Some Independence Results Related To The Kurepa Tree

Renling Jin

Abstract

By an ω_{1}-tree we mean a tree of power ω_{1} and height ω_{1}. Under the assumption of $C H$ plus $2^{\omega_{1}}>\omega_{2}$ we call an ω_{1}-tree a Jech-Kunen tree if it has κ many branches for some κ strictly between ω_{1} and $2^{\omega_{1}}$. We call an ω_{1}-tree being ω_{1}-anticomplete if it has more than ω_{1} many branches and has no subtrees which are isomorphic to the standard ω_{1}-complete binary tree. In this paper we prove that: (1) It is consistent with $C H$ plus $2^{\omega_{1}}>\omega_{2}$ that there exists an ω_{1}-anticomplete tree but no Jech-Kunen trees or Kurepa trees; (2) It is independent of CH plus $2^{\omega_{1}}>\omega_{2}$ that there exists a Jech-Kunen tree without Kurepa subtrees; (3) It is independent of CH plus $2^{\omega_{1}}>\omega_{2}$ that there exists a Kurepa tree without Jech-Kunen subtrees. We assume the existence of an inaccessible cardinal in some of our proofs.

Let T be a tree. For an ordinal α, T_{α} is the α-th level of T and $T \mid \alpha=\bigcup_{\beta<\alpha} T_{\beta}$. Let $h t(T)$, the height of T, be the smallest ordinal λ such that $T_{\lambda}=\emptyset$. By a branch of T we mean a linearly ordered subset of T which intersects every non-empty level of T. Let $\mathcal{B}(T)=\{B: B$ is a branch of $T\}$. For a $t \in T$ let $T(t)=\{s \in T: s$ and t are comparable $\}$.

Let T be a tree. We recall that:
T is an ω_{1}-tree if $|T|=\omega_{1}$ and $h t(T)=\omega_{1}$. Without loss of generality we sometimes assume that $\left\langle T, \leq_{T}\right\rangle=\left\langle\omega_{1}, \leq_{T}\right\rangle$ with unique root 0 if T is an ω_{1}-tree.

An ω_{1}-tree T is called a Kurepa tree if $\left|T_{\alpha}\right|<\omega_{1}$ for any $\alpha<\omega_{1}$ and $|\mathcal{B}(T)|>\omega_{1}$. An ω_{1}-tree T is called a Jech-Kunen tree if $\omega_{1}<|\mathcal{B}(T)|<2^{\omega_{1}}$.
T^{\prime} is a subtree of T if $T^{\prime} \subseteq T$ and $\leq_{T^{\prime}}=\leq_{T} \cap T^{\prime} \times T^{\prime}\left(T^{\prime}\right.$ inherits the order of $\left.T\right)$. For an ordinal λ we call $\left\langle 2^{<\lambda}, \subseteq\right\rangle$ a standard λ-complete binary tree. A tree is called a λ-complete binary tree if it is isomorphic to $\left\langle 2^{<\lambda} \subseteq \subseteq\right.$. A subtree T^{\prime} of T is called closed downward if for any $t^{\prime} \in T^{\prime},\left\{t \in T: t<_{T} t^{\prime}\right\} \subseteq T^{\prime}$.

An ω_{1}-tree T is called an ω_{1}-anticomplete tree if $|\mathcal{B}(T)|>\omega_{1}$ and T has no ω_{1}-complete binary subtrees.

Facts: (1). Both Kurepa trees and Jech-Kunen trees are ω_{1}-anticomplete trees;
(2). Under CH and $2^{\omega_{1}}>\omega_{2}$, a Jech-Kunen tree is also a Kurepa tree if every level of it is countable;
(3). Under $C H$ and $2^{\omega_{1}}>\omega_{2}$, a Kurepa tree is also a Jech-Kunen tree if it has less than $2^{\omega_{1}}$ many branches

The independence of the existence of Kurepa trees was proved by J. Silver (see [K2]). In [Je], T. Jech constructs a model of CH plus $2^{\omega_{1}}>\omega_{2}$, in which there is a Jech-Kunen tree. In fact, it is a Kurepa tree with less than $2^{\omega_{1}}$ branches. The
independence of the existence of Jech-Kunen trees under CH plus $2^{\omega_{1}}>\omega_{2}$ was given by K. Kunen in [K1], in which he gave an equivalent form of Jech-Kunen trees in terms of compact Hausdorff spaces. The detailed proof can be found in [Ju, Theorem 4.8].

The technique used by Silver and Kunen to kill Kurepa trees and Jech-Kunen trees is to show that if an ω_{1}-tree T has a new branch in an ω_{1}-closed forcing extension, then T should have an ω_{1}-complete binary subtree. So in their models all ω_{1}-anticomplete trees are also killed.

In this paper we discuss two questions: (1) Assuming $C H$ plus $2^{\omega_{1}}>\omega_{2}$, can we kill all Kurepa trees and Jech-Kunen trees without killing all ω_{1}-anticomplete trees? (2) How different are Kurepa trees and Jech-Kunen trees? For background in trees see [T], for background in forcing see [K2] and for Generalized Martin's Axiom see $[\mathrm{W}, \S 6]$. By an inaccessible cardinal we mean a strongly inaccessible cardinal. We thank Professor K. Kunen for his permission of presenting his proof of Theorem 3 in this paper.

Before proving theorems we need more notation of posets (partially ordered sets with largest elements). We always let $1_{\mathbf{P}}$ be the largest element of a poset \mathbb{P}.

Let I, J be two sets and λ be a cardinal.

$$
F n(I, J, \lambda)=\{f: f \text { is a function, } f \subseteq I \times J \text { and }|f|<\lambda\}
$$

is a poset ordered by reverse inclusion. We omit λ if $\lambda=\omega$.
Let I be a subset of an ordinal κ and λ be a cardinal.

$$
\begin{aligned}
& \operatorname{Lv}(I, \lambda)=\{f: f \text { is a function, } f \subseteq(I \times \lambda) \times \kappa,|f|<\lambda \text { and } \forall\langle\alpha, \beta\rangle \in \\
& \operatorname{dom}(f)(f(\alpha, \beta) \in \alpha)\}
\end{aligned}
$$

is a poset ordered by reverse inclusion.
In forcing arguments we let \dot{a} be a name for a and \ddot{a} be a name for \dot{a}. We always assume the consistency of $Z F C$ and let M be a countable transitive model of $Z F C$.

Theorem 1 Assume the existence of an inaccessible cardinal. Then it is consistent with CH plus $2^{\omega_{1}}>\omega_{2}$ that there exists an ω_{1}-anticomplete tree but there are neither Kurepa trees nor Jech-Kunen trees.

