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Abstract: The two-dimensional modal logic of Davies and Humberstone [j3] is an im-
portant aid to our understanding the relationship between actuality, necessity and a
priori knowability. 1 show how a cut-free hypersequent calculus for 20 modal logic
not only captures the logic precisely, but may be used to address issues in the episte-
mology and metaphysics of our modal concepts. I will explain how use of our concepts
motivates the inference rules of the sequent calculus, and then show that the complete-
ness of the calculus for Davies—Humberstone models explains why those concepts have
the structure described by those models. The result is yet another application of the
completeness theorem.

MOTIVATION

The ‘two-dimensional modal logic’ of Davies and Humberstone [3] is an impor-
tant aid to our understanding the relationship between actuality, necessity and
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a priori knowability. It’s is widely used in philosophical discussions of these
notions, but it is by no means uncontroversial [2, 4, [5 7, £3]. Models for the
logic are well understood. It is a standard modal logic, but instead of evaluating
statements at worlds, we double index, and evaluate at pairs of worlds. A holds
at (w,v) when were w to be the actual world, then A would have held had v
been the case. Then A holds at (w,v) if A holds at (w,v’) for each different
world v/ (A is necessary if it holds at every alternative world), @A holds at
(w,v) iff A holds at (w,w) (A is actually the case if it holds back at the actual
world), and APK A holds at {(w, v) iff A holds at (w’, w') for each world w’ (if A
holds in every circumstance considered as actual, it holds however things could
actually be). In these models, we can consider another world as a subjunctive
alternative (had things gone differently, that would have been the case) or as an
indicative alternative (we might be wrong and that might actually be the case).
O is the modal logic corresponding to subjunctive alternatives and APK is the
modal logic corresponding to indicative alternatives.

The two notions of necessity fall apart rather radically, as you can see with
the presence of the actuality operator @. In any model p = @p is true at each
pair (w,w). Suppose p is true at (w,w), but that p is false at a subjunctive
alternative (w, v). Now, at (w,v), @p is still true (since p holds at (w, w)) so at
(W,v), p = @p is false. Tt follows that it is not necessary (in the sense of 0)
back at (w,w). O(p = @p) fails at (w, w).

However, there is another sense in which p = @p is ‘necessary’—we need
not know anything about the nature of the world (in particular, we need not
know anything about the truth or falsity of p) to know that p = @p is, in fact,
true. At whatever world w we choose to evaluate p = @p, we have p = @p
true at (w, w). In this sense (at any indicative alternative), p = @p is true. It is
knowable a priori. APK (p = @p) is a theorem of two-dimensional modal logic,
while O(p = @p) is not.

APK and [J come apart in the other direction, too. Sometimes claims of the
form CJA can be true where APK A is not. If p is a contingent truth, knowable
only a posteriori, holding at (w, w), but not at every pair (v, v), then not only is
@p true at (w,w), it is true at (w,v) for every world v, and hence, O@p is true
at (w,w). For the contingent, a posteriori truth p, it is necessarily true that it
is actually the case. However, it is not a priori knowable that it is actually the
case. APK @p can fail to be true at (w, w) since @p fails at (v, v), for any v where
p is untrue. So, APK and OJ come apart in both directions. Some things are
necessary but not a priori knowable, and other things are a priori knowable but
not necessary, and Davies—Humberstone models for these concepts have given
philosophers a degree of clarity in the discussion of the concepts of necessity,
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actuality and a priority previously unavailable to usf]

However, not everybody is happy with this picture. For one thing, the applica-
tion to modelling a priori knowability seems to require the distinction between
conceiving of a possible world as a subjunctive alternative (a way things could
have been) and as an indicative alternative (a way things might actually be).
There seems to be no doubt that we do indeed conceive of matters in this way:
there are different ways things could have been, and there are different ways
that things might actually be for all we know. However, in these models the one
and the same set of possible worlds have to do both different jobs. This seems
unproblematic when it comes to the interaction between necessity and actual-
ity (and its parallel distinction between temporal operators and the analogous
notion of ‘now’, which also is modelled by double indexing). While we might
agree that the different possible worlds can be pressed into service as provid-
ing indicative alternatives (we can try ‘placing ourselves’ in different possible
circumstances and consider what things would have seemed like to us were we
there), there is less of a reason to think that the indicative alternatives are ex-
hausted by all of the different possible worlds[] You must do a great deal of
work to begin to show that the models of two-dimensional modal logic can do
this kind of epistemic heavy lifting required by this interpretation [m] if we
are going to read APK as truly providing an account of some of the conceptual
structure of a priori knowledge. The problem is stark if we ask whether or not
fatalism (the claim that (Vp)(p = Op)) is a priori conceivable. (Something is a
priori conceivable iff its negation is not a priori knowable. APC stands to APK
as possibility stands to necessity.) On the standard two-dimensional picture,

*There on one detail concerning Davies—Humberstone models I have not mentioned. In
these models, the truth of an atomic formula varies only with respect to the second coordinate
in a pair, and not the first coordinate. An atomic formula is taken to be a raw description of the
alternative world, with no recourse to which world is considered as actual. This feature of two-
dimensional modal logic is interesting, but will play no further role here. This condition means
that Davies—Humberstone models do not satisfy a uniform substitution rule: APKp = Op
holds for all atomic formulas p, but not for all formulas featuring APK or @. If you think of
atomic formulas as judgements which we have not analysed using the resources at our disposal,
there is no reason to think that these judgements have the special logical properties of atomic
formulas in Davies—Humberstone models. For example, if you think that the concept water is
equivalent to “the actual watery stuff” then even though “my bath is filled with water” does
not contain “@"” or “APK " as explicit constituents, it may have the same logical behaviour as
formulas which do have those constituents.

