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Abstract

We present a rigorous way to evaluate the visual perception of correlation in scatterplots, based on
classical psychophysical methods originally developed for simple properties such as brightness.
Although scatterplots are graphically complex, the quantity they convey is relatively simple.  As such,
it may be possible to assess the perception of correlation in a similar way.

Scatterplots were each of 5.0° extent, containing 100 points with a bivariate normal distribution.
Means were 0.5 of the range of the points, and standard deviations 0.2 of this range.  Precision was
determined via an adaptive algorithm to find the just noticeable differences (jnds) in correlation, i.e.,
the difference between two side-by-side scatterplots that could be discriminated 75% of the time.
Accuracy was measured by direct estimation, using reference scatterplots with fixed upper and lower
values, with a test scatterplot adjusted so that its correlation appeared to be halfway between these.
This process was recursively applied to yield several further estimates.

Results of the discrimination tests show jnd(r) = k (1/b – r), where r is the Pearson correlation, and
parameters 0 < k, b < 1.  Integration yields a subjective estimate of correlation g(r) = ln(1 – br) / ln(1
– b). The values of b found via discrimination closely match those found via direct estimation.  As
such, it appears that the perception of correlation in a scatterplot is completely described by two
related performance curves, specified by two easily-measured parameters.

Categories and Subject Descriptors (according to ACM CCS): H.5.2 [Information Interfaces and
Presentation]:  User Interfaces – Evaluation / methodology.

1. Introduction

The design of an effective display for data visualization
often requires considerable guesswork.  For example, to
display a particular kind of dataset using a graph, the
designer must pick the type of graph, the sizes and types
of the graph elements, the scaling of the axes and so on. 
Often it is not clear which choices are best, and
considerable testing must then be done.

This paper investigates this issue for the case of
scatterplots.  These have been used for over a century as
a way to visually represent data [FD05].  Much of their
popularity has been due to their ability to allow
correlations to be easily perceived by a human viewer
(see e.g.,[Cle93, Har99]).  But despite the widespread use
of scatterplots, relatively little is known about the effect
of various design factors on their ability to convey such

correlation. It is difficult to compare the relative
effectiveness of two designs, or to determine the absolute
efficiency of a particular design.

Many careful studies of correlation perception in
scatterplots have been carried out (e.g. [BK79, CDM82,
LP89, MTF97, Pol60]).  Almost all have been based on
the direct estimation of the Pearson correlation r, e.g.,
asking observers to provide a number describing the
degree of correlation perceived.  (For a review, see
[DAAK07]).  Several important results have been
obtained this way, such as an underestimation of
correlation r in the region .2 < |r| < .6, and the finding that
essentially no correlation is perceived when |r| < .2.

However, such results are not enough to constitute a
solid foundation. To begin with, the central assumption
used in direct estimation—that numbers can consistently
be assigned to perceived magnitudes—may be incorrect
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[EF00].  Second, even if such estimates do provide a
good assessment of accuracy, they leave out an important
aspect of perception: precision.  And even if precision
could somehow be handled, there still remains the issue
of systematicity—whether there are general laws
describing how both aspects of perception relate to each
other.  This issue is of more than just theoretical interest:
if such regularities exist, performance could be described
using relatively few parameters.  If so, it might be
possible to completely assess a given design using just a
few tests.

To examine this issue, we use an approach developed
at the beginnings of vision science: assessing how well
stimulus properties can be discriminated. This is based on
measuring the just noticeable difference (jnd), the
difference in properties between two side-by-side stimuli
(e.g. squares of differing brightness) that can be
discriminated 75% of the time. This was the first step in
the development of a rigorous way to study human
vision.  By adapting this to scatterplots, it may be
possible for it to play the same role here.

This approach has several strengths.  First, it provides
a useful measure of precision, in that the jnds are
essentially a measure of this quantity.  Note that it can be
used as a complement to direct estimation—it need not be
a competitor. Also, jnds often have a simple behavior.
For example, if p denotes some physical property (e.g.
length or brightness), it is often the case that jnd(p) = dp
= kp.  This is known as Weber’s Law; it has been found
to hold for many physical properties; values of the Weber
fraction k are typically in the range 0.02-0.08 [CME99].

