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Abstract

By an wi—tree we mean a tree of power w; and height w;. Under the assumption
of CH plus 2! > wy we call an w;—tree a Jech-Kunen tree if it has x many
branches for some x strictly between w; and 2" . We call an wi—tree being
wi—anticomplete if it has more than w; many branches and has no subtrees
which are isomorphic to the standard w;—complete binary tree. In this paper
we prove that: (1) It is consistent with CH plus 2¥* > wy that there exists
an wj—anticomplete tree but no Jech-Kunen trees or Kurepa trees; (2) It is
independent of CH plus 2“! > wy that there exists a Jech-Kunen tree without
Kurepa subtrees; (3) It is independent of CH plus 2! > wy that there exists
a Kurepa tree without Jech-Kunen subtrees. We assume the existence of an
inaccessible cardinal in some of our proofs.

Let T be a tree. For an ordinal o, T}, is the a—th level of T and T|a = Us<a I -
Let ht(T), the height of T, be the smallest ordinal A such that T, = (). By a branch
of T we mean a linearly ordered subset of T" which intersects every non—empty level
of T. Let B(T) ={B: Bisabranch of T}. Forat e T let T(t) ={s€ T :sandt
are comparable }.

Let T be a tree. We recall that:

T is an wi—tree if |T'| = w; and ht(T) = w; . Without loss of generality we
sometimes assume that (7, <7) = (w;, <r) with unique root 0 if 7" is an w;-tree.

An wy-tree T is called a Kurepa tree if |T,,| < w; for any a < w; and |B(T)| > w; .

An wy—tree T is called a Jech-Kunen tree if wy < |B(T')| < 2.

T' is a subtree of T if 7" C T and <p»=<; NT' x T" (T" inherits the order of T').
For an ordinal A we call (2<* C) a standard A\—complete binary tree. A tree is called
a A-complete binary tree if it is isomorphic to (2<%, C). A subtree T" of T is called
closed downward if for any ¢ € T, {t e T : t <p t'} C T".

An wi—tree T is called an w;—anticomplete tree if |B(T)| > w; and T has no
wij—complete binary subtrees.

Facts: (1). Both Kurepa trees and Jech-Kunen trees are w;—anticomplete trees;

(2). Under CH and 2“' > wy, a Jech-Kunen tree is also a Kurepa tree if every
level of it is countable;

(3). Under CH and 2“' > w,, a Kurepa tree is also a Jech-Kunen tree if it has
less than 2 many branches

The independence of the existence of Kurepa trees was proved by J. Silver (see
[K2]). In [Je], T. Jech constructs a model of CH plus 2“' > ws, in which there is
a Jech—Kunen tree. In fact, it is a Kurepa tree with less than 2“* branches. The



independence of the existence of Jech—Kunen trees under CH plus 2“* > w, was given
by K. Kunen in [K1], in which he gave an equivalent form of Jech-Kunen trees in
terms of compact Hausdorff spaces. The detailed proof can be found in [Ju, Theorem
4.8].

The technique used by Silver and Kunen to kill Kurepa trees and Jech—Kunen trees
is to show that if an w;—tree T" has a new branch in an w;—closed forcing extension, then
T should have an w;—complete binary subtree. So in their models all w;—anticomplete
trees are also killed.

In this paper we discuss two questions: (1) Assuming CH plus 2“' > ws, can we
kill all Kurepa trees and Jech-Kunen trees without killing all w;—anticomplete trees?
(2) How different are Kurepa trees and Jech-Kunen trees? For background in trees
see [T], for background in forcing see [K2| and for Generalized Martin’s Axiom see
[W, §6]. By an inaccessible cardinal we mean a strongly inaccessible cardinal. We
thank Professor K. Kunen for his permission of presenting his proof of Theorem 3 in
this paper.

Before proving theorems we need more notation of posets (partially ordered sets
with largest elements). We always let 1p be the largest element of a poset IP.
Let I, J be two sets and A be a cardinal.