2Davies and Humberstone were careful to make clear that their formal semantics elucidates
the logical structure of necessity, actuality and what they call ‘fixity’ (where APK is fixed
actuality). None of the argument of that paper requires taking the indicative alternatives in a
2D model to exhaust our indicative alternatives. Davies and Humberstone’s fixed actuality need
not entail a priori knowability. It is the later appropriation of this framework by people such as
David Chalmers [1].
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fatalism is a priori conceivable, only if there is only one possible world, for
every indicative alternative (v,v) has a row of exactly the same length as any
other (the alternatives (v,w) for each world w). At no indicative alternative
do the subjunctive alternatives shrink down to one possible world. But why?
What powers of modal reasoning do we have to render non-fatalism (if it is ac-
tually the case) a priori knowable? None that I can see. We have not seen how
the indicative alternatives allowed by the two-dimensional picture exhaust the
indicative alternatives available.

Another question about these models is more fundamental. Tt lies with
the order of explanation. It is one thing to say that Kripke models of modal
logics give us an account of the logical structure of the concepts modelled. It is
another to say that this logical structure is explained by modal models. Arthur
Prior expressed this sentiment many years ago:

... possible worlds, in the sense of possible states of affairs are not really
individuals (just as numbers are not really individuals). To say that a
state of affairs obtains is just to say that something is the case; to say
that something is a possible state of affairs is just to say that something
could be the case; and to say that something is the case ‘in” a possible state
of affairs is just to say that the thing in question would necessarily be
the case if that state of affairs obtained, i.e. if something else were the
case ... We understand ‘truth in states of affairs’ because we understand
‘necessarily’; not vice versa. [9, p. 243—244]

This problem is exacerbated with two-dimensional modal logic. We can say
we understand possible subjunctive alternatives and indicative alternatives be-
cause we understand possibility and a priori knowability, but if we do have this
understanding, then why is it that these possible worlds arrange themselves
in the way described by two-dimensional models? And how is it that we gain
this understanding of the two different concepts of possibility? It is one thing
to say, as Godel did with mathematics, that we have access to the concepts by
a kind of intuition. It is another thing to say something about why the intu-
ition has the structure that allows for the kind of logical articulation provided
by these models. In this paper, I will address these concerns. Prior’s parallel
between numbers and possible worlds is illuminating. Talk of numbers makes
sense because of our intuitive ability to count. Our intuitive access to facts con-
cerning numbers is not passive receptivity, it is (as Kant taught us) bound up
with the activity of counting. I will take the parallel seriously, and examine the
connection between our modal concepts and the activity of supposing.

In the rest of this paper I will show how this connection between our modal
concepts and the acts of supposing—together with the fact that we can suppose
in two distinct ways—motivates a sequent calculus for the concepts 00, @ and
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APK, which requires no prior contact with possible worlds. I will show that this
calculus is not only intuitively motivated, but it is also logically well-behaved.
It is a hypersequent calculus of a relatively familiar kind, and the Cut rule
is admissible in the system. Furthermore, it is not only sound and complete
for a class of Kripke models, but the structure of these models is explained
in terms of the prior structure of sequents in the sequent calculus, and the
means of constructing models by idealising invalid sequents. This completeness
construction is common to a range of sequent systems [12]. The result is an
explanation of possible worlds in terms of possibility (as Prior wanted), but
further, an explanation of why our concepts of possibility and necessity have
the structure described by such models. The models that result include Davies—
Humberstone two-dimensional (‘square’) models as examples, but they also
allow for a broader class of indicative alternatives than is possible in square
models. Finally, T will show that this more general class of models makes no
difference to the logic in the vocabulary of 00, @ and APK, by showing that any
sequent invalid in a general model can be shown to be invalid in a square model.

What has this to do with Godel’s groundbreaking work? There are three dis-
tinct connections. First, the major result of this will be the application of a
completeness theorem. Our core question in modal logic, metaphysics and
epistemology—how it is that our concepts of necessity, actuality and a priori
knowability might have the structure given in 2D models, and how is it that
we could have knowledge of the things so described?—is answered by way of
the completeness theorem. Our understanding of the concepts is manifest in
our governing those concepts by means of the inference rules. Soundness and
Completeness relating the proof rules to the models then tells us why these
models are appropriate for the concepts we have.

The second connection is Godel’s work in mathematical epistemology, and
his defence of Platonism and mathematical intuition as the answer to the ques-
tion of how we have access to mathematical reality. The same sort of answer
is given here for modal reality, we have intuitive access to necessity, actuality
and a priori knowability, not by a faculty like perception, but through our abil-
ities to make different kinds of supposition and to manage our reasoning in the
scope of these suppositions.

The third connection is in subject matter: Godel’s interest in logic was not
narrow-minded. He worked not only in classical logic and set theory, but also
in the interpretation of intuitionistic logic (with the double negation transla-
tion and the Dialectica interpretation) as well as in the application of modal
logic to the ontological argument. Godel was able to shed light on a range of
different logical concepts by means of careful mathematisation combined with
deep insight into what is truly fundamental. I attempt here to make the same

Greg Restall, restall@unimelb.edu.au NOVEMBER 22, 2010 Version 0.99


http://consequently.org/writing/cfss2dml/
mailto:restall@unimelb.edu.au

http://consequently.org/writing/cfss2dml/ 6

kinds of advances for the structure, epistemology and metaphysics of our modal
concepts.

SEQUENTS

Our starting point is the hypersequent calculus for the necessity U of the simple
modal logic s5 [x1]. T will informally motivate this sequent calculus, and the
additions to deal with @ and APK. Then, once all the concepts are introduced, I
we will stand back and formally define the sequent calculus.

O —

A hypersequent calculus for the one-dimensional modal logic of necessity em-
ploys ‘hypersequents’ involving more than one sequent of formulas.

