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Abstract. Combining non-classical (or `sub-classical') logics is not easy, but it is very

interesting. In this paper, we combine nonclassical logics of negation and possibility (in the

presence of conjunction and disjunction), and then we combine the resulting systems with

intuitionistic logic. We will �nd that Kracht's results on the undecidability of classical

modal logics generalise to a non-classical setting. We will also see conditions under which

intuitionistic logic can be combined with a non-intuitionistic negation without corrupting

the intuitionistic fragment of the logic.
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Many people are interested in logics of modal operators like `necessarily'

and `possibly,' and their cousins taken from temporal, epistemic, doxastic

and many other concerns. Quite a few people are also interested in nega-

tive modal operators, like classical boolean negation, but with some kind of

`modal' force. The idea with these sorts of operators is that to evaluate `not

p' at a point (world, information state, moment or whatever) you check the

status of p at some other class of points. Intuitionistic negation is one such

negation: to check for `not p' at a point, you examine whether p fails at all

of that point's successors. The de Morgan negation of relevant logics is also

this sort of negation. For `not p' is true at a point, you need p to fail to be

true at another particular point related to the �rst point. In this paper we

will examine what happens when you put these things together. Speci�cally,

we will see how combining logics of possibility and negation (or combining

two possibilities, or two negations) can result in undecidability. We will

also see what happens when these logics are combined with intuitionistic

propositional logic.

The jumping-o� points of this work are numerous. The results we will

discuss are not only in the general scene of combining logics, but they are

also an instance of combining logical techniques. From the side of classical

modal logic, we will be using Marcus Kracht's elegant results giving examples

of simple undecidable modal logics [7]. He shows that given a �nitely pre-

sented semigroup, you can construct a �nitely axiomatised modal logic (with

a modality for every variable used in the presentation) which encodes the

semigroup in a natural way. Deciding theoremhood in the logic is su�cient
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for deciding equations in the semigroup. As we know that there are �nitely

presented semigroups for which the word problem is undecidable, it follows

that some of these simple modal logics are also undecidable. Since there are

�nitely presented semigroups with only two variables which are undecidable,

there are particularly simple undecidable bimodal logics.

The question naturally arises: Do we need the full power of the classi-

cal logic underlying the modal structure to get undecidability? After all,

there are more logics under heaven and earth than classical modal logics.

There is much interest afoot in substructural logics, and in these, typically,

boolean negation does not feature. There is also interest in intuitionistic

modal logics. In deductive systems of these sorts (intuitionistic, or substruc-

tural systems) boolean negation is anathema because we wish to consider

theories (or information states, or whatever) which are incomplete, and pos-

sibly, inconsistent. In those contexts we would not expect boolean negation

to be present in the language under discussion. There is a subtle distinc-

tion here between languages you use to describe a model and the language

you use `inside' a model. Perhaps it is best illustrated in the context of a

concrete model. Take the points in a model to be theories (closed under an

appropriate consequence relation). Theories can expand, so there might well

be theories T and T 0 where T 0 asserts everything asserted by T , but it also

asserts more. Say, the claim A. Now we know that T doesn't assert A. It

would be madness conclude from this that T asserts �A for some negation

�, because, by construction T 0 asserts everything asserted by T , and we

would have T 0 asserting both A and �A. Now it is true that theories can

be inconsistent | but they certainly need not in this case. Better to say

that T doesn't assert A or �A. Of course, this doesn't mean that we cannot

describe the theory T by saying that T 6j= A. But there is no compulsion

that this ought to be explicitly recorded in the theory as a fact asserted by

the theory. It is a fact about the theory, not a fact of the theory.1

Once we renounce boolean negation we must answer the question: Does

the decrease in expressive power mean that our modal logics become decid-

able? Or does Kracht's phenomenon occur? The problem is this: Kracht's

proofs involve boolean negation in a number of important ways | most ob-

viously in de�ning the material conditional, which is essential to the proof.

So, we should ask | do the undecidability results remain when we renounce

booelan negation?