We need a lemma from [D].
Lemma 1 Let $\mathbb{P}, \mathbb{P}^{\prime}$ be two posets in M such that \mathbb{P} has c.c.c. and \mathbb{P}^{\prime} is ω_{1}-closed in M. Let $G_{\mathbf{P}}$ be a \mathbb{P}-generic filter over M and $G_{\mathbf{P}^{\prime}}$ be a \mathbb{P}^{\prime}-generic filter over $M\left[G_{\mathrm{P}}\right]$. Let T be an ω_{1}-tree in $M\left[G_{\mathbf{P}}\right]$. If T has a new branch B in $M\left[G_{\mathbf{P}}\right]\left[G_{\mathbf{P}^{\prime}}\right]-M\left[G_{\mathbf{P}}\right]$, then T has a subtree T^{\prime} in $M\left[G_{\mathbf{P}}\right]$, which is isomorphic to the tree $\left\langle 2^{<\omega_{1}} \cap M, \subseteq\right\rangle$ (standard ω_{1}-complete binary tree in M).

Proof: First we work within M. In the proof we always let $i=0,1$. Without loss of generality we can assume that

$$
1_{\mathbf{P}} \Vdash_{\mathbf{P}}\left(1_{\mathbf{P}^{\prime}} \Vdash_{\mathbf{P}^{\prime}}(\ddot{B} \text { is a branch of } \dot{T})\right) .
$$

Claim 1: Let $\alpha<\omega_{1}$ and $q \in \mathbb{P}^{\prime}$. Then there is a $q^{\prime} \leq_{P^{\prime}} q$ such that $1_{\mathrm{P}} \Vdash_{\mathrm{P}}\left(\Phi\left(\alpha, q^{\prime}, \dot{T}, \ddot{B}\right)\right)$, where

$$
\Phi(\alpha, q, \dot{T}, \ddot{B}) \stackrel{\text { def }}{=}\left(\exists y \in \dot{T}_{\alpha}\right)\left(q \|_{\mathbf{P}^{\prime}}(y \in \ddot{B})\right) .
$$

Proof of Claim 1: \quad See [D, Lemma 3.6].
Claim 2: Let $\alpha<\omega_{1}, q \in \mathbb{P}^{\prime}$ and $1_{\mathbf{P}} \|_{\mathbf{P}}(\Phi(\alpha, q, \dot{T}, \ddot{B}))$. Then there is a $\beta<\omega_{1}, \beta>\alpha$ and $q^{i} \leq_{\mathbf{P}^{\prime}} q$ such that $1_{\mathbf{P}} \Vdash_{\mathbf{P}}\left(\Psi\left(\alpha, \beta, q, q^{0}, q^{1}, \dot{T}, \ddot{B}\right)\right)$, where

$$
\Psi\left(\alpha, \beta, q, q^{0}, q^{1}, \dot{T}, \ddot{B}\right) \stackrel{\text { def }}{=}\left[\text { if } x \in \dot{T}_{\alpha} \text { and } q \|_{\mathbf{P}^{\prime}}(x \in \ddot{B})\right. \text {, then there are }
$$ $x^{i} \in \dot{T}_{\beta}, x^{0} \neq x^{1}$ and $x<_{T} x^{i}$ such that $\left.q^{i} \vdash_{\mathbf{p}^{\prime}}\left(x^{i} \in \ddot{B}\right)\right]$.

Proof of Claim 2: \quad See [D, Lemma 3.6].
Claim 3: Let δ be an ordinal below ω_{1}. Let $\left\langle q_{\gamma}: \gamma<\delta\right\rangle$ be a decreasing sequence in \mathbb{P}^{\prime} and $\left\langle\alpha_{\gamma}: \gamma<\delta\right\rangle$ be an increasing sequence in ω_{1} such that $1_{\mathbf{P}} \Vdash_{\mathbf{P}}\left(\Phi\left(\alpha_{\gamma}, q_{\gamma}, \dot{T}, \ddot{B}\right)\right)$ for all $\gamma<\delta$. Let $\alpha_{\delta}=\sup \left\{\alpha_{\gamma}: \gamma<\delta\right\}$. Then there is a $q \leq_{\mathbf{P}^{\prime}} q_{\gamma}$ for all $\gamma<\delta$ such that $1_{\mathbf{P}} \Vdash_{\mathbf{P}}\left(\Phi\left(\alpha_{\delta}, q, \dot{T}, \ddot{B}\right)\right)$.

Proof of Claim 3: \quad Since \mathbb{P}^{\prime} is ω_{1}-closed in M, there is a $q^{\prime} \in \mathbb{P}^{\prime}$ such that $q^{\prime} \leq_{\mathbf{P}^{\prime}} q_{\gamma}$ for all $\gamma<\delta$. By Claim 1 there is a $q \leq_{\mathbf{P}^{\prime}} q^{\prime}$ such that $1_{\mathbf{P}} \Vdash_{\mathrm{P}}\left(\Phi\left(\alpha_{\delta}, q, \dot{T}, \ddot{B}\right)\right)$. This ends the proof of Claim 3.

We now prove the lemma. We construct a subset $\overline{\mathbb{P}}=\left\{p_{s}: s \in 2^{<\omega_{1}}\right\}$ of \mathbb{P}^{\prime} and a subset $O=\left\{\alpha_{s}: s \in 2^{<\omega_{1}}\right\}$ of ω_{1} in M such that
(1) the map $s \mapsto p_{s}$ is an isomorphic imbedding from the standard ω_{1}-complete binary tree to \mathbb{P}^{\prime}.
(2) $\forall s, t \in 2^{<\omega_{1}}\left(s \subseteq t\right.$ and $\left.s \neq t \rightarrow \alpha_{s}<\alpha_{t}\right)$.
(3) $\alpha_{s^{\wedge}\langle 0\rangle}=\alpha_{s^{\wedge}\langle 1\rangle}$ for all $s \in 2^{<\omega_{1}}$.
(4) $1_{\mathbf{P}} \Vdash_{\mathbf{P}}\left(\Phi\left(\alpha_{s}, p_{s}, \dot{T}, \ddot{B}\right)\right)$ for all $s \in 2^{<\omega_{1}}$.
(5) $1_{\mathbf{P}} \Vdash_{\mathbf{P}}\left(\Psi\left(\alpha_{s}, \alpha_{s^{\wedge}\langle 0\rangle}, p_{s}, p_{s^{\wedge}\langle 0\rangle}, p_{s^{\wedge}\langle 1\rangle}, \dot{T}, \ddot{B}\right)\right)$ for all $s \in 2^{\left\langle\omega_{1}\right.}$.

Let $\alpha_{\langle \rangle}=0$ and $p_{\langle \rangle}=1_{\mathbf{P}^{\prime}}$. Assume that we have α_{s} and p_{s} for all $s \in 2^{<\omega_{1}}$.
Case 1: $\quad \alpha=\gamma+1$.
Let $s \in 2^{\gamma}$. Since $1_{\mathbf{P}} \Vdash_{\mathbf{P}}\left(\Phi\left(\alpha_{s}, p_{s}, \dot{T}, \ddot{B}\right)\right)$, then there is a $\beta<\omega_{1}, \beta>\alpha_{s}$ and $q^{i} \leq_{\mathbf{P}^{\prime}} p_{s}$ such that $1_{\mathbf{P}} \Vdash_{\mathbf{P}}\left(\Psi\left(\alpha_{s}, \beta, p_{s}, q^{0}, q^{1}, \dot{T}, \ddot{B}\right)\right)$ by Claim 2. Let $\alpha_{s^{\prime}\langle i\rangle}=\beta$ and $p_{s^{\wedge}\langle i\rangle}=q^{i}$. (Note that q^{0}, q^{1} are incompatible by Claim 2.)