XoFYo | Xo Yy | -+ | XiF Yy

Each sequent is a pair of multisets of formulas (we keep track of repetitions
of formulas, but not their order). In the traditional sequent calculus we can
read a derivation of a sequent X - Y as telling us that asserting each formula
in X precludes denying each formula in Y [x0]. In this hypersequent calculus,
we generalise, by noticing that when we reason with possibility and neces-
sity, we not only assert and deny flat out, expressing our commitments, we
also assert and deny under the scope of various suppositions. I might sup-
pose that things had been different. Assertions and denials under the scope of
these suppositions can be manipulated in the same way as assertions and de-
nials which straightforwardly express our commitments. However, they are, to
some extent, prophylactically separated from one another. Usually, asserting
p and asserting —p clash. However, asserting p, and then—under a different
supposition—asserting —p does not clash at all. The different ‘zones’ in a dis-
course are insulated from each other. However this insulation does not keep
everything out. Asserting that something is not only true, but necessarily true,
makes it the kind of thing that jumps across zones. As we’ve seen, we indicate
the different zones in a hypersequent by a vertical line. The following sequent
is a canonically valid modal hypersequent.

Opk | Fp

Asserting (Ip in one zone of a discourse clashes with denying p in another zone
in that discourse. In general, if asserting A induces a clash somewhere, then
asserting JA (in the same zone, or in another zone) will also induce that clash.
We will have the following inference principle for OJ.

X'FY | X,AFY | A
[a
X' OAFY | XFY | A
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which introduces a O on the left of a turnstile. (Here, “A” is a placeholder for
the rest of the hypersequent in question.) Similarly, if denying A in its own
zone, all by itself, is ruled out, then denying TJA is ruled out. For if we wish to
deny OA, we must admit that A is deniable. The other rule introduces O in the
right.

FA | XFY | A

XFOAY | A

[OR]

Zones in this sequent calculus feature analogously to names or variables in the
calculus for predicate logic, and O is like a universal quantifier. To prove JA we
need to prove A arbitrarily—with no other assumptions in that zone.

If we add to this calculus standard rules, we may derive all the features of
the standard modal logic s5 (a system notoriously difficult to give a sequent
calculus). For example, here is a derivation of —p = O—lp, using the two rules
we have seen, the two standard negation rules (— flips a formula from one side
of a turnstile to another within a zone: asserting [or denying] —A has the same
force as denying [or asserting] A), and we start from an axiomatic sequent: one
with a formula on both sides of a turnstile (asserting A precludes denying A).

Flpkp
— [OL]
Opk | Fp
— [L]
Opk| pk
F=0p | ~pt
—p F O-0Op

[~R]
[OR]

This sequent derivation tells us how we can derive O—Op from —p. In “Proofnets
for s5” [11] 1 show how these sequent derivations can be unwound into a
proofnet system, giving proof structures in which we derive the conclusion
O—0p from the premise —p by means of introduction and elimination rules in
a relatively standard way. Here, we will stick to sequents, in order to keep this
paper of a manageable length. Our next stop is actuality.

—@—

Not all zones are equal. We introduced a multiplicity of zones in order to al-
low assertion and denial under distinct suppositions. However, there is still
assertion and denial tout court, under no supposition. Let’s reflect this in our
hypersequent structure and mark one of our sequents with an ‘@.” We have
hypersequents that look like this:

XoFe Yo | Xa Yy | - | XaF Yy
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Given this structure, we may reflect it in the language. @ is an operator, just
like J, except now assertion of @A has the same effect as assertion of A in the
special actual zone, and denial of @A has the same effect as denial of A in that
zone. So, canonically valid hypersequents with the actuality operator are these:

@t | Fep F@p | pre

Asserting @p, in any zone whatsoever, clashes with denying p in the @-zone.
Similarly, asserting p in the @-zone clashes with denying @p in any zone. So,
the rules for the @ operator look like this:

XFY | X, AFaY' | A XFY | XFoAY | A

; p [@L] p ; [@R]
X,@AFY | X'FaY' | A XF@A,Y | X'FaY | A

Here is an example derivation, using these two rules for @ and combining them
with an instance of OR.

prep | -
—— [@F]
pPre | F@p [
pre | FO@p

[@L]
Fe | @p - O@p
This tells us that asserting @p and denying J@p—in any context whatever—
are inconsistent.

Given these resources, it’s clear that we have two different kinds of conse-
quence. If we have a derivation of A - B then asserting A clashes with denying
B, no matter what suppositions are involved. If we have a derivation of A @ B
then asserting A clashes with denying B, in the actual zone. We have, for ex-
ample, p F@ @p and @p ¢ p, but we don’t have p - @p and @p I p. Sequents
with this labelling allow us two kinds of logical consequence.

— APK —

Now consider a priori knowability. Here we move to consider two different
ways we may suppose. For O the different suppositions are different ways
things might have been, had things gone differently. The different contexts
are non-actual, not marked by @. On the other hand, when we consider what
might be the case if we are wrong—if we consider indicative alternatives—we
are considering different ways we may take the actual world to be.

“... the ur-distinction, accounting for all the others, is between two prac-
tices of reasoning: indicative reasoning, which functions in the first in-
stance to update our doxastic state in the face of new evidence, and sub-
junctive reasoning, the root context of which is deliberation about what to
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do and about the propriety of actual or potential actions. These different
practices of reasoning are expressed in the differences between indicative
and subjunctive conditionals, but in our view it is the conditionals that
are to be understood in terms of the practices of reasoning rather than the
other way around.” — Mark Lance and W. Heath White [6]

Lance and White argue in this paper that these two abilities are deeply em-
bedded in our nature as creatures who act on the basis of a perspective. We
both correct our perspectives (hence the need for indicative update) and to rea-
son about different plans (hence the need for subjunctive update). So, we have
not only subjunctive alternatives, but we may also have indicative alternatives,
which introduce into the discourse assertions with other zones taken as actual—
they are alternative ways to take actual matters to be. The structure of a hy-
persequent is now more complex:

DEFINITION 1 [2D HYPERSEQUENTS]: A 2D hypersequent is a multiset of multi-
sets of sequents. Each inner multiset has a single sequent marked with an @,
its ACTUAL SEQUENT. The sequents in each inner multiset are SUBJUNCTIVE AL-
TERNATIVES to one another. Each of the actual sequents in hypersequent are the
indicative alternatives to each sequent in the whole hypersequent. We use the
following notation for a 2D hypersequent, marking off subjunctive alternatives
with a single bar (| ), indicative alternatives with a double bar ( || ) and actual
sequents with a subscripted @. The general structure is this.

