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Abstract 

 
For scatterplots with gaussian distributions of dots, the perception of Pearson correlation r can be 
described by two simple laws: a linear one for discrimination, and a logarithmic one for 

perceived magnitude (Rensink & Baldridge, 2010).  The underlying perceptual mechanisms, 
however, remain poorly understood.  To cast light on these, four different distributions of 
datapoints were examined.  The first had 100 points with equal variance in both dimensions.  
Consistent with earlier results, just noticeable difference (JND) was a linear function of the 
distance away from r = 1, and the magnitude of perceived correlation a logarithmic function of 
this quantity.  In addition, these laws were linked, with the intercept of the JND line being the 
inverse of the bias in perceived magnitude.  Three other conditions were also examined: a dot 
cloud with 25 points, a horizontal compression of the cloud, and a cloud with a uniform 
distribution of dots.  Performance was found to be similar in all conditions.  The generality and 
form of these laws suggest that what underlies correlation perception is not a geometric structure 
such as the shape of the dot cloud, but the shape of the probability distribution of the dots, likely 
inferred via a form of ensemble coding.  It is suggested that this reflects the ability of observers to 
perceive the information entropy in an image, with this quantity used as a proxy for Pearson 
correlation. 
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The Nature of Correlation Perception in Scatterplots 

The analysis of data is important in many aspects of everyday life.  And an important part of such 
analysis is the use of graphical representations, which can be highly effective when datasets are 
large, messy, and complex (see e.g., Card, Mackinlay, & Shneiderman, 1999; Thomas & Cook, 
2005).  If a graphical representation is designed well, analysis can be rapid, accurate, and precise; 
in such situations the visual system of the analyst perceives structure in a dataset in much the 
same way as it perceives structure in the physical world.  The perception of such graphical 
representations therefore has considerable potential to help us investigate various aspects of our 
visual intelligence (Rensink, 2014; see also Cleveland & McGill, 1987; Meyer, Taieb, & 
Flascher, 1997). 
 
It has been argued (Rensink & Baldridge, 2010) that a good testbed for this approach is the 
estimation of Pearson correlation r in scatterplots.  In part, this is because much of the estimation 
of r appears to be a perceptual process, one to which existing techniques of vision science can be 
readily applied (e.g., Doherty, Anderson, Angott, & Klopfer, 2007; Meyer & Shinar, 1992; 
Meyer et al., 1997).  Another reason is that this domain is simple enough to explore 
systematically, while still being rich enough to raise interesting questions about the mechanisms 
involved.   

Historically, the perception of correlation has been investigated in several ways.  (For reviews, 
see Boynton, 2000; Doherty et al., 2007).  Most were based on numerical estimation—asking 
observers for a number that describes the magnitude of the correlation perceived.  Results showed 
that perceived correlation g(r) tends to underestimate physical correlation r (especially at 
intermediate levels), with little correlation perceived when | r | < 0.2 (Bobko & Karren, 1979; 
Boynton, 2000; Cleveland, Diaconis, & McGill, 1982; Strahan & Hansen, 1978).  They also 
showed that much of this process is carried out rapidly, with results largely independent of the 
statistical expertise of the observer (Lane, Anderson, & Kellam, 1985; Meyer & Shinar, 1992; 
Meyer et al., 1997; Strahan & Hansen, 1978); indeed, particular neural systems appear to be 
involved (Best, Hunter, & Stewart, 2006).  Thus, although knowledge and expertise can influence 
the more sophisticated aspects of this process (Freedman & Smith, 1996; Lewandowsky & 
Spence, 1989), there nevertheless seems to exist a distinct basic stage of correlation perception—
a rapidly-acting initial phase that can be considered purely perceptual, with similar characteristics 
for most observers. 
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But although these studies were important, they had limitations.  First, they paid relatively little 
attention to the precision of the process—the extent to which the same estimate results when the 
same stimulus is presented.  Next, the central assumption of the estimation techniques—that 
numbers can be assigned to perceived magnitudes in a consistent way—is problematic, leading to 
the possibility of unstable or context-dependent estimates (Ellermeier & Faulhammer, 2000).  
(This may help explain why inconsistent results sometimes encountered—see e.g., Doherty et al., 
2007.)  Third, there was little investigation of systematicity—the extent to which connections 
exist between precision and accuracy, not to mention with the rest of visual perception.  And 
finally, little distinction was usually made between the perception of population properties (e.g., 
the correlation of a set of scatterplots) and particular ones (e.g., the distance of an outlier from 
the dot cloud of an individual scatterplot). 

Rensink and Baldridge (2010) developed an approach that took many of these considerations into 
account.  First, precision was measured via the just noticeable difference (JND—also referred to 
as the difference threshold), the difference needed to correctly discriminate two correlations 75% 
of the time.  Second, accuracy was measured via bisection: adjusting a test plot to have its 
perceived correlation be halfway between those of two references. Because the visual system is 
more concerned with relative than absolute quantities, bisection estimates are potentially more 
reliable and less affected by context (Tommasi, 2000; Zimmer & Ellermeier, 2006).  Next, results 
were analyzed for possible relationships between discrimination and perceived magnitude.  And 
finally, to ensure that the properties of populations were being perceived, dozens of scatterplots 
were shown for each measurement, with population parameters held constant. 

Applying this approach to scatterplots with gaussian distributions, Rensink and Baldridge (2010) 
found that discrimination could be described by 

    JND(r) = k (1/ bdisc – r)    (1) 

where the variability parameter k and bias (or offset) bdisc are such that 0 < bdisc, k < 1.  

Multiplying eq. (1) by bdisc and letting u = 1- bdisc r, this becomes JND(u) = ku, an instance of 

Weber’s Law, which characterizes discriminability for many simple properties, such as length 
and brightness (Billock & Tsou, 2011; Ross, 1997).  Meanwhile, the estimation of perceived 
correlation g(r) could be described by 

    g(r) = ln(1 – best r) / ln(1 – best)   (2) 
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where best is a bias parameter describing the degree of underestimation encountered.  Again 

letting u = 1- bestr, this becomes g = ln(u) / (ln(1 - best)).  This is an instance of Fechner’s Law, 

which has been proposed for the relation between the perceived and physical magnitudes of 

various properties (see Ross 1997).  In addition, Rensink and Baldridge (2010) found that bdisc = 

best, connecting discrimination and estimation in a systematic way.   

Although these results led to a better understanding of behavior, they did not lead to a better 
understanding of the mechanisms responsible.  To cast light on these, this study examined the 
generality of these results for different distributions of data points.  Rensink and Baldridge (2010) 
used dot clouds with 100 points, with gaussian distributions of equal variance in both dimensions.  
To determine if any of these factors affect performance, four conditions were examined.  The first 
replicated Rensink and Baldridge (2010): scatterplots had 100 points, with gaussian distributions 
of equal variance in both dimensions.  A second condition tested the effects of dot cloud density, 
using only 25 dots.  A third tested sensitivity to the shape of the dot cloud: this once again had 
100 points, but was now compressed horizontally by a factor of 2.  Finally, the fourth condition 
was similar to the first, but with a uniform instead of a gaussian distribution.   

Results show that the laws found in Rensink & Baldridge (2010) are much the same for all these 
distributions.  To account for the shape of these laws, it is suggested that correlation perception is 
based on the width of the probability distribution inferred from the points in the dot cloud.  And 
to explain why perception of this structure might be useful, it is suggested that it reflects the 
perception of the information entropy in an image.  Among other things, these results lead to a 
straightforward way to evaluate the effectiveness of a scatterplot design, as well as several 
predictions about the perception of correlation under various conditions.  And at the most general 
level, they support the proposal that the study of the graphical representations used in information 
visualization can provide considerable insight into various aspects of the human visual system. 

 

General Methods 

The experimental design here was similar to that of Rensink and Baldridge (2010).  Each observer 
was shown a set of scatterplots containing data from a set of pseudo-random numbers with a fixed 
mean and standard deviation in each dimension.  For discrimination, observers were asked to 
determine which of two side-by-side scatterplots was more correlated; for perceived magnitude, a 
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test plot was adjusted until its perceived correlation was halfway between those of two reference 
plots.  All observers carried out both tasks, the order of which was counterbalanced.  Observers 
were told that accuracy was important, and that they could take as much time as needed.  To 
familiarize each observer with the discrimination task, a set of 8 practice trials—easy versions of 
the main task—were given (with feedback) beforehand, each set continuing until the observer 
reached 75% accuracy, or 32 trials had been run.  For the bisection task, observers were given 7 
practice trials; owing to the nature of the task, no feedback could be given for these. 

Observers 
 
Each condition had 20 observers.  All were undergraduates at the University of British Columbia, 
and were paid $10 for a single one-hour session.  All had normal or corrected-to-normal vision.  
Although not a requirement, all had at least some experience with scatterplots.  Observers were 
replaced if their results (either k or b) were more than 2.5 standard deviations beyond the average 
of the others; based on this criterion, 2-3 observers were replaced in each experiment.1 
 

Stimuli 
 

In all tests, observers were seated 45 cm from a screen 32° x 22° in extent.  Vertical and horizontal 
axes of each scatterplot extended 6.3°; no tick marks or labels were used. For all conditions 
(except those of Experiment 3), dot clouds extended 6.3° x 6.3° and were centered on the 
midpoints of the axes; standard deviation was 0.2 of the extent of the cloud.  And in all conditions 
(except those of Experiment 2), they contained 100 dots, each with a diameter of 4 minutes of arc 
(0.067°), ten times the visibility limit of 0.4 minutes of arc (Li, van Wijk, & Martens 2009). 

For gaussian distributions, the x-coordinates of each dot were selected first, with this set scaled to 
match the given mean and standard deviation.  A set of y-values was similarly created.  Each point 
(x,y) was then transformed to yield the correlated pair (x,y’) via  

    ,
  where    ,     

(3) 

 
1 All but one of these had a near-zero value of b in the bisection task; these observers, however, had the same value 

of b as others in the discrimination task.  This suggests that these observers did not use the same quantity for 
discrimination and magnitude estimation (or use the same quantity for magnitude estimation as the other observers).  
It is unclear what this property might have been.  However, a trimming of 10-20% of the observers has long been 
done in studies of correlation perception in scatterplots (e.g., Cleveland et al., 1982), supporting the possibility that 
alternate strategies are used by subsets of the general populace. 

€ 

" y =
λx + (1− λ)y
λ2 + (1− λ)2

€ 

λ =
r2 − r2 − r4

2r2 −1
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where r is the target correlation.  To prevent values from exceeding the range of the scatterplot, 
any point greater than 2.5 standard deviations from the mean was eliminated, and a new point 
generated to take its place.  Points were adjusted so that correlation was within 0.005 of the target.  
The resulting set was then rescaled again to have the designated mean and standard deviation. 
 
Procedure - Discrimination 
 

An important aspect of performance is precision—the scatter in the estimates made by an observer 
repeatedly given the same data.  Following Rensink and Baldridge (2010), this was assessed via 

the just noticeable difference (JND), the value of D for which scatterplots containing correlations r 

and r ± D can on average be discriminated 75% of the time.  Precision and JND are directly 

related: the greater the JND, the greater the separation needed to see that two scatterplots have 
different correlations, and consequently, the worse the precision of the perceptual estimates. 
 

