1 Spatial-frequency Channels 

For concreteness, the channels proposed by Wilson and Gelb [WiGe84] are used 

in the analysis of the results. In this formulation, six parallel linear channels are 

postulated, with each channel t based on an isotropic filter -ff,(fc) of the form 

Hi(k) = a7r 1 / 2[oi exp{-(7rcr1A;)2} - foa2 exp{-(7ra2A;)2} + /?3e73 exp{-(7ra3A:)2}], 

where k denotes the magnitude of the spatial frequency. The values of the /?;- and 

Oj, taken from [WiGe84], are given in Table 5.1. Variation of these parameters 

with eccentricity from the center of the fovea has been ignored. The value of a, 

which describes the absolute sensitivity of each channel, is not of importance 

here — only the relative responses of a channel to different stimuli are of concern 

for the present analysis. The value of a is therefore arbitrarily set to unity. 

Any multichannel model of texture perception must specify the measure M,-
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used for each channel i. Two sets of possible measures are considered here; they 

are not intended to be exhaustive. The first is the relative contrast 

v_l

rfHf(k)S(k)dk\1/2 

S{k)dk J ' 

where S(k) denotes the power spectrum of the unfiltered image. This quantity 

describes the standard deviation of each filtered image, given that the unfiltered 

image has unit variance. Since contrast is proportional to the amplitude of the 

constituent waveforms of the image, V{ is proportional to the contrast of the 

image filtered by Ht(k). 

The second measure is the zero-crossing density Z% in each channel. For a 

Gaussian stochastic process [Papo84,ll-4], 

7 _n_(fk*Hnk)S(k)dk\1/2  

1 V fH?{k)S{k)dk J ' 

Zero-crossing densities resulting from a set of V 2 G filters at differing spatial 

scales were briefly considered by Riley [Rile81], but a thorough investigation of 

their suitability for representing texture has never been carried out. 

Various metrics for the perceptual distance between two texture classes can 
—* —# 

be based on V and Z. In what follows, the only constraint placed on the 

postulated metric is that it be weakly monotonic: if the ensemble values of 

measures M,- made on texture classes T0, Ti, and T 2 are such that 

M,(T2) > Mi{Tx) > M,(T0) 

for each channel i, then the discriminability between Ti and T0 must be less 

than or equal to that between T2 and T0. If the measurements made do not 

obey such an ordering, then no prediction can be made. 
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The use of such a weak constraint entails that predictions can only be made 

about the relative discriminability between some of the texture classes. The 

advantage of this approach, however, is that no detailed mechanisms of texture 

perception need be specified. This provides a way to test the compatibility of 

the results with the general class of models based on spatial-frequency channels. 

5.2 Analysis 

The values of V and Z for each of the reference classes H 6 {—1/2,0,1/2,1}, 
—# —* 

h —* 1 are given in Appendix D. Also given are the values V and Z for the 

comparison classes at the upper and lower discrimination thresholds. These 

values have been calculated only for subject A, since the performance of subject 

B was similar over virtually all textures tested. 

The results concerning the discriminability of H show that texture classes on 

the discrimination threshold generally have AVi/Vi in the range 10 — 50% for all 

channels. The values of AVi are roughly symmetric about the reference values 

for the upper and lower thresholds. This symmetry also holds for the AZ,-. 

The relative quantities AZi/Zi almost always fall in the range of 2 — 10%, with 

most values falling in the range of 2 — 6%. This last figure is interesting, since 

the relative difference in frequency for sine-wave gratings at the discrimination 

threshold is 2 — 5% [WiGe84]. The discriminability of the similarity parameter 

H would therefore appear to be compatible with a multichannel mechanism for 

texture perception. 
To determine whether the discriminability of the scaling ratio h is also com-

—* —* 

patible with such a model, the values of V and Z for all comparison textures 

used in section 4.2 were compared against those of the threshold texture classes 
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used in the previous analysis. Assumption of a monotonic discrimination mech­

anism allows two types of prediction to be made: 

1. If all measures Aff- of a comparison class Ti fall between the corresponding 

values for one of the threshold textures Tg and the values for the reference 

class To, then the discriminability between Ti and To must be less than 

or equal to the threshold level of 75%. 

2. If all measures M,- for one of the threshold classes Te fall between the 

corresponding values for the comparison class Ti and the values for the 

reference class T0, then the discriminability between Ti and T0 must be 

greater than or equal to the threshold level of 75%. 

Table 5.2 shows the predicted discriminability of the texture classes, using V 
—f 

and Z as two independent sets of measures. Comparison with the experimental 

results (Table 4.2) shows agreement with almost all predictions made. The sole 

exception occurs for H = 1/2, h = 4. Prediction based on V states that the 

discriminability between {UH} and {AH.H} should be below 75%. Comparison 

with table 4.2 shows that the observed discriminability is 77%. The standard 

error, however, could push this value down below the discrimination threshold, 

so that this exception is not statistically significant. 
—# 

The predictions — in particular, those based on V — correctly describe 

the diminished discriminability between textures with H = 1/2. Especially in­

teresting is the result that discriminability should generally be poor between 

textures with h < 2.0. These predictions are not sufficiently detailed to deter-
—* —* 

mine whether V, Z, or some combination of the two should be favoured as the 

set of measurements involved in texture perception. However, they do show 78 



that a multichannel model remains consistent with the discriminability of the 

scaling ratio. 

This approach can also be used for texture classes that have different tem­

plate functions P{k). The differences AV,- and AZ, can be used as before. If the 

values Vi and Z,- for the textures differ only slightly from those of the [h —>• 1) 
references, the same discrimination thresholds as in the previous analyses can 

be used as the basis of a consistency check. 

Table 5.3 shows the predicted discriminabilities of the texture classes. Com­

parison with experimental results (Table 4.3) shows that the low discriminability 

of the H = 1/2 textures is correctly predicted, as is the generally low discrim­

inability between textures with h = 1.73. Again, the Vi appear to be more 

sensitive measures of discriminability than the Zi. However, predictions are 

still too weak to allow one set to be preferred over the other. 

The low discriminability between many texture pairs cannot be predicted 

using this model. For example, no prediction can be made for the discriminabil­

ity between CH,A and DH,A when H = —1/2. However, a comparison of V and Z 

for the two classes of texture (Table 5.4) shows that AV,- and AZt are generally 

quite small. This situation is typical of many cases where prediction cannot be 

made. 

Taken together, these results imply that the ability of the human visual 

system to perceive self-similar random textures is compatible with models of 

texture perception based on spatial-frequency channels. 
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H = -1/2 percentage correct — measure = V 

h {UH} vs {AH,H} A {UH} vs {BHLH} {UH} VS {CH,H} 

1.73 < 75 6 < 75 < 75 

2.00 c < 75 < 75 

3.00 — — — 

4.00 — — — 

H = -1/2 percentage correct — measure = Z 

h {UH} vs {AH,H} {UH} VS {BH,H} {UH} VS {CH,K} 

1.73 < 75 < 75 < 75 

2.00 < 75 — < 75 

3.00 — — — 

4.00 — — — 

"(reference {UH} has h —• 1) 
b(l< 75' indicates discriminability is below discrimination threshold) 
"(dash indicates no prediction can be made) 

Table 5.2: predicted discriminability of scaling ratio h 
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H = 1/2 
—* 

percentage correct — measure = V 

h {UH} vs {AH,H} A {UH} vs {BH>H} {UH} VS {CHTH} 

1.73 < 75 b < 75 < 75 

2.00 < 75 < 75 < 75 

3.00 < 75 < 75 < 75 

4.00 < 75 < 75 < 75 

H = 1/2 percentage correct — measure = Z 

h {UH} vs {AHTH} {UH} VS {BH,H} {UH} vs {CH>H} 

1.73 < 75 < 75 < 75 

2.00 c < 75 < 75 

3.00 — — — 

4.00 — — — 

"(reference {UH} has h —> 1) 
6('< 75' indicates discriminability is below discrimination threshold) 
c(dash indicates no prediction can be made) 