XSha YS | XSEYY | - | X0 YO, |
XSha Y3 I XTEY] | oo [ XL EY e ]
XD Fe YU | XTVEY™ | e | XM YT,

in which each X{ Fe Y} is an indicative alternative of every sequent, and each
X} kY] is a subjunctive alternative of Xj - Yy.

The APK operator exploits indicative alternatives in just the same way as (] ex-
ploits subjunctive alternatives. Asserting APKp in one zone clashes with deny-
ing p in its indicative alternatives. The following sequent is derivable:

APKpE || Fep

In fact, we will have the following sort of derivation:

Fllprep
=l pre @
F Il FepD@p

[APK R]
F APK (p D @p)
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Now we have the resources to define the sequent system. We will use one more
convention for notation. When we write

HIX Y]

this is a 2D hypersequent, in which X + Y occurs as a particular component
sequent. This component sequent may be marked as actual, it may not. When
we write
HIX'F Y]

this is the 2D hypersequent which results from taking H[X F Y] and replacing
the component sequent X Y with the sequent X’ - Y’. In addition, if the
indicated X F Y was marked as actual in H([X I Y], so is the indicated X’ - Y’ in
H[X'F Y']. When we write

HXEY | X' FY]

this is a hypersequent in which the sequents X - Y and X’ F Y’ occur as sub-
junctive alternatives—they are members of the same inner multiset. (Again,
either X - Y or X’ - Y’ may be marked as actual.) In the particular case where
we write

HIXEY | XEFY]

this may include both the case where there are two distinct subjunctive alter-
native instances of X - Y inside the hypersequentf|and the case in which there
1s just oneﬂ The same goes for

HIXFY || X' Fe Y]

Here, X’ @ Y’ is an indicative alternative of X I Y, and this will include the
case where the indicated X I Y is the same instance as X’ o Y'J| Now we have
the resources to state the rules of the sequent calculus, smoothly and efficiently.

DEFINITION 2 [THE RULES OF THE 2D SEQUENT SYSTEM]: First, we will start with
the STRUCTURAL RULES, of identity, cut and contraction.

HIXFAY — HXAFY]
HIX,AFA,Y] [Id] XY [Cut]

3This includes the case where one is marked as actual and one is not.

4This fussiness now pays off when it comes to state the rules. It allows us to uniformly state
each rule, where it would need a number of different cases in the instances of each rule for O,
@ and APK.

5In which case X' =X, Y/ =Y, and X F Y is marked as actual.
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HIX, A A FY] HIXF A,A,Y]

[WL] [WR]
HIX,AFY] HIXEFAY]

Now the crassicar connective rules. We will use just negation and conjunction
as examples:

HIXEAY] HIX,AFY]
— L —— R
HIX,—~A L Y] -t HIXEF—-A)Y] K
HIX,A,BFY] HIXFA,Y] H[XFB,Y]
[AL] [AR]
HIX,AABFY] HIXFAAB,Y]

Now the MODAL RULES. First, necessity:

HIXEY | X, ARY] HIFA | XEY]

[OL] [OR]
HX,OAFY | X' FY] HIXFOA,Y]

Second, actuality:

HIXFY | X,AFa Y HIXFY | X' Fa A, Y]
[@L] [@R]
HX,@AFY | X' Fa Y] HIXF @A,Y | X' Fa Y]

and finally, a priori knowability:

HXFY || X',Ate Y] Hlle A || XFY]
[APK L] [APK R]
HIX,APKAFY || X' Fa Y] H[X - APKA, Y]

These complete the rules of the sequent system.

LEMMA 1 [DERIVED RULES—WEAKENING]: If H[X + Y] has a derivation with n
steps, so does HIX, X' = Y'Y], for arbitrary extra formulas X' and Y’ to add
to the sequent, and so does HX Y | X'+ Y’l, with an extra subjunctive
alternative sequent and HIX +Y || X'+ Y'], with an extra indicative alterna-
tive sequent. In other words, if a hypersequent is derivable, so is any weaker
hypersequent, with extra formlulas added in the left or right of a component
sequent, or whole extra component sequents added—and this weaker sequent
is derivable in a derivation of exactly the same length.

Proof: An induction on the construction of the derivation of H[X F Y]. Notice
that if H[X t Y] is an identity sequent, so is any of its weakenings—the only
constraint is that some component sequent has a formula in both sides of the
turnstile.

For the induction step, notice that in each rule use to derive H[X Y] it
may be used to derive the appropriate weakening of H[X F Y] too, in terms of
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weakenings of the premise hypersequents in the rule. The only subtlety occurs
in OR and APK R, in which case the component sequent - CJA and -+ APK A in
the premise is not affected by weakening. For example, if the original derivation
ends in
HiFe A || XEY]
HIX - APK A, Y]

and we want a derivation of the weaker hypersequent H[X, X' - APKA Y, Y’]
instead, we use the inference

[APK R]

HlFe A | X, X' FY,Y']
HIX, X' = APKA,Y,Y']

[APKR]

which is still an instance of APK R and whose premise H[Fe A | X, X' FY,Y’]
is a weakening of H[Fe A | X+ Y] in which the component sequent + A is
untouched, so the side conditions for the rule APK R are unaffected. .

DEFINITION 3 [MERGING SUBSEQUENTS]: If H[X Y | X' Y] is a hypersequent
in which two component sequents X - Y and X’ - Y’—subjunctive alternatives
of each other—are displayed, its MERGE is the hypersequent H[X, X’ F Y,Y'] in
which those two component sequents are removed, and the sequent X, X’
Y, Y’ is inserted to replace both. (This component sequent is a subjunctive alter-
native of each sequent that is a subjunctive alternative of the original sequents.)

Similarly, HIXFY || X’k Y'] is a hypersequent in which two component
sequents X F Y and X’ - Y'—indicative alternatives of each other—are dis-
played, its MERGE is the hypersequent H[X, X’ I Y, Y'] in which those two com-
ponent sequents are removed, and the sequent X, X’ - Y,Y’ is inserted to re-
place both, but now, the subjunctive alternatives of each original sequent are
subjunctive alternatives of each other in the new hypersequent.