The procedure to assess JND was based on that of Rensink and Baldridge (2010).  The set of 
correlations tested (the base correlations) ranged from 0.0 to 0.9, in increments of 0.1.  For each, 
JND was obtained via a series (or run) of trials.  In each trial, observers were shown two side-by-
side scatterplots—one with the base correlation and the other a test correlation above or below 
it—and asked to select the more highly correlated one (Figure 1).  For each run, the initial 
correlation of the test plot was 0.1 above the base (when testing from above) or 0.1 below (when 
testing from below)2.  If the answer was correct, the size of the difference was decreased by 0.01, 
making the task more difficult; if incorrect, it was increased by 0.03, making the task easier.  
(The three steps for each correct answer matched a single step for each incorrect answer, 
resulting in a steady-state accuracy of 75%.)  Following Rensink and Baldridge (2010), 
performance was measured via a moving window of 24 consecutive trials, divided into 3 sub-
windows of 8 trials each.  After an initial 24 trials, the ratio of the variance between sub-windows 
to the average variance within the sub-windows (somewhat akin to an F-test)3 was continually 
calculated.  Testing halted when this ratio became sufficiently low (≤ 0.25), or—consistent with 
the recommendations of Treutwein (1995)—52 trials had been run; the average of the sub-

 
2 A within-observer pilot study compared four initial differences (0.0, 0.1, 0.2, and 0.3), and found no significant 

effect on JND.  The value of 0.1 was chosen because it tended to require a minimum number of trials on average. 
3 Variances were calculated using a denominator of 7 for the variance within each window, and 2 for the variance 

between windows. 
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windows was then taken as the JND.  This procedure proved reasonably effective, yielding 
results in 40 trials on average, and failing to converge on only 27% of the runs4.  

 
Figure 1.  Example of discrimination task.  Two side-by-side scatterplots were shown to each observer.  Observers 
are asked to choose the one that appeared more correlated.  Plots were 6.3° x 6.3° in extent, with axes of length 6.3°; 
dot cloud centers were separated by 15°.  In this example, base correlation is 0.6 (left), and JND is from above (i.e., 
correlation of test plot is 0.8, higher than base correlation). 
 

 To assist convergence, test correlations were limited to values between the base and 1.0 (for 
above), or the base and 0.0 (for below).  Feedback was provided immediately after each response 
via a one-second sign: "+" for correct, and "-" for incorrect.  New plots were generated every time 
a response was made, to encourage observers to respond to average properties (e.g., correlation) 
and avoid features of particular scatterplots (e.g., outliers). 

Order of testing was determined via a latin square design (Kirk, 1995) that counterbalanced base 
correlations and direction of JND (above vs. below) across the 20 observers; the location of the 
scatterplot with the base correlation (left vs. right) was randomly assigned in each trial.  To avoid 
floor effects at low correlations, no tests from below were run for base correlations of r < 0.3. 
 
Procedure - Magnitude Estimation 
 

Another important aspect of performance is accuracy—the extent to which an observer can on 
average correctly determine the correlation of a scatterplot.  Being a measure of central tendency, 
accuracy is, in principle, unrelated to precision.   

Following Rensink and Baldridge (2010), accuracy was measured via the bisection of perceived 
correlation.  Here, observers were shown two horizontally-separated reference plots (one with a 
high level of correlation, one with a low) and a test plot placed between them (Figure 2).  The 
correlation of the test plot was initially 0.1 away from that of the upper or the lower reference plot 

 
4 For these, the value used was the average of the last 24 trials 
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(each being equally likely); the observer then adjusted it until its correlation appeared to be 
halfway between those of the references.  This was done via keyboard control, with observers free 
to adjust the correlation of the test plot however they wished.  To remove the possibility that 
observers could somehow use the number of steps, the size of each step was randomly assigned a 
value between 0 and 1/10 the difference between the reference correlations.  Differing from 
Rensink & Baldridge (2010), each scatterplot—both reference and test—was replaced by a new 
instance every time an adjustment was made, or 1 second had passed.  As in the case of 
discrimination, this encouraged observers to base their judgments on average properties rather 
than on some feature of a particular scatterplot. 

 
      Reference plot 1           Test plot         Reference plot 2  

Figure 2.  Example of magnitude estimation task.  Observers adjusted the correlation of the test plot until its 
correlation appeared to be halfway between those of the reference plots.  Plots were 6.3° x 6.3°, axes 6.3° long, with 
dot cloud centers separated by 7.6°.  This example is taken from the initial round of bisection; the reference plots have 
correlations r = 1 and r = 0, while the test plot has the correlation  r = 0.7.  
 

The initial round of each test began with observers determining the point subjectively halfway 
between r = 0 and r = 1.  (These corresponded to g = 0 and g = 1, respectively).  This was done 
four times, with the mean value taken as the physical correlation r corresponding to perceived 
correlation g = 1/2.  A second round applied this recursively on two different subconditions:  in 
the first, observers estimated the point between g = 0 and 1/2, and in the second, the point between 
g = 1/2 and 1; the order of these was counterbalanced.  These measurements were again made four 
times for each subcondition, with their averages taken as the values corresponding to g = 1/4 and g 
= 3/4, respectively.  A third round then measured the values of r corresponding to perceived 
magnitudes g = 1/8, 3/8, 5/8, and 7/8; subconditions here were presented in random order.   
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Analysis 
 

Following Kay & Heer (2015), JNDs were log-transformed before calculating average values 
across observers. JND curves were obtained by plotting these averages against adjusted 

correlation rA, a symmetric measure that equates results from above and below base correlation; 

this is defined as rA = r  + 0.5 JND(r), the average of the two scatterplot correlations (Rensink & 

Baldridge, 2010).  Variability k was the negative of the slope of this line, and bias bdisc, the 

reciprocal of its intercept with the r-axis (= k times the reciprocal of the intercept).  Individual 
variabilities and biases were similarly calculated from individual JND curves.  Bias b had 
considerable skew and kurtosis, which was reduced by use of a probit transform, with b limited to 
≤ .99.  Also, to avoid the possibility that the limits of r = 0 and r = 1 were affecting JND 
estimates (Harrison, Yang, Franconeri, & Chang, 2014; Kay & Heer, 2015), a range constraint 

was imposed: a JND estimate was dropped if its average ± 2.5 standard deviations exceeded 
either of these limits 

In accord with the recommendations of Cumming (2012), effect sizes are emphasized in all 
analyses; 95% confidence intervals (CIs; shown in square brackets) are given for all quantities of 
interest.  Unless specified otherwise, any comparison is based on paired two-tailed t-tests. 

Experiment 1 - Basic Condition 
 
The goal of this experiment was to replicate Rensink and Baldridge (2010), and serve as a "basic" 
condition against which the others could be compared.  Dot clouds had 100 points, in a gaussian 
distribution with a mean of 0.5 and standard deviation of 0.2 in both dimensions (Figure 3). 

 
          (a)                                  (b) 

Figure 3.  Examples of scatterplots for the basic condition.  Here, scatterplots had 100 points with the same 
gaussian distribution in both dimensions.  (a) Typical scatterplot for r = 0.3.  (b) Typical scatterplot for r = 0.9. 
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Results: Discrimination 

JNDs based on aggregate data are shown in Figure 4a.  Due to the range constraint, JNDs for base 

correlation rB = 0.3 (from below) were omitted from the analysis.  Similar to what was found in 

Rensink and Baldridge (2010), JND was a strongly linear function of adjusted correlation both for 
JNDs from above (R2 = .987) and below (R2 = .941).  For each observer, slopes and intercepts 
with the y-axis were then obtained by fitting a least-squares line through their data points.  
Consistent with Rensink and Baldridge (2010), there was no effect of JND direction on either 
slope (-0.20 [-0.15, -0.24] for above; -0.23 [-0.18, -0.28] for below; t(19) = 1.12; p = .28) or 
intercept (0.23 [0.19, 0.26] for above; 0.25 [0.21, 0.29] for below; t(19) = 1.14; p = .27).  
Combining the data for both directions, JND retained a strong linearity (R2 = .970).  Performance 
is therefore well described by eq. (1), viz., 

        JND(r) = k (1/bdisc – rA)      

with k the negative of the slope, and bdisc the reciprocal of the intercept with the r-axis. 
 

Based on the variability and bias for each observer, average results were k = 0.21 [0.17, 0.24] and 

bdisc = 0.90 [0.84, 0.94].  These are broadly similar to the values k = 0.24 and bdisc = 0.91 of 

Rensink and Baldridge (2010).   

 
       (a)          (b)   

Figure 4. Aggregate results: basic condition.  (a) Discrimination as measured via JND. Error bars denote 95% CIs. 
White dots indicate that comparison is made against a test correlation from above; black dots indicate test correlation 
from below.  As is evident, these give rise to much the same line.  Note that the maximum error in r in the generated 
plots (of 0.005) is much less than the JNDs found, even those for high correlations, making it unlikely that this 
affects estimates in any significant way.  (b) Magnitude estimation as measured via bisection.  The curve for 
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perceived correlation is g(r) = ln(1– bestr) / ln(1– best); best fit is for best = 0.90. Vertical error bars show g(r ± 1 

JND); horizontal error bars the 95% CIs.  The reference line g(r) = r makes explicit the degree of underestimation 
from physical correlation.   

 
Results: Magnitude Estimation 
 
Bisection results based on aggregate data are shown in Figure 4b.  Consistent with other reports 
(e.g., Cleveland et al., 1982), an underestimation of correlation appeared, especially in the range 
0.2 < r < 0.6.  And consistent with Rensink and Baldridge (2010), data show a good fit to eq. (2) 

  g(r) = ln(1–bestr) / ln(1– best )     

where best is the bias obtained via magnitude estimation.  

The best fit with the aggregrate data is for best = 0.90.  The resulting fit is excellent: root mean 

square error (RMSE) from the set of observed values is only 0.018.  The value of best obtained via 

individual estimates is similar: 0.91 [0.85, 0.95].  These results are also not far from the value best 

= 0.87 found in Rensink and Baldridge (2010).  
 
Results: Systematicity 
 
If the Fechner assumption holds for this situation—i.e., that each JND corresponds to the same 
difference in subjective experience—eq. (1) implies eq. (2), with the bias in the two equations 

being identical (Rensink & Baldridge, 2010).  The value of bias obtained via discrimination (bdisc 

= 0.90 [0.84, 0.94]) was indeed much the same as that obtained via magnitude estimation (0.91 
[0.85, 0.95]); the slight difference of 0.01 was not statistically significant (t(19) = 0.40; p = .69).  
As such, the Fechner assumption appears to hold in this condition. 
 
These results therefore replicate the findings of Rensink and Baldridge (2010): for this condition, 
average precision and accuracy of correlation perception can be described via a pair of simple 

performance laws (linear and logarithmic, respectively) that are closely related, with bdisc and best 

essentially measuring the same quantity b.  
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Experiment 2 - Low Density  
 

This was the same as the basic condition, but with only 25 points.  The goal here was to 
determine whether performance would change if the number of points—and thus, the density of 
the dot cloud—were markedly lower (Figure 5). 

 

           (a)                           (b) 

Figure 5.  Examples of low-density scatterplots.  Here, scatterplots had 25 points with the same gaussian 
distribution in both dimensions. (a) Typical scatterplot for r = 0.3.  (b) Typical scatterplot for r = 0.9. 