Fn(I,J,\) ={f: fisafunction, f CI x J and |f| < A}

is a poset ordered by reverse inclusion. We omit A if A = w.
Let I be a subset of an ordinal x and A be a cardinal.

Lv(I,\) = {f : fis a function, f C (I X \) X &, |f] < A and V(«, ) €
dom(f)(f (e, ) € )}

is a poset ordered by reverse inclusion.
In forcing arguments we let @ be a name for ¢ and @ be a name for a. We always
assume the consistency of ZFC' and let M be a countable transitive model of ZFC'

Theorem 1 Assume the existence of an inaccessible cardinal. Then it is consistent
with CH plus 2“' > wy that there exists an wi—anticomplete tree but there are neither
Kurepa trees nor Jech—Kunen trees.

We need a lemma from [D].

Lemma 1 Let IP, P’ be two posets in M such that IP has c.c.c. and P’ is wi—closed in
M. Let Gp be a P—generic filter over M and Gp: be a P'—generic filter over M|Gp].
Let T be an wy—tree in M[Gp|. If T has a new branch B in M[Gp]|Gp/|—M|Gp], then
T has a subtree T' in M[Gp|, which is isomorphic to the tree (2<“* N\ M, C) (standard
wy—complete binary tree in M ).



Proof: First we work within M. In the proof we always let ¢ = 0,1. Without loss
of generality we can assume that

1p|p(1p|-p (B is a branch of T')).

Claim 1:  Let a < w; and ¢ € P’. Then there is a ¢ <p/ ¢ such that
]-P“_P((I)(aaqlaTa B))a where

®(a,q, T, B) = (Jy € To) (gl (y € B)).

Proof of Claim 1:  See [D, Lemma 3.6].

Claim 2: Let a < wy,q € P’ and 1P||—P(d>(a,q,T,_B)_). Then there is a
B <wiy,f>aand ¢ <p ¢ such that 1p|lp(¥(a, 3,¢,4¢°¢", T, B)), where

¥(a, B8,4,4°,q", T.B) € [if z € T, and g|-p(z € B), then there are

2t € Ty, 2° # 2! and o <p 2’ such that ¢'|-p. (2% € B) .

Proof of Claim 2:  See [D, Lemma 3.6].

Claim 3: Let ¢ be an ordinal below wy . Let (¢, : v < J) be a decreas-
ing sequence in P’ and (@, : v < J) be an increasing sequence in w; such that
lp|Fp(®(ay, ¢y, T, B)) for all v < 6. Let a5 = sup{a, : v < 6}. Then there is a
q <p' ¢, for all v < § such that 1p|p(P (a5,q,T B)).

Proof of Claim 3: Since P’ is wi—closed in M, there is a ¢’ € IP’ such that
¢ <p/ gy for all v < 6. By Claim 1 there is a ¢ <ps ¢’ such that 1p|-p(®(as,q, T, B)).
This ends the proof of Claim 3.

We now prove the lemma. We construct a subset P = {p, : s € 2<“1} of PP’ and
a subset O = {ay : s € 2“1} of wy in M such that

(1) the map s + p; is an isomorphic imbedding from the standard w;—complete
binary tree to IP’.

(2) Vs,t €29t (s Ctand s #t — a5 < ay).

(3) Qs (0) = Qs(1) for all s € 2<wt,

(4) 1p|l-p(®(as, ps, T, B)) for all s € A

(5) 1p|lp (U (as, asoy, Ds, Ps(0y: sy, Ty B)) for all s € 291,

Let ay =0 and py, = 1p/ . Assume that we have oy and p, for all s € 2<¥1.

Case I:  a=7vy+1.

Let s € 27. Since 1p||—P((I>(as,ps,T, B)), then there is a < wl,ﬂ > g and
q' <pr ps such that Ip|p(¥(as, B,ps,¢% ¢*, T, B)) by Claim 2. Let ayp = (8 and
psiy = ¢'. (Note that ¢°, ¢* are incompatible by Claim 2.)