Let G be any \mathbb{P}-generic filter over M. Then $M[G] \models\left[\Phi\left(\alpha_{s}, p_{s}, T, \dot{B}\right)\right]$. Hence in $M[G]$ there is an $x \in T_{\alpha_{s}}$ such that $p_{s} \|_{\mathbf{P}^{\prime}}(x \in \dot{B})$. Since
$M[G] \models\left[\Psi\left(\alpha_{s}, \alpha_{s^{\wedge}\langle 0\rangle}, p_{s}, p_{s^{\wedge}\langle 0\rangle}, p_{s^{\wedge}\langle 1\rangle}, T, \dot{B}\right)\right.$ and $\left.x \in T_{\alpha_{s}}\right]$, then there are $x^{i} \in T_{\alpha_{s^{\wedge}\langle i\rangle}}$ such that $p_{s^{\wedge}\langle i\rangle} \Vdash_{\mathbf{P}^{\prime}}\left(x^{i} \in \dot{B}\right)$ in $M[G]$. This implies that $1_{\mathbf{P}} \Vdash_{\mathbf{P}}\left(\Phi\left(\alpha_{s^{\wedge}\langle i\rangle}, p_{s^{\wedge}\langle i\rangle}, \dot{T}, \ddot{B}\right)\right)$.

Case 2: $\quad \alpha$ is a limit ordinal below ω_{1}.
Let $s \in 2^{\alpha}$. Since $\left\langle\alpha_{s \mid \beta}: \beta<\alpha\right\rangle$ is increasing in $\omega_{1},\left\langle p_{s \mid \beta}: \beta<\alpha\right\rangle$ is decreasing in \mathbb{P}^{\prime} and $1_{\mathbf{P}} \Vdash^{\mathbf{P}}\left(\Phi\left(\alpha_{s \mid \beta}, p_{s \mid \beta}, \dot{T}, \ddot{B}\right)\right)$ for all $\beta<\alpha$, then there is an $\alpha_{s}=\sup \left\{\alpha_{s \mid \beta}: \beta<\right.$ $\alpha\}$ and a $p_{s} \leq_{\mathbf{P}^{\prime}} p_{s \mid \beta}$ for all $\beta<\alpha$ such that $1_{\mathbf{P}} \|_{\mathbf{P}}\left(\Phi\left(\alpha_{s}, p_{s}, \dot{T}, \ddot{B}\right)\right)$ by Claim 3 .

We now work within $M\left[G_{\mathrm{P}}\right]$ to construct a subtree $T^{\prime}=\left\{t_{s}: s \in 2^{<\omega_{1}} \cap M\right\}$ of T such that
(1) the map $s \mapsto t_{s}$ is an isomorphic imbedding from $\left\langle 2^{<\omega_{1}} \cap M, \subseteq\right\rangle$ to T.
(2) $t_{s} \in T_{\alpha_{s}}$ and $p_{s} \|_{\mathbf{p}^{\prime}}\left(t_{s} \in \dot{B}\right)$ for all $s \in 2^{<\omega_{1}} \cap M$.

Let $t_{\langle \rangle}=0$, the root of T. Assume that we have t_{s} for all $s \in 2^{<\alpha} \cap M$.
Case 1: $\quad \alpha=\beta+1$.
Let $s \in 2^{\beta} \cap M$. Since $p_{s} \|_{\mathbf{P}^{\prime}}\left(t_{s} \in \dot{B}\right)$ and $\Psi\left(\alpha_{s}, \alpha_{s^{\wedge}\langle 0\rangle}, p_{s}, p_{s^{\wedge}\langle 0\rangle}, p_{s^{\gamma}\langle 1\rangle}, T, \dot{B}\right)$ is true, there are $t^{i} \in T_{\alpha_{s^{\wedge}\langle 0\rangle}}$ such that $t<_{T} t^{i}, t^{0} \neq t^{1}$ and $p_{s^{\wedge}\langle i\rangle} \Vdash_{\mathrm{P}^{\prime}}\left(t^{i} \in \dot{B}\right)$.

Let $t_{s^{\wedge}\langle i\rangle}=t^{i}$ for $i=0,1$.
Case 2: $\quad \alpha$ is a limit ordinal below ω_{1}.
Let $s \in 2^{\alpha} \cap M$. Since $\Phi\left(\alpha_{s}, p_{s}, T, \dot{B}\right)$ is true, there is an $x \in T_{\alpha_{s}}$ such that $p_{s} \|_{\mathrm{P}^{\prime}}(x \in \dot{B})$. Since $\forall \beta<\alpha\left(p_{s} \leq p_{s \mid \beta}\right)$, then $p_{s} \|_{\mathbf{P}^{\prime}}\left(t_{s \mid \beta} \in \dot{B}\right)$. Now $t_{s \mid \beta}<_{T} x$ because $\alpha_{s}>\alpha_{s \mid \beta}$ for all $\beta<\alpha$.

Let $t_{s}=x$.
We have now finished construction and T^{\prime} is just the required subtree of T.
Proof of Theorem 1: Let κ be an inaccessible cardinal, $\mathbb{P}_{1}=\operatorname{Lv}\left(\kappa, \omega_{1}\right), \mathbb{P}_{2}=$ $F n\left(\kappa^{+}, 2, \omega_{1}\right)$ and $\mathbb{P}_{3}=F n\left(\omega_{1}, 2\right)$ in M. Let G_{1} be a \mathbb{P}_{1}-generic filter over M, $M^{\prime}=M\left[G_{1}\right], G_{2}$ be a \mathbb{P}_{2}-generic filter over $M^{\prime}, M^{\prime \prime}=M^{\prime}\left[G_{2}\right], G_{3}$ be a \mathbb{P}_{3}-generic filter over $M^{\prime \prime}$ and $M^{\prime \prime \prime}=M^{\prime \prime}\left[G_{3}\right]$. We want to show that $M^{\prime \prime \prime} \models\left[C H, 2^{\omega_{1}}=\omega_{3}\right.$ and there exists an ω_{1}-anticomplete tree but there are neither Kurepa trees nor JechKunen trees].

We list some facts first:
(1) $M^{\prime} \models\left[C H, 2^{\omega_{1}}=\omega_{2}=\kappa\right.$ and there are no Kurepa trees $]$. The proof can be found in [K2, pp. 261].
(2) $M^{\prime \prime} \models\left[C H, 2^{\omega_{1}}=\omega_{3}=\kappa^{+}\right.$and there exist neither Kurepa trees nor JechKunen trees]. See [Ju, Theorem 4.8] for the proof.
(3) $M^{\prime \prime \prime} \models\left[C H, 2^{\omega_{1}}=\omega_{3}\right]$.