Table 5.2 (continued) 
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H = -1/2 
—* 

percentage correct — measure = V 

h {AH,h} vs {BH,h} {BH,H} VS {CHTH} {CHIH} vs {AHih} 

1.73 b — < 75 a 

2.00 — — — 

3.00 — — — 

4.00 — — — 

h {AH>H} vs {DHih} {DHih} vs {CHIH} — 

4.00 — — 

H = -1/2 
—* 

percentage correct — measure = Z 

h {AH>K} vs {BH>H} {BHTH} vs {CHTH} {CH,H} vs {AH<H} 

1.73 — < 75 < 75 

2.00 — — — 

3.00 — — — 

4.00 — — — 

h {AH,h} vs {DH,h} {DHth} vs {CHTK} — 

4.00 — — — 

°('< 75' indicates discriminability is below discrimination threshold) 
'(dash indicates no prediction can be made) 

Table 5.3: predicted discriminability of template function P(k) 
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# = 1/2 
—* 

percentage correct — measure = V 

h {AH,H} VS {BH,h} {BH,h} vs {CH,h} {CH.H} vs 

1.73 < 75 ° < 75 < 75 

2.00 < 75 < 75 < 75 

3.00 < 75 < 75 < 75 

4.00 b < 75 < 75 

h {AH,h} vs {DH>H} {DH,H} VS {CHIH} — 

4.00 < 75 < 75 — 

H = 1/2 —* 

percentage correct — measure = Z 

h {AH,h} vs {BH>h} {BHth} vs {CH,,} {CHlh} vs {AHTH} 

1.73 < 75 < 75 < 75 

2.00 — < 75 — 

3.00 — — — 

4.00 — — — 

h {AH,h} vs {DH>H} {DHIH} vs {CHTH} — 

4.00 — < 75 — 

a('< 75' indicates discriminability is below discrimination threshold) 
6(dash indicates no prediction can be made) 

Table 5.3 (continued) 
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H = -l/2 
—* 

measure = V measure = Z 

channel {CHA} {DHA) {CHA) {DHA) 

A 5.40 x 10-2 5.41 x 10~2 2.22 2.25 

B 3.13 x 10"2 3.02 x 10"2 4.43 4.35 

C 1.93 x 10-2 1.82 x 10"2 7.76 8.24 

D 2.08 x 10"2 2.14 x 10"2 9.47 9.49 

E 5.33 x 10-3 4.79 x 10-3 15.87 14.03 

F 6.21 x 10"3 6.45 x 10~s 37.05 37.27 

Table 5.4: comparison of ensemble values for CHA a n d DHA 

84 



Chapter 6 

Conclusions 

This work investigates the ability of the human visual system to discriminate 

between self-similar random textures. The properties of such textures are de­

termined in both the spatial and the frequency domain, and their relation to 

the class of self-similar stochastic fractals is established. It is shown using psy­

chophysical experiments that the similarity parameter H and the scaling ratio 

h influence the discrimination of self-similar line textures, but that they are 

insufficient to completely characterize perceived texture. Analysis shows that 

the results of the experiments are compatible with a multiscale model of texture 

perception. 

These results are relevant to three areas of study. First, they suggest new 

methods of texture analysis. Previous techniques for analyzing textures by 

their fractal properties (e.g., [Pent83][PeNa84]) have considered only the simi­

larity parameter H, often using one-dimensional measures for its determination. 

This work shows that H is insufficient to characterize a random texture: other 

properties, such as the scaling ratio h, must also be taken into account. The 

treatment of self-similar random textures given in chapter 3 provides a basis for 

determining these quantities, and to do so using two-dimensional spatial and 
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spectral measures. 

More generally, the multichannel model of texture perception suggested in 

chapter 5 can be implemented on a machine. Using only the relative measure­

ments in each channel, algorithms can be developed that are translationally 

and rotationally invariant, and are robust under changes of grey level and scale. 

Indeed, initial work on one such algorithm shows promising results for the seg­

mentation of natural images [Litt86]. 

The second area of relevance is computer graphics. Self-similar stochas­

tic models are widely used to represent various objects and surfaces (e.g., 

[FoFu82][HaBa84]). The treatment of self-similarity given in chapter 3 forms a 

rudimentary basis for relating these self-similar constructs to true fractals. Fur­

ther, the texture-discrimination experiments described in chapter 4, although 

based only on self-similar line textures, determine the sensitivity of the hu­

man visual system to several properties of interest. This enables an estimate 

to be made of whether an algorithm can generate objects that appear truly 

self-similar. 

Finally, the results of this work are of relevance to the computational study 

of the human early vision system. The results of the psychophysical experiments 

are found to be compatible with the hypothesis that texture perception is medi­

ated through measurements made in parallel on the spatial-frequency channels 

putatively involved in form vision. This suggests that texture perception and 

form perception could share common mechanisms. 

Open Questions 

Although sufficient for the purposes of this work, the treatment of self-similar 
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random fields given in chapter 3 is incomplete in several respects. First, the 

relation between self-similar random fields and self-similar stochastic fractals 

established in in theorem 2 (section 3.1.1) applies only in one direction: if the 
—* 

n-dimensional power spectrum S[k) is self-similar, with 0 < H < 1, then the 

corresponding random field is a stationary stochastic self-similar fractal. The 

converse relation, however, is not established, and its existence is an open issue. 

Another issue also involves theorem 2. For the proof of the theorem to 

work, the power spectrum must be limited from above by a function A\k\~n~2H, 

where A is some positive number. Although presenting no constraint for any 

practical application, this restriction places a theoretical limitation on the type 

of spectral self-similarity that can correspond to spatial self-similarity. In the 

interest of completeness, it would be useful to establish whether the relation 

given by theorem 2 holds for all self-similar power spectra. 

Limitations on the form of S(k) also apply to theorem 3 (section 3.1.2), 

which relates the self-similar form of the covariance function to the self-similar 

form of the power spectrum when —n/2 < H < 0. Again, the boundedness 

required of S{k) is of no practical concern. The condition that S(k) be composed 

of several monotonic functions is likewise of little practical consequence. From 

a theoretical viewpoint, however, it would be interesting to determine whether 

theorem 3 would still apply if the restrictions on the form of S (k) were removed. 

If so, the converse of theorem 3 would follow as a natural result. 

Directions for Future Work 

The approach used in this work can be extended in several ways. First, a 

much wider range of discrimination experiments could be carried out, using the 
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techniques described in chapters 3-5. This would not only allow a more precise 

estimate of the discrimination thresholds, but would also provide additional 

evidence either for or against various multichannel mechanisms. Experiments 

involving textures with different first-order statistics (i.e., mean and variance) 

would also contribute toward this end. Although time-consuming, these exper­

iments would be straightforward to carry out. 

The techniques described in chapters 3-5 could also be used to examine the 

multichannel hypothesis itself, without specific reference to self-similar textures. 

The requirement of self-similarity could be dropped, and the power spectra of 

texture classes designed expressly to distinguish between competing multichan­

nel models. To make this approach feasible, a method is required for the design 

of the appropriate spectra. 

A more elegant route to the same goal, however, would be to develop tech­

niques for determining the form of the putative spatial-frequency channels di­

rectly from the observed discriminabilities. It is difficult to estimate the amount 

of effort required to develop such techniques. Once constructed, however, they 

would be of great value in determining the exact mechanisms of texture per­

ception. 

An extension of these techniques to self-similar non-Gaussian random tex­

tures would also be of interest. Such textures could be readily created, e.g., by 

using dithering techniques to binarize Gaussian textures. Although the theo­

rems developed in chapter 3 would still hold, the analysis of the results would 

almost invariably be difficult, for the simplifications available for the Gaussian 

case are not generally applicable. However, special cases might be found for 

which the analysis would be tractable. These could provide useful checks on 
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Figure 6.1: cross display format 

the results achieved for the Gaussian case. 

Perhaps the most obvious extension of the approach developed in this work 

is to apply it to fully two-dimensional textures. The theorems on self-similarity 

developed in chapter 3 apply to the general n-dimensional case, so that genera­

tion of various two-dimensional self-similar textures would be straightforward. 

Discrimination experiments analogous to those of chapter 4 could be carried out 

via a cross display format: two pairs of textures would be aligned at random 

either in the horizontal or in the vertical direction (figure 6.1). 

This technique could be used to determine various anisotropics of the visual 

system. Analysis of the results, however, would be difficult — there is at present 

no analytic formulation of the distribution of the angles, lengths, curvatures, 

etc., of the zero-crossings in a two-dimensional Gaussian random field. 