Results: Discrimination 

JNDs based on the aggregate data are shown in Figure 6a.  Due to the range constraint, results 
were omitted from base correlations 0.3 and 0.4 for JNDs for the below condition.  The remaining 
JNDs were again a linear function of adjusted correlation rA both from above (R2 = .973) and 
from below (R2 = .961).  No effect of JND direction was found on either slope (0.30 [0.25, 0.34] 
for above; 0.30 [0.23, 0.36] for below; t(19) = 0.02; p = .98) or intercept (0.34 [0.31, 0.38] for 
above; 0.33 [0.28, 0.37] for below; t(19) = 0.78; p = .45).  Combining both sets, behavior again 
remained quite linear (R2 = .963). 
 

The slopes of individual fits yielded an average variability k = 0.30 [0.26, 0.35], noticeably higher 

than for the basic condition (k = 0.20).  Bias bdisc = 0.91 [0.85, 0.95] remained about the same (cf. 

bdisc = 0.90 [0.84, 0.94]).  

Results: Magnitude Estimation 

Estimates based on the aggregate data are shown in Figure 6b.  Data again show a good fit to the 

logarithmic function of eq. (2).  The best fit was for best = 0.89, close to the value of 0.90 for the 

basic condition; the fit for this against the set of observed estimates was again excellent, with an 



Nature of Correlation Perception  
 

 14 

RMSE of only 0.013.  The estimate of best obtained via individual observers was also similar: best 

= 0.90 [0.84, 0.94], and much the same as that of the basic condition (best = 0.91 [0.85, 0.95]). 

 
       (a)          (b)   

Figure 6. Aggregate results: low-density condition.  (a) Discrimination as measured via JND.  White dots indicate 
test correlation from above; black dots indicate test correlation from below.  As is evident, these give much the same 
estimates.  Error bars denote 95% CIs.  (b) Magnitude estimation as measured via bisection.  The curve for perceived 

correlation is g(r) = ln(1– bestr) / ln(1– best); best fit is for best = 0.89. Vertical error bars show g(r ± 1 JND); 

horizontal error bars the 95% CIs.  

Results: Systematicity 

The bias obtained via discrimination (bdisc = 0.91 [0.85, 0.95]) was much the same as that obtained 

via magnitude estimation (best = 0.90 [0.84, 0.94]).  The difference of 0.01 was not statistically 

significant (t(19) = 0.14; p = .89), showing that the Fechner assumption again holds, with bdisc and 

best simply being measures of the same quantity. 

Experiment 3 - High Aspect Ratio 
  

An important property of any scatterplot is its aspect ratio—the ratio of vertical to horizontal 
extent.  This ratio may affect the ability of observers to detect trends in data, including the 
perception of clusters (Fink, Haunert, Spoerhase, & Wolff, 2013), possibly by squeezing the dots 
closer together.  To test whether perceived correlation is affected by this, the dots cloud of the 
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basic condition was horizontally compressed so as to have an aspect ratio of 2:1.  The size of the 
axes and dots themselves were left unaltered (Figure 7).   

 
          (a)                              (b) 
Figure 7.  Examples of scatterplots with high aspect ratios.  Here, scatterplots had 100 points with a gaussian 
distribution in both dimensions, but with the horizontal component compressed by a factor of 2.  (a) Typical 
scatterplot for r = 0.3.  (b) Typical scatterplot for r = 0.9. 

Results: Discrimination 

JNDs based on the aggregate data are shown in Figure 8a.  Results were omitted from base 

correlation rB = 0.3 (JNDs from below) due to the range constraint.  Dependence of JND on 

adjusted correlation rA was again quite linear, both for JNDs from above (R2 = .942) and below 
(R2 = .942).  There was no significant effect of JND direction on either slope (0.22 [0.18, 0.26] 
for above; 0.24 [0.18, 0.29] for below; t(19) = 0.57; p = .57) or intercept (0.25 [0.22, 0.29] for 
above; 0.26 [0.22, 0.31] for below; t(19) = 0.49; p = .63).  When both sets of data were combined, 
JND remained a linear function of rA (R2 = .942). 
 
Analysis of individual slopes yielded an average variability k = 0.22 [0.19, 0.26], similar to that 

for the basic condition (k = 0.21).  Average bias bdisc = 0.89 [0.84, 0.92] was also much the same 

as the corresponding basic value (bdisc = 0.90).  Thus, even when standard deviations in the two 

dimensions differ by a factor of 2, performance appears largely unaffected. 

Results: Magnitude Estimation 

Average estimates are shown in Figure 8b.  Data again show a good fit with eq. (2).  The best fit 

was for best = 0.85; the resulting fit is excellent, with RMSE less than 0.013.  The average value 

of best obtained via individual observers was similar: best = 0.83 [0.71, 0.92].   
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       (a)          (b)   

Figure 8. Aggregate results: high aspect ratio.  (a) Discrimination as measured via JND. White dots indicate test 
correlation from above, black from below; these give much the same estimates.  Error bars denote 95% CIs.  (b) 

Magnitude estimation as measured via bisection.  The curve for perceived correlation is g(r) = ln(1– bestr) / ln(1– 

best); best fit is for best = 0.85. Vertical error bars show g(r ± 1 JND); horizontal error bars the 95% CIs.  

 

Results: Systematicity 

For this condition, the bias obtained via discrimination (bdisc = 0.89 [0.84, 0.92]) was not far from 

that obtained via magnitude estimation (best = 0.83 [0.71, 0.92]).  This difference was not 

statistically significant (t(19) = 1.00; p = .33), suggesting that the link between precision and 
accuracy exists for this condition as well.  Thus, for high aspect ratios, the shape of both 
performance curves remains much the same as for the other conditions, as does the link between 
them.   

Experiment 4 - Uniform Distribution 
 

The results of Experiments 1-3 suggest that correlation perception is robust to variations in the 
parameters of a scatterplot dot cloud, at least for gaussian distributions.  To examine what 
happens when distributions move away from being gaussian, Experiment 4 used scatterplots with 
uniform distributions.  Such distributions have often been used to the study visual perception 
(e.g., Chong & Treisman, 2003; Cohen, Singh, & Maloney, 2008).  Moreover, they are not 
entirely unnatural: for example, uniform distributions appear to be the basis of internal 
representations of visuomotor error in speeded reaching tasks (Zhang, Daw, & Maloney, 2015). 
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For the condition here, the same mean and range were used as for the basic condition; this 
entailed a somewhat larger standard deviation (1/  = 0.29, rather than 0.2).  In contrast to the 
other conditions, points here were created by first obtaining a list of x-coordinates from a uniform 
distribution (subject to a particular mean and standard deviation).  The corresponding y-
coordinates were formed by creating a scrambled copy of this list and then ordering the values 
using a comb sort (Box & Lacey, 1991; Harrison, 1995) until the required correlation had been 
achieved.  A comb sort initially compares—and if need be, swaps—items separated by large 
distances, with this distance being reduced over time.  The result is a dot cloud with a shape 
somewhat similar to that of the gaussian distribution with the same correlation (Figure 9). 

  
        (a)              (b) 
Figure 9.  Examples of scatterplots with uniform distributions.  Here, scatterplots had 100 points with a uniform 
distribution in both dimensions. (a) Typical scatterplot for r = 0.3.  (b) Typical scatterplot for r = 0.9.  These are 
slightly blockier in shape, and have more sharply-defined borders than their gaussian counterparts (cf. Figure 3). 

 
Results: Discrimination 

JNDs based on the aggregate data are shown in Figure 10a.  Due to the range constraint, results 

were omitted for base correlation rB = 0.3 and 0.4 (JNDs from below).  As in previous conditions, 

dependence of JND on adjusted correlation rA was highly linear, both for JNDs from above (R2 = 
.975) and below (R2 = .988).  There was a tendency for JND direction to affect slope (0.28 [0.23, 
0.32] for above; 0.22 [0.16, 0.28] for below (t(19) = 2.09; p = .05)5.  There was also an effect of 
JND direction on intercept (0.29 [0.25, 0.32] for above; 0.24 [0.19, 0.28] for below; t(19) = 2.48; 
p = .02).  When these data were combined, behavior remained highly linear (R2 = .983). 
 

 
5 When data from the two lowest base correlations (r = 0.0 and 0.1) were removed from the analysis, slopes 

became much more alike (t(19) = 0.75; p = .46), as did intercepts (t(19) = 1.07; p = .30), with average k = 0.24 [0.20, 
0.28].  The divergence may therefore have been caused by the squarish shape of the dot clouds at low levels of 
correlation. These two conditions are therefore omitted in the subsequent analysis. 
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Analysis of individual slopes yielded a variability k = 0.24 [0.20, 0.28], not far from that of the 

basic condition (k = 0.20).  Bias bdisc = 0.94 [0.89, 0.97] appeared to be slightly higher than the 

basic value bdisc = 0.90 [0.84, 0.94], possibly because of the greater standard deviation (Cleveland 

et al., 1982; Lauer & Post, 1989).   

 
     (a)                 (b)   

Figure 10.  Aggregate results: uniform distribution.  (a) Discrimination via JND. White dots indicate test 
correlation from above; black dots from below.  As is evident, estimates are much the same.  Error bars denote 95% 

CIs.  (b) Magnitude estimation as measured via bisection.  The curve for perceived correlation is g(r) = ln(1– bestr) / 

ln(1– best); best fit is for best = 0.93. Vertical error bars show g(r ± 1 JND); horizontal error bars the 95% CIs.  

Results: Magnitude Estimation 

Average estimates for this condition are shown in Figure 10b.  The best fit of the aggregate data 

with eq. (2) was for best = 0.93.  As was the case for the other conditions, the fit is a good one, 

with an RMSE of 0.032.  This value of best is similar to that obtained via the fits of individual 

observers: 0.94 [0.91, 0.97].  Similar to the case of discrimination-based estimates, this latter 

value appears slightly higher than that for the basic condition (best = 0.91 [0.85, 0.95]). 

Results: Systematicity 

As in the case of the gaussian distributions, the bias obtained via discrimination (bdisc = 0.94 [0.89, 

0.97]) was much the same as that obtained via magnitude estimation (best = 0.94 [0.91, 0.97]).  
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This difference was not significant (t(19) = 0.54; p = .59), indicating that the link between 
discrimination and magnitude estimation is reasonably good here as well. 
 
In summary, then, performance for uniform distributions was largely the same as for gaussian 
ones: performance for discrimination remained highly linear, perceived magnitude remained 
logarithmic, and the two curves remained closely linked.  
 

General Discussion 
 

The experiments here show that under a fairly wide range of conditions the perception of 
correlation in scatterplots obeys two linked laws: a linear (Weber) law for discrimination, and a 
logarithmic (Fechner) law for perceived magnitude.  Fit to observed values was good for all 
conditions tested.  As such, these laws will likely hold reasonably well for many distributions, 
including those that are non-gaussian to some extent. 
 