Let G' be any IP-generic filter over M. Then M[G] }= [®(as, ps, T, B)]. Hence in
MIG] there is an z € T,, such that ps|l-p (z € B). Since



MI[G] = [Y(as, as o), Ps; D0y, sty 1 B) and x € T,,], then there are 2 € Ty
such that py(|-p (2 € B) in M[G]. This implies that 1p|Fp(® (s, Py, Ty B)).-

Case 2: « is a limit ordinal below wy .

Let s € 2°. Since (ay)3 : f < ) is increasing in wy , (pss : f < ) is decreasing in
P’ and 1p||—P(<I>(asm,ps|[3,T, B)) for all # < o, then there is an ay = sup{a, : f <
a} and a p, <p pyp for all # < a such that 1p||—P(<I>(as,ps,T, B)) by Claim 3.

We now work within M[Gp] to construct a subtree 7" = {t; : s € 2<“** N M} of T
such that

(1) the map s + ¢, is an isomorphic imbedding from (2<“* M, C) to T

(2) ts € T, and ps|l-p (ts € B) for all s € 2<“* N M.

Let t;, = 0, the root of 7. Assume that we have ¢, for all s € 2<*N M.

Case 1: a=/p[+1. ‘ '

Let s € 2° N M. Since ps|l-p. (ts € B) and W (o, ooy, Pss Ps(0y, Ps(1y, T, B) is true,
there are t' € T, such that ¢ <r .40 # t" and pyy | (8 € B).

Let g =t for i =0, 1.

Case 2: o is a limit ordinal below wy .

Let s € 2*N M. Since ®(as,ps, T, B) is true, there is an x € T,, such that
psl-p (€ B). Since V3 < a (ps < pyig), then pll—p (tgs € B). Now t,5 <7 x
because o, > ayg for all § < a.

Let t, = .

We have now finished construction and 7" is just the required subtree of 7. O

Proof of Theorem 1: Let x be an inaccessible cardinal, P} = Lv(k,w,), Py =
Fn(k*,2,w;) and P3 = Fn(wy,2) in M. Let Gy be a IP;—generic filter over M,
M' = MI[G4], Gy be a IPy—generic filter over M', M" = M'[G5], G5 be a PP3—generic
filter over M" and M" = M"|G3]. We want to show that M" = [CH,2“" = w3 and
there exists an w;—anticomplete tree but there are neither Kurepa trees nor Jech—
Kunen trees |.

We list some facts first:

(1) M' = [CH, 2** = wy = k and there are no Kurepa trees |. The proof can be
found in [K2, pp. 261].

(2) M" = [CH, 2“* = w3 = kT and there exist neither Kurepa trees nor Jech-
Kunen trees |. See [Ju, Theorem 4.8] for the proof.

(3) M" = [CH, 2" = ws].

Claim 1: There exists an w;—anticomplete tree in M".

Proof of Claim 1:  Let 7" be an w;—complete binary tree in M"”. We want to show
that 7" is an w;—anticomplete tree in M". Since in M™, |B(T)| > [(B(T))M"| = w;,
it suffices to show that 7" has no w;—complete binary subtrees in M".



Suppose that is not true. Then T has an w;—complete binary subtree T' = {t :
s € 2=} in M"'. Since T"|w is countable and 7" C T = wy, then there is a 0 <
wy such that T'w € M"[G3NFn(6,2)]. Let f € 2¥ be a new function in M" —
M"[G3sNFn(6,2)]. Then Cf = {tg, : n € w} is not in M"[G5NFn(6,2)]. But
Cr={teT'w:t<pt;} whichisin M"[G3N Fn(é,2)]. This contradiction ends the
proof of Claim 1.

Claim 2: There exist neither Kurepa trees nor Jech-Kunen trees in M"'.
Proof of Claim 2: Let T be an w;—tree in M"'. Then there is a 0 < k and a
subset I C k1 of power w; such that

T € MG\ Lv(0,w1)|[G2 () Fn(I,2,w)][Gs].