A more reasonable approach to analyzing the two-dimensional nature of tex­

ture perception might be to investigate the discriminability of line textures at 

various orientations. Such a study would be relatively easy to carry out, since 
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the analytical techniques have already been developed. It would be interest­

ing to compare such results against those expected from fully two-dimensional 

spatial-frequency filters. 

One last suggestion for future work is to investigate the discriminability of 

textures of various colours. Virtually all work in texture perception has involved 

monochromatic textures that were broadband, i.e., black and white. It would 

be straightforward to do analogous experiments and analyses on narrowband 

textures, composed of just a few spectral colours. Of particular interest would 

be the discriminability of textures whose chromatic components have different 

dimensions. The results could provide new insights into the relation between 

texture perception and colour perception. 
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Appendix A 

Random fields 

This appendix describes some of the basic concepts and methods used for the 

analysis of two-dimensional random fields. Much of the material is based on 

Jenkins and Watts [JeWa68] and Papoulis [Papo84]. 

A . l Introduction 

The term random image, as used here, refers to an image containing no appar­

ent regularities of any kind. In other words, there is no algorithm available to 

the observer that would allow compression of the size of the image description. 

Since only a limited amount of information can be used for a representation, 

the description of an entire random image is often impractical. Instead, repre­

sentations must be used that allow a maximum of information to be captured 

by a minimum of description. 

Among the representations commonly used are sets of average properties. 

These properties and their relations can be determined by the methods of 

random-field analysis. Such methods originated in the analysis of time series, 

one-dimensional random functions for which the value of a function at a given 
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t 

Figure A.l: example of time series 

time cannot be predicted exactly from the knowledge of its values at previous 

times (figure A.l). 

Although different sections of a time series v(t) over similar intervals At 

have little similarity in a strict sense, their average properties are often nearly 

identical. This leads to the idea of modelling a time series by a stochastic process, 

an ordered set of random variables v(t) that describes the ensemble of functions 

that could possibly be realized. The function v(t) is simply one of the infinitely 

many values that the process v(r) could have taken. Such a treatment makes 

it possible to relate the measured averages of v(t) to the ensemble properties of 

v(i). This allows the relations between the average properties to be treated in 

an exact fashion. 

To maintain the distinction between the ensemble and one of its instances, 

random variables are always denoted by bold-faced characters. Any particular 

instance is denoted by a character of standard font. 

The concept of a stochastic process can be extended to obtain that of a 

random field, a two-dimensional space of (complex) random variables f(x,y). A 

random image f(x, y) may then be interpreted as an instance of the ensemble of 
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functions described by f (x, y). Time series and random fields can be considered 

as special cases of n-dimensional random fields f (x), where x — (xi, x 2 , . . . , xn) 

is an n-dimensional position vector. In what follows, only the two-dimensional 

case will be developed, since it is of most relevance to image analysis. Analogous 

developments, however, can be carried out for any finite number of dimensions. 

A random field can be either continuous or discrete, depending on the param­

eter set {x}. Continuous random fields are denoted here by standard functional 

notation (e.g., f (x, y), g(fc,/)). Discrete fields, on the other hand, are denoted 

using subscript pairs (e.g., fxy, g m „). For convenience, only the continuous case 

is described in this appendix. The discrete case can be developed in a paral­

lel fashion by replacing integration by summation, and the continuous Fourier 

transforms by their discrete counterparts. 

A.2 Mean and Covariance 

A random field f(x, y) = f(x) is defined to be a set of random variables 

parametrized by a two-dimensional space, with each point XQ being the loca­

tion of a (complex) random variable f(x*o). A random field is often represented 

by a multivariate probability distribution, which completely describes the joint 

statistical properties of all its constituent random variables. 

Each variable f(x 0) has an associated probability density function Pf(s0){w), 

where w is, in general, a complex quantity. The consideration given to complex 

random variables is not only for the sake of generality, but also because of 

the simplifications brought to the formal description of Fourier transformation. 
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Real-valued random fields are easily treated as a special case of this more general 

approach. 

Two significant properties of a complex random variable are its mean 

fj,(x0) = E{f(x0)} = w • Pf(Zo)(w)dw, (A.l) 

and its variance 

o2(xQ) = E{\i{x0) - n{x0)\2} = fjw- H(x-0)\2pnso)(w)dw, (A.2) 

where the region of integration is taken to be the complex plane 3. 

Pairwise correlations amongst the random variables are described by the 

correlation function 

R{x1,x2)=E{f(x1)f(x2y}, (A.3) 

and the covariance function 

C{xux2) = ^{[f(x!) - n{Si)][f{Sa) - , , 
(A.4) 

- R{x!,x2) - n{xi)n(x2)*, 

which describe the linear dependence of f (x*i) and f (x2) on each other. 

When /x(x) = //, the two functions differ only by the constant \/x\2, and it 

is common practice to use only one of them for description. In such a case, 

this work uses the covariance function C(xi, x2) to describe the second-order 

moments of random fields. Note that C(x1,x1) = a2{xx), i.e., the covariance of 

a single random variable is its own variance. 

If the random field has a multivariate Gaussian distribution associated with 

it, the field is completely specified by fi(x) and C(xi,x2) [Papo84:9-2]. For 

such a case, the condition C(xi, x2) = 0 implies that the corresponding random 

variables are independent. 

102 



A.3 Stationarity 

The random field f(x, y) is said to be stationary if its statistical properties 

remain invariant under translation, viz, 

f (x, y) = f(x + Ax, y + Ay). 

Such fields represent processes that are independent of any particular location 

— they have an equilibrium distribution that has the same statistical properties 

everywhere. In the remainder of this report, attention is restricted to stationary 

random fields. 

For a multivariate Gaussian distribution, it follows that the random field is 

stationary iff fj,(x) = fi and C(xi,x 2) = C(xi — x 2). 

A.4 Sample Functions 

Given an instance f(x,y) of f(x, y), various sample functions may be defined 

on it. These functions determine various average properties, which in turn can 

provide estimates of ensemble properties. 

For any given instance f(x,y) a sample average f may be defined as 

1 r^/ 2 rTv/2 

f = TfTjr / / f(x,y)dxdy, 

where the random field f (x, y) has been assumed to be zero outside the domain 

\—Tx/2,Tx/2] x [—Ty/2,Ty/2]. The sample correlation function is similarly de­

fined as 

c(Ax, Ay) = —— j \ [f{x + Ax,y + Ay) - /][/(x,y) - f)*dxdy. 
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These sample functions may be considered to be particular instances of 

ensemble estimators. Ensemble estimators are functionals of the random field, 

assigning a random variable to any f(x, y). The estimator for the mean, for 

example, is 

When /(x,y) is stationary, it can be shown that the estimators f and 

c(Ax, Ay) asymptotically approach the constant ensemble values of n and 

C(Ax, Ay) respectively as Tx,Ty —> oo [JeWa68,ch5]. Both sample functions 

are consequently ergodic, the spatial averages reflecting the ensemble averages. 

A.5 Fourier Analysis 

The techniques of Fourier analysis can be usefully applied to the study of ran­

dom fields. Attention is focussed here on the Fourier series and Fourier trans­

forms of continuous functions. Analogous developments for the discrete case 

can be done using finite discrete Fourier series [JeWa68]. 

An instance /(x, y) of a random field f (x, y) may be analyzed into its con­

stituent harmonics in the same way as any other function. Let /(x, y) denote 

an image that is non-zero only inside the domain [—Tx/2,Tx/2] x [—Ty/2, Ty/2]. 

Such an image can be represented by the Fourier series 

and the covariance estimator is 

oo oo 

/(*>!/)= E E /*,exp{*27r(»/rs + m/rw)}, 
n = — o o m = — o o 
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where 
l rT*/2 rTy/2 

fki = TFTrT / , / f(x,y)exp{-i2w(kx + ly)}dxdy. 
l x l y J-Tz/2 J-Ts/2 

The term is the frequency-space representation of f(x,y). It is almost 

always random for any given instance f(x,y), its value at a given point having 

no definite relation to the values at other points. Increasing the size of Tx and 

Ty does not cause fkt to settle down to some deterministic function. Apart 

from windowing effects arising from the finite sizes of Tx and Ty, the average 

properties of fa (as determined from its sample functions) usually converge 

to definite values as Tx,Ty —> oo. (See [JeWa68] for illustrations of the one-

dimensional case.) 