Mechanism 
 

Why do the laws describing correlation perception have such generality?  And why do they have 
the form that they do?  In what follows, it is suggested that (i) perceived correlation is based on 
the probability distribution of data points in an abstract parameter space, (ii) performance 
depends on the shape—and in particular, the width—of this distribution and (iii) this reflects the 
ability of human observers to perceive the information entropy (Shannon entropy) in the image.  
Each of these suggestions will now be discussed in turn. 
 

i) Probability distribution 
 

When considering what might underlie the perception of correlation, it is worth noting that 
discrimination and magnitude estimation are both functions of u = 1–br, not r alone.  The 
quantity u is akin to the average perpendicular distance X from the regression line proposed by 
Meyer et al. (1997) in that it has a small value at r = 1 and increases as r decreases.  The 
possibility that a quantity of this kind is involved is further supported by the finding that the areas 
of the brain involved in correlation perception increase in activity as r moves away from 1 (Best 
et al., 2006).  
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One candidate consistent with this behavior is the area of the region encompassing the set of dots 
in the cloud—e.g., their bounding box or convex hull.  This seems unlikely, however, given that 
outliers (e.g., from contaminating distributions) have relatively little effect on performance, 
which is based instead on the bulk of the points (Bobko & Karren, 1979; Konarski, 2005; Meyer 
& Shinar, 1992).  Moreover, Weber’s Law applies best to properties that—like lightness, color, 
or density—are intensive, i.e.,  when components with the same property are combined, the 
whole has that property too(see Ross, 1997)6.  Intensive properties that are geometric—such as 
orientation—are possible candidates.  But those that are possible in theory do not seem likely in 
practice: perceived correlation corresponds neither to the orientation of the regression line 
(Experiment 3; Lane et al., 1985) nor to the ratio of the major and minor axes of the dot cloud 
(Cleveland et al., 1982; although see Boynton, 2000).  Furthermore, the perceived magnitude of 
most physical properties (including area or distance) is generally described best by a power 
function of its physical magnitude (see e.g., Billock & Tsou, 2011; Ross, 1997), not a logarithmic 
function of the kind found here. 
 

An even more important consideration is perhaps the invariance of correlation perception to 
different kinds of graphical representation.  Large dots in a scatterplot, for example, make the dot 
cloud blobby and give it a larger outer boundary.  They do not, however, affect performance 
(Rensink, 2012, 2014).  Indeed, estimation and discrimination of correlation follow similar laws 
even when the graphical representations involved are entirely different in appearance (Figure 
11)—for example, when the second data dimension of a data element is represented by size or 
color rather than vertical position (Rensink, 2012, 2014, 2015), or when line graphs or bar charts 
are used (Harrison et al., 2014).  

This indifference suggests that performance is based not on a geometric structure inferred from 

the dot cloud, but on something more abstract.  One possibility is the probability distribution p(xi, 

yi), which states that np(xi, yi) dots—or more generally, data points—are expected at each 

position i in a two-dimensional array.  Such distributions are the basis of various scene statistics, 
which play an important role in scene perception (see e.g. Geisler, 2008; Olshausen & Field, 
1996).  Distributions involving two perceptual dimensions would not be problematic, especially 
if they pertain not to different properties (e.g., one for space and one for orientation), but to a 
common, more abstract parameter space. 

 
6 In contrast, properties such as area or length are extensive, behaving in a rather different way (see, e.g., Carnap, 

1966).  For example, the area of a given region is the sum of the areas of its component sub-regions. 
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(a) Second dimension represented by size 

 

(b) Second dimension represented by orientation 
 

Figure 11.  Examples of different representations of data.  In these augmented stripplots, the first data dimension 
of each data element is represented spatially (as in a scatterplot), but the value of the second dimension is mapped to 
a value on a different physical property.  (a) Second dimension represented by size (area).  (b) Second dimension 
represented by orientation.  Despite their different visual appearance, both result in correlation perception that is 
much the same as that for scatterplots: perceived magnitude is still described by g(r) = ln(1– br) / ln(1– b), and 
discrimination by JND(r) = k(1/b - r).  From Rensink (2014, 2015). 

The mechanisms responsible are less clear, but may well be those that underlie ensemble coding, 
which enable various statistics of a set of items to be determined rapidly and with relatively little 
attention (see e.g., Alvarez, 2011; Haberman & Whitney, 2012).  It has been suggested that the 
shape of one-dimensional distributions of various properties can be perceived this way 
(Utochkin, 2015).  An extension to two dimensions would appear to be fairly natural.  And given 
that summary statistics can be obtained in as little as 100 ms (Chong & Treisman, 2003; 
Robitaille & Harris, 2011), it could also explain why correlation perception can be achieved 
within a similarly brief amount of time (Rensink, 2014). 

ii) Distribution shape 

If the density of points is sufficiently high, p(xi, yi) can be approximated by a continuous 

probability density function f(x,y), such that nf(x,y)DxDy dots are expected in the area 

DxDy centered on (x,y).  The function nf(x,y)—the dot density function—has a shape largely 
unaffected by outliers.  Moreover, the shape of f(x,y)  does not depend on the number of dots 
present; the greater variability in k when relatively few dots are used (cf. Experiment 2; Rensink, 
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2014) is likely due to f(x,y) being sampled insufficiently finely.  If the center of mass of each dot 
were used as the basis of f(x,y) (instead of raw pixels, say), it would also explain why 
performance is largely indifferent to their size, shape, and color (Rensink, 2014).  For a bivariate 
gaussian distribution, f(x,y) has the form: 

      (4) 

where 

      , (5) 

where   and σi are respectively the mean and standard deviation of dimension i, and r is the 

correlation7 (see e.g., Timm, 2002).  One way of determining its shape via a set of isofraction 
points—points whose value is a fixed fraction of the maximum (i.e., the value at the center of the 

dot density function).  Writing this fraction as , where  is some fixed constant, these points 

form an ellipse q(x,y) =  (Figure 12).8   

 

   
  

      (a)                 (b)   

Figure 12.  Shape of dot density function.  (a) Two-dimensional view of a scatterplot (r = 0.5), with several 
possible isopleths (iso-probability contours).  (b) Three-dimensional view of the corresponding dot density function 
nf(x,y), with isofraction ellipse for values 1/2 that of the maximum (i.e., the value at its center). 

 
7 The correlation r is technically the population parameter ρ.  In the work here, however, r is set to the same value 

in all instances, and so is used here to minimize notational switching. 
8 Isofraction lines are a special type of isopleth (lines of equal probability).  By definition, they have the property 

that the same fraction (determined by K1) can specify an ellipse independent of any particular value of r or n. 
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Applying the formula for the semi-minor axis Lmin of an ellipse (e.g., Johnson, 2015), the width w 

of this isofraction ellipse is 

 , (6) 

where .  Note that w(r) is independent of n.  Given eq. (2), it is natural to assume that 

perceived correlation g(r) might be proportional to the logarithm of this quantity.  This 
assumption can be expressed as 

     .   (7) 

where G and h are constants, to be chosen such that g(0) = 0 and g(1) = 1.  Note that this implies 
a calibration step to map perceived quantities to the appropriate values of correlation; skipping 
this step may explain some of the incoherence in magnitude estimates occasionally encountered 
(see e.g., Doherty et al., 2007). 

When both dimensions have the same standard deviation s, eq. (6) reduces to 

   ,    (8) 

and eq. (7) takes the form 

                       (9)   

where .  Note that g(r) diverges as r approaches 1, since the width of the ellipse 

approaches zero.  However, owing to perceptual noise and blurring, a residual width wres still 

exists in this situation.  Placing this into eq. (9) yields 

     ,   (10) 

which can be rewritten  

   ,  (11)  

where 

     .        (12)   

Choosing h such that g(0) = 0, eq. (11) becomes 

        , 

which becomes eq. (2) when G is chosen to let g(1) = 1. 
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In this view, the parameter b reflects the relative contribution of residual and "primary" factors.  
This can be made more explicit by setting  

wres = cK2, 

where c > 0 describes the relative contribution of wres; eq. (12) then becomes 

                .     (13) 

A relatively small residual c (and thus, c2) would explain why values of b are often close to 1.  

Furthermore, since wres is fixed and K2 is proportional to s (cf. eq. (9)), c is inversely 

proportional to s, which may explain why accuracy of correlation perception improves when dot 
clouds have smaller standard deviations (Cleveland et al., 1982)9.  The larger standard deviations 
for uniform distributions might likewise account for the (nonsignificantly) larger biases found in 
Experiment 4: the ratio of .29/.2 for the relative sizes of the standard deviation would predict b = 
.95, close to the observed value of .94. 

Note that these developments do not rely on the way that information is represented; instead of 
corresponding to positions in the image, dimensions x and y might correspond to values in a more 
abstract parameter space.  This could explain the existence of similar laws when other graphical 
representations are used (Harrison et al., 2014; Rensink, 2014, 2015). 
 

iii) Information entropy 
 

The assumption that perceived correlation depends on the width of the probability distribution 
can account for the empirical results found here, as well as those of several other studies.  But 
why would human vision be concerned with this particular quantity (cf. Marr, 1982)?  And given 
that the square of the width (cf. eq. (8)) is an accurate estimator of correlation, why would the 
visual system instead use its logarithm?  As a possible answer, an entropy theory is proposed 
here: observers can perceive the information entropy in a scene, with this quantity then used as a 
proxy for correlation. 

Information entropy (Shannon entropy) can be defined as  (see, e.g., 

Lemons, 2013).  This is an inherently statistical quantity, reflecting the number of possible 

 
9 Fitting the data in Figure 2 of Cleveland et al. to eq. (2) yields b values of .91, .89, .94, and .96 for increasing 

sizes of the dot cloud.  Taking the reference value to be b = .89 (size 2 in Cleveland et al), predicted b values are .84, 
(.89), .94, and .97 respectively, a good match to most of the data.  Note that size 2 in Cleveland et al. is roughly that 
of the basic condition here; the similar values of b indicate a degree of consistency across studies. 
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configurations of a given probability distribution.  Physical entropy—the physical instantiation of 
H—is useful for describing many natural structures (see e.g., Ben-Naim, 2008; Lemons, 2013; 
Weber, Depew, & Smith, 1988).  Information entropy could likewise be a useful descriptor of 
visual structure.  In computer vision systems measures based on entropy have been used to assess 
statistical structure in images of real-world scenes and textures (e.g., Chang, Du, Wang, Guo, & 
Thouin, 2006; Zhu, Wu, & Mumford, 1998).  In human vision, it has been suggested that eye 
movements are guided by the perception of contrast entropy, enabling the greatest amount of 
information gained at each fixation (Raj, Geisler, Frazor, & Bovik, 2005; Renninger, Verghese, 
& Coughlan, 2007).  A variant of this quantity—the number of bits needed to encode an image 
using a subset of wavelets—has also been considered as a possible measure of the visual clutter 
in a scene (Rosenholz, Li, & Nakano, 2007). 

In general, entropy is difficult to estimate (Archer, Park, & Pillow, 2014).  For a bivariate 
gaussian distribution, however, the situation can be simplified.  The differential entropy10 of the 
corresponding probability density function (eq. 4) is  

            (14) 

(see e.g., Gokhale, Ahmed, & Res, 1989); for a distribution of n dots, this simply becomes 

           (15) 

Meanwhile, the isofraction ellipse q(x,y) =  for the dot density function nf(x,y) has an area A 

given by (e.g., Johnson, 2015) 

        (16) 

allowing eq. (15) to take the form 

      (17) 

Given that the methods used here involve only differences in g(r), entropy theory implies 

     ,  (18) 

or equivalently, 

     ,    (19)  

where G' and h' are real-valued constants.  Substituting eq. (17) into eq. (19) leads to  
 

10 Although much the same as entropy for the discrete case, differential entropy—based on a probability density 
function rather than an array of discrete probabilities—can be negative in some situations (e.g., as r goes to 1 in eq. 
(9)).  However, it is a good approximation here, with the fixed residual width wres preventing the argument of the 
logarithm from becoming arbitrarily small.  Moreover, the approach here relies on differences in differential entropy, 
which does not have such problems (see e.g., Norwich, 1987). 
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    .   (20) 

where G = nG'. 