1This perspective on logical theory is orthogonal to the `Amsterdam Perspective' on

modal logics. For people in that tradition logic is seen as a way of reasoning about

structures. From that perspective, boolean negation is perfectly acceptable. I am not

arguing against that tradition | it is quite fruitful and interesting in its own right | I

simply point out that for some purposes, limiting our language is a necessity.
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Further, we can ask, does Kracht's result work for di�erent kinds of nega-

tion? There is increasing awareness that `nots' are a kind of modal operator,

just as much as boxes and diamonds. (For example, there is Goldblatt's pi-

oneering work on orthonegation as a modal operator, and its generalisation

due to Dunn [5].) But `nots' are modal operators with a twist. They are or-

der inverting. So, the question arises: Can we generalise Kracht's results to

logics with di�erent sorts of negations? In the presence of boolean negation

the answer is clearly a�rmative, because negative modal operators can be

converted into positive operators with the addition of a boolean negation.

This trick isn't available in the absence of boolean negation.

So, we look further a�eld to the literature on substructural logics. Our

primary source of inspiration here is Mike Dunn's work on gaggle theory

[3, 4, 5], in which he gives quite general conditions under which operators

can have a frame semantics. In this work, we do not assume that boolean

negation is present, so it is well suited for our own purposes.

In this note, we will examine these issues, and we will see that the land-

scape of logics in which we combine modalities and negations is indeed a

rich one.

Section 1 of this paper is an introduction to the logics we will consider.

Section 2 contains a de�nition of frames and models for these logics, and

provides simple soundness, completeness and correspondence results. These

proofs are reasonably standard, the innovation being the necessity to do

without boolean nagation. Section 3 covers the undecidability results, and

Section 4 considers the interaction of possibilities and negations with intu-

itionistic implication.

1. Logics of Negation and Possibility

Instead of assuming that the underlying logic is classical, we will work with

the logic of distributive lattices with greatest and least elements. So, in-

tuitionistic logic �ts into our framework, as do relevant logics, and other

substructural logics in their vicinity. Signi�cant omissions include linear

logic and quantum logic, because they lack the appropriate forms of distrib-

ution of conjunction over disjunction. For many applications, distribution is

exactly what one would expect [1, 11]. However, for some applications distri-

bution can get in the way, and for those applications the methods discussed

in this paper will not work.

So, we assume that any logic L under consideration at least contains

distributive lattice properties. In other words, its consequence relation `L
(seen as a relation between formulae, and which we write ` unless there
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is more than one logic in view at a time) is transitive, conjunction ^ and

disjunction _ are associative, commutative, and idempotent, satisfying the

absorbtion laws (A ` A ^ (A _ B) and A _ (A ^ B) ` A) and distribution

(A ^ (B _ C) ` (A ^ B) _ (A ^ C)). Finally, we have ? ` A and A ` > for

all A.

The relation ` can be extended to one between sets of formulae and sets

of formulae by taking � ` � to be true if and only if some conjunction of

formulae in � entail some disjunction of formulae in �.

Given that background, we can start asking questions of what it would

be for a logic to possess a modal operator. A positive modal operator in our

language must be order preserving.

If A ` B then �A ` �B.

Under interpretation, that makes sense. If A entails B, then the possibility

of A entails the possibility of B, similarly, the necessity of A entails the

necessity of B. A obtaining in the future entails B obtaining in the future,

and so on.

We need not posit any other condition on � for it to be a positive modal-

ity. Note that both � and � in any classical modal logic satisfy this condition.

As well, modalities postulated in non-classical contexts invariably satisfy the

ordering condition. It is simple to show that for any positive modality � we

must have �(A ^B) ` �A ^ �B and �A _ �B ` �(A _B). But we need not

have equalities in the place of entailments here.

So, for the modal operator to be something like a `possibility' we need

two other conditions.

�(A _B) ` �A _ �B �? ` ?

Any positive modal operator satisfying these conditions is said to be a p-type

modal operator. That is, it is something like a possibility.

We could analogously de�ne an n-type positive modal operator to be one

satisfying �A ^ �B ` �(A ^ B) and > ` �>, but this doesn't exhaust the

class of positive modalities: there are positive modal operators which are

neither n-type nor p-type. For example, �A ^ �A will in general be neither

n-type nor p-type, if � is n-type and � is p-type.

Negative modalities are similar. In the presence of boolean negation, we

could de�ne a p-type negative modality as the negation of an n-type positive

modality, and vice versa. But we do not have that luxury. Instead, we can

de�ne them from scratch. A negative modality is a unary operator which is

order inverting.