With this is mind, it is natural to regard fa as an instance of an ensemble 

of possible functions fjfcj. When TX,TV —*• oo, this leads to the the random field 

~ _, roo roo 
f{k,l) = f(k) = / / f(x,y)exp{-i2Tr(kx +ly)}dxdy. (A.5) 

J—oo J oo 

Similarly, f(x,y) can be expressed as the inverse Fourier transform of f(A;,/), 

viz., 

/
oo roo „ 

/ f(k,l)exp{i27r(kx + ly)}dkdl. (A.6) 
-oo J—oo 

A.6 Power Spectra 

When f(x, y) is stationary with mean ii and covariance C(xi — x2), it follows 

from eq (A.5) that 

E{f(k)} = H6(0), 
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and 

— I^oo / f ^ o R{x) exp{-i2n(kl • x)} exp{-«'27r(x2 • (A7x - k2))}dxldx2, 

where x = x^ — x2, and 6(k) is the Dirac delta function. This last term can be 

written 

J5{f(*j)f*(*2)} 

= J^oo f™oo R{x) exp{-i'27r(A71 • x)} exp{-i'27r(x2 • (kx - k2))}dxdx2 

= R{x) exp{-i27r(jfei • x)}£(ifci - £ 2)dx 

= S&W*!"*,), 
where 

- r°° -, 
S(k)= I R(x)exp{-i2n(k-x)}dx 

J —oo 
is the power spectrum of the random field. 

The f(k) form a field of independent random variables. When k ̂  0, they 

are zero-mean, and have a variance of S(k)6(0). It is often convenient to factor 

the f(fc) into 

f(k,l) = m(k,l)z(k,l) +n6(0), 

where the z(A;,/) are zero-mean random variables with a delta variance (i.e., 
—# —* —* —* 

E{z(ki)z*(k2)} = 6(ki — k2)), and where m(k, I) is a real-valued non-negative 

function that modulates them. Using this factorization, eq (A.6) can be written 

/
oo roo 

/ [m(k,l)z(k,l) + n6(0)]exp{i2n(kx + ly)}dkdl. (A.7) 
- o o J—oo 

A similar result holds for the discrete case, where E{zklz*k2} = 5fclfc3 [Papo84]. 

Using the definition 

= f-oo[™2$) + \n\26{0)]exp{i2Tr{k • (x\ - x2))}dk, 
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it follows that 

S(k) = m2{k,l) + \fi\26{0). 

Since the z(k, I) have delta variance, it follows that the power spectum describes 

the contribution of the harmonic at (k,l) to the rms power of f(x,y). 

An interesting relation exists between m2(k,l) and the covariance function 

C(xi,X2) of a stationary field. Since 

C{x1-x2) = R{xx - x2) - \ii\2 

= S-JS{k,l) - M2£(0)]exp0-27r(£• (x\ - x2))}dk 

= S-oo m2(fc> 0 exp{i27r(fc • {xx - x2))}dk, 

the function C{xx — x2) is the Fourier transform of the quantity m2(k, I) = 

S(k) - \n\26(0). 

When the z(k, I) are delta-variance Gaussian random variables, the function 

f(x, y) is multivariate Gaussian, since it is a linear combination of Gaussian 

random variables. The random field is then completely determined by fx(x) 

and C(xi,x2). In this work, the z(k,l) are always taken to be zero-mean, 

delta-variance Gaussian random variables. This allows the power spectrum and 

covariance function to be equivalent descriptions of the random field. 

A.7 Real-Valued Random Fields 

If the random field f(x, y) is real-valued, then f(x, y) must equal f*(x, y). From 

eq (A.7), it then follows that z(k) must be conjugate-symmetric about the origin 

(i.e., z(k) = z*(—k)), and that fi be real-valued. 

It is important to note that if f(x, y) is real-valued, then the z{k) must 

be complex quantities with random phases. If the z{k) were real-valued, with 
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conjugate symmetry, then 

£;{z(fc1)Z*(fc2)} = 6{k! - k2) + 6[k! + jfe2). 

This relation, together with eq (A.7), entails that 

exp{t'27r((A;1x1 - fc2x2) + {hyi - /2y2))}<ifc1rffc2 

= Ho /!L m2(fc, 0 exp{t27r(fc(x1 - x2) + /( y i - y2))}dk 

+ 1^ JZo m2(k, I) exp{i2n{k{x1 + x2) + Z(yi + y2))}dk. 

The covariance function therefore depends upon X\ + x2, showing that sta-

tionarity is lost when the z(k) are real-valued. 
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Appendix B 

Fractals 

This appendix provides a brief overview of some of the basic ideas of frac­

tal geometry. It is an extension of the expositions given by Mandelbrot 

[Mand67] [MaNe68] [Mand75] [Mand82] [Mand84]. 

B . l Introduction 

The piecewise-differentiable curves and surfaces commonly used to describe 

shape do not adequately represent all aspects of the forms found in nature. For 

example, the length of a coastline is not a well-defined quantity — as the scale 

of measurement is made finer, small indentations and promontories previously 

unresolved become noticeable, thereby increasing the total length measured. 

As the resolution is increased, the length of the coastline tends toward infinity. 

In a similar fashion, the measured surface area of a rugged terrain depends on 

the scale of measurement, increasing without bound as the scale tends to zero. 

These are not isolated phenomena. 

Richardson showed empirically [Mand82] that jagged objects such as coast­

lines could be characterized by the rate at which their length increased as a 

109 



function of measurement resolution. When the basic measuring-scale A used 

in some method is replaced by A/a, the number of the scale-lengths measured 

increases as aD, where D is some constant such that 1 < D < 2. Thus the total 

measured length L(X) can be written as 

L(A) = F\~D • A = FX1'0, (B.l) 

with F a constant depending on the particular object measured, and the method 

of measurement used. 

The parameter D holds constant over a wide range of spatial scales, reflecting 

the inherent jaggedness of a coastline. For D « 1, the line is smooth. As D 

increases, the line becomes much more jagged. For D —> 2, a coast becomes 

extremely rough and convoluted, with many islands and fiords. The average 

value of D for the world's coastlines is estimated to be 1.2 [Mand82]. 

This approach can be applied equally well to jagged surfaces and volumes. 

When the value of D is the same as the intuitive dimension of the object (e.g., 

D = 1 for coasts, D = 2 for surfaces), the object can be adequately described 

by standard Euclidean geometry. When D has a different value, the object is 

regarded as a fractal. 

B.2 Definitions 

Fractals are a class of mathematical objects largely developed by Mandelbrot 

[MaNe68][Mand82], who defines a fractal as a set whose Hausdorff-Besicovitch 

dimension is greater than its topological dimension. 

The topological dimension T is that captured by the intuitive idea of di­

mension. All surfaces, for example, have T = 2. The Hausdorff-Besicovitch 
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dimension is obtained via a test function or generalized ball 

_ [r(i/2)]<* d  

h d [ p ) ~ r(i + (d/2))"p ' ( R 2 ) 

where T(x) is the gamma function. The ball takes the following forms for 

{1,2,3}: 

d = 1: h1(p) = 2p 

d = 2: ^2(/>) = TP 2 

d = 3: /i3(/>) = ffl-p3 

Let the quantity M(d, p) be the smallest possible covering of a set S with 

/id-balls of radius p m < p. The measure M(d) of <S is then given as the limit of 

M(d, p) as the radius of the balls approaches zero 

M(d) = lim j inf £ M , m ) j (B.3) 

Only one value of d results in M(d) taking on a non-zero, finite number. This 

is the Hausdorff-Besicovitch dimension D of the set S. For example, if S is a 

square area of unit dimensions, 

d = 1: hx{p) oc p. Thus M(l) oc p/p2 —> oo 

d = 2: fc2(p) « P2- T h u s M i 2 ) « /"V^2 -»• 1 

d = 3: fes(p) « ps. Thus M(3) a ps/p2 0 

The only non-vanishing, finite measure is for the ball h2, so that D = 2. 
This approach readily extends to arbitrary sets. For many of these, D is 

not an integer, and is greater than the topological dimension T. These sets are 

termed fractals, and D is called the fractal dimension. 
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An embedding set X is denned to be a Euclidean space that contains the 

fractal set S i.e., S C X. The dimension E of X provides an upper bound on 

D. Thus, D must always obey the double inequality T < D < E. 

The deterministic fractals are those that are constructed according to fixed, 

definite rules. The simplest such fractals are sets made up of the union of a 

finite number n G Z+ of compact sets [Hutc81] such that 

where the Si are similitudes, i.e., mappings composed of a translation, an or-

thonormal transformation, and a homothety (a uniform scaling). The scaling 

factor r > 1 of the homothety describes the ratio of the set a to its subset 5,-(o). 