Let P} = Lv(6,w1), P{ = Lv(k — 0,w1), P, = Fn(I,2,w;), Py = Fn(k™ —1,2,w).
Then P, = P} x P}, P, = P}, x P} and all of these posets mentioned here are
wi—closed. Let G} = GNP}, G = GiNP], G, = GoNIP, and G = G, NP} .
Then G1 = Gll X Glll, G2 = GI2 X Gg and

M = MIGHIGHIGHIGHIGS) = MIGHIGIGHGIGE)

Since

MIGG(Gs] = [1B(T)] < &),

then there is a new branch of T"in M" — M[G|[G5][G3] if T has more than w; many
branches in M"". Since IP3 has c.c.c. and P} xIP} is wy—closed in M [G'|[G}], then there
is a subtree 7" of T in M[G"][G}][G3], which is isomorphic to (2<“t1 N M |G} ][G}], ©)
by Lemma 1.

This is impossible if T" is a Kurepa tree because T”|w+1 is uncountable. This is also
impossible if 7" is a Jech-Kunen tree because 2<“* N M[G}][GS] = 2<“* N M[G1][G2]
and |B(T)| > |B(T")| > (22)MIGlG2] = g+ = 291 in M. O

Theorem 2 Assume the existence of an inaccessible cardinal. Then it is consistent
with CH plus 2“* > wq that there exists a Jech—Kunen tree which has no Kurepa
subtrees.

Proof:  Assume that  is an inaccessible cardinal, Py = Lv(k,w;), Py = Fn(wy, 2)
in M. Let G, be a P;—generic filter over M, M' = M[G,], G5 be a IPy—generic filter
over M" and M" = M'|G,]. Let Py = Fn(ws,2,w;) in M", G5 be a IP3—generic filter
over M" and M"" = M"[G3]. We want to show that M" = [CH, 2“* = w3 and there
exists a Jech—Kunen tree which has no Kurepa subtrees |.

We list some facts first:

(1) M' = [CH, 2“" = wy and there are no Kurepa trees |.

(2) M" = [CH, 2“* = wy and every w;—complete binary tree in M’ is an w;—
anticomplete tree |. This was proved in Theorem 1.
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(3) M" = [CH, 2“* = w3 and every w;—complete binary tree in M’ is a Jech—
Kunen tree |. This is because an w;—closed forcing extension does not add any new
branches to an w;—anticomplete tree.

Let T be an w;—complete binary tree in M’. Then T is a Jech—Kunen tree in M""
by the fact (3). We now want to show that 7" has no Kurepa subtrees in M".

Suppose that there is a Kurepa subtree 7" of T"in M"'. Without loss of generality
we can assume that 7" is closed downward.

Since B(T) = (B(T))M", then B(T") C (B(T))™" in M™. Since T' C T, there is a
subset I of wsy in M" such that |I| = w, and T" € M"[G3 N Fn(l,2,w,)]. T is still a
Kurepa tree in M"[G3 N Fn(1,2,w;)]. Let py € Gs N Fn(1,2,w;) such that

po|-(T" is a Kurepa tree).
For any B € B(T") there is a pg < py such that pg|—(B € B(T")). Let
C={BeB(T): 3 < p(pl-(B € B(T"))}.

Since T" is a Kurepa tree in M"[G5 N F'n(1,2,w;)], then |C| > wy in M". |Fn(l,2,w;)| =
wy because CH is true in M". So there is a p' < pg in F'n([,2,w;) such that

C'={BeC:p|-(BeB(T))}

has power > w; .

Let 7" = UC" which is in M". Then p'|-(7" C 1") and that implies every level
of T" is at most countable. Since C' C B(T"), then T" is a Kurepa tree and this
contradicts that there are no Kurepa trees in M". O

Theorem 3 It is consistent with CH plus 2** > wy that there exists a Kurepa tree
which has no Jech-Kunen subtrees.

The following proof is due to K. Kunen.