If A ` B then �B ` �A.
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Under interpretation this makes a lot of sense. If A entails B, then ruling out

B (or evidence against B, or whatever) rules out A (or is evidence against

A, or whatever). Clearly boolean negation is of this form, as is intuitionistic

negation and minimal negation, and the de Morgan negation of relevant

logics, and so on. Note that if � is a negative modality and and � a positive

modality, then �� and �� are negative modalities. Similarly, if � is another

positive modality and : is another negative modality then ��, ��, �: and

:� are all positive modalities.

An negative modality � is an n-type negative modality if it satis�es

�A ^ �B ` �(A _B) > ` �?

Intuitionistic negation is an n-type negative modality, as is the negation

present in relevant logics. For ease of reference, we will call n-type negative

modalities negations and p-type positive modalities possibilities. And from

now, we will restrict ourselves to considering logics with a family of negations

and possibilities.

Given a language Lm;n with m possibilities �i and n negations �j, we

can form the basic logic Km;n. So, `Km;n
is the smallest relation closed

under the conditions we have cited. This logic is the simple-minded way

of combining m copies of K1;0 together with n copies of K0;1; identifying

the underlying distributive lattice structure, while ensuring that the modal

operators do not interact in any signi�cant way. This is borne out by the

frame semantics, which we introduce below.

2. Representations

Study of modal logics would be nothing like it is today were it not for the

discovery of frames. It is reassuring to know that any logics extending Km;n

have a semantics in terms of frames.

2.1 De�ning Frames and Models

A frame F = hU ;R1; : : : ; Rm;C1; : : : ; Cni is a collection U of points (worlds,

information states, what-have-you) with binary relations R1; : : : ; Rm and

C1; : : : ; Cn on U . We say xRiy just when relative to x, y is �i-possible, and

xCjy when, relative x is �j-compatible with y.2 Given a frame F , a model

2In some circumstances it is natural to also consider partial ordering on the set of points,

under which the truth of formulae is preserved, like the accessibility relation on a frame

for intuitionistic logic. But we don't need it now. We will mention it again later when

considering ways to extend this work to explicitly consider an intuitionistic conditional.



126 G. Restall

M determines a relationship between points and formulae in the following

way. We start o� with a map V
M

which gives for every atomic proposition

p the set of points at which p is true. Then we expand this to a relation

between points and formulae inductively in the obvious way.

� M; x j= p if and only if x 2 V
M
(p).

� M; x j= > always.

� M; x j= ? never.

� M; x j= A ^B if and only if M; x j= A and M; x j= B.

� M; x j= A _B if and only if M; x j= A or M; x j= B.

� M; x j= �iA if and only if for some y where xRiy, M; y j= A.

� M; x j= �jA if and only if for no y where xCjy, M; y j= A.

Given a modelM, there is a notion of deduction associated with the model.

Set A `
M

B to mean for every x, if M; x j= A then M; x j= B. Note that

this notion of deduction may well not satisfy substitution. If, according to

M, p was true at every point but q wasn't, then we would have > `
M

p

without > `
M

q, for example. A broader notion of deduction associated

with any frame will satisfy substitution. We can de�ne A `
F
B to mean

that A `
M

B for every model M on F .

2.2 Every Frame gives you a Logic (Soundness)

It is quite simple to show that for any frame F , `
F
is really a logic.

Theorem 1. For any frame F , `
F

is a logic, with each �i a possibility and

each �j a negation.

Proof. Clearly conjunction, disjunction, top and bottom have distrib-

utive lattice properties. For possibilities and negations, we reason as follows.

SupposeA `
F
B, and take any modelM on F , and a point x where x j= �iA.

Then we must have some y where y j= A and xRiy. So, since A `
F
B we

have y j= B too, and hence, x j= �iB as desired. Similarly, if x j= �jB

we must have no y where xCjy satisfying y j= B. But then we couldn't

have y j= A (lest y j= B as A `
F

B) so x j= �jA as desired. We must

also show that �i(A _ B) `
F
�iA _ �iB, and �jA ^ �jB `

F
�j(A _ B).

Suppose x j= �i(A _ B). Then there's some y where xRiy and y j= A _ B.

So, either y j= A or y j= B, and hence x j= �iA or x j= �iB. Either way,

x j= �iA _ �iB as desired. Similarly, if x j= �jA ^ �jB, we have for no y

where xCjy, y j= A and similarly, for no y where xCjy, y j= B. So, for no

such y does y j= A _B, giving x j= �j(A _B) as desired.
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2.3 Every Logic gives you a Frame, and a Model (Complete-
ness)

Given any logic L, there is the corresponding frame FL, in terms of particular

sorts of theories.