It is often referred to as the geometric ratio. The form of the set a is constrained 

to produce self-similarity, but may otherwise be arbitrarily chosen. 

The dimension of such a set can be easily ascertained when the intersection 

of the Si(a) has a smaller dimension than that of the set itself. (This condition 

is almost always the case [Mand82].) Given that a self-similar set a has a 

dimension D, it follows that each of the 5,- (a) must have the same dimension 

D, since this quantity is invariant under translation, scaling, and orthonormal 

transformation. Taking the measure of a to be the sum of the measures of the 

Si(a), this becomes 

B.3 Deterministic fractals 

a = S^a) U S2{a) U • • • U Sn(a), 

[T(|)]D

 ( P n 

r(i + fr r 
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Equating this with the direct measure of a, viz., 

M(£>) = lim(inf £ -Mll-L^l 
v ' p^o\pm<p ^ r ( i + f) m J 

leads to the condition 

The dimension of the set may therefore be expressed as 

D = log(n)/log(r). (B.4) 

It is important to distinguish clearly between fractal sets and self-similar 

sets, for neither is a strict subclass of the other. For example, a union of straight 

horizontal line segments connected at their endpoints forms a horizontal line, 

which is technically not a fractal, since D — T = 1. Fractals, on the other 

hand, are not necessarily characterized by self-similarity, for the similitudes 5,-

are not the only mappings that produce them [Hutc8l]. In this work, attention 

is restricted to the class of objects that are both self-similar and fractal, as they 

provide a convenient domain containing all the properties of the general class 

of fractals. 

Example: Koch curve 

The Koch curve if is a simple self-similar curve, constructed in a recursive 

fashion. In the first stage of construction, the initial base is replaced by a gener­

ator made up of four smaller sections (see figure B.l), each having a geometric 

ratio r = 3 with respect to the base. 

Each of these first-stage sections is then replaced in its turn by a scaled 

generator to obtain the second-stage figure. The Koch curve is defined to be 

the limit of the process as the number of stages approaches infinity. 
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base 

first stage 

second stage 

Figure B.l: Construction of Koch curve 

The resulting curve is self-similar in its embedding space (E = 2), with r = 3 
and n = 4. Its dimension is therefore 

D = log(n)/log(r) = log(4)/log(3) » 1.26. 

In many respects, the Koch curve roughly approximates a coastline. Indeed, its 

length L increases as 

L{k) = C{n/r)k = C{l/r)k^-D\ 

where k is the level of the stage generated, and C is a constant depending on 

the size of the base. Denoting the length of the sections at stage k by 

the length may be written 

L{e) = Ce1-0, (B.5) 
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The similarity between eqs (B.l) and (B.5) is readily apparent. 

The example also shows that although the condition D > T implies that the 

curve is non-differentiable, it does not imply that continuity is necessarily lost. 

B.3.1 Parametric Representation 

An alternate characterization of self-similarity is to regard a fractal as an E-

dimensional vector quantity a parametrized by a T-dimensional vector t. The 

parameterization process is illustrated for the case of a curve (T = 1) in a two-

dimensional embedding space (E = 2). This process can be readily extended 

to the general case. 

A general class of self-similar curves can be constructed by generalizing the 

process used to form the Koch curve. An initial straight-line base is replaced by 

a generator composed of n equal-length sections. Apart from the requirement 

of contiguity of the sections, the form of the generator is arbitrary (figure B.2). 

Each section is in turn replaced by a scaled-down generator, the process being 

recursively continued until a limiting form is reached. 

Parametrization by a real-valued quantity t is done in a fashion which par­

allels that of the construction process. To begin with, the location of the left 

and right endpoints of the initial section are left undisturbed by later stages of 

construction. They may therefore be unambiguously assigned correspondences 

to the parametric values t0 and tn respectively, where t0 < tn. 

Consider now the first stage of construction. The locations of the corners 

between the n line sections in the generator remain unaffected by later stages. 

They may therefore be assigned correspondences to the parametric values 

ti = t0 + (t'/n)[tl - t0] | i e {1 ,2 , (n - 1)}, 
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base 

Figure B.2: Construction of generalized curve 

the assignment being such that the values along the line form a strictly in­

creasing sequence. This parameterization is continued in a similar way for all 

later stages of the construction. Each point on the curve therefore uniquely 

corresponds to a value of t. 

For an arbitrary point on such a parametrized curve, its location a(r) may 

be specified in two different ways. The first is with respect to the origin a{tQ) 

of the base section; the second is with respect to the starting point a(i,) of the 

generator section giving rise to that point (figure B.3). Comparing the 

two formulations, it follows that 

a(t) - a{t0) = a{U) - a(t0) + (l/r)iE(0,-)[a(to + n{t - tt)) - a{t0)} (B.6) 

for all t0 < t < tn. The i2(0,-) are rotation operators, that relate the orientation 

of the generator sections to that of the base. For the section running from to 
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a(*0) a(ii) a(rn) 

Figure B.3: Relation of descriptions of self-similar curve 

U+i, the rotation angle 0,- is given by 

0 i = arctan(^4^4H) - arctan^'j " a ", 0 | ) . (B.7) 
- ax[ti) ax(tn) — ax[t0) 

For these curves, then, the similitudes 5,- are composed of a translation a(U) — 

a(t0), a rotation R(0i), and a uniform rescaling by a factor of r. 

The quantity n describes the scaling of the parameter t. It is referred to as 

the (parametric) scaling ratio. In general, this quantity is not uniquely denned, 

since a self-similar set with n = no is also self-similar with n — n 0 ; j £ Z+. To 

provide a unique characterization of this aspect of a fractal's behaviour, only 

the smallest value of n greater than unity is taken as the value of the scaling 

ratio. 

For convenience, the geometric ratio r is often expressed indirectly, using 

n and the similarity parameter H = log(r)/log(re). The similarity parameter 

describes the relation between the geometric ratio of the embedding-space and 

the scaling ratio. Comparison with eq.(B.4) shows that D = 1/H when l/E < 

H < 1/T. Although fully equivalent to the use ofl/D for deterministic fractals, 

the use of the similarity parameter H is more advantageous in the stochastic 

domain. Mandelbrot regards the quantity 1/H as the latent dimension of the 
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fractal, capturing its self-similar behaviour better in most respects than the 

Hausdorff-Besicovitch dimension D [Mand84]. For many purposes, then, H is 

the most appropriate measure of self-similarity. 

Generalizing from self-similar curves, the parametric equation for a self-

similar set a may be written in the form 

- S(?o) = a{ti) - a{t0) + n-Hn{Qi)[a{t0 + n(t - £)) - a{t0)} (B.8) 

where n(Q,) is an orthonormal transformation, and 0 denotes its parameters. 

Note that it is the relative changes of a(7) that are translated, scaled, and 

transformed. This allows self-similarity to be well-defined even when a(?o) is a 

divergent quantity. 

B.3.2 Fractal Functions 

A special class of fractals are the fractal functions, comprising those fractals that 

are parametrized by an extrinsic co-ordinate system in the embedding space 

itself. Two different characterizations may be used to describe such functions. 

The first is the standard one, using the intrinsic parameter t. The second is 

the behaviour of the fractal in an embedding space containing t as one of the 

geometric dimensions. The intrinsic parameter t then becomes an extrinsic 

position vector u. Using this latter characterization, the function is therefore a 

generalized graph. 

For self-similar curves in two-dimensional space, u is a scalar, and the fractal 

functions become a linked pair, having the form 

ax(u) - ax(u0) = ax(ui) - ax(u0) (B.9) 

+n~H{[ax(u0 + n(u - «,•)) - ax(u0)] cos(0,) 

-[ay(u0 + n(u — Ui)) — ay(u0)] sin(0,-)} 
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ay(u) — ay(u0) — ay(ui) - ay(u0) (B.10) 

+n H{[ax(u0 + n(u - u,-)) - ax(u0)] sin(0,) 

+ [ay(u0 + n(u — Ui)) - ay(u0)] cos(0,)} 
The general relation between the dimension D of these functions and H is 

not known. For a few scalar functions in two dimensions, however, it has been 

shown that D = 2 — H. It is conjectured that this relation holds in general, 

and that for functions embedded in three dimensions, D — 3 — H [Mand82]. 