Under some circumstances a linear jnd can be
integrated to yield a psychological estimate P = k log(p),
which is known as Fechner’s Law.  This is the case for
several physical quantities, such as weight and brightness
[CME99]; if it also holds for correlation, it would
indicate a direct relationship between precision and
accuracy.  Moreover, if the psychological estimate is a
logarithmic function, it would need only a few
parameters for its complete specification. We will
therefore test this possibility as well, using direct
estimation of the degree of perceived correlation.

It could be objected that this approach is unlikely to
work for correlation, in that it is a relatively complex
property based on relatively complex stimuli.  However,
although scatterplots themselves may be complex, the
quantity they convey (viz., correlation) need not be so.
Indeed, given that correlation can be perceived from
scatterplots by almost anyone with just a little training, it
may be a relatively simple psychological property.  As
such, there are at least some grounds for believing that
the approach proposed here might succeed.

2. General Methods

Stimuli were scatterplots each of 5° extent vertically
and horizontally, containing 100 normally-distributed
points.  The mean of each was set to 0.5 of its extent, and
standard deviation to 0.2.  For any target correlation t, the
scatterplot correlation r = t ± 0.005.

Each point was created using pseudo-random numbers
taken from a gaussian distribution.  The x-coordinate was
the first number chosen (after appropriate scaling and
translation). A y value was then created and transformed
using equation 1 to create a correlated pair (x,y’). To
avoid points outside the range of the graph, any point
greater than 2 standard deviations from the mean was
eliminated, and a new point generated to take its place.

y' = λx + (1 − λ )y

λ2 + (1 − λ )2
,  where λ = r − r2 − r4

2r2 −1
        (1)

Experiments were run with 20 observers, each seated
57 cm from a screen of extent 30° x 20°.  All observers
were tested on both discrimination and direct estimation;
each observer was tested on all conditions of both tasks.
Average age was 24 years. All observers had at least
some experience with scatterplots; most had made and
used scatterplots on several occasions. Observers were
given as much time as needed to complete each task,
although it was mentioned that accuracy was important.
A small practice run of 50 trials was given to familiarize
observers with the task.

2.1.  Discrimination

The first test measured precision by determining the
sensitivity of observers to differences in correlation.
Such assessments are potentially noisy, in that it is the
differences that are measured rather than the quantities
themselves.  (This explains in part why most previous
work was based on direct estimation.)

To help combat this noisiness we used a variant of the
staircase method commonly used for studies in perception
[CME99].  Here, each observer was shown two side-by-
side scatterplots—one more highly correlated than the
other—and asked to select the one that was more highly
correlated (Figure 1). Initial difference of the correlations
was 0.1.  When a correct answer was given, this was
decreased by 0.01, making the task more difficult.  For an
incorrect answer, it was increased by 0.03, making the
task less difficult.  To ensure that observers based their
responses on the general property of correlation,
scatterplots were replaced by new instances each time.
This continued until a just noticeable difference (jnd) was
found, where steady-state accuracy was 75%.
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Figure  1:  Example of scatterplots used in the discrimination task.  Observers were asked to choose which
scatterplot is more highly correlated.  In this example, base correlation is 0.8; jnd is from above.

Performance was measured via a moving window of
24 consecutive trials.  This was divided into 3 sub-
windows of 8 trials each (Figure 2). For each base
correlation an initial set of 24 trials was run.
Subsequently, after each trial the average variance within
the sub-windows was compared to the variance of the
averages of the sub-windows (essentially an F-test).
Testing halted when this value reached a sufficiently low
level (0.25) or when 50 trials had been run.  The average
of the sub-windows was then used as the jnd. This
proved reasonably effective, yielding results within 36.6
trials on average over all trial, and failing to converge on
only 97 of the 380 runs.

 The base correlations tested ranged from r = 0 to 0.9,
in increments of 0.1.  The order was determined by a
latin square design [Kir95], which provided
counterbalancing across all 20 observers. For each base
correlation, differences from both above and below were
measured, with one exception: to avoid issues dealing
with negative correlation, there was no test from below
for r = 0.