Claim 1: \quad There exists an ω_{1}-anticomplete tree in $M^{\prime \prime \prime}$.
Proof of Claim 1: Let T be an ω_{1}-complete binary tree in $M^{\prime \prime}$. We want to show that T is an ω_{1}-anticomplete tree in $M^{\prime \prime \prime}$. Since in $M^{\prime \prime \prime},|\mathcal{B}(T)| \geq\left|(\mathcal{B}(T))^{M^{\prime \prime}}\right|=\omega_{3}$, it suffices to show that T has no ω_{1}-complete binary subtrees in $M^{\prime \prime \prime}$.

Suppose that is not true. Then T has an ω_{1}-complete binary subtree $T^{\prime}=\left\{t_{s}\right.$: $\left.s \in 2^{<\omega_{1}}\right\}$ in $M^{\prime \prime \prime}$. Since $T^{\prime} \mid \omega$ is countable and $T^{\prime} \subseteq T=\omega_{1}$, then there is a $\delta<$ ω_{1} such that $T^{\prime} \mid \omega \in M^{\prime \prime}\left[G_{3} \bigcap F n(\delta, 2)\right]$. Let $f \in 2^{\omega}$ be a new function in $M^{\prime \prime \prime}-$ $M^{\prime \prime}\left[G_{3} \cap F n(\delta, 2)\right]$. Then $C_{f}=\left\{t_{f \mid n}: n \in \omega\right\}$ is not in $M^{\prime \prime}\left[G_{3} \cap F n(\delta, 2)\right]$. But $C_{f}=\left\{t \in T^{\prime} \mid \omega: t<_{T} t_{f}\right\}$ which is in $M^{\prime \prime}\left[G_{3} \cap F n(\delta, 2)\right]$. This contradiction ends the proof of Claim 1.

Claim 2: There exist neither Kurepa trees nor Jech-Kunen trees in $M^{\prime \prime \prime}$.
Proof of Claim 2: Let T be an ω_{1}-tree in $M^{\prime \prime \prime}$. Then there is a $\theta<\kappa$ and a subset $I \subseteq \kappa^{+}$of power ω_{1} such that

$$
T \in M\left[G_{1} \bigcap \operatorname{Lv}\left(\theta, \omega_{1}\right)\right]\left[G_{2} \bigcap F n\left(I, 2, \omega_{1}\right)\right]\left[G_{3}\right]
$$

Let $\mathbb{P}_{1}^{\prime}=\operatorname{Lv}\left(\theta, \omega_{1}\right), \mathbb{P}_{1}^{\prime \prime}=\operatorname{Lv}\left(\kappa-\theta, \omega_{1}\right), \mathbb{P}_{2}^{\prime}=F n\left(I, 2, \omega_{1}\right), \mathbb{P}_{2}^{\prime \prime}=F n\left(\kappa^{+}-I, 2, \omega_{1}\right)$. Then $\mathbb{P}_{1}=\mathbb{P}_{1}^{\prime} \times \mathbb{P}_{1}^{\prime \prime}, \mathbb{P}_{2}=\mathbb{P}_{2}^{\prime} \times \mathbb{P}_{2}^{\prime \prime}$ and all of these posets mentioned here are ω_{1}-closed. Let $G_{1}^{\prime}=G_{1} \cap \mathbb{P}_{1}^{\prime}, G_{1}^{\prime \prime}=G_{1} \cap \mathbb{P}_{1}^{\prime \prime}, G_{2}^{\prime}=G_{2} \cap \mathbb{P}_{2}^{\prime}$ and $G_{2}^{\prime \prime}=G_{2} \cap \mathbb{P}_{2}^{\prime \prime}$. Then $G_{1}=G_{1}^{\prime} \times G_{1}^{\prime \prime}, G_{2}=G_{2}^{\prime} \times G_{2}^{\prime \prime}$ and

$$
M^{\prime \prime \prime}=M\left[G_{1}^{\prime}\right]\left[G_{1}^{\prime \prime}\right]\left[G_{2}^{\prime}\right]\left[G_{2}^{\prime \prime}\right]\left[G_{3}\right]=M\left[G_{1}^{\prime}\right]\left[G_{2}^{\prime}\right]\left[G_{3}\right]\left[G_{1}^{\prime \prime}\right]\left[G_{2}^{\prime \prime}\right]
$$

Since

$$
M\left[G_{1}^{\prime}\right]\left[G_{2}^{\prime}\right]\left[G_{3}\right] \models[|\mathcal{B}(T)|<\kappa],
$$

then there is a new branch of T in $M^{\prime \prime \prime}-M\left[G_{1}^{\prime}\right]\left[G_{2}^{\prime}\right]\left[G_{3}\right]$ if T has more than ω_{1} many branches in $M^{\prime \prime \prime}$. Since \mathbb{P}_{3} has c.c.c. and $\mathbb{P}_{1}^{\prime \prime} \times \mathbb{P}_{2}^{\prime \prime}$ is ω_{1}-closed in $M\left[G_{1}^{\prime}\right]\left[G_{2}^{\prime}\right]$, then there is a subtree T^{\prime} of T in $M\left[G_{1}^{\prime}\right]\left[G_{2}^{\prime}\right]\left[G_{3}\right]$, which is isomorphic to $\left\langle 2^{<\omega_{1}} \cap M\left[G_{1}^{\prime}\right]\left[G_{2}^{\prime}\right], \subseteq\right\rangle$ by Lemma 1.

This is impossible if T is a Kurepa tree because $T^{\prime} \mid \omega+1$ is uncountable. This is also impossible if T is a Jech-Kunen tree because $2^{<\omega_{1}} \cap M\left[G_{1}^{\prime}\right]\left[G_{2}^{\prime}\right]=2^{<\omega_{1}} \cap M\left[G_{1}\right]\left[G_{2}\right]$ and $|\mathcal{B}(T)| \geq\left|\mathcal{B}\left(T^{\prime}\right)\right| \geq\left(2^{\omega_{1}}\right)^{M\left[G_{1}\right]\left[G_{2}\right]}=\kappa^{+}=2^{\omega_{1}}$ in $M^{\prime \prime \prime}$.

Theorem 2 Assume the existence of an inaccessible cardinal. Then it is consistent with CH plus $2^{\omega_{1}}>\omega_{2}$ that there exists a Jech-Kunen tree which has no Kurepa subtrees.

Proof: Assume that κ is an inaccessible cardinal, $\mathbb{P}_{1}=\operatorname{Lv}\left(\kappa, \omega_{1}\right), \mathbb{P}_{2}=F n\left(\omega_{1}, 2\right)$ in M. Let G_{1} be a \mathbb{P}_{1}-generic filter over $M, M^{\prime}=M\left[G_{1}\right], G_{2}$ be a \mathbb{P}_{2}-generic filter over M^{\prime} and $M^{\prime \prime}=M^{\prime}\left[G_{2}\right]$. Let $\mathbb{P}_{3}=F n\left(\omega_{3}, 2, \omega_{1}\right)$ in $M^{\prime \prime}, G_{3}$ be a \mathbb{P}_{3}-generic filter over $M^{\prime \prime}$ and $M^{\prime \prime \prime}=M^{\prime \prime}\left[G_{3}\right]$. We want to show that $M^{\prime \prime \prime} \models\left[C H, 2^{\omega_{1}}=\omega_{3}\right.$ and there exists a Jech-Kunen tree which has no Kurepa subtrees].