The issue now is to determine the area A of the isofraction ellipse.  For geometric structures, the 
perceived area of an ellipse is the product of separate one-dimensional measurements (Morgan, 
2005); the existence of capacity limitations for ensemble coding (Attarha & Moore, 2015) would 
suggest a similar situation here.  If only one ensemble descriptor can be determined at a time, 
A(r) might be approximated by the product of the width w(r) of the ellipse and some fixed value 
D representing its length; eq. (20) then becomes 

           .  (21)  

Setting  yields eq. (7), which—as shown in the previous section—

becomes eq. (2) when σx and σy are equal.  This approximates the exact formula for entropy (eq. 

(20)) fairly well (Figure 13). 

 
   

Figure 13.  Approximation of entropy.  Fechner's law (eq. (2); thicker line) vs. exact formula based on entropy (eq. 
(20); thinner line).  Both have been adjusted to have best fits to the data of Experiment 1.  As is evident, Fechner’s 
law is slightly higher at low correlations and slightly lower at high ones.  But the two curves match each other 
reasonably well: average RMSE over the range 0 ≤ r ≤ 1 is only 0.04. 
 

To show the linkage between discrimination and estimation, the derivative of eq. (2) yields 

   .    (22) 

Because of the close approximation of eq. (2) to the actual entropy, any change Δg is reasonably 
proportional to the associated change ΔH.  And because ΔH is a measure of information gain 
(see e.g., Lemons, 2013), all Δg's of equal size involve the same number of bits.  In this situation, 
then, the Fechner assumption that each JND corresponds to the same difference in subjective 
experience Δg takes the weaker form that each JND corresponds to the same number of 
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perceived bits I75 (where the subscript denotes 75% discrimination accuracy11).  Letting JND(r) 

denote the value of Δr that corresponds to this number, eq. (22) becomes 

  ,   (23) 

which then becomes eq. (1) by setting .  (Note that since I75 depends on the 

particular representation and number n of data points used, if these are constant, k will be 
proportional to -ln(1-b).12)  The finding that discrimination and estimation lead to the same 
estimates of b shows that this weaker form of the Fechner assumption holds fairly well.  It is 
worth noting that the resulting logarithmic relationship between physical and perceived quantities 
is relatively rare, since most such relationships involve power laws rather than logarithms 
(Billock & Tsou, 2011). 
 

Interestingly, the above treatment also goes through if g(r) were proportional to entropy density, 
an intensive property that describes the amount of entropy per unit area (with this area being, e.g., 
that subtended by the scatterplot axes).  Because this differs formally from information entropy 
only by a multiplicative constant, the calibration done to set g(0) = 0 and g(1) = 1 would result in 
no formal difference in g(r), and thus, no difference in performance. 
 

iv) Unequal standard deviations 
 

Much of the development above assumes that the standard deviations of both dimensions are 
equal (i.e., ).  When this is not the case, two limiting cases can be singled out.  First, when 

sy << sx ( ), eq. (6) becomes 

   .       (24) 

Second, when sy >> sx ( ), eq. (6) becomes 

   .        (25) 

In both cases, a similar development as above yields 

 
11 The value of a threshold depends somewhat on the method used to measure it (see e.g., Chong & Treisman, 

2005; Treutwein, 1995).  Thus, I75—and therefore, k—may differ slightly for different methods.  But it will be 
constant when the same method is used throughout. 

12 This may explain why variability in the uniform distribution (Experiment 4) tends to be higher than in the basic 
condition (Experiment 1).  If b is greater in the uniform distribution (b = 0.94 [0.89, 0.97] vs. b = 0.91 [0.85, 0.95], 
then k = 0.21 * ln(1-0.94)/ln(1-0.91) = 0.245, quite close to the k = 0.24 observed.  Given that these trends were not 
found to be significant in the present study, another study with more power would be needed before conclusively 
accepting or rejecting this proposal. 
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     ,    (26) 

where b is as before, but with  when sy << sx, and  when sy >> sx.  

A development parallel to that for eq. (23) then yields the JND curve 
     .    (27) 

Since A(r) is always proportional to  (eq. 16), eqs. (24) and (25) have an exact match with 
A(r) under these conditions.  Consequently, eq. (21) should be a reasonable approximation for 

most choices of σx and σy. 

Comparison with Previous Work 

The basic stage of correlation perception in scatterplots has been the focus of many studies over 
the years.  Relatively few, however, examined discrimination.  Pollack (1960) and Doherty et al. 
(2007) characterized this in terms of d' (signal to noise ratio), finding performance to be better at 
high correlations; similar results were obtained by Li, Martens, and van Wijk (2010).  These are 
all consistent with the results found here.  Indeed, transforming the d' measures of Experiment 2 
of Doherty et al. (2007) into JNDs (these quantities being inversely related) yields a highly linear 
behavior (R2 = 0.972) that obeys eq. (1), with variability k ≈ 0.17 and bias b ≈ 0.90, values not far 
from those found here.  Harrison et al. (2014) found that eq. (1) held for several kinds of 
graphical representation (e.g., line plots), again with parameters broadly similar to those found 
here. 

The more intensively-studied aspect of correlation perception, however, is magnitude estimation.  
(For reviews, see Boynton, 2000; Doherty et al., 2007; Konarski, 2005).  Several studies have 
proposed particular equations for the relationship of perceived to physical correlation.  Table 1 
shows the most popular ones (and a few variants) and their fits to the estimation data obtained 
here. These proposals are grouped according to the number of free parameters they contain:   

i) Free parameters = 0.  These are simply functions of correlation r.  As is evident from Table 1, 

average RMSE is about 0.08.  Note that  (row A) is not the best model for most conditions, 

indicating that the underlying quantity is unlikely to be simple variance, as was sometimes 
suggested (e.g., Pollack, 1960; Strahan & Hansen, 1978).  More generally, the relatively poor fit 
for these equations supports the proposal that—even for simple bivariate gaussian distributions—
perceived correlation depends upon more than r alone (Boynton, 2000; Lane et al., 1985). 
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Table 1: Fits of perceived correlation.  RMSE of various proposals for perceived correlation g(r); fits are to the 
seven levels of perceived correlation measured here.  Gray squares indicate best overall fit for each number of free 
parameters; numbers in bold are the best fits for each condition; solid borders show the fit for Fechner’s Law (eq. 
(2)). Parameters (Par): The number of free parameters in the equation.  Source (Src): (A) Variance (Pollack, 1960). 
(B) Coefficient of alienation w(r) of Jennings, Amabile, and Ross (1982); based on area of isopleths.  (C) Modified 
version of w(r), based on width rather than area. (D) g(r) of Cleveland et al., 1982; based on the ratio of minor to 
major axes.  (E) Version of g(r) modified by Meyer et al. (1997). (F) Double-power law of note 15 of Cleveland et 
al. (1982), with suggested constants a = 0.71 and b = 0.66.  (G) Linear function of average absolute perpendicular 
distance X from the regression line (Meyer et al., 1997). (H) Power law for distance from r = 1, with exponent a 
(best fit a  ≈ 0.5 for most conditions). (I) Power law for ratio of minor to major axes (Boynton, 2000); best fit is a ≈ 

0.38 for most conditions.  (J) Fechner's law (eq. (2)). (K) Logarithmic function of r2 instead of r—the entropy based 
on the true area of the isopleth ellipse. (L) Power law for average absolute perpendicular distance X, with two 
parameters (Meyer et al., 1997). (M) Power law for distance from r = 1, with two free parameters. (N) Double-power 
law of Cleveland et al. (1982; note 15).  (O) Power law for u=1-br, with exponent a (best fit a  ≈ 0.5, b = 1 for all 
conditions).  (P) Modified power law for ratio of minor to major axes; variant of the measure proposed in Boynton 
(2000).  

Par Src Equation Basic  Low 
Density 

High 
Aspect Uniform 

0 

A  0.059 0.053 0.036 0.088 

B  0.147 0.150 0.167 0.111 

C  0.051 0.047 0.049 0.025 

D  0.121 0.116 0.102 0.125 

E  0.051 0.052 0.064 0.023 

F  0.043 0.045 0.064 0.042 

1 

G  0.042 0.039 0.043 0.025 

H  0.049 0.044 0.037 0.018 

I  0.078 0.073 0.064 0.047 

J  0.018 0.013 0.013 0.033 

K  0.034 0.033 0.033 0.062 

2 

L  0.037 0.025 0.034 0.015 

M  0.031 0.026 0.012 0.011 

N  0.023 0.016 0.005 0.011 

O  0.049 0.044 0.037 0.018 

P  0.043 0.039 0.025 0.019 
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ii) Free parameters = 1.  When a single free parameter is allowed, the best fit is with eq. (2)—
row (J); RMSE here is less than half that of the other models with one free parameter, at least for 
gaussian distributions. The fit remains good for uniform conditions as well, although the 
somewhat higher RMSE here suggests that gaussian distributions may in some sense be the more 
natural ones.13  Note that the fit is better than for the average perpendicular distance X (row G); 
since X is essentially proportional to the width of the distribution, the somewhat better fit with 
eq. (2) would seem to be due to the use of the logarithm and the presence of a residual.  The fit 
also tends to be better than for a power of the distance from r = 1 (row H), or of the ratio of the 
width of the isofraction ellipse to its length (row I).  Note that power laws—which describe the 
perceived magnitude of most perceptual properties (see e.g., Billock & Tsou, 2011; Ross, 
1997)—do not generally fit much better than equations based only on r.  Importantly, the fit with 

eq. (2) is also better than for the logarithm of 1-br2, (row K), the accurate equation for entropy. 

iii) Free parameters = 2.  Table 1 shows that the double-power law of Cleveland et al. (row M) 
has the best fit of any two-parameter proposal.  This is not entirely a surprise—all things being 
equal, fit should be better for equations with more free parameters.  However, eq. (2) still 
provides the best global fit for the basic and low-density conditions, as well as the second-best fit 
overall, despite having only one free parameter (bias).  

All things considered, then, Fechner’s Law (eq. (2)) fits the data at least as well as any other 
proposal to date.  Moreover, it also shows a systematic link between discrimination and 
estimation, and points to a mechanism that connects it with the rest of visual perception.  Note 
that in this formulation, perceived correlation—especially for gaussian distributions—essentially 
involves just one parameter, bias b, which summarizes the effects of all the factors that influence 
correlation perception, essentially acting as a modulator. 