A theory in a logic L is a set a of formulas which is

� Closed under conjunction; if A 2 a and B 2 a then A ^B 2 a.

� Closed under entailment; if A 2 a and A ` B then B 2 a.

A theory a is said to be non-trivial if > 2 a and ? 62 a. A theory is said to

be prime if whenever A _B 2 a then either A 2 a or B 2 a.

Given a logic L, the corresponding canonical frame FL is given as follows.

Its set of points U
`
is the set of all non-trivial prime theories in L, and the

relations Ri and Cj are determined as follows.

� aRib if and only if whenever A 2 b, �iA 2 a.

� aCjb if and only if whenever A 2 b, �jA 62 a.

Clearly the resulting structure hU
`
;R1; : : : ; Rm;C1; : : : ; Cni is a frame. We

call it the canonical frame of L.

The interesting work is done in showing that there is a model on a canon-

ical frame satisfying M; a j= A if and only if A 2 a. The model ML on FL
given by setting V

ML
(p) = fa : p 2 ag.

Theorem 2. For any logic `, and any prime theory a, A 2 a if and only if

ML; a j= A.

To prove this, it is helpful to make use of the Pair Extension Lemma due

to Meyer, Dunn and Leblanc [8] and independently, Gabbay [6]. For that

we need the de�nition of a special kind of pair of sets of sentences. Relative

to a background logic L, hb; ci is said to be a pair if b and c are sets of

formulae. The pair hb; ci is said to be L-exclusive if for no B1; : : : ; Bk 2 b

and no C1; : : : ; Cl 2 c do we have B1 ^ � � � ^ Bk ` C1 _ � � � _ Cl. The pair

hb; ci is said to be exhaustive if b [ c = Lm;n. Finally, a pair hb0; c0i extends

hb; ci just when b � b0 and c � c0.

Lemma 3. For any logic ` extending `Km;n
If hb; ci is a L-exclusive pair,

then there is an exhaustive L-exclusive pair hb0; c0i extending hb; ci.

Proof. We must use the countability of the language Lm;n (or equiva-

lently, the axiom of choice to well order the language if it is not countable).
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Take an enumeration D1;D2; : : : of the language, and de�ne hbi; cii as fol-

lows: hb0; c0i = hb; ci, and for any i, hbi+1; ci+1i = hbi [ fDi+1g; cii if this is

`-exclusive, or hbi; ci [ fDi+1gi otherwise.

We show that each hbi; cii is L-exclusive. If one isn't, take the �rst

such that isn't; say hbj+1; cj+1i. (By hypothesis, hb0; c0i is L-exclusive.)

This can only fail to be L-exclusive if we have some B1; : : : ; Bk 2 bj and

C1; : : : ; Cl 2 cj where both

B1^� � �^Bk^Dj+1 ` C1_� � �_Cl and B1^� � �^Bk ` C1_� � �_Cl_Dj+1

But by distributive lattice properties, this gives us B1 ^ � � � ^ Bk `

C1 _ � � � _ Cl, contradicting the L-exclusiveness of hbj ; cji. So, each hbi; cii

must be L-exclusive, and hence, so must hb0; c0i = h
S
i bi;

S
i cii, which is ex-

haustive, and extends hb; ci as desired.

The pair-extension lemma is important for us, because of the following

result.

Lemma 4. If hb; ci is an L-exclusive, exhaustive pair, then b is a prime the-

ory.

Proof. Take A;B 2 b. Clearly A ^B 2 b, because A ^B ` A ^B, so

we cannot have A ^B 2 c. Take A 2 b, and A ` B. Clearly we cannot have

B 2 c, so we must have B 2 a. Finally, take A _ B 2 b. If neither A nor

B were in b, they would both be in c, violating the L-exlcusiveness of hb; ci,

since A _B ` A _B.

Now we can prove our completeness theorem.

Proof. To show that ML; a j= A if and only if A 2 a, we proceed by

induction on the construction of A. The result holds by de�nition in the base

case, and trivially for the lattice connectives ?, >, ^ and _ (since each a is a

non-trivial prime theory). Consider the cases for possibilities and negations.

First for possibilities: ML; a j= �iA if and only if there is some b where

aRiB and A 2 b (by induction hypothesis). Clearly if there is such a b, then

we must have �iA 2 a, by the de�nition of Ri. To show that if �iA 2 a

then there is a complying b where A 2 b and aRib, we proceed as follows.

