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A possible world is a point in logical space. It plays a dual role with respect to
propositions.

(1) A possible world determines the truth value of every proposition. For
each world w and proposition p, either at w, p is true, or at w, p is not
true.

(2) Each set of possible worlds determines a proposition. If S C W is a set of
worlds, there is a proposition p true at exactly the worlds in S.

Perhaps such a proposition is not expressible in any language that you or I
speak, but — so a familiar story goes — it is decided by each world, so it plays
just the role that other propositions do, so it counts as a proposition in the same
way. In fact, we can see just how it counts as a proposition: given all the worlds
in S, our proposition p says that the world is one of the worlds in S. Tt describes
a way the world is, even if we have no means of picking out the set S, soitis a

proposition[]
But does this talk of possible worlds actually make sense?

Metaphysical worries about worlds are well known. These worries do not
concern the role they play in the analysis of propositions: they call into ques-
tion the ‘otherness’” of worlds, the profligacy of admitting locales where there
are tailless kangaroos or blue swans. Worries of this sort can be assuaged by

*Thanks to the Logic Seminar at the University of Melbourne (especially Allen Hazen and
Lloyd Humberstone), Shawn Standefer, and the audience at Logica 2009 for discussions on
these matters. § This research is supported by the Australian Research Council, through grant
Dro343388, and Sam Phillips’ Don't Do Anything,

"David Lewis’ On the Plurality of Worlds, Chapter 1 [z]], has a very good defence of this
position on the relationship between worlds and propositions, but the view is not just his. The
view is everywhere.
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giving an account of worlds which takes them to be abstract, or fictions, or in
some other way less real than the world you and I are thought to inhabit. Onto-
logical profligacy is not so much of a concern if we have understood worlds in a
metaphysically thin manner. The fact that this concern is so easily sidestepped
shows that this concern is does not touch (1) and (2) — the properly logical no-
tion of a possible world. In this paper, I will to consider the logical structure of
commitment to (1) and (2). Do claims such as (1) and (2) have any unforeseen
logical costs?

It would seem like there is little reason to reject (1) and (2). To transpose talk of
worlds into an algebraic key, structures satisfying (1) and (2) are well known.
They are complete atomic Boolean algebras. In such algebras, atoms play the
role of possible worlds: at each atom, the propositions entailed by that atom
can be taken to be true, and the others are false. The fact that the algebra is
complete means that every collection of atoms determines a proposition in the
appropriate way: any set of atoms has a least upper bound, which is true at
those and only those atoms. Atomicity gives us (1) and completeness gives
us (2). If there are reasons to reject the combination of (1) and (2), then the
construction of complete atomic Boolean algebras must somehow not apply.

In this paper, I will construct a logic, extending classical logic with a single
unary operator, which has no complete Boolean algebras as models. If the fam-
ily of propositions we are talking about in (1) and (2) has the kind of structure
described in that logic, then (1) and (2) cannot jointly hold.

¥ X X

The new operator, #, may be introduced in a straightforward manner. Here is
the first cut at an account of #. Take a propositional language with the infinite
supply of atoms py,p2,p3,. .. and define ‘#A’ to be the first propositional atom
not occurring in the formula A

# has interesting logical properties. Since #A is an atom not occurring in A,
if A is satisfiable, so is #A A A, and so is ~#A /A A. In fact, if we can derive A
from #A, then A is a tautology. Similarly, if #A is derivable from A, then A
itself is unsatisfiable. We have the following four principles’|

2In other words, for now, #p; is the atom p;. So, ##p; = #p2 = p1, even though there is a
sense that ‘p;” does ‘occur in’ ##p. That is not the relevant sense here.