Proof: Let M be a model of CH. In M, let x be a regular cardinal such that
wy < k and 2“" < k. Let IP € M be a partial order such that a condition p € IP is a
pair (T,,1,), where T}, is a downward closed countable normal subtree of (2<“1, C) of
height o, 4+ 1 for some countable ordinal oy, and [, is a one to one function from some
countable subset of x onto the top level of T},. For two conditions p,q € IP, p < ¢ iff
T,|ht(Ty) = T, dom(l,) O dom(l,) and for all £ € dom(l,), I,(§) C [,(§).

IP is the partial order used in [Je] and [T] to force a Kurepa tree, where IP is shown
to be w;—closed and have ws—c.c..

Let G be a IP-generic filter over M, T, = U{T}, : p € G} and B(§) = {t € 1 :
dp e G (t C1,(§))}. In M[G], CH holds, 2“* = k > wy, Tz is a Kurepa tree with &
many branches and B(Tg) = {B(&) : £ < k} (see [Je] or [T] for the detail).



Claim: There are no Jech—Kunen subtrees of 1.

Proof of Claim: Let 7' C Tg and B(T) = A < k in M[G]. Without loss of
generality we assume that T is closed downward. Let T = U{{s} x A, : s € 2<“1} ¢
MY be a nice name for T' (see [K2, page 208] for the definition of a nice name). Let
po € P such that po|~(T C Ty and |B(T)| = A < k). Since IP has wy—c.c., then the
set

S={¢<n:3p < (IFBE) € BT))}
has the cardinality < wiA < k. Defining

supt(T) = {€ < & : 3(s,p) € T (€ € dom(l,))}.

Since [2<“'| = w; in M and for every s € 2<¥', |A,| < wy, then |supt(T)| < w;.
Now pick a § € « such that & ¢ SUsupt(T)Udom(l,,). Since § ¢ S, we have
poll=B(&) & B(T).

Subclaim:  For any € € & — (supt(T) Udom(l,,)), pol—B(€) & B(T).

The claim follows from the subclaim because

pol=B(T) C{B(€) : € € supt(T) |J dom(l,,)}

implies
pol=1B(T)] = A < wr.
Proof of Subclaim:  We define an isomorphism ¢ from P to itself induced by ,

a permutation of x such that 7 (&) = &, 7(§) =€ and 7(a) = a if @ € K — {,&}.
For any p € P, let i(p) = (T},i(l,)), where

Z’(lp) =

L if €,& & dom(l,)
(p = (& 1p(€)) 1) U{{Co, Lp(E)) } if € € dom(l,) and & & dom(ly)
(lp = {{€0 [p(&0)) }) U{(§ lp(€0))} if & € dom(l,) and € & dom(ly)

(lpy = {{&0, 1p(&0)), (&, 1(€)) ) U{{€0, 1p(€)), (€, 1n(&0))} i €, & € dom(ly)

let i, be a map from M" to MY induced by i (see [K2, page 222] for the definition of
i.). Then i(po)|l-i.(B (o)) & B(i.(T)). Since £ and & are not in supt(T )Udom( lpy),
then i(py) = po, ix(T) = T and i,(B(&)) = B(£), hence po|-B(€) ¢ B(T). O

Remark: The author’s original proof of Theorem 3 involves the existence of two
inaccessible cardinals.

In next two theorems we show the negative sides of Theorem 2 and Theorem 3.
Before that we should introduce some properties of poset and Generalized Martin’s
Axiom. We take the form of Generalized Martin’s Axiom from [W] in which they call
it GMA(RN;—centered).



Let IP be a poset. A subset ) of IP is called centered if every finite subset of ()
has a lower bound in IP. A poset is called w;—centered if it is the union of w; many
centered subsets. A poset is called countably compact if every countable centered
subset of it has a lower bound.

GMA (Generalized Martin’s Axiom) is the statement:

Suppose P is an w;—centered and countably compact poset. Suppose
Kk < 2¥t. 1f D, is a dense subset of IP for each a < k, then there exists a
filter G of IP such that GN D, # 0 for all a < k.