Set b = fB : A ` Bg. It is clear that this is a theory. It is non-empty

(since A 2 b) and non-trivial (? 62 b, because if A ` ?, then �iA ` �i?, so

�i? 2 a, but �i? ` ? would give ? 2 a, contradicting the non-triviality of

a). But it may not be prime. To `beef' b up to a prime theory, note that

where c = fC : �iC 62 ag, hb; ci is a L-exclusive pair. To see this, note �rst
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that c is closed under disjunction. If �iC1;�iC2 62 a, then �i(C1 _ C2) 62 a

too. So, for all B1; : : : ; Bk 2 b and C1; : : : ; Cl 2 c, B1^� � �^Bk ` C1_� � �_Cl

only when there is some C 2 c where A ` C. But this means �iA ` �iC,

giving �iC 2 a, contradicting C 2 c. So, hb; ci must be L-exclusive.

By the pair extension lemma, we must have a L-exclusive pair hb0; c0i

extending hb; ci. This ensures that b0 is a non-trivial prime theory. And

furthermore, aRib
0, since whenever �iA 2 b0, we must have A 2 a, because

�iA 62 c. This ensures that if �iA 2 a, then there is a b0 where aRib
0 and

A 2 b0, establishing the induction case for possibilities.

The case for negation is similar. We have, by hypothesis, that ML; a j=

�jA if and only if for every b where aCjb, A 62 b. Clearly if �jA 2 a then for

any b where aCjb we have A 62 b, by the de�nition of Cj. The interest is in

the other direction. If �jA 62 a, we want to �nd a b where aCjb, and A 2 b.

We start as before, with b = fB : A ` Bg a non-trivial theory satisfying

our conditions. We note that with c = fC : �jC 2 ag, hb; ci is L-exclusive,

and this gives us an exclusive hb0; c0i extending hb; ci. This makes b0 a prime

theory (still non-trivial, as ? 2 c0, since > ` �j?, and > 2 a) and aCjb
0 by

the construction of c. This completes the proof.

From this result it follows that A `Km;n
B if and only if A `

M
B, where

M is the canonical model for Km;n. But clearly, A `
M

B if A `
F
B (where

F is the canonical frame), if A `
F
B for all frames F . But if A `

F
B for all

frames F , we know that A `Km;n
B, since the logic of any frame is at least

the logic Km;n. So, each of the following are equivalent.

� A `Km;n
B

� A `
M

B, where M is the canonical model for Km;n

� A `
F
B, where F is the canonical frame for Km;n

� A `
F
B for every frame F

We will be interested in a number of logics extending the basic logic Km;n.

2.4 Correspondence

Consider any model M in which > `
M

�i>. This happens only when for

every point x, there's some point y where xRiy. In this case, the accesibility

relation Ri is said to be directed. Conversely, if this is the case in the model

M, then we must have > `
M

�i>. So, the deduction > ` �i> corresponds

to the condition that Ri is directed.
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Similarly, if �j> `
M
>, then Cj must be directed, and conversely, if Cj

is directed in a model M, then �j> `
M
>.

These two results are special, because they relate deductions to condi-

tions which must hold in all models which validate those deductions. Very

few conditions are like that. To see an example, consider

�ip ^ �iq ` �i(p ^ q)

If this holds in a model M , we must have for every point x, x j= �ip ^ �iq,

only when x j= �i(p^ q). This might happen because x 6j= �ip^�iq. It may

tell us nothing about Ri at all. This is not the case with frames. We will see

that for any frame F , �ip^�iq `F �i(p^ q) if and only if the frame is single

alternative in Ri. That is, if and only if for every x, if xRiy and xRiz, then

y = z. To see this, note that if x j= �ip^�iq and x 6j= �i(p^q) we must have

y; z where xRiy and xRiz, y j= p, z j= q, and in addition, y 6= z. So clearly,

if F is single alternative in Ri, then �ip^ �iq `F �i(p^ q). Conversely, if F

is not single aternative in Ri, then for some x; y; z we have xRiy, xRiz and

x 6= z. Then construct a model in which V (p) = fyg, V (q) = fzg, and it

follows that x j= �ip ^ �iq but x 6j= �i(p ^ q), as desired.

Similarly, we can show that �j(p ^ q) `
F
�jp _ �jq if and only if F is

single alternative in Cj.