3Where, as usual, we take X I Y to hold if and only if there is no evaluation where each
member X is true and each member of Y is not. So, X - when X cannot all be true together, and
F Y when Y cannot all be false together.
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If#A - Athen FA If - A #A then FA. )
If A-#AthenAl. IfA #AF then Al

Now, as defined, #A is not anything like a connective: it is a syntactic device.
It is not a congruence with respect to logical equivalence, since #p; = p, but
#(p1/\(p1Vp2)) = p3, even though py is logically equivalent to p7 A (p1 Vp2).

We can remedy this by setting #A to be defined as the first propositional
atom which is not in some formula equivalent to A. Then this satisfies sub-
stitutivity of equivalents. Now, #(p; A (p1 V p2)) = pa, since there is some
formula equivalent to p; A (p7 V p2) (namely, pq) in which p, doesn’t occur,
but there is no formula equivalent to p; A (p; V p2) in which py doesn’t occur.
It is straightforward to verify that # so defined still satisfies the four conditions
given in (#).

Now, consider the logic extending classical propositional logic with an operator
# satisfying the four (#) conditionsf] A logic of this form can have well-defined
models. We have seen one, with # defined syntactically. Logics extending clas-
sical logic with # make sense, and are coherent. There is nothing inconsistent
or incoherent in the logic of #.

However, the logic is still odd. While a logic like this can have a Boolean al-
gebra as a model — the Lindenbaum algebra of equivalence classes of provably
equivalent formulas will do as an example — they have no atomic Boolean al-
gebras as models. Recall: a is an atom in a Boolean algebra if for every element
x either a A x = 0 (the bottom element in the algebra) or a A x = a. There are
no elements between 0 and a. An algebra is said to be atomic if every element
is the join of some collection of atoms.

Now, since every finite Boolean algebra is atomic, every model for the logic
will be infinite. But not every infinite Boolean algebra will work, either. The
algebra of all subsets of some infinite set — ordered by inclusion, and with the
usual Boolean operators of intersection, union and complementation — will
not do either, since each singleton set is an atom.

Here is why no algebra for # is atomic. Take a Boolean algebra with an atom
a. Consider #a. By the conditions (#), since the atom a is neither 1 nor 0 (it

41 will not call them rules for they are not inference rules defining the connective #. A
language can contain two independent operators #; and #, both satisfying the conditions (#).
In fact, one way to understand Kaplan’s paradox over the size of the collection of possible worlds
is to think of ‘I believe that p” as #p. For it seems that whether I believe p or not is genuinely
logically independent from p, at least when p is logically contingent [m]. I owe this observation
to Allen Hazen.
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is neither a tautology nor a contradiction) then neither a A #a nor a V #a are
tautologies nor contradictions. But this is inconsistent with a’s being an atom,
for aA#a entails a but is not the bottom element of the algebra. So, the algebra
is not only not atomic, but it cannot contain any atoms.

This talk about algebras and atoms has consequences for theories of worlds.
(1) and (2) commit us to taking the collection of propositions to be an atomic
Boolean algebra. If each proposition is modelled by the set of worlds in which
it is true, and if every set of worlds models a proposition, then each singleton
set of worlds is an atom. It is true somewhere, but there is no non-trivial
proposition stronger than it. This rules out #, or it rules out taking (1) and (2)
to jointly hold.

Perhaps # is a mere syntactic device. Is it an artefact of the presentation of
a language with infinitely many atomic sentences? Can we specify a model
for a # satisfying the (#) conditions in which the language of sentences plays
no special role? T will explain here how we can construct just such models, to
provide a language-invariant structure in which the Boolean connectives and #
may be interpreted. Here’s how.

Let’s think in terms of worlds, to start. Take the set W of worlds to be the
irrational numbers in the Real Line. The propositions at Level n are the unions
of the any selection of irrational intervals of length 7:: (&, 35) where z is an
integer. These are closed under union (the union of any collection of intervals
is a collection of intervals), intersection (there is no worry about endpoints of
abutting intervals, as these don’t reach their endpoints, which are rational) and
complement (the complement of some collection of intervals is the collection of
the other intervals: since the endpoints are rational, they don’t occur in either
a set or its complement). The propositions at each level are finer classifications
of points than at any of the previous level.