Stochastic fractals are defined as sets of random variables that are self-similar 

with regard to their statistical properties, i.e., 

holds for their joint probability density functions. Using parametric represen­

tation, this becomes 

a(f) - a(?0) = afi) - a(F0) + ̂ ^(©^[a^o + n{t - t{)) - a(F0)] (B.ll) 

where the ij are the parametric values of the origin of the appropriate generator 

section. The 0t- are random variables specifying the parameters of the orthog­

onal transformation II in the similitude Si. These fractals may be defined in 

a recursive fashion similar to that of the deterministic case, except that the 

generator is no longer a fixed pattern,'but is an ensemble of patterns. The 

ensemble determines the (joint) density functions of the 0,-. 

For the case of random curves through a two-dimensional embedding space, 

the stochastic counterpart to equation (B.6) is 

B.4 Stochastic fractals 

a = 5i(a) U 52(a) U • • • U 5n(a), 

a(r) - a(<0) = a(«,-) - a(*0) + ri ~HR{&i)[ai{t0 + n{t- ti)) - a(*0)], 
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where 

&i — arctan( ̂ v{U+i) - a„(t,-) 
az(t,+i) - a.x(ti) 

) — arctan( a y ( * n ) ~ ai/(*o) 
az(rn) - az(t0) •)• 

An instance of self-similar random sets can be constructed using a recursive 

procedure similar to that for the deterministic figure, except that each straight-

line section present at a given stage is replaced by a (different) instance of the 

generator ensemble. Such a construction process is used in computer graphics 

to produce self-similar random curves; a corresponding process produces self-

similar random surfaces (e.g., [FoFu82][HaBa84)]. 

B.4.1 Stationary Increments 

When the increments a(*2) — a(li) of a stochastic fractal are stationary (see 

appendix A), its description can be simplified in two ways. First, the transla-

tional component of the similitude Si can be eliminated, since the probability 

densities of all increments must be of the same form. This implies that the 

translation a(t,) — a(io) of any sections relative to the base must be zero. Sec-
—* 

ond, the distribution of transformation parameters 0,- must be the same for 

any section a(t,+i) — a(i<). If the generator sections have isotropic probability 

densities, any orthonormal transformation is compatible with the description. 
—# 

If the sections have anisotropic densities, however, 11(0,-) may be taken as the 

identity operator, for otherwise the sum of adjoining increments would have a 

density function of a form different from that of the original set. In general, 

then, stochastic fractals with stationary increments may be considered as having 

neither a translational nor a transformational component to their similitudes. Taken together, these two conditions imply that the stochastic properties of 

all generator sections are identical. This implies that only the first section need 
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be used to describe the fractal, so that the parametric value £,• may be set to 

to. Abolishing the translational and rotational components of the similitude in 

eq (B.ll) then leads to 

a(i) - a(?0) = n_H[a(?0 + n{t- t0)) - a(?o)]. 

This can be written in the more symmetrical form 

aft + n{t- to)) - a(?0) = nH[a(?0 + (* - ?o)) - a(i0)] 

which emphasizes that it is the behaviour of the increments that characterizes 

the fractal. In particular, note that stationarity of the increments does not 

imply stationarity of the fractal itself. 

A more general class of stochastic fractals is obtained by removal of the 

constraint that the scaling ratio n be an integer [MaNe68]. This takes advantage 

of the fact that for stochastic fractals with stationary increments, only the first 

generator section is required for their specification. The requirement of an 

integral number of sections may therefore be relaxed — the integral quantity n 

may be replaced by the real-valued quantity h > 1. If the fractal is self-similar 

for all parametric scaling factors, the scaling ratio h —* 1. 

By using the symmetry of fractals to expansion and contraction, the range 

of h may be extended to the positive real numbers, for the behaviour of a fractal 

with scaling ratio h is identical to one with scaling ratio 1/h. This yields 

a(?0 + h{t- to)) - a(?0) = hH[a(t0 + (?- t0)) - a(i0)] ; h > 0 

as the general description of fractals with stationary increments. Since fractals 

with scaling ratios of h and 1/h are similar, however, the convention is made 

that h > 1. 
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Fractal functions 

Stationarity also leads to a simplification of the graphs of the fractal functions. 

For the case of the self-similar curve a(t) in a two-dimensional embedding space, 

the component graphs ax(u) and ay(u) become a pair of independent equations 

(cf. eqs (B.9) and (B.10)) 

3Lx(U0 + h(u - u0) - az(u0) = hH[ax(u0 + (u - u0)) - az(u0)] (B-12) 

ay(u0 + M u ~~ uo) - atf(u0) = hH[ay(u0 + (u - u0)) - ay(u0)} (B.13) 

since the translational components have been removed, and IT(0,) = 1 implies 

Oi — 0. Although independent, these equations do not necessarily describe a 

stationary curve — for example, the relative scales of the two curves could differ 

by some non-zero finite ratio. 

Example: Brownian motion 

Brownian motion B(r) is the motion undergone by a small particle as it is 

randomly bombarded by the atoms and molecules of the surrounding fluid. 

Given any set of time steps {£,•}, where 

ti = t0 + iAt | * E Z+, 

the probability distribution of the increments B(tt) — B(i,+i) is a stationary, 

zero-mean Gaussian distribution, with variance of A\U — U+i\ = A\At\, where A 

is some positive number. Rescaling the time steps by an arbitrary factor h > 0 
leads to a similar distribution, with variance -A|/iAt|. Thus, 

B(*,- + hAt) - B{ti) = /i1/2[B(t,- + At) - B(t,)], 
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for arbitrary r,- and h. Thus, Brownian motion is self-similar, with a similarity 

parameter H = 1/2, and a scaling ratio h —* 1. The relation D = 1/H implies 

that B(t) is two-dimensional. Indeed, the curve is capable of completely filling 

regions in the plane. 

It is important to realize that the detail of structure existing at all scales in 

deterministic fractals also exists in stochastic ones. For example, straight lines 

cannot accurately interpolate B(t) from its values at time steps {£,}. Between 

any two points r,- and U+i, its stochastic behaviour is completely re-created at 

a smaller scale. 

B.4.2 Fractional Brownian Motion 

Brownian motion can be generalized to obtain a class of self-similar stochastic 

fractals - the fractional Brownian motions Bjy(r), defined by the conditions 

[MaNe68]: 

1. Bjy(O) = b0, where b0 is an arbitrary vector 

2. BH(t) - B H(0) = ^ { / . ^ [ ( t - a)'"1/' - {-s)*-V*]dB{s) 

where t > 0 and 0 < H < 1. This is a moving average of B(t), weighted by the 

factor {t - s)11-1'2. 

The increments AB#(r) = B^(r + Ar) — B#(t) are stationary and are char­

acterized by [MaNe68]: 

1. Bff(t + At) — Bjy(r) has a Gaussian distribution, since it is the sum of 

Gaussian random variables 
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2. The mean increment (BH(t + At) — BH(t)^ = 0, since it is the sum of 

zero-mean random variables. 

3. The variance (|Bjy(£ + At) - BJJ(I)| 2) oc |At| 2 f f , since the weighting fac­

tor has an exponent of H — 1/2, while dB(t) has a similarity parameter 

of 1/2. 

The square root of the variance is proportional to \At\H for all At. Therefore, 

for any value h, 

BH(t + hAt) - BH{t) = hH[BH{t + At) - BH(t)}. 

This shows that Bn{t) is self-similar, with similarity parameter H, and scaling 

ratio h —* 1. Fractional Brownian motion is therefore an appropriate general­

ization of regular Brownian motion, since B(t) is BH(t) when H = 1/2. 

Since B#(r) is isotropic, all component functions [Bff(c)],- are of the same 

form, denoted here simply by BJJ(X). The change in argument shows that these 

components are functions of an extrinsic parameter. The function B# (x) is also 

a fractal, with dimension D — 2 — H [Mand82]. 

Adjacent increments of BJJ(X) have a correlation 

E{[BH{x) - BH{x - 6)][BH{x + 6)- BH(x)}} 

= \ E{[BH(x + 6)- BH(-x - 6)12} - \ E{[BH(6) - BH(-6)}>} 

-E{[BH(x + 6)-BH(-6)}*} 

= cH/2[\2x + 26\2H + (26)2H - 2\x + 26\2], 

where 8 is the interval of the increments, and CH is some positive factor. 