In the classical case, if L were a logic satisfying �ip ^ �iq ` �i(p ^ q),

then the canonical frame would also be single alternative. We would argue

that if aRib and aRic, and b 6= c, then there is some A where A 2 b,

and �A 2 c (using boolean negation). This means that �iA ^ �i�A 2 a,

giving �i(A ^�A) 2 a, by the single alternative rule. This is impossible, as

�i(A ^ �A) ` ?, giving ? 2 A which we know is not true.

Without boolean negation in our language we cannot reason in this way.

In fact, there will be many failures of the single alternative condition in our

canonical frames. This is because if aRib, then aRib
0 for any b0 � b. So all

we must do to make the single alternative condition fail is to cut down our

theories to strictly smaller theories.

However, all is not lost. Given our canonical frame F , for a logic L

with a possiblity satisfying single alternative, we can de�ne a new frame

F 0 which does satisfy single alternative, and in which there is a model M0

satisfying M0; a j= A if and only if a 2 A. The construction is quite simple.

Firstly, in the canonical frame F , de�ne x� as
S
y:xRy y, if there is some y

where xRy. We will show that x� is a prime theory, satisfying xRx�. That

xRx� is simple. If A 2 x� then A 2 y for some y where xRy, and hence,

�A 2 x as desired. That x� is closed under entailment, prime and non-trivial

is immediate from its construction. That it is closed under conjunction is
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given by the single alternative axiom. Take A;B 2 x�, so A 2 y for some y

where xRy, and B 2 z for some z where xRz. This means that �A 2 x and

�B 2 x, giving �A^�B 2 x and hence �(A^B) 2 x, which ensures that for

some w where xRw, A ^ B 2 w; which in turn ensures that A ^ B 2 x� as

desired. It follows that if we reduce Ri to satisfy xRiy if and only if y = x�,

we have the reduced canonical frame. A similar construction helps us de�ne

x� if � satis�es the single alternative axiom. We de�ne x� as the union

of all of the theory y C-compatible with x. The set x� is clearly prime,

non-trivial and closed under consequence. The only interesting detail is its

closure under conjunction. But the single alternative rule �(p^q) ` �p_�q

sees to that.

Let the logic OAm;n (OA for `one alternative') be the smallest logic

extending Km;n with the addition of > ` �i> and �ip ^ �iq ` �i(p ^ q) for

each i together with �j> ` ? and �j(p^q) ` �jp_�jq for each j. We then

have the following result, where we call a relation functional i� it is single

alternative and directed.

Theorem 5. A `OAm;n
B if and only if A `

F
B in each frame F where

each accessibility relation is functional.

There is something interesting about frames in which each accessibility re-

lation is functional. (From now we will call those functional frames.) We'll

write the function associated each accessibility relation Ri or Cj as ri and

cj . In other words, ri(x) is the y such that xRiy and cj(x) is the y such that

Cjy. So, for each frame F there is a corresponding semigroup S
F
, generated

by the functions ri and cj , under composition. These functions together

determine the behaviour of every modality in the language; not only the

primitive ones. For example, x j= �1�2p if and only if c2(r1(x)) 6j= p. This

fact will become useful later. Note too that the semigroup S
F
correspond-

ing to a frame is (isomorphic) to a quotient semigroup of the free semigroup

Sm+n on m + n generators. (It is generated by m + n generators, and we

know that every semigroup so generated is a quotient of Sm+n.)

3. Undecidability

To extract an undecidability result from what we have so far, we can use the

fact that the word problem for �nitely presented semigroups is in general,

unsolvable. In other words, for a given �nitely presented semigroup S =

hx1; : : : ; xn j eq1; : : : ; eqli where each eqj is an equation between words made

up of the generators xi, the problem of determining whether an arbitrary

given equation eq is true is not solvable. This is equivalent to the problem of
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determining whether eq is true in every semigroup generated by x1; : : : ; xn
and satisfying the equations eq1; : : : ; eql. We can transform this problem into

a problem concerning logics extendingOAm;n in a simple way. First, we need

to translate semigroup equations into sequents. For this, we associate with

every word w made from the alphabet r1; : : : ; rm, c1; : : : ; cn a modality hwi

as follows. Firstly, hrii = �i and hcji = �j . Then hw1w2i = hw1ihw2i. Given

a word w or a modality hwi we take its character to be positive if there is

an even number of cjs in w, and negative if there is an odd number of cjs

in w. It is simple to show that hwi is a possibility if w is positive, and a

negation if w is negative. Note too that in a given one-alternative modelM,

M; x j= hwiA if and only if M; w(x) j= A (if w is positive) or M; w(x) 6j= A

(if w is negative), where we interpret w as a function of points in the frame

in the obvious way.