Although care must be taken when comparing the results of different experiments, a few 
tendencies are apparent.  For the low-density condition (Experiment 2), k is considerably higher 
(0.30 [0.26, 0.35], vs 0.21 [0.17, 0.24]; t(38) = 3.29; p = .002), a phenomenon also found by 
Doherty et al. (2007) and Rensink (2014).  This likely reflects the greater sampling noise due to 
the smaller number of dots.  Bias was not noticeably affected, consistent with the pilot studies 
reported by Bobko and Karren (1978).  Although it is sometimes stated that perceived 

 
13 This pattern can also be seen in terms of confidence intervals: For the three gaussian distributions, eq. (2) falls 

within the 95% CIs for all values tested.  For the uniform distribution, this did not occur for one value (the highest); 
distance beyond the 95% CI here was 0.01. 
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magnitude—and therefore bias—is affected by density (e.g., Boynton, 2000), those studies 
manipulated density by changing the standard deviation of the dot cloud; when density is 
manipulated by changing the number of dots present, effects are much weaker (Lauer & Post, 
1989; Rensink, 2014).  Finally, in the uniform condition (Experiment 4), bias tended to be 
somewhat higher; if so, it may be either because the uniform distributions did not match the 
gaussian structure assumed by the perceptual systems involved (Utochkin, 2015; Utochkin & 
Tiurnia, 2014), or simply because of the greater standard deviation.   

Applications to Visualization 
 

The view of correlation perception put forward here has several implications for information 
visualization.  To begin with, the relatively simple nature of eqs. (1) and (2) suggests an 
interesting application to the evaluation of designs for the visualization of correlation.  
Visualization designs are typically evaluated using user studies, which can often be quite time-
consuming (Carpendale, 2008).  The results here, however, suggest that some aspects of this 
process—at least for the visualization of correlation—could be done in a considerably faster way.  
For example, if the datasets being visualized have near-gaussian distributions, and if each level of 
correlation is equally likely to be encountered, precision can be characterized by the scatter S, 
defined as the average JND over the range 0 ≤ r ≤ 1; this corresponds to the area under the curve 
of eq. (1), or equivalently, its value at the midpoint r = 0.5: 

      ,  .   (28) 

Accuracy can likewise be characterized as the average (under)estimation error E, corresponding 
to the average difference between g(r) and r.  Via eq. (2), this takes the form: 

    ,     .   (29) 

Using these formulae, any scatterplot design (e.g., one with a particular size or color of dots) can 
be rated in terms of precision and accuracy, at least for the visualization of correlation in near-
gaussian distributions: all that is needed are the parameters k and b.14  And even if eqs. (28) and 
(29) turn out to be valid only for near-gaussian distributions, any results found using these (for 
different colors, say) might still be applicable for other kinds of distributions.  

 
14 Clearly, such measures may not be relevant for other uses of scatterplots, such as the visualization of clusters or 

outliers.  They also do not capture aspects such as the aesthetics of the display. 
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An important issue is to what extent such evaluation could be sped up.  In the experiments here, 
parameters k and b were measured using a fairly large set of base correlations.  This was done to 
enable the shape of the performance curves to be mapped out in detail.  But if conditions are 
similar to those tested here, k and b might be measured using far fewer tests.  To examine the 
feasibility of this, the discrimination data in Experiments 1-4 were reanalyzed using a smaller 
number of base correlations: either {0.3, 0.5, 0.7, 0.9}, {0.3, 0.6, 0.9}, or {0.3, 0.9}, with JNDs 
from above.  In addition, magnitude estimates were made using 3 subdivisions (corresponding to 
the first two stages of the method used here), and a single (initial) subdivision15.  As seen from 
Table 2, estimates were quite robust, remaining largely the same.  The only exceptions were 

significantly higher values for bdisc when two base correlations were used on distributions with 

low densities or high aspect ratios, and a (nonsignificant) trend toward higher values for best when 

just one subdivision was used on uniform distributions.  

 n Basic Low Density High Aspect Uniform 

k 

- .21 [.17, 0.24] .30 [.26, .35] .22 [.19, .26] .24 [.20, .28] 

4 .19 [0.15, 0.23] .31 [.26, .37] .25 [.18, .32] .25 [.21, .30] 

3 .20 [0.15, 0.24] .33 [.27, .39] .25 [.18, .33] .26 [.21, .30] 

2 .19 [0.15, 0.23] .34 [.28, .40] .26 [.19, .33] .26 [.21, .31] 

bdisc 

- .90 [.84, .94] .91 [.85, .95] .89 [.84, .92] .94 [.89, .97] 

4 .89 [.80, .95] .91 [.85, .95] .91 [.84, .95] .95 [.91, .97] 

3 .90 [.84, .95] .92 [.87, .95] .92 [.88, .95] .95 [.90, .97] 

2 .89 [.81, .95] .95 [.88, .97] .94 [.91, .96] .95 [.92, .97] 

best 

- .91 [.85, .95] .90 [.85, .95] .83 [.71, .92] .94 [.91, .97] 

3 .91 [.84, .95] .90 [.85, .94] .86 [.76, .93] .93 [.88, .96] 

1 .90 [.85, .94] .90 [.85, 94] .81 [.65, .92] .90 [.84, .94] 

Table 2: Estimates using different numbers of sampling points (n). Upper row for each parameter (in gray) 
corresponds to the estimates given in the main text.  As is apparent, reducing the number of points does not cause 
estimates to deteriorate greatly.  The two significant variations in measurements are in bold; these were for 2-point 
estimates of bdisc, for low densities and high aspect ratios, which were significantly higher than those for large 
numbers of sampling points.  Square brackets indicate 95% CIs. To reduce clutter, leading zeroes have been omitted. 

 
15 Consistent with the approach used in the main analysis, values of b or k were dropped if they were outside the 

range of 2.5 standard deviations.  However, in this case the associated observers were not replaced. 
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Based on these results, a simple method of assessing of k and b can be suggested: measure JND 
from above for three base correlations (e.g., 0.3, 0.6, and 0.9), and fit the results to eq. (1).  
Owing to the link between discrimination and perceived magnitude, no bisection is needed, 
although if the Fechner assumption is to be tested, a small number of subdivisions (3, or possibly 
even 1) should suffice.  For maximal sensitivity, a within-observer design could be used, with 
each observer tested on the same set of (counterbalanced) designs.   

The developments in this paper also have applications at a more general level.  For example, the 
proposal that correlation is based on probability distributions over an abstract parameter space 
implies that the values of data points need not be conveyed by spatial position—they could 
instead be represented by other properties, such as color or orientation (cf. Figure 11).  Given that 
the perception of correlation in such representations is similar to that found in scatterplots 
(Rensink, 2014, 2015), and given that such visualizations could take up less space (Figure 11), 
there may be practical advantages to their use.   

More generally yet, the developments here show that our understanding of visualization can be 
improved not only via knowledge of the mechanisms underlying human perception and cognition 
(e.g., Card et al., 1999; Ware, 2012), but also via the methodologies used to obtain that 
knowledge.  Indeed, developing this approach in a more thorough and systematic way may even 
result in a science of visualization for some aspects of this domain, an area of research that could 
connect with several parts of psychology—in particular, vision science (Rensink, 2014), 

 

Applications to Vision Science 

This study has shown that for gaussian and uniform distributions, the perception of correlation in 
scatterplots can be described by a pair of simple laws: a linear one for discrimination and a 
logarithmic one for magnitude.  These laws appear to derive from the width of inferred 
probability distributions, which in turn may reflect the perception of entropy in the image.  If so, 
there would be several important implications for our understanding of the mechanisms 
underlying visual perception. 

The proposal of inferred probability distributions suggests that the mechanisms involved in 
correlation perception may be related to those underlying ensemble coding (see Alvarez, 2011; 
Haberman & Whitney, 2012).  Early studies of ensemble coding focused on simple scalar 
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properties (estimators), such as mean size (Ariely, 2001), orientation (Dakin & Watt, 1997), and 
center of mass (Alvarez & Oliva, 2008; Drew, Chubb, & Sperling, 2010).  However, it has 
become increasingly clear that these mechanisms can also respond to the shape of the underlying 
probability distributions, at least over one-dimensional spaces (Chetverikov, Campana, & 
Kristjansson, 2016; Utochkin, 2015).  The results here suggest that the shape of two-dimensional 
distributions can also be determined this way, with this shape serving as the basis of entropy 
estimation.  (Note that this shape need not be used exclusively for this purpose; it might also 
serve as the basis for other things, such as categorization.)  The results also suggest that—similar 
to the limits on the number of ensemble properties can be determined at a time (Brand, Oriet, & 
Tottenham, 2012)—limits exist on the number of properties that can be concurrently determined 
about the shape of such distributions. 

Another connection involves the proposal that the goal of the mechanism outlined here is the 
perception of the entropy in an image.  Statistical structure has long been thought to play a 
critical role in the visual perception of scenes (see e.g., Geisler, 2008; Haberman & Whitney, 
2012; Olshausen & Field, 1996; Rensink, 2000), with several statistical quantities apparently 
perceived quite rapidly (e.g., Fei-Fei, Iyer, Koch, & Perona, 2007; Oliva & Torralba, 2006)16.  
Given that entropy is an important statistical structure, it is reasonable to suppose that it too 
might be such a quantity.  Among other things, entropy has been suggested as an important 
quantity in the guidance of eye movements (Raj et al., 2005; Renninger et al., 2007) as well as a 
possible measure of clutter in a scene (Rosenholz et al., 2007). The proposal here supports 
suggestions of this kind; indeed, similar—or even the same—mechanisms may be involved.  And 
if correlation perception does indeed reflect a form of entropy perception, it would indicate that 
entropy is not only used in perceptual processing, but can be accessed by higher-level 
mechanisms.  The use of scatterplots to visually convey structure would then be an interesting 
example of this ability being harnessed for practical purposes. 

In any event, the view proposed here consolidates much of the work on the perception of 
correlation in scatterplots over the past several decades.  In particular, it can account for several 
key aspects of this process: 

 
16 Statistical representations in vision can use two different kinds of referencing: one based on sets of positions, the 

other on sets of items.  Position-based referencing is the basis of representations such as texture (e.g., Bergen & 
Adelson, 1988); item-based referencing is the basis of ensemble coding.  For a scatterplot, correlation stems from the 
positions derived from a set of dots; the process does not necessarily use the position of each dot to reference it. 
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i. The logarithmic form of perceived correlation g(r). 
ii. The linear form of JND(r), possibly via an intensive quantity (entropy density). 
iii. The linkage between these two quantities (Fechner assumption). 
iv. The relative indifference of these to the presence of individual outliers. 
v. The greater accuracy (lower bias b) when the standard deviation of the cloud is smaller. 
vi. The considerable indifference of b to the density of dots in a scatterplot. 
vii. The invariance of the above in regards to different ways of representing information (e.g., 

via position or color). 

Several predictions also follow: 
i. The two-dimensional shape of probability distributions can be determined in ensemble 

coding (although only a single aspect of it may be accessible at any one time). 

ii. Perceived correlation g(r) is a logarithmic function of v=1-br2 in situations where the two 

dimensions have markedly unequal standard deviations. 
iii. If the Fechner assumption holds, JND(r) will be proportional to (1/br - r) under such 

conditions. 
iv. For a given property to represent information, a given number of data elements, and a 

given way to measure JND, variability k will be proportional to -ln(1-b). 
v. The above aspects and predictions will hold to the extent that the property used to 

represent information obeys an isometric constraint—equal perceptual distances map to 
equal distances in numerical (value) space.  The properties for which this is possible will 
likely be the basic features of visual perception (e.g., Treisman, 1988). 

vi. Different ways of representating  correlation can be compared without any great loss in 
performance—e.g., the correlation in an augmented stripplot of the type shown in Figure 
11 could be accurately matched against that in a scatterplot, or JNDs would be much the 
same when measured using scatterplots with different densities or aspect ratios.17   

vii.  It should be possible to adapt to correlations conveyed by different graphical 
representations. 