For example, if we merge p Fe q and p’ e q’ in the hypersequent below
pred | Fr || p'Fed | sk || thul -

the result is
pp'Fedq | Frfst | thul.-
in which F r and s - become subjunctive alternatives. Now we may state the

next lemma.

LEMMA 2 [DERIVED RULES—MERGE]: I[f H[X Y | X'+ Y'] has ann-step deriva-
tion, so does its merge H[X, X' = Y,Y']l. Similarly, if KIXEY || X'+ Y'] has
an n-step derivation, so does its merge H[X, X' =Y, Y'].
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Proof: A similar induction on the derivation of H[X - Y | X’ I Y’]. The ‘merge’
of an identity sequent is still an identity sequent, and any instance of an in-
ference rule used to derive H[X+Y | X’'F Y’] from premises may be ma-
nipulated into another instance of the same rule, in order to derive its merge
HIX, X' +Y,Y’] from premises which are merges of the premises of the other
rule. The only subtlety occurs in OOR and APK R, in which case the component
sequent - OJA and - APKA in the premise is not affected by the merge. For
example, if the original derivation ends in

HIFA | XFY | X' FY]
HIXFOA,Y | X' FY]

OR]

and we want a derivation of the merged hypersequent H[X, X' - OA,Y,Y’] in-
stead, just as with the case of weakening, we use the inference

HIFA | X, X' FY,Y
HIX, X' +OA,Y, Y]

[OR]

which is still an instance of OOR and whose premise H[F A | X, X'+ Y,Y'] is
amerge of H[FA | XFY | X'F Y] in which the component sequent F A is
untouched, so the side conditions for the rule IR are unaffected. .

This proof system is quite well behaved. The left and right rules of each con-
nective are harmonious: if I Cut an intermediate formula which is introduced
in both inferences preceding that Cut, that Cut may be traded in for Cuts on
subformulas. Take the example for APK. Our derivation ending in Cut has the
following shape.

351 ;52
HlFe A || XFY || X'ta Y] HIXEY || X,AlFe Y]
[APK R
HIXFAPKAY || X't Y'] HIX,APKAFY || X'+t Y']
HIXEFY || X'Fa Y]

PK L]

[Cut]

By Lemma 2} we have a new derivation & (of the same shape and height as &)
of the merged hypersequent H[X - Y || X’ e A,Y’] in which the indicative
alternatives -@ A and X’ @ Y’ are merged. Then we may Cut on A, as follows

5 5,
HXEFY || X'Fe AY] HIXEY || XAFe Y]
[Cut]
HIXEY || X' FaY']
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and avoid going through the step with APK. In the same way, all Cuts may be
eliminated in a relatively standard way. However, I will not go through the cut
elimination theorem in any more detail, for the admissibility of Cut will be an
immediate corollary of the completeness theorem proved in the next section.

MODELS

For a completeness theorem, we need models. We could, in fact, provide models
just by proving the completeness theorem using the technique of taking the
limit of invalid hypersequents [12], and seeing what kinds of structures result.
The kinds of structures that result are these:

DEFINITION 4 [2D FRAMES]: A Kripke frame for our logic is a structure (W, =, @)
consisting of a non-empty set W, which we’ll call the worLDs, which are

partitioned by an equivalence relation &~ SUBJUNCTIVE ACCESSIBILITY, and

with a distinguished set @ consisting of one representative from every ~-class.
We will call the members of @ the actuaL worLDs. Given a world w, we will
call the unique v € @ where v &~ w, the ‘actual world according to w,” and we'll
refer to this as ‘@(w).’

A frame is a structure upon which we may evaluate formulas in our language
in the usual way.

DEFINITION 5 [2D MODELS]: Given a 2D FRAME (W, ~, @), a MODEL on that frame
is a relation I- between W and the set of propositional atoms, extended to all
formulas of the language as follows:

wiF —A iff w I A.

wlF AABiff wl- A and wIF B.
wlFOA iff vIF A for each v ~ w.
w Ik @A iff @(w) I A.

w Ik APK A iff v IF A for each v € @.

We could define truth in a model in the usual sorts of ways, as truth at some
particular point in that model, o—more specifically—as truth at some given
actual point in that model. We could define validity as well, as preservation of
truth. However, we have a much more general way to relate statements in our
language to models. We may interpret entire hypersequents in models.

DEFINITION 6 [COUNTEREXAMPLES TO 2D HYPERSEQUENTS]: The hypersequent
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xgk@vg | X?I—Y? | -+ | Xﬁol—Yﬁo ||
Xybha Y [ XTEY] | [ XL R ]
XPFo Y3 | XPPEY | e | XM YT,

fails in the model I on the frame (W, ~, @) if and only if there is a collection
of worlds w; € W where

> wh € @foreachi=0,...,m;

> wi &~ wy; foreachi=0,...,mandj, k=0,...,n', and

> for each world w}, each member of X; is true at w} and each member of Y} is
false at wi.

Given that definition of what it is for a hypersequent to rair in the model, if it
doesn’t fail, we say that the hypersequent HOLDs. If a hypersequent fails in a
model we also say that this model is a cOUNTEREXAMPLE to the hypersequent.

Now we begin to connect derivability and what hypersequents hold in models.
THEOREM 3 [SOUNDNEsS|: If H is derivable, it holds in every model.

Proof: A straightforward induction on the structure of the derivation. Axioms
clearly hold in each model (they have no counterexamples) and if the premises
of a rule hold in a model, so does the conclusion. .