We now define a poset in terms of a tree and its branches. Let T be a tree and B
be a subset of B(T'). We let

P(T,B) = {(A,C) : A is a countable subtree of T which is closed down-
ward, C is a nonempty countable subset of B such that for every C' in C,
ht(CNA) = ht(A)}.

be a poset ordered by:
<A1,Cl> S <A2,C2> iff CQ g C1 and A1|ht(A2) = A2
for any (A1,Cy), (42,Co) € P(T, B).

Lemma 2 Let T be an wy—tree and B C B(T). Then

(1) for any (A1,Cy) and (A2,Co) € P(T,B), (A1,C1) and (Ay,Cy) are compatible
if and only if either Ai|ht(As) = As and for each C € Co, ht(C' N A1) = ht(A4;) or
Aslht(Ar) = Ay and for each C € Cy, ht(C' N Ag) = hit(As);

(2) P(T, B) is wi—centered and countably compact if assuming CH.

Proof:  (1): “<=": Easy.

“=": Let (A,C) < (A,Cy) and (As,Cy). Assume ht(A;) > ht(Az). Then
Ap|ht(Ay) = (A|ht(Ay))|ht(As) = Alht(Ay) = As and for each C € Cy, ht(CNA;) =
ht(Ay) because ht(C'N A) = ht(A) and A|ht(A;) = ht(Ay).

(2): For any A C T such that A is countable and closed downward, let

P, = {(A,C): (4,C) € P(T,B)}.

Then IP 4 is a centered subset of IP(T, B). We have only w; many such A’s if assuming
CH. So IP(T, B) is wi—centered.

Suppose {(A,,C,) : n € w} is a centered subset of IP(T, B). Let A = Uy, An and
C = UnewCn -

Claim 1:  (A,C) € P(T, B).



Proof of Claim 1: If there is a C' € C such that ht(CNA) < ht(A), then
there are m,n € w such that C' € C,, and ht(CNA,) < ht(A,). Since (Anm,Cpn)
and (A,,C,) are compatible, if ht(A,) < ht(A,,), then ht(C N A,) = ht(A,) because
ht(CNA,) = ht(A,,), a contradiction; if ht(A,) > ht(A,,), then A, |ht(A,) # A,,
hence ht(C'N A,) = ht(A,) by (1), also a contradiction.

Claim 2:  (A,C) is a lower bound of {(A,,C,) : n € w}.

Proof of Claim 2:  If there is an n € w such that A|ht(A,) # A,, then there is
ate Alht(A,) — A, . Let t € A, for some m € w. Since (A,,C,) and (A,,,C,,) are
compatible, if A,|ht(A,,) = A, then t € A,, a contradiction; if A,,|ht(A,) = An,
then t € A,,|ht(A,) implies t € A, also a contradiction.

So (A,C) < (4,,C,) for all n € w.

By Claim 1 and Claim 2 P(7, B) is countably compact. O

Theorem 4 Assume GMA and CH plus 2°* = ws . Then every Jech—-Kunen tree has
a Kurepa subtree.

Proof: Let T" be a Jech-Kunen tree with ws many branches. Without loss of
generality we can assume that V¢ € T (|B(T(t))] = w2) . (We can make this by
throwing away all ¢’s with |B(T'(t))] < w; .)

Let B=B(T) = {B,: a < wy}. For every < wq let

Dﬂ—{(AC>€]PTB Cﬂ{B B<Oé<u)2}7é(b}
For every v < wy let
E,={(A,C) e P(T,B) : ht(A) > ~}.

Then Dg and E, both are dense subsets of IP(7, B) for all § < wy and v < w; . By
GMA there is a filter G of IP(T, B) such that GN Dz # 0 and GNE, # 0 for all 5

and v. Let
=J{4:(A,C) € G}.

Then ht(T") = w; because G E7 # () for all v < w; .

Claim 1:  |B(T")| = ws .

Proof of Claim 1:  If |B(T")| < wy, then there is a f < wy such that B(T") C
{B, : @ < }. But this contradicts that G Dg # 0.