We list some facts first:
(1) $M^{\prime} \models\left[C H, 2^{\omega_{1}}=\omega_{2}\right.$ and there are no Kurepa trees $]$.
(2) $M^{\prime \prime} \vDash\left[C H, 2^{\omega_{1}}=\omega_{2}\right.$ and every ω_{1}-complete binary tree in M^{\prime} is an $\omega_{1}-$ anticomplete tree]. This was proved in Theorem 1.
(3) $M^{\prime \prime \prime} \models\left[C H, 2^{\omega_{1}}=\omega_{3}\right.$ and every ω_{1}-complete binary tree in M^{\prime} is a JechKunen tree]. This is because an ω_{1}-closed forcing extension does not add any new branches to an ω_{1}-anticomplete tree.

Let T be an ω_{1}-complete binary tree in M^{\prime}. Then T is a Jech-Kunen tree in $M^{\prime \prime \prime}$ by the fact (3). We now want to show that T has no Kurepa subtrees in $M^{\prime \prime \prime}$.

Suppose that there is a Kurepa subtree T^{\prime} of T in $M^{\prime \prime \prime}$. Without loss of generality we can assume that T^{\prime} is closed downward.

Since $\mathcal{B}(T)=(\mathcal{B}(T))^{M^{\prime \prime}}$, then $\mathcal{B}\left(T^{\prime}\right) \subseteq(\mathcal{B}(T))^{M^{\prime \prime}}$ in $M^{\prime \prime \prime}$. Since $T^{\prime} \subseteq T$, there is a subset I of ω_{3} in $M^{\prime \prime}$ such that $|I|=\omega_{1}$ and $T^{\prime} \in M^{\prime \prime}\left[G_{3} \cap F n\left(I, 2, \omega_{1}\right)\right]$. T^{\prime} is still a Kurepa tree in $M^{\prime \prime}\left[G_{3} \cap F n\left(I, 2, \omega_{1}\right)\right]$. Let $p_{0} \in G_{3} \cap F n\left(I, 2, \omega_{1}\right)$ such that

$$
p_{0} \|\left(\dot{T}^{\prime} \text { is a Kurepa tree }\right) .
$$

For any $B \in \mathcal{B}\left(T^{\prime}\right)$ there is a $p_{B} \leq p_{0}$ such that $p_{B} \|-\left(B \in \mathcal{B}\left(\dot{T}^{\prime}\right)\right)$. Let

$$
\mathcal{C}=\left\{B \in \mathcal{B}(T): \exists p \leq p_{0}\left(p \|-\left(B \in \mathcal{B}\left(\dot{T}^{\prime}\right)\right)\right)\right\} .
$$

Since T^{\prime} is a Kurepa tree in $M^{\prime \prime}\left[G_{3} \bigcap F n\left(I, 2, \omega_{1}\right)\right]$, then $|\mathcal{C}|>\omega_{1}$ in $M^{\prime \prime} .\left|F n\left(I, 2, \omega_{1}\right)\right|=$ ω_{1} because $C H$ is true in $M^{\prime \prime}$. So there is a $p^{\prime} \leq p_{0}$ in $F n\left(I, 2, \omega_{1}\right)$ such that

$$
\mathcal{C}^{\prime}=\left\{B \in \mathcal{C}: p^{\prime} \|-\left(B \in \mathcal{B}\left(\dot{T}^{\prime}\right)\right)\right\}
$$

has power $>\omega_{1}$.
Let $T^{\prime \prime}=\bigcup \mathcal{C}^{\prime}$ which is in $M^{\prime \prime}$. Then $p^{\prime} \|-\left(T^{\prime \prime} \subseteq \dot{T}^{\prime}\right)$ and that implies every level of $T^{\prime \prime}$ is at most countable. Since $\mathcal{C}^{\prime} \subseteq \mathcal{B}\left(T^{\prime \prime}\right)$, then $T^{\prime \prime}$ is a Kurepa tree and this contradicts that there are no Kurepa trees in $M^{\prime \prime}$.

Theorem 3 It is consistent with CH plus $2^{\omega_{1}}>\omega_{2}$ that there exists a Kurepa tree which has no Jech-Kunen subtrees.

The following proof is due to K. Kunen.
Proof: Let M be a model of $C H$. In M, let κ be a regular cardinal such that $\omega_{2}<\kappa$ and $2^{\omega_{1}} \leq \kappa$. Let $\mathbb{P} \in M$ be a partial order such that a condition $p \in \mathbb{P}$ is a pair $\left\langle T_{p}, l_{p}\right\rangle$, where T_{p} is a downward closed countable normal subtree of $\left\langle 2^{<\omega_{1}}, \subseteq\right\rangle$ of height $\alpha_{p}+1$ for some countable ordinal α_{p} and l_{p} is a one to one function from some countable subset of κ onto the top level of T_{p}. For two conditions $p, q \in \mathbb{P}, p \leq q$ iff $T_{p} \mid h t\left(T_{q}\right)=T_{q}, \operatorname{dom}\left(l_{p}\right) \supseteq \operatorname{dom}\left(l_{q}\right)$ and for all $\xi \in \operatorname{dom}\left(l_{q}\right), l_{q}(\xi) \subseteq l_{p}(\xi)$.
\mathbb{P} is the partial order used in [Je] and [T] to force a Kurepa tree, where \mathbb{P} is shown to be ω_{1}-closed and have ω_{2}-c.c..

Let G be a \mathbb{P}-generic filter over $M, T_{G}=\bigcup\left\{T_{p}: p \in G\right\}$ and $B(\xi)=\left\{t \in T_{G}\right.$: $\left.\exists p \in G\left(t \subseteq l_{p}(\xi)\right)\right\}$. In $M[G], C H$ holds, $2^{\omega_{1}}=\kappa>\omega_{2}, T_{G}$ is a Kurepa tree with κ many branches and $\mathcal{B}\left(T_{G}\right)=\{B(\xi): \xi<\kappa\}$ (see [Je] or [T] for the detail).