The sign of the correlations depends only on the value of H [MaNe68]. For 

H — 1/2 (Brownian motion), the increments are uncorrected — the motion 
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is completely random, the past having no effect on the future. When H > 

1/2, however, the correlations between increments are always positive, so that 

persistence occurs between the values of successive increments. As H —• 1, the 

function becomes smoothly varying. For H < 1/2, the correlations are negative, 

giving rise to antipersistence, with successive increments alternating between 

positive and negative values. 

Although the function B# (x) is nonstationary, its power spectrum can be 

calculated. It has the form [MaNe68] 

s{k)=v„ î r1-2*, 
where VH is a constant, parametrized by H. The power spectrum therefore has 

the same self-similarity properties as its corresponding graph. 

B.4.3 Fractional Gaussian Noise 

Since the graph B/r(x) is non-differentiable, its derivative B'# (x) does not exist 

in a strict mathematical sense. However, B'#(x) can be represented as a random 

Schwarz distribution: the limit of the derivative of a smoothed B#(x) as the 

amount of smoothing goes to zero. The resultant process is referred to as a 

fractional Gaussian noise [MaNe68], a stationary stochastic process of infinite 

variance. 

Fractional Gaussian noise is zero-mean, with a correlation function 

R(r) = r*|r | 2 "- 2 , 

and a power spectrum 

S(k) = WHlk]1-™, 
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where rH and WJJ are positive quantities parametrized by H, and 1/2 < H < 1 

[MaNe68]. The lower bound on H prevents divergence of S(k) as A; —• oo. The 

form of the power spectrum is consistent with that of the power spectrum for 

fractional Brownian motion, since differentiation in the spatial domain corre­

sponds to multiplication by +ik in the frequency domain. 

When the parameter H is formally replaced by H + 1, it is seen that frac­

tional Brownian motion and fractional Gaussian noise both belong to a gener­

alized class of functions T5+

H(t), for which H is a non-zero quantity such that 

— 1/2 < H < 1. The fractional Brownian motions are true fractals; the frac­

tional Gaussian noises are not. However, the spectral behaviour of all functions 

in this class is identical — a self-similarity of form over all possible scales. 
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Appendix C 

Technical Considerations 

The following sections are concerned with various technical aspects of the psy­

chophysical experiments described in chapter 4. In particular, they discuss 

issues involved with the creation and display of the textures used. 

C . l Discretization of Power Spectra 

In practice, any physical realization of an image must be quantized, bounded, 

and discrete. The effect of quantization on perceived texture is small when the 

number of grey levels involved exceeds 16 [CaHii84]. For the textures used in 

the experiments of chapter 4, the standard deviation was set to 32 grey levels, 

and the textures were displayed using 256 grey levels. The effect of quantization 

is therefore considered negligible upon the perception of the textures displayed. 

The issues of boundedness and discretization, however, are more complex, 

and must be treated in greater detail. 

C . l . l Discrete Fourier Transform 

Consider the discrete image fxy with spacing Ax and A„ in the x— and the 

y—directions respectively, and with bounds x = ±Tx/2, y = ±Ty/2. For conve-
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nience, the number of points TY,- = T,-/At- in direction i is assumed to be even 

and equal to 2n,-. The finite discrete Fourier transform fa is then defined as 

[JeWa68] 

^ n x - l 

^ = WW £ £ frA,.A,exp[-i2*{rk/Nt + sl/Ny)]. 
- ' V z i V y r = - n x s = - n y 

This transformation considers fxy = fr&x SAy to be a spatially periodic function 

with period Tt in direction i. 

The transform fa is itself discrete and periodic, with period Nx and Ny in 

the k— and /— directions respectively. The original image fxy may be recovered 

by the inverse transformation 

n x - l n , —1 

/ x y = Jl 12 hi exp[i27r(px/NxAx + qy/NyAy)]. 

Discrete transforms are analogous to continuous transforms in several ways 

— in particular, the correlation function Rxy of a random field is the discrete 

Fourier transform of its power spectrum Ski [ScSh75,ch4]. Note that Rxy de­

scribed in this way is based on the assumption that the random field is periodic. 

When the displacement is much less than the size of the image, the error from 

the true value of the non-periodic Rxy is small. 

The discrete Fourier transform can be used to produce a random field fxy, 

since 
nx — 1 ny—1 

f *v = JZ 12 mki Zkiexp[i27r(px/NXAX +qy/NyAy)\, 
p=—nx q=—riy 

where the z w are an array of independent zero-mean, unit-variance complex 

Gaussian random variables, and rriki is a modulation function (see appendix 
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A). The power spectrum Ski of the generated field is given by |mfcj|2, and its 

(periodic) correlation function is given by Sxy. 

Owing to considerations of computational efficiency, the finite discrete 

Fourier transform (DFT) is often implemented as the fast Fourier transform 

(FFT). Apart from requiring the dimensions of the image to be integral powers 

of two, the performance of the FFT is no difference from that of the full DFT. 

Implementations of the FFT are robust, with little sensitivity to numerical error 

[Knut81,4.3.3]. 

C.1.2 Self-Similarity and Discrete Images 

The theorems on self-similarity developed in chapter 3 are applicable only to 

continuous random fields. Discretization and boundedness destroy true self-

similarity, both at spatial scales less than the spacing A,- and greater than 

the period T,-. These effects are related, since discretization of a continuous 

function g(x) by a spacing A corresponds to the convolution of its transform 

g(k) by the translated functions g(k + ra/A), n £ Z [JeWa68,2.2]. A converse 

relation also holds for discretization in the spatial-frequency domain. The use 

of finite discrete representations therefore destroys self-similarity in both the 

spatial and frequency domains. 

However, if the value of g(x) is always small beyond the range T,-/2, and 

if g(k) has no significant values outside the Nyquist limit JVj/2T,-, the effect of 

discretization and boundedness on the shape of the functions is small. There­

fore, when both R(x, y) and S(k, I) are effectively bandlimited, the random field 

generated by the finite discrete Fourier transform is effectively self-similar over 
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the corresponding range of intermediate scales. 

C.2 Generation of Textures 

Instances of a one-dimensional self-similar random field were generated by the 

Fourier transformation of an array of complex-valued random variables. The 

following subsections describe some of the technical details involved. 

C.2.1 Fourier Transformation 

A damping filter Dk was designed to minimize the ranges of both the correlation 

function Rx and the power spectrum Sk, while simultaneously keeping the shape 

of Sk effectively self-similar inside the Nyquist limit. It has the form 

Dk = 0 ; 0 < A: < /ci 

= ( e-(*-«x)»/» a _ 1 ) 2 ( e - ( * - K 2 ) > 2 _ 1)2 . K l < k < K 2 

— 0 ; K2 < k 

= I)-* ; k < 0. 

The parameters Ki and K2 correspond to the lower and the upper cut-off fre­

quencies of the filter. The parameter a governs the range of the edge of the 

filter. Between the bounds of Ki + a and K2 — a, Dk has a value approaching 

unity. 

Transforms were based on arrays of 8192 points. The value of a was set 

to 6 pixels, and «i and K2 were chosen so that the half-power points were 16 

pixels and 4080 pixels. All transforms were found to exhibit smooth behaviour 

at the limits of their spatial range, and the values found there were generally 

several orders of magnitude smaller than those at the origin. The power spectra 
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and correlation functions of the textures used in the experiments were there­

fore effectively bandlimited, so that Rx and Sk approximated their continuous 

counterparts R(x) and S(k). 

The target textures were produced from an array of 8192 independent Gaus­

sian random variables zk, each with a mean of zero and a unit variance. The 

random variables were complex-valued, with random phases produced by gen­

erating the real and imaginary components independently. Since the output 

image was real-valued, zk = — z*_k, so that only half of the array needed to be 

generated directly. Each of the zk was multiplied by a non-negative real-valued 

function mk. Fourier transformation of this array then created a random field 

with a power spectrum Sk = m\. 

The textures displayed were 256-pixel sections of the output of the FFT. 