The soundness proof is so straightforward because the structure of the sequent
so readily corresponds to the structure of models. Each structural feature of
2D hypersequents maps onto a feature of the 2p models. The left/right polar-
ity of a sequent corresponds to truth/falsity at a world. An individual sequent
corresponds to a world, subjunctive alternativeness for sequents is subjunctive
accessibility for worlds, and actuality corresponds to actuality. However, a se-
quent structure is not identical to a modal model. Each sequent in a derivation
is a finite thing. Kripke models need not be finite, and the set of formulas true
at a world in a model is always infinite. Sequents are grounded in what we
do. The left and the right hand sides of a sequent turnstile correspond nicely
to truth and falsity, but they are not to be identified with truth and falsity.
Much more is true or is false at a world than is mentioned in any sequent. A
derivable sequent tells us a fact about all models. An underivable sequent—as
we shall see—does something else. It points us to the existence of a particular
kind of model. An underivable sequent is a description of how things could
be, of a permissible, coherent position in a discourse, in which certain things
are asserted and certain other things are denied, in different zones connected
with each other as subjunctive and indicative alternatives. In the rest of this
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section we will see how such a position, partial and incomplete, may be filled
out in a systematic way so as to describe a model. The technique is general.
An earlier version of the construction is presented in “Truth Values and Proof
Theory” [12]. The first crucial definition is the notion of extension.

DEFINITION 7 [EXTENDING HYPERSEQUENTS]: H' EXTENDS H iff there is some map
f from the formulas of H to the formulas of H’ that preserves all of the hy-
persequent structure. This means the following three things: First, for each
formula occurrence A in H its corresponding occurrence f(A) in H’, shares its
shape (it is an instance of the same formula), its position in its sequent (on the
left or on the right) and lastly, if A is in an actual sequent in H, f(A) is in H'.
Second, if A and B are in the same sequent in H so are f(A) and f(B) in H’,
so given a sequent X I Y in J, it makes sense to talk of its corresponding se-
quent f(X  Y) in H’, though this sequent may contain more formulas than
the original sequent X Y. Third, the map f sends subjunctive alternatives in
H to subjunctive alternatives in H'—if X - Y and X’ I Y’ are subjunctive alter-
natives in H then so are f(X - Y) and f(X’ I Y’) in 3(’. It also sends indicative
alternatives in H to indicative alternatives in ' in exactly the same way.

So, for example, the hypersequent

PAqlteT Fe Ip | —s F

is extended by / / ﬁ\

pAd,pFe T | PAgq,TFq || 7s,TFe Op

by the mapping marked here. The relation of extension is reflexive and tran-
sitive (but not antisymmetric). It is a preorder but not a partial orderf| In the
remainder of this section we will consider the structure of the collection of un-
derivable sequents. We will show that maximal directed sets of underivable
sequents correspond to models.

DEFINITION 8 [DIRECTED SETS OF HYPERSEQUENTS]: A set © of hypersequents is
DIRECTED if and only if it is (1) closed under inclusion: whenever H is in ®, and
H extends H’ then H' is in D too and (2) contains upper bounds if H and H'
are in © there is some hypersequent in © extending both 3 and H"'.

LEMMA 4 [MODELS DETERMINE DIRECTED SETS|: The set of all hypersequents fail-
ing in some given model is directed.

®p I q is extended by p, p F q which is extended in turn by p - q.
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Proof: That the set of 2D hypersequents failing in model is directed is straight-
forward. If H fails in a model, then so does any hypersequent H extends. If 3
and H' fail in some model, then the disjoint union of the two hypersequents
extends both and also fails in that model. .

A directed set © of hypersequents will determine a frame in the following way.

DEFINITION 9 [THE FRAME OF A DIRECTED SET]: Given a directed set © of hyper-
sequents, a component sequent in a hypersequent in © determines a directed
set of sequents: those to which this sequent is extended and each sequent that
also extends to those sequents. This directed set is a world in the frame. Two
worlds are related by ~ if they contain sequents which are subjunctive alterna-
tives. A world is in @ if it contains sequents marked by @.

DEFINITION 10 [TRUTH AND FALSITY]: Given a world w in a frame of a directed
set © we will say that a formula A is true in w if it appears in the left of a
sequent in w (once it appears in the left of a sequent in w, it appears in the
left of all extending sequents), and it is false in w if it appears in the right of a
sequent in w.

In some directed sets, truth and falsity in the frame will work like truth and
falsity in models. In the construction of “Truth Values and Proof Theory” we
show that maximal directed sets (of all unprovable hypersequents extending
some given hypersequent) determine a model. This makes great use of Cut.

HIXFA,Y] HXAFY]
HIXF Y]

[Cut]

If H[X + Y] is an underivable hypersequent, then it may be extended by a
hypersequent in which A is true at the X - Y world, or one in which A is false
at this world. So, in a maximal directed set, every statement is either true
or false at each world. In this paper, we will use a more modest construction
in which we will not appeal to Cut. The directed sets will be smaller and a
corollary will be the admissibility of Cut.

DEFINITION 11 [DOWNWARD CLOSURE]: A directed family of hypersequents is said
to be cLoseD DowNwARDs if and only if the following closure conditions are
satisfied.

Negation Closure: If —A is true at a world, then A is false at that world. If
—A is false at a world, then A is true at that world. Given an underivable
hypersequent H featuring a negation —A as true (resp. false) at some world, it
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may be extended into an underivable hypersequent where A is false (resp. true)
at that world, because we have the following derivations, which show that if
that wasn’t the case, 7 would be derivable.

HIX,—AF A,Y] HIX,AF—A,Y]
[L] [~R]
HIX,—A,—A F Y] HIXF —A,—-A,Y]
[WL] [WR]
HIX,—A Y] HIXF —A,Y]

Conjunction Closure: If A A B is true at a world, then A and B are true at that
world. If A A B is false at a world, then either A or B is false at that world.
Given an underivable hypersequent H featuring A A B as true (resp. false) at
some world, it may be extended into an underivable hypersequent where A and
B are true (resp. either A is false or B is false) at that world, because we have
the following derivations, which show that if that wasn't the case, 3 would be
derivable.