Claim: There are no Jech-Kunen subtrees of T_{G}.
Proof of Claim: Let $T \subseteq T_{G}$ and $\mathcal{B}(T)=\lambda<\kappa$ in $M[G]$. Without loss of generality we assume that T is closed downward. Let $\dot{T}=\bigcup\left\{\{s\} \times A_{s}: s \in 2^{<\omega_{1}}\right\} \in$ M^{P} be a nice name for T (see [K2, page 208] for the definition of a nice name). Let $p_{0} \in \mathbb{P}$ such that $p_{0} \|-\left(\dot{T} \subseteq T_{\dot{G}}\right.$ and $\left.|\mathcal{B}(\dot{T})|=\lambda<\kappa\right)$. Since \mathbb{P} has ω_{2}-c.c., then the set

$$
S=\left\{\xi<\kappa: \exists p \leq p_{0}(p \| \dot{B}(\xi) \in \mathcal{B}(\dot{T}))\right\}
$$

has the cardinality $\leq \omega_{1} \lambda<\kappa$. Defining

$$
\operatorname{supt}(\dot{T})=\left\{\xi<\kappa: \exists\langle s, p\rangle \in \dot{T}\left(\xi \in \operatorname{dom}\left(l_{p}\right)\right)\right\}
$$

Since $\left|2^{<\omega_{1}}\right|=\omega_{1}$ in M and for every $s \in 2^{<\omega 1},\left|A_{s}\right| \leq \omega_{1}$, then $|\operatorname{supt}(\dot{T})| \leq \omega_{1}$. Now pick a $\xi_{0} \in \kappa$ such that $\xi_{0} \notin S \bigcup \operatorname{supt}(\dot{T}) \cup \operatorname{dom}\left(l_{p_{0}}\right)$. Since $\xi_{0} \notin S$, we have $p_{0} \|-\dot{B}\left(\xi_{0}\right) \notin \mathcal{B}(\dot{T})$.

Subclaim: For any $\xi \in \kappa-\left(\operatorname{supt}(\dot{T}) \cup \operatorname{dom}\left(l_{p_{0}}\right)\right), p_{0} \|-\dot{B}(\xi) \notin \mathcal{B}(\dot{T})$.
The claim follows from the subclaim because

$$
p_{0} \Vdash \mathcal{B}(\dot{T}) \subseteq\left\{\dot{B}(\xi): \xi \in \operatorname{supt}(\dot{T}) \bigcup \operatorname{dom}\left(l_{p_{0}}\right)\right\}
$$

implies

$$
p_{0} \|-|\mathcal{B}(\dot{T})|=\lambda \leq \omega_{1}
$$

Proof of Subclaim: We define an isomorphism i from \mathbb{P} to itself induced by π, a permutation of κ such that $\pi(\xi)=\xi_{0}, \pi\left(\xi_{0}\right)=\xi$ and $\pi(\alpha)=\alpha$ if $\alpha \in \kappa-\left\{\xi, \xi_{0}\right\}$. For any $p \in \mathbb{P}$, let $i(p)=\left\langle T_{p}, i\left(l_{p}\right)\right\rangle$, where

$$
i\left(l_{p}\right)=
$$

let i_{*} be a map from M^{P} to M^{P} induced by i (see [K2, page 222] for the definition of $\left.i_{*}\right)$. Then $i\left(p_{0}\right) \Vdash i_{*}\left(\dot{B}\left(\xi_{0}\right)\right) \notin \mathcal{B}\left(i_{*}(\dot{T})\right)$. Since ξ and ξ_{0} are not in $\operatorname{supt}(\dot{T}) \cup \operatorname{dom}\left(l_{p_{0}}\right)$, then $i\left(p_{0}\right)=p_{0}, i_{*}(\dot{T})=\dot{T}$ and $i_{*}\left(\dot{B}\left(\xi_{0}\right)\right)=\dot{B}(\xi)$, hence $p_{0} \| \dot{B}(\xi) \notin \mathcal{B}(\dot{T})$.

Remark: The author's original proof of Theorem 3 involves the existence of two inaccessible cardinals.

In next two theorems we show the negative sides of Theorem 2 and Theorem 3. Before that we should introduce some properties of poset and Generalized Martin's Axiom. We take the form of Generalized Martin's Axiom from [W] in which they call it $G M A\left(\aleph_{1}\right.$-centered).

Let \mathbb{P} be a poset. A subset Q of \mathbb{P} is called centered if every finite subset of Q has a lower bound in \mathbb{P}. A poset is called ω_{1}-centered if it is the union of ω_{1} many centered subsets. A poset is called countably compact if every countable centered subset of it has a lower bound.

GMA (Generalized Martin's Axiom) is the statement:
Suppose \mathbb{P} is an ω_{1}-centered and countably compact poset. Suppose $\kappa<2^{\omega_{1}}$. If D_{α} is a dense subset of \mathbb{P} for each $\alpha<\kappa$, then there exists a filter G of \mathbb{P} such that $G \cap D_{\alpha} \neq \emptyset$ for all $\alpha<\kappa$.

We now define a poset in terms of a tree and its branches. Let T be a tree and \mathcal{B} be a subset of $\mathcal{B}(T)$. We let
$\mathbb{P}(T, \mathcal{B})=\{\langle A, \mathcal{C}\rangle: A$ is a countable subtree of T which is closed downward, \mathcal{C} is a nonempty countable subset of \mathcal{B} such that for every C in \mathcal{C}, $h t(C \cap A)=h t(A)\}$.
be a poset ordered by:

$$
\left\langle A_{1}, \mathcal{C}_{1}\right\rangle \leq\left\langle A_{2}, \mathcal{C}_{2}\right\rangle \text { iff } \mathcal{C}_{2} \subseteq \mathcal{C}_{1} \text { and } A_{1} \mid h t\left(A_{2}\right)=A_{2}
$$

for any $\left\langle A_{1}, \mathcal{C}_{1}\right\rangle,\left\langle A_{2}, \mathcal{C}_{2}\right\rangle \in \mathbb{P}(T, \mathcal{B})$.
Lemma 2 Let T be an ω_{1}-tree and $\mathcal{B} \subseteq \mathcal{B}(T)$. Then
(1) for any $\left\langle A_{1}, \mathcal{C}_{1}\right\rangle$ and $\left\langle A_{2}, \mathcal{C}_{2}\right\rangle \in \mathbb{P}(T, \mathcal{B}),\left\langle A_{1}, \mathcal{C}_{1}\right\rangle$ and $\left\langle A_{2}, \mathcal{C}_{2}\right\rangle$ are compatible if and only if either $A_{1} \mid h t\left(A_{2}\right)=A_{2}$ and for each $C \in \mathcal{C}_{2}, h t\left(C \cap A_{1}\right)=h t\left(A_{1}\right)$ or $A_{2} \mid h t\left(A_{1}\right)=A_{1}$ and for each $C \in \mathcal{C}_{1}, h t\left(C \cap A_{2}\right)=h t\left(A_{2}\right)$;
(2) $\mathbb{P}(T, \mathcal{B})$ is ω_{1}-centered and countably compact if assuming $C H$.

Proof: (1):" ": Easy.
$" \Longrightarrow "$ Let $\langle A, \mathcal{C}\rangle \leq\left\langle A_{1}, \mathcal{C}_{1}\right\rangle$ and $\left\langle A_{2}, \mathcal{C}_{2}\right\rangle$. Assume $\operatorname{ht}\left(A_{1}\right) \geq h t\left(A_{2}\right)$. Then $A_{1}\left|h t\left(A_{2}\right)=\left(A \mid h t\left(A_{1}\right)\right)\right| h t\left(A_{2}\right)=A \mid h t\left(A_{2}\right)=A_{2}$ and for each $C \in \mathcal{C}_{2}, h t\left(C \bigcap A_{1}\right)=$ $h t\left(A_{1}\right)$ because $h t(C \cap A)=h t(A)$ and $A \mid h t\left(A_{1}\right)=h t\left(A_{1}\right)$.
(2): For any $A \subseteq T$ such that A is countable and closed downward, let

$$
\mathbb{P}_{A}=\{\langle A, \mathcal{C}\rangle:\langle A, \mathcal{C}\rangle \in \mathbb{P}(T, \mathcal{B})\}
$$

Then \mathbb{P}_{A} is a centered subset of $\mathbb{P}(T, \mathcal{B})$. We have only ω_{1} many such A 's if assuming $C H$. So $\mathbb{P}(T, \mathcal{B})$ is ω_{1}-centered.