Propositions at Level 0 are collections of intervals such as (—2,—1), (0,1),
(3,4), etc. Propositions at Level 1 are collections of finer intervals (—1.5,—1),
(1.5,2), (3,3.5), etc., and so on, throughout each finite level ]

Let’s interpret sentences in the language of propositional logic—enhanced
with the operator ‘#—as propositions at some level or other. If A and B are
interpreted as propositions at Level n, then —A, AAB and AV B are also inter-
preted as propositions at Level n, since the union, intersection or complement
of propositions at Level n are also at Level n.

5We could just as easily do this with regions on a grid in irrational 2-space, or cubes in
3-space, etc. We have all the generality we need in one dimension, however.
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To interpret #A, where A is interpreted as a proposition at Level n, we will
choose a proposition at Level n+ 1. In particular, we will choose an alternating
proposition at Level n + 1: the proposition consisting of all of the intervals
( z  z+1

%, 5+ ) where z is even integer. The alternating proposition at Level 0 is

the alternating proposition at Level 1 is
- (=2,-15) U (—1,-0.5) U (0,0.5) U (1,1.5) U (2,2.5)---

and so on. This choice for #A satisfies the four conditions given in #. Let A

be interpreted as a proposition at Level n. If A is not true everywhere, then it

is false at some interval (&, %51). Now consider #A. It is true at (2,2‘%, zzzn—ﬂ),

=y S
where A is not true. Andz#Azis not true at (35, 2242), where A is not true.
Similarly, if A is not false everywhere, it is true at some interval (&, 5t1). #A
is true at (53%,25H), where A is true. And #A is not true at (354, 2242),
where A is true. In other words, #A is truly independent of A. If A is true
somewhere, at some such places, #A is true, and at others, #A is false. If A is

false somewhere, at some such places, #A is true, and at others, #A is false.

This fact is completely general. We for any proposition A we have found
another proposition #A. #A is more finely grained than A, and the four rules of
extensibility are satisfied. In models like these, it makes sense to think of ‘#’ as
an operator on propositions, and not merely a syntactic device for constructing
sentences from other sentences. The language may now be finite, or indeed it
may have 1o non-logical constants!f]

So, we have a syntax-free model in which the four conditions (#) hold, so
we must have either of (1) and (2) failing if we are to think of these points as
worlds. Tt is easy to see which. Not every set of worlds is a proposition. Only
some sets of points — those at some Level or other — count as a proposition.
Others are not.

However, we do not need to think of this model in that way. We could, in-
stead, take (1) to fail, if we wish to avoid commitment to worlds altogether. The
appeal to worlds in these models is not essential: we could instead refrain from
all talk of worlds and appeal instead to regions in a formal topological space.
The definition of propositions in terms of sets of points—irrational numbers in
our case—is not essential. The construction gives us an atomless Boolean alge-
bra, and these are well known algebraic structures. The value of the relatively

°If there are no non-logical constants, but the logical constants 1 and T, then we can still
construct the alternating propositions at each level, and a whole host of other propositions.
Consider, for example, what #T A ##T and #T A —##T are, to get a feel for what propositions
may be constructed.

Greg Restall, restall@unimelb.edu.au SEPTEMBER 18, 2009


http://consequently.org/
mailto:restall@unimelb.edu.au

http://consequently.org/ 6

concrete construction here is the manner in which extensibility corresponds to
propositions being more and more finely grained, without that ever coming to
an end. The model shows that the idea of indefinite extensibility of proposi-
tions is coherent: and operators like # are one way to give formal structure
to the intuitive idea that the collection of propositions is indefinitely extensi-
ble. Wherever we find ourselves in the collection of propositions, we haven't
exhausted its depths. For any proposition at all, there is always more.
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