HIX,A,B,AABF Y] HIXFA,AAB,Y] H[XFB,AAB,Y]
[AL] [AR]
HIX,AAB,AABFY] HIXFAAB,AAB,Y]
[WL] [WR]
HIX,AABFY] HIXFAAB,Y]

Necessity Closure: If OA is true at a world, then A is true at each subjunctive
alternative to A. If DA is false at a world, then A is false at some subjunctive
alternative to A. is false at that world. Given an underivable hypersequent H
featuring [JA as true at some world, and featuring some subjunctive alternative
to that world, H{ may be extended into an underivable hypersequent where A
is true at that subjunctive alternative; and if A is false at some world,
may be extended into an underivable hypersequent where A is false at some
subjunctive alternative to that world, because of the following derivations:

HX,0AFY | X';AEY] HIFA | XEDOAY]
[BL] [OR]
HIX,OA,OAFY | X' Y] HIXFOAOAY]
[WL] [WR]
HIX,OAFY | X'FY'] HIX FOAY]

Actuality Closure: If @A is true at a world, then A is true at that world’s actual
subjunctive alternative. If @A is false at a world, then A is false at that world’s
actual subjunctive alternative. Given an underivable hypersequent H featuring
@A as true (resp. false) at some world, it may be extended into an underivable
hypersequent where A is true (resp. false) at that world’s actual subjunctive
alternative, because we have the following derivations, which show that if that
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wasn’t the case, H{ would be derivable.

HIX,@AFY | X',A ke Y] HIXF @A,Y | X' Fo A, Y
[@L] [@R]
HX,@A, @A FY | X' Fa Y] HIX F @A, @A,Y | X' Fe Y]
[WL] [WR]
HIX,@AFY | X' Fo Y] HIXF@A,Y | X' Fe Y]

A Priori Knowability Closure: If APK A is true at a world, then A is true at each
indicative alternative to A. If APK A is false at a world, then A is false at some
subjunctive alternative to A. Given an underivable hypersequent H featuring a
APK A as true at some world, and featuring some subjuctive alternative to that
world, H may be extended into an underivable hypersequent where A is true
at that indicative alternative; and if APKA is false at some world, 3 may be
extended into an underivable hypersequent where A is false at some indicative
alternative to that world, because of the following derivations:

HIX,APKAFY || X' Fa A,Y'] H(Fo A || X+ APKA,Y]
[APK L] [APK R]
HIX,APKA,APKAFY || X' Fe Y] H[X - APKA, APK A, Y]
[WL] [WR]
HIX,APKAFY || X' Fe Y] HIX - APK A, Y]

This completes the definition of downward closure.

So, if we start with an underivable sequent (even a sequent that cannot be
derived in the Cut-free sytem), we may close under these conditions to get a
downard closed, directed family © of hypersequents.

LEMMA 5 [DOWNWARD CLOSED DIRECTED FAMILIES]: Given any underivable (or
Cut-free underivable) hypersequent 3, there is a directed family © of un-
derivable (or Cut-free underivable) hypersequents, satisfying the downward
closure conditions.

Now we have all the raw materials for our completeness theorem.

THEOREM 6 [COMPLETENESS]: Any hypersequent which has no Cut-free deriva-
tion has a counterexample in some model.

Proof: Take an underivable hypersequent. By Lemmas} there is a downward
closed directed family ® containing our starting hypersequent. Consider the
frame of ® and choose an evaluation IF such that if p is true at w, w I p and
if p is false at w, w I p. Since for no sequent do we have p both on the left
and on the right (if we did, that hypersequent would be an axiom, and hence
derivable without Cut), this stipulation is consistent.
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Now we check that for every formula A, and every world w in the model,
if A is true at w then w IF A and if A is false at w then w I A. This is a proof
by induction on the construction of A. The atomic case is given by stipulation.
The downward closure conditions, and the definition of the frame elements: ~
and @, are exactly what we need to show the induction steps.

Take conjunction. If A A B is true at w, then A A B is in the left part of
some sequent inside a hypersequent in ©, say H[X,A A B I Y]. By the Con-
junction Closure condition, this hypersequent is extended by another sequent
HIX,A,B,AAB F Y] in ® in which A and B are true at the same world w.
By hypothesis, w IF A and w I B and by the definition of I, it follows that
w Ik A A B as desired.

If AAB is false at w, then AAB is in the right part of some sequent inside a
hypersequent in ©, say H[X - AAB, Y]. By the Conjunction Closure condition,
this hypersequent is extended by another sequent, either H[X - A A AB,Y] or
H[X F B,AAB,Y], one of whichisin ®. So, it follows that either A or B is false
at w. So, by induction, either w I A or w If B, and in either case, w If A AB
as desired.

Take APK. If APKA is true at w, then APK A is in the left part of some se-
quent in w inside a hypersequent in ©. We wish to show that A is true in every
indicative alternative of w. So, take an indicative alternative w’. This is a set
of sequents, one of which occurs as an indicative alternative of a sequent in w
inside some hypersequent: say X’ -+ Y’ in H[X,APKA Y | X' F Y']. By
the A Priori Knowability Closure condition, this hypersequent is extended by
another sequent H[X,APKA Y || XA F Yl in © in which A is true at the
world w’. This construction is general, and it holds for every indicative alter-
native w’. So, at every indicative alternative w’, A is true, and by hypothesis,
w’ I A. It follows by the definition of I, that w I APK A as desired.

If APKA is false at w, then APKA is in the right part of some sequent
inside a hypersequent in ©, say H[X = APKA,Y]. By the A Priori Knowa-
bility Closure condition, this hypersequent is extended by another sequent,
HlFe A || XF APKA,Y], so take the world w’ to be the world containing the
sequent k@ A indicated here. At this world, A is false, and it is an indicative al-
ternative of w. By induction hypothesis, w’ I A, and it follows that w If APK A,
as desired.

This construction is general: the cases for —, J and @ are no more difficult. The
result is a model in which if A occurs on the left of a sequent in w, then w IF A
and if A occurs on the right of a sequent in w, then w Iff A.

But this is exactly what we need to show that our model provides a coun-
terexample to the original hypersequent. Take the worlds in the frame to refute
the starting hypersequent to be the worlds corresponding to the component se-
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quents in this hypersequent. They are appropriately related, and the left parts
of each sequent are true at the corresponding worlds and the right parts of each
sequent are false at those worlds. We have the counterexample we want, and
completeness is proved. .