Suppose $\left\{\left\langle A_{n}, \mathcal{C}_{n}\right\rangle: n \in \omega\right\}$ is a centered subset of $\mathbb{P}(T, \mathcal{B})$. Let $A=\bigcup_{n \in \omega} A_{n}$ and $\mathcal{C}=\bigcup_{n \in \omega} \mathcal{C}_{n}$.

Claim 1: $\quad\langle A, \mathcal{C}\rangle \in \mathbb{P}(T, \mathcal{B})$.

Proof of Claim 1: If there is a $C \in \mathcal{C}$ such that $h t(C \cap A)<h t(A)$, then there are $m, n \in \omega$ such that $C \in \mathcal{C}_{m}$ and $h t\left(C \cap A_{n}\right)<h t\left(A_{n}\right)$. Since $\left\langle A_{m}, \mathcal{C}_{m}\right\rangle$ and $\left\langle A_{n}, \mathcal{C}_{n}\right\rangle$ are compatible, if $h t\left(A_{n}\right) \leq h t\left(A_{m}\right)$, then $h t\left(C \cap A_{n}\right)=h t\left(A_{n}\right)$ because $h t\left(C \cap A_{m}\right)=h t\left(A_{m}\right)$, a contradiction; if $h t\left(A_{n}\right)>h t\left(A_{m}\right)$, then $A_{m} \mid h t\left(A_{n}\right) \neq A_{n}$, hence $h t\left(C \cap A_{n}\right)=h t\left(A_{n}\right)$ by (1), also a contradiction.

Claim 2: $\quad\langle A, \mathcal{C}\rangle$ is a lower bound of $\left\{\left\langle A_{n}, \mathcal{C}_{n}\right\rangle: n \in \omega\right\}$.
Proof of Claim 2: If there is an $n \in \omega$ such that $A \mid h t\left(A_{n}\right) \neq A_{n}$, then there is a $t \in A \mid h t\left(A_{n}\right)-A_{n}$. Let $t \in A_{m}$ for some $m \in \omega$. Since $\left\langle A_{n}, \mathcal{C}_{n}\right\rangle$ and $\left\langle A_{m}, \mathcal{C}_{m}\right\rangle$ are compatible, if $A_{n} \mid h t\left(A_{m}\right)=A_{m}$, then $t \in A_{n}$, a contradiction; if $A_{m} \mid h t\left(A_{n}\right)=A_{n}$, then $t \in A_{m} \mid h t\left(A_{n}\right)$ implies $t \in A_{n}$, also a contradiction.

So $\langle A, \mathcal{C}\rangle \leq\left\langle A_{n}, \mathcal{C}_{n}\right\rangle$ for all $n \in \omega$.
By Claim 1 and Claim $2 \mathbb{P}(T, \mathcal{B})$ is countably compact.
Theorem 4 Assume GMA and CH plus $2^{\omega_{1}}=\omega_{3}$. Then every Jech-Kunen tree has a Kurepa subtree.

Proof: Let T be a Jech-Kunen tree with ω_{2} many branches. Without loss of generality we can assume that $\forall t \in T\left(|\mathcal{B}(T(t))|=\omega_{2}\right.$). (We can make this by throwing away all t 's with $|\mathcal{B}(T(t))| \leq \omega_{1}$.)

Let $\mathcal{B}=\mathcal{B}(T)=\left\{B_{\alpha}: \alpha<\omega_{2}\right\}$. For every $\beta<\omega_{2}$ let

$$
D_{\beta}=\left\{\langle A, \mathcal{C}\rangle \in \mathbb{P}(T, \mathcal{B}): \mathcal{C} \bigcap\left\{B_{\alpha}: \beta<\alpha<\omega_{2}\right\} \neq \emptyset\right\}
$$

For every $\gamma<\omega_{1}$ let

$$
E_{\gamma}=\{\langle A, \mathcal{C}\rangle \in \mathbb{P}(T, \mathcal{B}): h t(A)>\gamma\} .
$$

Then D_{β} and E_{γ} both are dense subsets of $\mathbb{P}(T, \mathcal{B})$ for all $\beta<\omega_{2}$ and $\gamma<\omega_{1}$. By $G M A$ there is a filter G of $\mathbb{P}(T, \mathcal{B})$ such that $G \cap D_{\beta} \neq \emptyset$ and $G \cap E_{\gamma} \neq \emptyset$ for all β and γ. Let

$$
T^{\prime}=\bigcup\{A:\langle A, \mathcal{C}\rangle \in G\}
$$

Then $h t\left(T^{\prime}\right)=\omega_{1}$ because $G \cap E_{\gamma} \neq \emptyset$ for all $\gamma<\omega_{1}$.
Claim 1: $\quad\left|\mathcal{B}\left(T^{\prime}\right)\right|=\omega_{2}$.
Proof of Claim 1: If $\left|\mathcal{B}\left(T^{\prime}\right)\right|<\omega_{2}$, then there is a $\beta<\omega_{2}$ such that $\mathcal{B}\left(T^{\prime}\right) \subseteq$ $\left\{B_{\alpha}: \alpha \leq \beta\right\}$. But this contradicts that $G \cap D_{\beta} \neq \emptyset$.

Claim 2: $\quad \forall \alpha<\omega_{1}\left(\left|T_{\alpha}^{\prime}\right| \leq \omega\right)$.
Proof of Claim 2: Assume this is not true. Then there is an $\alpha<\omega_{1}$ such that $\left|T_{\alpha}^{\prime}\right|=\omega_{1}$.

Let $\langle A, \mathcal{C}\rangle \in G$ such that $h t(A)>\alpha$. Since A is countable, there is a $t \in T_{\alpha}^{\prime}-A$. Let $\left\langle A^{\prime}, \mathcal{C}^{\prime}\right\rangle \in G$ such that $t \in A^{\prime}$. Since $\langle A, \mathcal{C}\rangle$ and $\left\langle A^{\prime}, \mathcal{C}^{\prime}\right\rangle$ are compatible, then either $A \mid h t\left(A^{\prime}\right)=A^{\prime}$ or $A^{\prime}|h t(A)=A . A| h t\left(A^{\prime}\right)=A^{\prime}$ is impossible because $t \notin A$. $A^{\prime} \mid h t(A)=A$ is also impossible because $t \in A^{\prime} \cap T_{\alpha}^{\prime}$ and $\alpha<h t(A)$.

