The Attentional Capacity of Visual Search under Flicker Conditions

Ronald A. Rensink

Cambridge Basic Research Nissan Research \& Development, Inc. 4 Cambridge Center, Cambridge MA 02142-1494 USA

Presented at the 1996 European Conference on Visual Perception Strasbourg, France, 9-13 September, 1996

Abstract in Perception, 25(suppl.), 2

The Attentional Capacity of Visual Search under Flicker Conditions

Failure to detect large changes in scenes when made

- during eye saccades
- during attentional distraction (flicker)
-> Perception $=$ data \times attention

Main Issues:

- Which aspects of performance due to data structures?
- Which are due to attentional control mechanisms?
- How do these structures and mechanisms interact?

Initial Approach:

Task: detection of change in flicker display
Stimuli: isolated, simple shapes where structural complexity is at a minimum.

Question: how many objects are "grabbed" and compared in each alternation?

Method: Visual search for target that changes its properties. Target cannot be determined from any one display; must be determined via comparison.

To determine how many items are "grabbed" by attention during each display:
E.g. - if display alternates every 100 ms , and 1 item "grabbed" per display, then

Search Slope $=100 \mathrm{~ms} /$ alternation $=100 \mathrm{~ms} /$ item 1 item / alternation
E.g. - if display alternates every 100 ms , and 5 items "grabbed" per display, then per-item search is:

Search Slope $=100 \mathrm{~ms} /$ alternation $=20 \mathrm{~ms} /$ item 5 item / alternation

In general:

$$
\text { Search slope } \left.=\frac{\text { Alternation Time }}{\text { items / alternation }} \text { (on-time }+ \text { off-time }\right)
$$

And so:
Capacity $\equiv \frac{\text { items }}{\text { alternation }}=\frac{\text { Alternation Time }}{\text { Search Slope }}$

Results: Attentional Capacities

For off-times (blanks) of 80 ms :

- Orientation change Capacity

$$
\begin{array}{rll}
\text { display }=40 \mathrm{~ms} & \mathbf{1 . 5} & (\pm 0.2) \\
80 \mathrm{~ms} & \mathbf{1 . 8} & (\pm 0.3) \\
120 \mathrm{~ms} & \mathbf{2 . 0} & (\pm 0.3) \\
160 \mathrm{~ms} & \mathbf{2 . 3} & (\pm 0.4)
\end{array}
$$

- Contrast sign change Capacity

$$
\begin{array}{rll}
\text { display }=40 \mathrm{~ms} & \mathbf{1 . 3} & (\pm 0.2) \\
80 \mathrm{~ms} & \mathbf{1 . 3} & (\pm 0.3) \\
120 \mathrm{~ms} & \mathbf{2 . 0} & (\pm 0.2) \\
160 \mathrm{~ms} & \mathbf{2 . 5} & (\pm 0.4)
\end{array}
$$

- Location change $\left(1^{\circ}\right)$ Capacity

$$
\begin{array}{rll}
\text { display }=40 \mathrm{~ms} & \mathbf{1 . 5} & (\pm 0.2) \\
80 \mathrm{~ms} & \mathbf{1 . 6} & (\pm 0.3) \\
120 \mathrm{~ms} & \mathbf{2 . 7} & (\pm 0.4) \\
160 \mathrm{~ms} & \mathbf{3 . 2} & (\pm 0.7)
\end{array}
$$

- capacities vary more between subjects
-> some subjects compare item-by-item
-> some subjects use overall shape of group

What happens as display time per alternation is increased?

Orientation change

- capacity begins at about 1.5 items
- capacity approaches a maximum of 4-5 items

Stimulus Onset Asynchrony [= alternation time] (ms)

What happens as blank time per cycle is increased?

Orientation change

- capacity begins at about 1.5 items
- capacity does not increase (or if so, only very little)

Stimulus Onset Asynchrony [= alternation time] (ms)

Orientation change

Stimulus Onset Asynchrony [= alternation time] (ms)

Does failure to use blank time mean iconic store is unavailable?

Carry out "standard" search (i.e., search for a fixed target) while display is flickering

Orientation search - vertical bar among tilted bars

Stimulus Onset Asynchrony [= alternation time] (ms)

Thus, two very different behaviors for slightly different tasks:

1. Search for fixed target:

- operates when there is a signal in the incoming light.
- operates for c. 300 ms after signal offset.
- can trade display time for ($\leq \mathrm{c} .300 \mathrm{~ms}$) blank time

2. Search for changing target:

- only when there is a signal in the incoming light.
- cannot trade display time for blank time
- when signal is no longer present, operation halts. - halt occurs even in absence of mask
-> Process is photoraic ("photo" + "orasi" = "seeing/using light")

An Interesting New Issue:

What is the critical difference between the two tasks?
What does the photoraic/nonphotoraic divide correspond to?

- why is a particular process photoraic (or why is it not)?