Claim 2: Vo <w (|T)] < w).

Proof of Claim 2: Assume this is not true. Then there is an o < w; such that
Tol = wr -

Let (A,C) € G such that ht(A) > a. Since A is countable, there is a t € T), — A.
Let (A’,C") € G such that ¢t € A’. Since (A,C) and (A’,C’) are compatible, then
either A|ht(A") = A" or A'|ht(A) = A. A|ht(A’) = A’ is impossible because ¢ ¢ A.
A'|ht(A) = A is also impossible because t € A'NT), and a < ht(A).

By Claim 1 and Claim 2 7" is a Kurepa subtree of 7. O
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Theorem 5 It is consistent with GMA and 2“* > wy that there exist Kurepa trees
with 2“7 many branches and every Kurepa tree has Jech-Kunen subtrees.

We need a lemma to prove Theorem 5.

Lemma 3 Let M be a model of CH plus 2** > wy . Let T be an w;—tree such
that for every t € T, |B(T(t))| > we and let B C B(T) such that |B| = wy and
for everyt € T, |B(T(t))N\B| = wa . If G is a P(T,B)—generic filter over M and
Te =U{A: (AC) € G}, then T is a Jech—Kunen subtree of T in MIG].

Proof:  Let B={B,:a <wy}. Since
Dﬁ—{(AC>€]PTB Cﬂ{B B<Oé<u)2}7é(b}

is dense in IP(T, B), then |B(T)| > ws by the proof of Claim 1 of Theorem 4. We
now need to show that |B(Tg)| = ws .

Suppose that is not true. Then there is a B € (B(T))™ — B such that B €
B(T:) in M]G] since wy—closed forcing extension adds no new branches of 7. Let
(Ao, Co)|-(B € B(Ty,)). Since B ¢ Cy, there is an o < wy, o > ht(Ag) such that B is
different from C' at a—th level for all C' € Cy . Let

= ((UCo) U4 N(T)a+1).

Then (Ay, Cy) < (Ap,Co). Hence (A1, Co)|-(B € B(Ty,)). Butif H is a IP-generic filter
over M such that (A,Cy) € H, then B ¢ B(Ty) in M[H| since ht(BN A1) < ht(A,),
a contradiction. O

Proof of Theorem 5: Let M be a model of CH plus 2¥* = 2“2 = w3 and there
are Kurepa trees with w3 many branches. (See [T, pp.282| for such a model.) Let P
be the ws steps countable support iterated forcing poset for GMA in M and G be a
IP-generic filter over M. We want to show that M[G] = [CH, 2“' = w3, there are
Kurepa trees with w3 many branches and every Kurepa tree has Jech-Kunen subtrees
-

Let T be a Kurepa tree in M[G]. Without loss of generality we can assume
that for every t € T, |B(T(t))] > wy. Let B C B(T) such that for every ¢t €
T, |BONB(T(t))] = we. Then P(T,B) is w;—centered and countably compact by
Lemma 2. Let o < wy such that T, B and IP(T, B) are in M[G,], which is the initial
« steps iterated forcing extension of M in M[G] and IP(T', B) is the poset used at a—th
step forcing extension for GMA. Let H be the IP(T, B)—generic filter over M[G,] such
that M[Go11] = M[G4|[H]. Then

Ty = J{A: (A, C) € H}

is a Jech—Kunen subtree of 7" in M[Ga41]. Th is still a Jech-Kunen tree in MI[G]|
because the poset for the rest of the forcing extension is wi—closed in M[G4qq]. O

10



Remark: All the results in this paper about trees can be translated into the
results about linear orders. Among them the one related Jech-Kunen tree is most
interested.

Let L be called a Jech-Kunen continuum iff L is a Dedekind complete dense
linear order with density w; and power strictly between w; and 2“'. Assume CH
plus 2“" > wy . Then there exists a Jech—-Kunen tree iff there exists a Jech—Kunen
continuum.
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