 
17 Preliminary experiments appear to support this. 
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Future Directions 

Although the view put forward here can explain much of correlation perception, many issues still 
remain to be investigated.  For example, what happens at transitions between positive and 
negative correlations?  When base correlations less than 0.2-0.3 are removed, post-hoc analysis 
shows that behavior for uniform distributions is similar to that of the basic condition (Experiment 
4).  This suggests that a transition of some kind may exist there, in which the proxy for 
correlation at high values (entropy) is replaced at low ones by a different one (e.g., density), 
possibly due to the latter quantity supporting a stronger signal.  If so, distinct "zones" for high 
and low correlations may exist, with interesting effects at their transition points.18   
 

Another important set of issues concerns the nature of the data distributions themselves.  
Although the laws here apply fairly well to at least some non-gaussian distributions, it is not clear 
how far this goes.  Distributions with the same means, standard deviations, and correlations can 
vary considerably in their structure (Anscombe, 1973).  It would be useful to know how far the 
approach developed here would apply.  Another issue is the extent to which a second, irrelevant 
distribution can affect performance (cf. Konarski, 2005; Lewandowsky & Spence, 1989; Wainer 
& Thissen, 1979).  More generally, it may be worth looking at the extent to which multiple 
distributions can be separated out, based on the two-dimensional shape of the probability 
distribution; this might be investigated by an adaptation of current approaches to segmenting 
probability distributions (e.g.. Cohen et al., 2008; Feldman, Singh, & Froyen, 2013; Utochkin, 
2015).  A related issue is whether the gaussian is a natural distribution for the processes involved, 
as appears to be the case for ensemble coding (Alvarez, 2011; Utochkin & Tiurnia, 2014).  Other 
issues in this vein include the extent to which nonlinear correlations can be perceived, and 
whether information entropy could also account for the perception of correlation in higher-
dimensional datasets. 
 

A somewhat different set of questions concerns the effectiveness of display factors such as the 
size and shape of the dot cloud, or the size and shape of its dots to convey correlation (cf. 
Cleveland & McGill, 1984a).  If gaussian distributions are used to test these, the evaluation 
procedure suggested above could be readily applied and the values of k and b measured; once this 
has been done, eqs. (28) and (29) could provide quantitative measures of precision and accuracy 

 
18 Such a phenomenon has also been found in pilot experiments on parallel co-ordinate plots (Lane Harrison, 

personal communication; Kyle Melnick, personal communcation). 
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for each design parameter.  Results of this kind would not only be of practical importance, but 
might also cast further light on the nature of the perceptual mechanisms involved.  Indeed, 
investigation into the kinds of properties that give rise to laws similar to those found here could 
provide a new, independent source of insight into the nature of the visual features believed to 
support the early stages of perception. 
 
In this context it is worth mentioning that the aspect of correlation perception investigated here is 
its basic stage—i.e., the part that is carried out rapidly and intuitively by most observers.  The 
finding that this is largely complete within 100-150 ms (Rensink, 2014) suggests a similarity to 
the initial stage of scene perception, where processes are spatially parallel and act rapidly, 
typically within a few hundred milliseconds (see e.g., Rensink, 2000).  If these stages turn out to 
be identical, some interesting implications follow.  For example, the estimates used in the 
probability distributions could be properties of proto-objects—localized structures believed to be 
created early in visual processing (Rensink & Enns, 1995).  If so, correlation perception would 
have interesting connections to visual search and clutter perception, both of which appear to be 
based on measurements derived from proto-objects rather than raw pixels in the image (e.g., 
Rensink & Enns, 1995; Yu, Samaras, & Zelinsky, 2014). 
 

And just as scene perception has an attentional stage that depends on the knowledge of the 
observer, so does correlation perception have a subsequent stage that supports more sophisticated 
operations, such as the selection of particular data points (Freedman & Smith). Although the 
extent to which this stage involves attention is not yet clear, it does appear to require deliberation 
and is aided by expertise (e.g., Lewandowsky & Spence, 1989).  As such, many of the same 
processes may be involved, further supporting the proposal of a deep connection between vision 
and visualization (Rensink, 2014). 
 

Clearly, more can be perceived in a scatterplot than just correlation: many other kinds of visual 
structure are possible.  Possible candidates include not only clusters and outliers, but also such 
things as the convexity, skinniness, or clumpiness of the dot cloud itself (Wilkinson, Anand, & 
Grossman, 2005; Wilkinson & Wills, 2008).  Techniques analogous to those described here 
might be developed to explore such possibilities.   
 

And finally, it may be worth emphasizing that research issues in vision science and information 
visualization are often interlinked: the design of a visualization can often be aided by knowledge 
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of the underlying perceptual mechanisms, while careful investigation into its operation can shed 
new light on the nature of these mechanisms (Rensink, 2014).  This study is one example of how 
the latter could be done.  But examples also exist for other aspects of visualization, such as the 
perception of average value (e.g., Gleicher, Correll, Nothelfer, & Franconeri, 2013; Legge, Gu, & 
Lubker, 1989) and the perception of structure in graphs (Cleveland & McGill, 1984b).  More 
generally, the graphical representations used to display data can form a useful class of stimuli for 
research into human perception and cognition.  It is sometimes believed that artifacts have 
arbitrary structure, and as such are irrelevant for the study of human perception and cognition.  
But although humans did not evolve to work with artifacts, artifacts in common use essentially 
evolved to work with us.  Representations such as scatterplots are survivors of considerable 
competition; there are likely good reasons why they remain in use.  Finding those reasons may 
therefore not only help us better understand the kinds of visualizations that have been or could be 
developed, but may also help give us new insights into the nature of our perceptual and cognitive 
systems. 



Nature of Correlation Perception  
 

 39 

Acknowledgements 

Many thanks to Kyle Melnick and Ben Shear for the huge effort they put into data collection and 
preliminary analysis.  Thanks also to Gideon Baldridge for locating and implementing the comb 
filter, and to Paulo Apolinar for assistance with several figures.  Also thanks to Minjung Kim and 
the reviewers for helpful feedback on earlier versions of this paper.  This work was supported by 
grants from the Natural Sciences and Engineering Research Council (NSERC) and The Boeing 
Company. 



Nature of Correlation Perception  
 

 40 

References 

Alvarez, G.A. (2011).  Representing multiple objects as an ensemble enhances visual cognition.  
Trends in Cognitive Science, 15: 122–131.  

Alvarez, G.A., & Oliva, A. (2008).  The representation of simple ensemble visual features outside 
the focus of attention. Psychological Science, 19:392–398. 

Anscombe, F. J. (1973).  Graphs in statistical analysis.  American Statistician, 27: 17–21. 

Archer, E., Park, I.M., & Pillow, J.W. (2014).  Bayesian entropy estimation for countable discrete 
distributions.  Journal of Machine Learning Research, 15, 2833-2868. 

Ariely, D. (2001).  Seeing sets: Representation by statistical properties. Psychological Science, 
12: 157–162. 

Attarha, M., & Moore, C.M. (2015). The capacity limitations of orientation summary statistics. 
Attention, Perception, & Psychophysics, 77:1116–1131. 

Ben-Naim, A. (2008).  A Farewell to Entropy: Statistical Thermodynamics Based on 
Information.  London: World Scientific. 

Bergen, J.R., & Adelson, E.H. (1988).  Early vision and texture perception. Nature, 333: 363-
364. 

Best, L.A., Hunter, A.C., & Stewart, B.M. (2006).  Perceiving relationships: A physiological 
examination of the perception of scatterplots.  In D. Barker-Plummer et al. (eds.): Diagrams 
2006, pp. 244-257. 

Billock, V.A., & Tsou, B.H. (2011). To honor Fechner and obey Stevens: Relationships between 
psychophysical and neural nonlinearities.  Psychological Bulletin, 137: 1-18. 

Bobko, P., & Karren, R.  (1979).  The perception of Pearson product moment correlations from 
bivariate scatterplots. Personnel Psychology, 32: 313-325. 

Boynton, D.M. (2000).  The psychophysics of informal covariation assessment: Perceiving 
relatedness against a background of dispersion.  JEP: HPP, 26: 867-876. 

Box, R., & Lacey, S. (1991).  A fast easy sort.  Byte, 16: 315-320. 

Brand, J., Oriet, C., & Tottenham, L. S. (2012). Size and emotion averaging: Costs of dividing 
attention after all.  Canadian Journal of Experimental Psychology, 66: 63–69. 

Card, S.K., Mackinlay, J.D., & Shneiderman, B. Information visualization. (1999).  In Card, 
S.K., Mackinlay, J.D., & Shneiderman, B. (Eds.) Readings in Information Visualization: 
Using Vision to Think. San Francisco: Morgan Kaufman.  Chapter 1. 

Carnap, R. (1966).  In M. Gardner (Ed.), The Philosophy of Science.  New York: Basic Books. 
pp. 70-77. 



Nature of Correlation Perception  
 

 41 

Carpendale, S. (2008).  Evaluating Information Visualizations, In A. Kerren, J.T. Stasko, J.-D. 
Fekete, C. North (Eds.).  Information Visualization: Human-Centered Issues and 
Perspectives.  Berlin: Springer.  pp. 19 – 45.  doi: 10.1007/978-3-540-70956-5_2 

Chang, C.-I., Du, Y., Wang, J., Guo, S.-M., & Thouin, P.D. (2006). Survey and comparative 
analysis of entropy and relative entropy thresholding techniques. IEE Proceedings - Vision, 
Image, and Signal Processing, 153, 837-850. 

Chetverikov, A., Campana, G., & Kristjansson, Á. (2016). Building ensemble representations: 
How the shape of preceding distractor distributions affects visual search. Cognition, 153: 196-
201. doi:10.1016/j.cognition.2016.04.018. 

Chong, S.C., & Treisman, A. (2003).  Representation of statistical properties.  Vision Research, 
43: 393-404.  

Chong, S.C., & Treisman, A. (2005). Attentional spread in the statistical processing of visual 
displays.  Perception & Psychophysics, 67: 1-13. 

Cleveland, W.S., Diaconis, P., & McGill, R. (1982).  Variables on scatterplots look more highly 
correlated when scales are increased.  Science, 216: 1138-1141.  

Cleveland, W.S., & McGill, R. (1984a).  The many faces of a scatterplot.  Journal of the 
American Statistical Association, 79: 807-822. 

Cleveland, W.S., & McGill, R. (1984b).  Graphical perception: Theory, experimentation, and 
application to the development of graphical methods. Journal of the American Statistical 
Association, 79: 531-554. 

Cleveland, W.S., & McGill, R. (1987). Graphical perception: The visual decoding of quantitative 
information on graphical displays of data.  Journal of the Royal Statistical Society, 150: 192-
229. 

Cohen, E.H., Singh, M., & Maloney, L.T. (2008).  Perceptual segmentation and the perceived 
orientation of dot clusters: The role of robust statistics.  Journal of Vision, 8(7):6, 1-13. 

Cumming, G.  (2012). Understanding The New Statistics: Effect Sizes, Confidence Intervals, And 
Meta-Analysis.  New York : Routledge. 

Dakin, S., & Watt, R. J. (1997).  The computation of orientation statistics from visual texture.  
Vision Research, 37: 3181–3192. 