By Claim 1 and Claim $2 T^{\prime}$ is a Kurepa subtree of T.

Theorem 5 It is consistent with GMA and $2^{\omega_{1}}>\omega_{2}$ that there exist Kurepa trees with $2^{\omega_{1}}$ many branches and every Kurepa tree has Jech-Kunen subtrees.

We need a lemma to prove Theorem 5.
Lemma 3 Let M be a model of CH plus $2^{\omega_{1}}>\omega_{2}$. Let T be an ω_{1}-tree such that for every $t \in T,|\mathcal{B}(T(t))| \geq \omega_{2}$ and let $\mathcal{B} \subseteq \mathcal{B}(T)$ such that $|\mathcal{B}|=\omega_{2}$ and for every $t \in T,|\mathcal{B}(T(t)) \cap \mathcal{B}|=\omega_{2}$. If G is a $\mathbb{P}(T, \mathcal{B})$-generic filter over M and $T_{G}=\bigcup\{A:\langle A, \mathcal{C}\rangle \in G\}$, then T_{G} is a Jech-Kunen subtree of T in $M[G]$.

Proof: Let $\mathcal{B}=\left\{B_{\alpha}: \alpha<\omega_{2}\right\}$. Since

$$
D_{\beta}=\left\{\langle A, \mathcal{C}\rangle \in \mathbb{P}(T, \mathcal{B}): \mathcal{C} \bigcap\left\{B_{\alpha}: \beta<\alpha<\omega_{2}\right\} \neq \emptyset\right\}
$$

is dense in $\mathbb{P}(T, \mathcal{B})$, then $\left|\mathcal{B}\left(T_{G}\right)\right| \geq \omega_{2}$ by the proof of Claim 1 of Theorem 4 . We now need to show that $\left|\mathcal{B}\left(T_{G}\right)\right|=\omega_{2}$.

Suppose that is not true. Then there is a $B \in(\mathcal{B}(T))^{M}-\mathcal{B}$ such that $B \in$ $\mathcal{B}\left(T_{G}\right)$ in $M[G]$ since ω_{1}-closed forcing extension adds no new branches of T. Let $\left\langle A_{0}, \mathcal{C}_{0}\right\rangle \|\left(B \in \mathcal{B}\left(T_{\dot{G}}\right)\right)$. Since $B \notin \mathcal{C}_{0}$, there is an $\alpha<\omega_{1}, \alpha>h t\left(A_{0}\right)$ such that B is different from C at α-th level for all $C \in \mathcal{C}_{0}$. Let

$$
A_{1}=\left(\left(\bigcup \mathcal{C}_{0}\right) \bigcup A_{0}\right) \bigcap(T \mid \alpha+1)
$$

Then $\left\langle A_{1}, \mathcal{C}_{0}\right\rangle \leq\left\langle A_{0}, \mathcal{C}_{0}\right\rangle$. Hence $\left\langle A_{1}, \mathcal{C}_{0}\right\rangle \|-\left(B \in \mathcal{B}\left(T_{\dot{G}}\right)\right)$. But if H is a \mathbb{P}-generic filter over M such that $\left\langle A_{1}, \mathcal{C}_{0}\right\rangle \in H$, then $B \notin \mathcal{B}\left(T_{H}\right)$ in $M[H]$ since $h t\left(B \cap A_{1}\right)<h t\left(A_{1}\right)$, a contradiction.

Proof of Theorem 5: Let M be a model of $C H$ plus $2^{\omega_{1}}=2^{\omega_{2}}=\omega_{3}$ and there are Kurepa trees with ω_{3} many branches. (See [T, pp.282] for such a model.) Let \mathbb{P} be the ω_{3} steps countable support iterated forcing poset for $G M A$ in M and G be a \mathbb{P}-generic filter over M. We want to show that $M[G] \models\left[C H, 2^{\omega_{1}}=\omega_{3}\right.$, there are Kurepa trees with ω_{3} many branches and every Kurepa tree has Jech-Kunen subtrees].

Let T be a Kurepa tree in $M[G]$. Without loss of generality we can assume that for every $t \in T,|\mathcal{B}(T(t))| \geq \omega_{2}$. Let $\mathcal{B} \subseteq \mathcal{B}(T)$ such that for every $t \in$ $T,|\mathcal{B} \cap \mathcal{B}(T(t))|=\omega_{2}$. Then $\mathbb{P}(T, \mathcal{B})$ is ω_{1}-centered and countably compact by Lemma 2. Let $\alpha<\omega_{3}$ such that T, \mathcal{B} and $\mathbb{P}(T, \mathcal{B})$ are in $M\left[G_{\alpha}\right]$, which is the initial α steps iterated forcing extension of M in $M[G]$ and $\mathbb{P}(T, \mathcal{B})$ is the poset used at α-th step forcing extension for $G M A$. Let H be the $\mathbb{P}(T, \mathcal{B})$-generic filter over $M\left[G_{\alpha}\right]$ such that $M\left[G_{\alpha+1}\right]=M\left[G_{\alpha}\right][H]$. Then

$$
T_{H}=\bigcup\{A:\langle A, \mathcal{C}\rangle \in H\}
$$

is a Jech-Kunen subtree of T in $M\left[G_{\alpha+1}\right] . T_{H}$ is still a Jech-Kunen tree in $M[G]$ because the poset for the rest of the forcing extension is ω_{1}-closed in $M\left[G_{\alpha+1}\right]$.

Remark: All the results in this paper about trees can be translated into the results about linear orders. Among them the one related Jech-Kunen tree is most interested.

Let L be called a Jech-Kunen continuum iff L is a Dedekind complete dense linear order with density ω_{1} and power strictly between ω_{1} and $2^{\omega_{1}}$. Assume $C H$ plus $2^{\omega_{1}}>\omega_{2}$. Then there exists a Jech-Kunen tree iff there exists a Jech-Kunen continuum.

References

[D] Devlin, K. J., " \aleph_{1}-trees", Annals of Mathematical Logic, 13 (1978), pp. 267330.
[Je] Jech, T., "Trees", The Journal of Symbolic Logic, 36 (1971), pp. 1—14.
[Ju] Juhász, I., "Cardinal functions $I I^{\prime}$ ", pp. 63-110 in Handbook of Set Theoretic Topology, ed. by K. Kunen and J. E. Vaughan, North-Holland, Amsterdam, 1984.
[K1] Kunen, K., "On the cardinality of compact spaces", Notices of The American Mathematical Society, 22 (1975), 212.
[K2] Kunen, K., "Set Theory, an introduction to independence proofs", NorthHolland, Amsterdam, 1980.
[T] Todorčević, S., "Trees and linearly ordered sets", pp. 235-293 in Handbook of Set Theoretic Topology, ed. by K. Kunen and J. E. Vaughan, North-Holland, Amsterdam, 1984.
[W] Weiss, W., "Version of Martin's Axiom", pp. 827-886 in Handbook of Set Theoretic Topology, ed. by K. Kunen and J. E. Vaughan, North-Holland, Amsterdam, 1984.

Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA.