We can tie together equations in the language of words on the elements

ri and cj together with sequents in the logic in a simple way.

Lemma 6. Given a one-alternative frame F , the semigroup over the frame

S
F

satis�es the equation w1 = w2 if and only if

� hw1ip `F hw2ip; if w1 and w2 have the same character.

� hw1ip ^ hw2ip `F ?; if w1 and w2 have di�erent character.

We call the condition corresponding to the equation pw1 = w2q the condition

corresponding to w1 = w2, and we sometimes use `[w1 = w2]' as a shorthand

for it. Conditions of this form are called equational conditions. We will call

the equation pw1 = w2q balanced if w1 and w2 have the same character, and

unbalanced otherwise.

Proof. The proof is quite simple. First, suppose w1 and w2 have the

same character. Then if S
F
satis�es w1 = w2, then whenever M; x j= hw1ip

we must have M; w1(x) j=? p (where j=? is one of j= and 6j= depending

on the character of w1) and hence M; w2(x) j=? p, giving M; x j= hw2ip

since w1 and w2 have the same character. Conversely, ifM; x j= hw1ip gives

M; x j= hw2ip we must have w1(x) = w2(x) always, since we could otherwise

construct a model in which M; x j= hw1ip and M; x 6j= hw2ip.

The argument for the case where w1 and w2 have di�erent character is

quite similar. Without loss of generality, suppose w1 is positive and w2 nega-

tive. Firstly, suppose w1 = w2 in SF . We must haveM; x j= hw1ip^hw2ip if

and only ifM; w1(x) j= p andM; w2(x) 6j= p. This is impossible, if w1 = w2

in S
F
. So, we must have hw1ip^hw2ip `F ? as desired. Conversely, suppose

we never have M; x j= hw1ip and M; x j= hw2ip. If w1 6= w2 in SF we must

have some y where w1(y) 6= w2(y). Let M be a model in which p is true
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only at w1(y). This would give M; y j= hw1ip (since M; w1(y) j= p) and

M; y j= hw2ip (as M; w2(y) 6j= p) contradicting our hypothesis.

We will call any logic extending OAm;n with a family of conditions

[wi1 = wi2] a semigroup logic. Clearly for any �nitely generated semigroup

there is a corresponding semigroup logic. (There is actually more than one

corresponding logic, because you have a choice of whether each generator is

modelled by a possibility or a negation.) Given this we have the following

result.

Theorem 7. For any semigroup logic Lm;n with a collection [wi1 = wi2]

of equational conditions, A `Lm;n
B if and only if A `

F
B for every one-

alternative frame satisfying the equations wi1 = wi2.

This has as a simple corollary, our undecidability result.

Corollary 8. There are undecidable �nitely axiomatised semigroup logics

entending OAm;n, for each m;n where m+ n � 2.

Proof. Let S = hr1; : : : ; rm; c1; : : : ; cn j eq1; : : : ; eqli be a �nitely pre-

sented undecidable semigroup. (Such exist for every m+ n � 2). Consider

the logic Lm;n extending OAm;n with the addition of the axioms [eqi] for

each i = 1; : : : ; l.

We know that the semigroup S
F
corresponding to a frame F for the logic

Lm;n must satisfy each equation eqi. We also know that for any semigroup S 0

generated by m+ n generators satisfying the equations eqi gives us a frame

F
S

0 for the logic Lm;n. So, the logic Lm;n neatly characterises the class of

semigroups on m+ n generators satisfying our equations.

Take an equation eq of words in the ri and cjs. It holds in the semi-

group S if and only if it holds in each semigroup corresponding to a frame

in which the corresponding conditions [eqi] are valid. But this is equiva-

lent to [eqi] holding in the logic Lm;n. So, having a decision procedure for

`Lm;n
su�ces for a decision procedure for the word problem for S. As there

is no such procedure for S, we have no decision procedure for `Lm;n
either.