Doherty, M.E., Anderson, R.B., Angott, A.M., & Klopfer, D.S. (2007).  The perception of 
scatterplots.  Perception & Psychophysics, 69: 1261-1272. 

Drew, S.A., Chubb, C.F., & Sperling, G. (2010).  Precise attention filters for Weber contrast 
derived from centroid estimations.  Journal of Vision, 10: 20. doi:10.1167/10.10.20. 



Nature of Correlation Perception  
 

 42 

Ellermeier, W., & Faulhammer, G.  (2000).  Empirical evaluation of axioms fundamental to 
Stevens’s ratio-scaling approach: I. Loudness production.  Perception & Psychophysics, 62: 
1505 – 1511. 

Fei-Fei, L., Iyer, A., Koch, C., & Perona, P. (2002).  What do we perceive in a glance of a real-
world scene?  Journal of Vision, 7: 10, 1-29. 

Fink, M., Haunert, J.-H., Spoerhase, J., & Wolff, A. (2013). Selecting the aspect ratio of a scatter 
plot based on its Delaunay triangulation.  IEEE Transactions on Visualization and Computer 
Graphics, 19: 2326-2335. 

Feldman, J., Singh, M., & Froyen, V. (2013).  Perceptual grouping as Bayesian mixture 
estimation.  In L. Gepshtein, L. Maloney, & M. Singh (Eds.). The Oxford Handbook of 
Computational Perceptual Organization.  Oxford: University Press.  doi: 
10.1093/oxfordhb/9780199829347.013.5. 

Freedman, E.G., & Smith, L.D. (1996).  The role of data and theory in covariation assessment: 
Implications for the theory-ladenness of observation.  Journal of Mind and Behavior, 17: 321-
344. 

Geisler, W.S. (2008).  Visual perception and the statistical properties of natural scenes.  Annual 
Review of Psychology, 59:167-192. 

Gleicher, M., Correll, M., Nothelfer, C., & Franconeri, S. (2013)  Perception of average value in 
multiclass scatterplots.  IEEE Transactions on Visualization and Computer Graphics, 19: 
2316-2325.  

Gokhale, D.V., Ahmed, N.A., & Res, B.C. (1989). Entropy expressions and their estimators for 
multivariate distributions.  IEEE Transactions on Information Theory, 35 (3): 688–692. 
doi:10.1109/18.30996. 

Haberman, J., & Whitney, D. (2012).  Ensemble Perception: Summarizing the scene and 
broadening the limits of visual processing.  In J. Wolfe and  L. Robertson (Eds.) From 
Perception to Consciousness: Searching with Anne Treisman.  Oxford: University Press.  pp. 
339-349. 

Harrison, J. (1995).  Combsort11 algorithm.  
http://www.cs.ubc.ca/~harrison/Java/CombSort11Algorithm.java.html 

Harrison, L., Yang, F., Franconeri, S., & Chang, R. (2014).  Ranking visualizations of correlation 
using Weber’s law.  IEEE Transactions on Visualization and Computer Graphics, 20: 1943-
1952. 

Jennings, D., Amabile, T. M., & Ross, L. (1982). Informal covariation assessment: Data-based 
vs. theory-based judgments. In D. Kahneman, P. Siovic, and A. Tversky (Eds.).  Judgment 
Under Uncertainty: Heuristics And Biases. New York: Cambridge University Press. pp. 211-
230. 



Nature of Correlation Perception  
 

 43 

Johnson, R. (2015). Calculating the length of the semi-major axis from the general equation of an 
ellipse.  http://math.stackexchange.com/questions/1227369/calculating-the-length-of-the-semi-
major-axis-from-the-general-equation-of-an-el. 

Kay, M. & Heer, J. (2015). Beyond Weber’s Law: A second look at ranking visualizations of 
correlation.  IEEE Transactions on Visualization and Computer Graphics, 22 (1), 469-478. 

Kirk, R.E.  (1995).  Experimental Design: Procedures for the Behavioral Sciences (3rd edition). 
Boston: Brooks-Cole. pp. 37-40. 

Konarski, R. (2005). Judgments of correlation from scatterplots with contaminated distributions.  
Polish Psychological Bulletin, 36: 51-61. 

Lane, D.M., Anderson, C.A., & Kellam, K.L. (1985).  Judging the relatedness of variables: The 
psychophysics of covariation detection.  Journal of Experimental Psychology: Human 
Perception and Performance, 11: 640-649. 

Lauer, T.W., & Post, G.V. (1989).  Density in scatterplots and the estimation of correlation.  
Behaviour & Information Technology, 8: 235-244. 

Legge, G.E., Gu, Y., & Lubker, A. (1989). Efficiency of graphical perception.  Perception & 
Psychophysics, 46: 365-374. 

Lemons, D.S. (2013).  A Student's Guide to Entropy.  Cambridge: University Press.  Ch. 8.  (pp. 
140-158). 

Lewandowsky, S., & Spence, I. (1989).  Discriminating strata in scatterplots. Journal of the 
American Statistical Association, 84: 682-688. 

Li, J., Martens, J-B., & van Wijk, J.J. (2010). Judging correlation from scatterplots and parallel 
coordinate plots.  Information Visualization, 9: 13-30. 

Li, J., van Wijk, JJ., & Martens, J-B. (2009).  Evaluation of symbol contrast in scatterplots. IEEE 
Pacific Visualization Symposium, pp. 97-104. 

Marr, D. (1982).  Vision: A Computational Investigation into the Human Representation and 
Processing of Visual Information.  New York: Freeman. 

Meyer, J., Taieb, M., & Flascher, I. (1997).  Correlation estimates as perceptual judgments.  
Journal of Experimental Psychology: Applied, 3: 3-20. 

Meyer, J. & Shinar, D. (1992). Estimating correlations from scatterplots.  Human Factors, 34: 
335-349. 

Morgan, M.J. (2005).  The visual computation of 2-D area by human observers. Vision Research, 
45: 2564-2570. 

Norwich, K.H. (1987).  On the theory of Weber fractions.  Perception & Psychophysics, 42: 286-
298. 



Nature of Correlation Perception  
 

 44 

Oliva, A., & Torralba, A. (2006). Building the gist of a scene: the role of global image features in 
recognition. Progress in Brain Research, 155: 23-36. 

Olshausen, B.A., & Field, D.J. (1996). Natural image statistics and efficient coding.  Network: 
Computation in Neural Systems, 7: 333-339. 

Pollack, I. (1960).  Identification of visual correlational scatterplots. J. Experimental Psychology, 
59: 351-360. 

Raj, R., Geisler, W.S., Frazor, R.A., & Bovik, A. (2005).  Contrast statistics for foveated visual 
systems: Fixation selection by minimizing contrast entropy. J. Opt. Soc. Am A, 22: 2039-2049. 

Renninger, L.W., Verghese, P., & Coughlan, J. (2007).  Where to look next? Eye movements 
reduce local uncertainty. Journal of Vision, 7: 6. doi:10.1167/7.3.6. 

Rensink, R.A. (2000).  The dynamic representation of scenes.  Visual Cognition, 7: 17-42. 

Rensink, R.A. (2012).  Invariance of correlation perception.  Journal of Vision, 12: 433. 
http://www.journalofvision.org/content/12/9/433.short  [Vision Sciences Society, Sarasota, 
FL, USA.  May 2012.] 

Rensink, R.A. (2014).  On the prospects for a science of visualization.  In W. Huang (Ed.), 
Handbook of Human Centric Visualization.  New York: Springer.  pp. 147–175. 

Rensink, R.A. (2015).  Visual features as carriers of information.  Journal of Vision, 15: 890.  
[Vision Sciences Society, St. Petersburg, FL, USA.  May 2015.]  doi: 10.1167/15.12.893. 

Rensink, R.A., & Baldridge, G. (2010). The perception of correlation in scatterplots. Computer 
Graphics Forum, 29: 1203-1210. 

Rensink, R.A., & Enns, J.T. (1995). Preemption effects in visual search: Evidence for low-level 
grouping.  Psychological Review, 102:101-130.  

Robitaille, N., & Harris, I. M. (2011). When more is less: Extraction of summary statistics 
benefits from larger sets.  Journal of Vision, 11:18, 1–8.  

Rosenholz, R., Li, Yuanzhen, & Nakano, L. (2007).  Measuring visual clutter.  Journal of Vision, 
7, 17. doi:10.1167/7.2.17. 

Ross, H.E. (1997).  On the possible relations between discriminability and apparent magnitude.  
British Journal of Mathematical and Statistical Psychology, 50: 187-203. 

Strahan, R.F., & Hansen, C.J.  (1978).  Underestimating correlation from scatterplots.  Applied 
Psychological Measurement, 2: 543-550. 

Thomas, J.J., & Cook, K.A.  (2005).  Illuminating the Path: The Research and Development 
Agenda for Visual Analytics.  National Visualization and Analytics Center. 

Timm, N.H. (2002). Applied Multivariate Analysis.  New York: Springer.  pp. 85-86. 



Nature of Correlation Perception  
 

 45 

Tommasi, M. (2000).  Bisections on backgrounds with different luminances.  Review of 
Psychology, 7: 15-18.  

Treisman, A. (1988). Features and objects: The fourteenth Bartlett memorial lecture. Quarterly 
Journal of Experimental Psychology: 40A: 201-237. 

Treutwein, B.  (1995).  Adaptive psychophysical procedures.  Vision Research, 15: 2503-2522. 

Utochkin, I.S. (2015). Ensemble summary statistics as a basis for rapid visual categorization. 
Journal of Vision, 15: 8. doi:10.1167/15.4.8  

Utochkin, I.S., & Tiurnia, N. A. (2014). Parallel averaging of size is possible but range-limited: 
A reply to Marchant, Simons, and De Fockert.  Acta Psychologica, 146: 7–18. 

Yu, C-P., Samaras, D., & Zelinsky, G. J. (2014).  Modeling visual clutter perception using proto-
object segmentation.  Journal of Vision, 14:1-16. 

Wainer, H., & Thissen, D. (1979).  On the robustness of a class of naive estimators. Applied 
Psychological Measurement; 3: 543-551. 

Ware, C. (2012)  Information Visualization: Perception for Design.  (3nd edition)  New York: 
Morgan Kaufmann. 

Weber, B.H., Depew, D.J., Smith, J.D. (1988).  Entropy, Information, and Evolution: New 
Perspectives on Physical and Biological Evolution.  Cambridge MA: MIT Press.   

Wilkinson, L., Anand, A., & Grossman, R. (2005).  Graph-theoretic scagnostics. In IEEE 
Symposium on Information Visualization 2005, pp. 157-164. 

Wilkinson, L, & Wills, G. (2008).  Scagnostics distributions. Journal of Computational and 
Graphical Statistics, 17: 473-491. 

Zhang, H., Daw, N.D., & Maloney, L.T. (2015).  Human representation of visuo-motor 
uncertainty as mixtures of orthogonal basis distributions. Nature Neuroscience, 18: 1152-
1158. doi:10.1038/nn.4055. 

Zhu, S.C., Wu, Y., & Mumford, D. (1998). International Journal of Computer Vision, 27: 107-
126. 

Zimmer, K., & Ellermeier, W. (2006).  Axiomatic approaches to Stevens’ magnitude scaling: 
Recent developments. Proceedings of the Annual Meeting of the International Society for 
Psychophysics, 22: 49-56. 

 