Since these textures subtended a longitudinal angle of 4°, the half-power points 

of Dk corresponded to 0.12 cyc/deg and 31.9 cyc/deg. These values nicely 

bracket the limits of human spatial vision [CaRo68], so that the resulting tex­

tures were effectively self-similar over all scales relevant to the human visual 

system. 

C.2.2 Random Number Generation 
The texture-generation algorithm outlined in the previous section involved the 

Fourier transformation of a field of independent Gaussian random variables. 

These quantities were generated via the polar method developed by Box, Muller, 

and Marsaglia [Knut81,3.4.1], which relies on two independent random variables 

that are both uniformly distributed between 0 and 1. The random variables 

that served to this procedure were obtained from the pseudonumber generator 
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random available on the Unix operating system. 

Since these random variables were produced by a finite-precision generator 

of pseudorandom numbers, it was necessary to use a series of statistical tests 

to check the quality of the numbers generated. The following tests, described 

in [NaBa66], were adapted slightly to fit the Gaussian case. They were applied 

to sequences of 8192 successively-generated numbers: 

frequency test: this checks the distribution of the values generated. Each test 

involved 200 sets of 40 numbers each, using 10 levels of quantization. 

serial test: this checks the degree of randomness between successive numbers. 

Each test involved 200 sets of 40 numbers each, using 10 levels of quanti­

zation. 

run tests: these check the distribution of runs of values above and below the 

mean, as well as runs of steadily increasing and decreasing values. Each 

test involved 8192 numbers. 

correlation test: this checks the distribution of the correlation product of 

numbers separated by a given lag. Each test involved 200 sets of 40 
numbers each; lags examined ranged from 1 to 25. 

Several hundred sets of numbers were tested against the hypothesis that 

they formed a set of true Gaussian random variables. The sets selected for 

use were those with the lowest x 2 values, or equivalently, those with the lowest 

probability p of being non-random. The sets chosen typically had p < 0.15 for 

the frequency and the serial tests, p < 0.10 for each of the various run tests, 

and p < 0.20 for the correlation test at each of the lags examined. 
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Figure C.l: calibration curve for monitor 

C.3 Monitor Calibration 

All textures used in the experiments of chapter 4 were displayed on a Hitachi 

HM-2719B-C-11 monitor. Calibration at the settings used was done using a 

spot photometer. Luminance of the screen was measured at 25 different grey 

levels ranging from 10 to 250 in steps of 10. The results are shown in figure 

C.l. 

A least-squares fit was made of the data for grey levels in the range 100—160. 
This range corresponded to the values within one standard deviation of the 

mean g — 128 used for the displays. The calibration equation obtained was 

L{g) = 0.660 - 54.9, (C.l) 

where L is the luminance in cd/m2, and g G {0,1,..., 255} is the grey level. 
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The curve is plotted on the graph of figure C.l. 

Since the mean grey level of the textures was set to 128, and the standard 

deviation to 32, it follows from eq (C.l) that the mean luminance of the display 

was 

Lmean = 0.66^^ - 54.9 = 30.0cd/m\ 

The contrast of the displayed textures was therefore 

a 
C = = 0.7. 
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Appendix D 

Values of V and Z for Threshold 
Textures 

Let Hi(k) be a filter that is applied to a set of one-dimensional textures with 

power spectrum S(k). Among the possible measures on the set of filtered images 

are the relative contrast 

(!Hf(k)S(k)dk\i/2 

* V I S(k)dk J 

and the zero-crossing density 

_ (Ik2Hf(k)S(k)dk\1/2 

* \ fHf{k)S{k)dk ) ' 

This last relation is taken from [Papo84,ll-4]. When a series of m different 

filters is applied in parallel, the V,- and Z, can be formed into the composite 

measures V — (Vi, V 2 , . . . , Vm) and Z = (Zx, Z 2 , . . . , Zm). These quantities may 

be used as the bases for a multiresolution representation of texture. 

—* —* 

This appendix contains the values of V and Z calculated for the reference 

classes H G {—1/2,0,1/2,1}, h —• 1 used in the first set of experiments de­

scribed in chapter 4. Also calculated are the corresponding values for the tex­

tures at the upper and lower discrimination thresholds determined for subject 
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A. These threshold values form the bases for the predictions made in section 

5.2. 

All values calculated are based on the formulation of Hi(k) given by Wilson 

and Gelb [WiGe84], viz., 

Hi(k) = afl-1/2^! exp{-(7raifc)2} - f32a2 exp{-(7r<72fc)2} + P^z exp{-(7ra3A;)2}], 

where a = 1, and the values of the f3j and cry are given in Table 5.1. 
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h 1 
—* 

measure = V 

channel H = -0.500 H = -0.720 H = -0.310 

A 5.36 x 10-2 2.94 X lO - 2 8.58 x lO"2 

B 3.57 x lO- 2 2.32 X lO"2 4.90 x lO"2 

C 2.22 x lO - 2 1.58 x l O - 2 2.79 x lO"2 

D 1.85 x lO - 2 1.43 x lO"2 2.17 x lO - 2 

E 7.62 x l O - 3 6.81 x 10"3 7.89 x l O - 3 

F 5.38 x 10"3 5.60 x 10"3 4.89 x l O - 3 

h -+ 1 
—* 

measure = Z 

channel H = -0.500 H = -0.720 H = -0.310 

A 2.15 2.33 1.99 

B 4.54 4.86 4.27 

C 6.56 6.82 6.34 

D 9.36 9.72 9.04 

E 17.70 18.21 17.25 

F 35.27 36.26 34.39 

__ —* —* 

Table D.l: values of V and Z for h —• 1 textures 
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h -> 1 measure = V 

channel H= 0.000 H = -0.225 H= 0.175 

A 1.48 x l O - 1 1.03 x 10"1 1.69 x 10_1 

B 6.48 x 10"2 5.48 X 10~2 6.29 x 10"2 

C 3.14 x 10~2 2.99 x 10~2 2.76 x 10"2 

D 2.19 x 10"2 2.26 x 10~2 1.81 x lO - 2 

E 6.47 x 10 - 3 7.77 x 10"3 4.74 x 10 - 3 

F 3.23 x l O - 3 4.54 x l O - 3 2.10 x 10"3 

h -* 1 
—* 

measure = Z 

channel H= 0.000 H - -0.225 H= 0.175 

A 1.72 1.92 1.57 

B 3.83 4.15 3.58 

C 5.99 6.24 5.79 

D 8.54 8.90 8.26 

E 16.50 17.04 16.07 

F 32.94 34.00 32.10 

Table D.l (continued) 
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h->l 
—* 

measure = V 

channel II = 0.500 H= 0.305 H = 0.675 

A 1.68 x 10"1 1.73 x 10"1 1.58 x 10"1 

B 4.51 x lO - 2 5.69 x lO"2 3.51 X lO"2 

C 1.61 x lO - 2 2.31 x lO"2 1.11 X lO"2 

D 9.41 x 10~3 1.45 x l O - 2 6.05 x 10~3 

E 1.97 x 10 - 3 3.46 x l O - 3 1.12 x 10"3 

F 6.95 x 10~4 1.40 x 10"4 3.52 x 10"4 

h 1 
—* 

measure = Z 

channel H = 0.500 H = 0.305 H= 0.675 

A 1.27 1.45 1.12 

B 3.12 3.40 2.87 

C 5.42 5.64 5.21 

D 7.74 8.05 7.46 

E 15.26 15.75 14.79 

F 30.46 31.46 29.42 

Table D.l (continued) 
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h 1 
—* 

measure = V 

channel H= 1.000 H= 0.940 H= 1.095 

A 1.39 x 10_1 1.43 x 10"1 1.35 X 10"1 

B 2.13 X lO"2 2.37 X 10~2 1.84 X 10~2 

C 5.26 x 10"3 6.17 x 10"3 4.25 x l O - 3 

D 2.49 x 10"3 3.03 x l O - 3 1.90 x l O - 3 

E 3.74 x 10 - 4 4.74 x 10~4 2.74 x 10~4 

F 1.01 x 10~4 1.29 x l O - 4 7.46 x 10~5 

h 1 
—* 

measure = Z 

channel H = 1.000 H = 0.940 H = 1.095 

A 0.85 0.90 0.78 

B 2.41 2.51 2.28 

C 4.72 4.84 4.52 

D 6.95 7.06 6.79 

E 13.62 13.94 13.04 

F 25.26 26.71 22.37 

Table D.l (continued) 
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