2.2. Direct Estimation

The next test measured perception of correlation via
direct estimation, the goal being to directly determine the

subjective estimate of correlation g(r) as a function of
objective correlation r.  Traditionally, this has been done
by asking for a number describing the degree of
correlation perceived in a given scatterplot (e.g [BK79,
LMvW08]). Since the use of direct numerical estimates
may be problematic, whereas the use of ratios is not
[EF00], we used an approach based on bisection.  Here,
each observer was shown two reference plots (one with a
high level of correlation, one with a low) along with a
test plot having a level of correlation between the two
reference values.  Observers were asked to adjust the
correlation of the test plot until it looked like it was
exactly halfway between the correlations of the referents.
(Figure 3)  This was done via keyboard control, with
observers free to adjust the correlation however they
wished.

To avoid the possibility that observers could somehow
base their performance on the number of steps used, each
step size was given a random value between 0 and 1/10
of the difference between the reference correlations.  As
for the discrimination tests, individual scatterplots (both
reference and test) were replaced by new instances each
time an adjustment was made, requiring observers to base
their judgement on the population property of correlation
rather any particular feature of any particular instance.

Figure 2: Schematic of threshold algorithm.  The distance from base correlation is adjusted until the variance of the
averages of the sub-windows is 0.25 of the average variance within the sub-windows.
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Figure 3:  Example of scatterplots used in the direct estimation task.  Observers adjusted the correlation of the central
test plot, until its correlation was halfway between those of the two reference plots.  Here, adjusted value of the test plot
is   r=0.74, which corresponds to the subjective midpoint.

In the first round, observers judged the halfway point
between the extremes r = 0 and r = 1.  This was done four
consecutive times, with the mean of these judgments
taken as the value of r for subjective estimate g = 1/2.

The second round applied this method recursively,
with each observer again asked to find the value of r that
appeared to be halfway between the reference values.
Two variants were used. In variant A observers judged
the point halfway between g = 0 and 1/2; in variant B
they judged the point halfway between g = 1/2 and 1. The
order of these was counterbalanced across observers.
Again, each judgement was made four consecutive times,
with the averages providing the value of r corresponding
to subjective estimates g = 1/4 and g = 3/4.

In the third round, this method was again applied to
determine the values of r corresponding to the subjective
estimates g = 1/8, 3/8, 5/8, and 7/8.  The variants at this
stage were presented in random order.

After the estimates were measured for each observer,
tests were given to ensure that each observer understood
the task and tried to do it accurately.  First, a screening
criterion checked for observers who made adjustments
too inconsistently (standard deviation > 0.19) or who had
an overall range of estimates < .2.  Four observers failed
this criterion.  They were replaced by new observers who
ran all conditions on both the discrimination and direct
estimation tasks.

Finally, checks were made on the consistency of the
method itself.  Each observer re-estimated the point g =
1/2 using as reference pairs their previous estimates of g
= 1/8 and 7/8, g = 1/4 and 3/4, and g = 3/8 and 5/8.  Re-
estimates were also made of g=3/8 using references of
1/8 and 5/8, and of g=5/8 using references of 3/8 and 7/8.
These were run in random order.

3. Results

Analysis was based on the average jnd and subjective
estimate of all observers.  Unless otherwise noted,
analysis of fit with empirical data was based on the
squares of the errors of the fit, with averages given in
terms of root mean square (rms) values.

Unless specified otherwise, comparisons were based
on repeated-measures F-tests.  (When comparing two
quantities, these are equivalent to the use of paired, two-
sided t-tests.)

3.1 Discrimination

Average time to make a discrimination between plots was
1.6 seconds.  Average jnds for each base correlation --
both from above and below -- are shown in Figure 4.  For
base correlations of 0.2 or less, the adaptive algorithm
encountered a floor effect for jnds from below; these
values were omitted from the analysis.