COROLLARY 7 [CUT 1S ADMISSIBLE]: If a hypersequent is derivable with Cut, it is
derivable without Cut too.

Proof: We prove the contrapositive. If 3 is not derivable without Cut, then
by Theorem [f] (cOMPLETENESS), it has a counterexample in some model. By
Theorem [3| (sounDNEss), it follows that this sequent is not derivable using
Cut. So, contraposing, if 3 is derivable with Cut, it is also derivable without. =

We close this section, discharging our debt to show that while general models
allow greater freedom in constructing counterexamples, it makes no difference
to the logic in the vocabulary we have employed.

DEFINITION 12 [SQUARE MODELS]: Davies—Humberstone 20 models for O, @, APK
are models where

W =V x V for some set V.
(w,v) &= (W' V') iffw=w’.
@({w,v)) = (w,w). So @ is the diagonal in V x V.

THEOREM 8 [COMPLETENESS FOR SQUARE MODELS]: Each hypersequent which has
a counterexample in a general model also has a counterexample in a square
model.

Proof: Take an arbitrary model (W, ~, @, I+-), we will add worlds to the struc-
ture (if that is necessary) to construct (W', ~', @', I-'), which will be isomorphic
to some square model. Consider |@|, the cardinality of the set of actual worlds,
and the supremum of the set of cardinalities of each ~-equivalence class. If
these are the same, excellent. If not, and if |@| is smaller, we select a single
~-equivalence class and duplicate it enough times to ensure that in the new
structure there are as many ~-equivalence classes as the supremum of the car-
dinalities of those classes. Call the new collection of actual members from the
equivalence classes ‘@’.” Now, for each ~-equivalence class with a smaller car-
dinality than the supremum, we add worlds by duplicating the actual world of
that equivalence class as many times as required to ensure that each new class
now contains as many worlds as |@’| in this new frame. Call the new equiva-
lence relation ‘~’.” So we have the new model (W', ~’, @'}, and we define I by
assigning the atomic propositions at a world present in the old model in exactly
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the same way in the new, and at an added world, we take the atomic propo-
sitions to be evaluated in exactly the same way as the world which has been
‘duplicated.” The result is a model in which the truths at the original worlds W
are unchanged.

Now to show that this is isomorphic to a square model, show how we can
replace W’ by a cartesian product. We will take the underlying ‘worlds’ to
be the members of the cardinal |@’|, since we have one for each ‘row’ of the
table, and each row is exactly the same length. So, the second coordinate of
world in a row will be its world in the enumeration of all the rows. For first
coordinate, we take the enumeration of the ~'-class, but we rearrange it just
a little. Wherever in this enumeration the @-world is, we swap it with the
item in the enumeration in the same position as the position of the row in the
enumeration. So, the @-world will be on the diagonal. The result is a proper
square model in which the original hypersequent fails. .

So, by starting off with a proof theory, grounded in the acts of subjunctive and
indicative supposing, we have an explanation of why [J, @ and APK have the
logical structure predicted by Davies—Humberstone models for two-dimensional
modal logic. We have not had to start with these models, but rather, general
possible worlds models result as idealisations or completions of invalid hyper-
sequents. They are models, marking out different possibilities for assertion and
denial, consistent with the inference rules governing our target concepts, the
classical connectives, [J, @ and APK. We do not need to explain modality in
terms of our access to possible worlds (whether thought of as counterfactual
scenarios or epistemic scenarios), rather we can understand why possible world
talk has the efficacy which it does, by way of the rules governing these modal
concepts. An ontology of subjunctive and indicative alternatives is then a reifi-
cation of what holds in zones, and this ‘ersatz’ construction of worlds is no
longer circular (defining necessity in terms of possible worlds and vice versa)
because necessity is defined in terms of the underlying rules of use and their
deeper connections with the two different practices of indicative and subjunc-
tive supposing.

The extra assumptions made in Davies—Humberstone models, at least when
understood as giving the account of a priori knowability—that the space of
indicative alternatives has the same size and structure in every row of the
model—is a harmless extra condition on models. Imposing it makes no dif-
ference in this vocabulary at least. Anything refutable in a general model is
refutable in a square model as well. It is only when we extend the vocabulary,
to include devices like propositional quantification, that the difference between
general models and square models makes a difference to what holds.
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BEYOND

The results of this paper open up new lines of research into modality and this
construction. I will indicate a few.

>

The Epistemology and Ontology of Indicative & Subjunctive Modalities:
This construction tells us something about how a model respects mean-
ings. An invalid sequent is a position in a discourse, with assertions and
denials, in various zones, structured in such a way that the meaning pos-
tulates governing [J, APK and @ are respected. This connects meaning,
proofs and models. Further work must be done to connect proofs and
models to the epistemology and ontology of modality.

Accessibility Relations: We can generalise the account here to examine
richer modal logics, governed by accessibility relations of various kinds.
The tree hypersequent structures of Poggiolesi are appropriate here [8].

Defaults and Shifting: What about conditionality (more restricted sub-
junctive shifts) and knowledge (more restricted indicative shifts)? Is there
a way to give a similar kind of proof theory for counterfactuals and other
more restricted modalities with default properties?

Objects and names: The simplest treatment of quantification in a proof
theory like this will result in models which are constant domain. We
can prove the Barcan formulae (Vx)OFx D O(Vx)Fx and (Vx)APKFx D
APK (Vx)Fx. Is this appropriate? Is there a way to impose restrictions on
the use of names and variables in different zones of a hypersequent in
such a way as to give a different natural quantified modal logic?

Montague '‘Grammar’: We must generalise this to languages richer than
epistemic modal first-order predicate logic, to allow quantification with
higher types to allow for greater expressive power.

Context: What about the treatment of temporal and indexical operators?
Temporal operators and ‘now’ have a similar structure to the subjunctive
modalities and “actually.’

Hyperintensionality: APK is highly idealised. What about the hyper-
intensionality of genuine knowledge claims? How does this change the
picture?
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[13]
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