A least-squares fit of the jnd-below data yielded a
slope m = -0.20 and y-intercept a = 0.223.  The linearity
of the data is striking, with R2 = .978.  For jnd-above data
over the same range, corresponding values are m = -0.25
and a = 0.282, with R2 = .964. This is consistent with
earlier reports [SH78, CDM82] that precision is greatest
at higher correlations.  Note that jnd is proportional to the
distance of the base correlation from the intersection with
the x-axis; in this way, performance can be described in
terms of a Weber fraction (–m).  Although the size of this
fraction is somewhat greater than that for most simple
properties, it nevertheless describes jnd to a high degree
of accuracy.
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Figure 4: Jnd as a function of raw correlation r.  Error
bars denote standard error of the mean

Although the values for the two kinds of jnd are
somewhat similar, they are reliably different (with base
correlations as levels, F(1,6) = 13.4; p < ,015).  The
existence of a single jnd measure is therefore potentially
problematic. To investigate further, the analysis was
repeated, but with base correlation r replaced by rA = r  +
0.5 jnd(r), the average of the two correlations tested.
(Jnd-below values were taken to be negative for this.)
Slopes and intercepts of both jnd lines are now virtually
identical, each with k = -0.22 and a = 0.25 (Figure 5).
Thus, the adjusted correlation rA enables the use of a
single well-defined jnd measure.
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Figure 5: Jnd as a function of adjusted correlation rA.
Error bars denote standard error of the mean.

Analysis of all data in terms of rA shows highly linear
behavior over the entire range of correlations (Figure 5);
R2 = .971.  When raw correlations are used instead, R2 =
.934, indicating somewhat less linearity.  Therefore,
adjusted value rA will be used here in preference to r as
the basis of discrimination analysis.

Given that jnds are proportional to the distance from
the intercept of the jnd line with the x-axis, a natural way
to describe their behavior is via the formula

         jnd(r) = k (1/b – rA),   0 < k, b < 1                  (2)
where k is the variability parameter (or Weber fraction),
defined as -m, and b the offset parameter, defined as the
reciprocal of the intersection of the jnd line with the x-
axis.  (Defining b this way allows it to have a finite range
0 < b < 1.  It also mitigates the effect of noise in
estimates of k, which can cause the intersection point to
vary considerably.)  For both k and b, smaller values
denote better performance, with optimal performance as
these values approach zero.

A final refinement is to estimate k and b by
minimizing the variance in the estimates of k at each base
correlation.  More precisely, if for base correlation ri ,  ki

= jnd (ri) / (1/b - rAi) the value of b is that which
minimizes the variance of the normalized ki, i.e., k i

divided by average value (k).  This is largely the same as
direct least squares, except using ratios rather than
absolute differences so that the estimate of k at small r is
not as severely affected by noise.  Estimation yields k =
0.24 and b = 0.907.

3.2. Direct Estimation

Averages for all observers are shown in Figure 6.
Consistent with other reports [CDM82, KM08], severe
underestimation of correlation occurs for 0.2 < r < 0.6.
The trend is consistent with two previous proposals: the
square of the correlation g(r) = r2 [Pol60, BK79], and the
double-power function g(r) = 1 – (1-r)α(1+r)β, where α
and β are free parameters [CDM82].  Both fit the data
reasonably well: rms error for the square is 0.03, while
for the double-power function it is 0.02.

The consistency checks show few problems with the
estimation method. Of the 60 comparisons of original
estimates and re-estimates across the 20 observers, only 3
had differences that were significant (i.e., p < .05).  This
lack of effect is unlikely to have resulted from a lack of
precision in the method—the average standard error in
the estimates of individual observers was only 0.04.

The overall reliability of the data raises the possibility
of testing the proposal that accuracy of correlation
perception is related to precision.  In particular, given that

   k  = jnd(r) / (1/b - rA) =  ∆r / (1/b - rA)              (3)

it is possible to consider the Weber assumption, which
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postulates that k is proportional to ∆g, a unit step in the
subjective estimate g of correlation. [CME99].  As such,
this can be written

                 ∆g =  C0 ∆r / (1/b - rA)                     (4)

where C0 is some constant. As  ∆r → 0, rA →r, and this
becomes

         dg  =  C0 dr / (1/b - r) .                           (5)

Integration leads to

             g(r) = -C0 ln(1/b – r) + C1 ,                        (6)

where C1 is the integration constant.  The values of C0

and C1 can be determined by imposing the conditions
g(0) = 0 and g(1) = 1, yielding

             g(r) = ln(1– br) / ln(1 – b),                        (7)

essentially Weber’s law for the quantity u = 1-br.

The best fit of this curve to the data is with b = 0.875.
This yields in an rms error of 0.02, comparable to that of
the other proposals (F(1,6) = 1.33; p > .3).
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Figure 6:  Results of direct estimation.  Vertical error
bars show one jnd; horizontal error bars standard error.
Curve is g(r) = ln(1–br) / ln(1-b), with b = 0.875.

Interestingly, the value of the offset parameter b
obtained via direct estimation (b = 0.875) is within 4% of
the value obtained via discrimination (b = 0.907). The
rms difference in estimates using these two values is less
than 0.03, with no significant difference in their fits to the
data (F(1,6) = 1.85; p > .2). This further supports the idea
that the two performance curves—for precision and for
accuracy—are systematically related, with precision
proportional to the reciprocal of the derivative of the
accuracy curve.  Moreover, both curves are simple, and
are jointly governed by just two numbers: variability
parameter k and offset parameter b.

3.3. Individual Variation

The fit and systematicity of these results constitute strong
evidence that the precision and accuracy of correlation
perception can be described by the functions proposed
here.  However, it might be argued that this is just a
coincidence, and that at least for subjective estimation it
is better to stay with the older formulations, since these
appear to be equally accurate.

 To examine this possibility, the behavior of individual
observers was examined. The data from an untrained (and
possibly unmotivated) individual is usually too noisy to
justify extensive analysis.  However, just as individual
data can be aggregated to reduce the effects of noise, so
too can the aggregate of individual behaviors be
examined for interesting trends, which could help decide
which proposal is most suitable.

Consider first the square of the correlation.  Because it
has no free parameters, it does not give a good fit to
individual data: average rms error is 0.132.  In contrast,
using the log function (and adjusting b) results in an rms
error of only 0.057, a reliably better value (F(1,19) =
25.3; p < .0001).

Next is the double-power function.  As with the log
function, this can be fit to the results of individual
observers.  However, despite the presence of a second
free parameter, average individual error is 0.052, only
marginally different from the error obtained using the
single-parameter log function (F(1,19) = 3.76; p = .07).

A unique aspect of the proposal here is that the
subjective estimate g(r) has a close connection to jnd(r),
the two sharing the same offset parameter b; no such
connection exists in the double-power proposal.  To see
whether such a relationship might exist in individual
behaviors, values of b were calculated for each observer
based on both the discrimination and direct estimation
data.  Average rms difference between the two is 0.29.
For the best 50% of observers (defined as those with the
least variance in their correlation estimates), this drops to
0.04, and for the best 25%, it is only 0.008. Correlation
between the two estimates of b improves similarly: when
taken over all observers it is 0.0, for the best 50% it is
0.73, and for the best 25% it is 0.97.  Thus, the more
capable (and motivated) the observer, the stronger the
match between the b values obtained by the two methods.
This further supports the proposal that for perception of
correlation in scatterplots, precision and accuracy are
tightly linked.

4.  Conclusions

This study has shown that all important aspects of the
perception of correlation in scatterplots—precision as
well as accuracy over all correlations—can be described
by two related functions governed by two parameters: the
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variability parameter k and the offset parameter b.  In
particular, precision is proportional to u = 1 – br, while
accuracy is proportional to the logarithm of this quantity.
In addition to their systematicity and comprehensiveness,
these functions provide a good fit to the data—as good as
any existing proposal, and in some cases even better.

4.1 Design Evaluation

According to the results of this study, evaluation of the
absolute performance of a given design or comparison of
the performance of various design factors (e.g., different
dot sizes or densities) requires the determination of only
two quantities: k and b.  This can be done as follows:

1. Select two or more correlations ri (e.g., r1 = 0.4, r2

= 0.8).  Measure the jnd ∆i for each ri using the
method described in section 2.1 (or equivalent).

2. For each i, let ki = ∆i / (1/b – (ri + ∆i/2)).
3. Set b to the value that minimizes the variance of

the ki /k;  set k to the average of the ki.

The performance curves are then obtained by placing k
and b into the appropriate functions.

Although two measurements are sufficient in principle,
additional accuracy can be gained by using three or more
base correlations sufficiently separated (e.g. 0.5, 0.7, 0.9).
Using a large number of observers to reduce noise effects
will also help. To maximize sensitivity, a within-observer
design can be used, where all observers are shown the
same designs.

The effects of overall scale, dot size, symbol shape, or
any other design factor can be directly tested this way.
Evaluation of two competing designs is straightforward:
the one with the smallest k and b is best.

Evaluation can also be taken a step further. If p(r)
denotes the probability of encountering correlation r in a
given task, the average precision of the estimates for a
given design is

     ∫ p(r) jnd(r) dr                                    (8)

while average error in accuracy is

    ∫ p(r) | r - g(r) | dr.                                    (9)

An important note: The results here were based on
scatterplots with similar horizontal and vertical variance.
Since the perception of correlation can vary with these
quantities [LAK85], there is a possibility that this method
may not apply equally well to all scatterplots.  Further
testing is needed.  However, the effects of any particular
design factor can still be evaluated provided that testing
is done on scatterplots with equal variances.

4.2 Connection to Perceptual Mechanisms

The goal of this study was to evaluate the overall ability
of observers to perceive correlation in scatterplots, and

not to investigate the particular mechanisms involved.
(Models of these have been proposed elsewhere - e.g.,
[LiMvW08])  As such, little can be said here about the
details of these mechanisms.  However, it is worth noting
that precision is proportional to the quantity u = 1 – br.
This is exactly the same behavior as for the
discriminability of several simple physical properties
(Weber’s law). Similarly, subjective estimation of
correlation is well described by the logarithm of u,
essentially a form of Fechner’s law.

Although the size of the proportionality constant k is
larger for correlation than it is for simpler properties, the
striking similarity in general form suggests several
things. First, the relevant quantity appears to be u.  This
strongly constrains any model of correlation perception,
which must account for why u is based on the distance of
br from 1, and why precision is almost exactly
proportional to u.  In addition, it must be able to explain
why the accuracy curve g(r) has a logarithmic form (or
equivalently, why the assumption that k is proportional to
∆g is valid).

Interestingly, human brain activity during correlation
perception increases as correlation is decreased [BHS06],
suggesting that the key quantity is the distance from
perfect correlation r = 1. The quantity u has this property.

More generally, the results here open up the possibility
that the perception of other properties conveyed by
graphically complex stimuli (e.g., averages and trends)
show a similar log-linear behavior.  If so, this would
indicate the existence of a class of properties that are
relatively simple in terms of perception, yet require
several stages of computation for their extraction.  It
would also suggest that at least some of higher-level
visual cognition is based on relatively simple quantities.

4.3 Future Directions

This study is only a first step, showing that the approach
developed here is a consistent and useful one.  It remains
to apply it to various design parameters (e.g., dot sizes,
shapes, or colors) to determine how they affect
perception. An important variant is to examine scatterplot
clouds of different shapes; this could help ascertain how
much of correlation perception is based on the shape of
the cloud (cf. [MTF97]) and how much on other factors.
Issues here include the influence of outliers, and of
subsets of data not belonging to the main population.

A key aspect of this approach is that it is general—it is
not restricted to scatterplots.  lt could also be used to
evaluate the perception of correlation in bar charts,
parallel co-ordinates, or line graphs.  In addition, it could
be applied to any well-defined property, such as averages
or variances.

But a more general point is that the methods developed
over the years in vision science can be successfully used
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to rigorously evaluate visual displays.  While a case has
been made for closer connections between vision science
and visualization (e.g. [CMS99, War04]), this has tended
to focus on the perceptual mechanisms engaged by
different designs. But methodology may be equally
important, providing a solid and systematic foundation
for the evaluation of visualization designs.  The results of
this study provide support for this point of view.  It will
be interesting to determine the extent to which this kind
of connection can ultimately be developed.
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