Let's take stock of what we have seen so far. This last result shows us how

to construct an undecidable logic from a semigroup with undecidable word

problem. The process goes as follows: given a �nitely presented semigroup

with generators x1 to xk, you decide which of the generators you wish to pair

with possibilities and which with negations. They could all be possibilities,

or all negations, if you like. However you choose, you will havem possibilities

and n negations. So, your target logic will be an extension of OAm;n. Then,
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for each of the equations eql in the semigroup presentation, you get the

corresponding axiom [eql]. The logic extending OAm;n with each axiom

[eql] will then be undecidable. Deciding [w = w0] in the logic is equivalent

to deciding pw = w0q in the semigroup.

It is quite simple to prove that there is an exact equivalence between

di�culty of deciding the semigroup and deciding the logic. Having at hand

a decision procedure for the semigroup gives us a decision procedure for

the logic in a rather simple fashion. Kracht [7] has one method, by normal

forming sentences in the logic. Another, more directly suited to our purposes,

is a simple tableaux method. To decide A ` B in our logic, start a tableaux

with A : 0 and B : 0 at the root. The 0 indicates that we are at the root point

in a model, and the overline indicates that B is false at 0 (while A is true)

| this is a signed, labelled tableau. We employ the usual tableaux rules

for conjunction, disjunction, ? and >. For modalities, when we encounter

hwiA : x, we enter A : wx where w is positive, and A : wx where w is

negative. Similar rules apply for hwiA. We let w0 reduce to w, and we take

a branch to close just when it features either ? : w or > : w for some w,

or A : w and A : w0 where w = w0 in our semigroup. It is clear that if

the tableau of A ` B has an open branch then we can construct a model

invalidating A ` B. If the tableau closes, then A ` B must be provable. So,

deciding the semigroup (having an oracle deciding each pw = w0q) gives us

a decision procedure for the logic.

That completes our discussion of one level of combination, considering

the weaving together of possibilities and negation, and the expressive power

they give us. Now we will see what happens when we combinine these logics

with Heyting's calculus J.

4. Intuitionistic implication and Combining frames

The modal logics we have been studying are all rather inexpressive. We have

no way of forming conditionals. Metatheoretic statements (like `A ` B',

telling us that B follows from A) cannot be expressed in the language Lm;n

itself. There are a number of ways of remedying this de�ciency. Firstly,

we can add boolean negation, and then the material `conditional' will sup-

port a deduction theorem (�; A ` B if and only if � ` �A _ B). But as I

have mentioned, there are uses for logics in which boolean negation is not

present. More plausible for our own purposes is the addition of an intuition-

istic conditional. For those interested in intuitionnistic logic this move needs

no justi�cation. For those interested in substructural logics a few words are

needed. As I have argued elsewhere [10] the intuitionistic conditional is at
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home in substructural settings. Adding it is always a conservative extension

of any traditional substructural logic (provided it has a distributive lattice

^, _, > and ? fragment like that we've been discussing). Furthermore,

the moves we make in pasting together intuitionistic logic and modal logics

will have analagous moves in the substructural setting. So, with those re-

marks out of the way, let's consider where the addition of the intuitionistic

conditional leads us.

Firstly we must decide how we are to combine the intuitionistic and

modal logics. Given a modal logic M of the sort we have been discussing,

is there a logic JM, in the language L�m;n (extending Lm;n by adding the

intuitionistic conditional) which conservatively extends J and which con-

servatively extends M. In other words, can we combine J and M, without

distorting their underlying structure. This is not obviously a�rmitive. A

single-alternative negation like those present inM doesn't feature in J, and

perhaps adding one might lead to some kind of collapse in the intuitionistic

structure. Let's start the investigation with a de�nition. We'll take, for any

logic M, the logic JM to be the smallest relation ` on the language L�m;n

which extends the consequence relations in J and inM, and is closed under

uniform substitution.

To do any work with logics like JM it is helpful to consider their models

and frames. And this is not completely trivial. Clearly any frame for a

logic like JM will be of the form hU ;�;R1; : : : ; Rm;C1; : : : ; Cni, where the

Ri and Cj are as before, and � is a partial order on U for modelling the

intuitionistic conditional. Models, however, add an extra subtlety. For any

evaluation V
M

we must be careful that it satisfy the heredity condition:

For all p, if x 2 V
M
(p) and x � y then y 2 V

M
(p) too.

This is necessary if � is to model informational inclusion on U . Then we can

de�ne j= as a relation between points and formulae in the inductive manner

as before, extending the de�nition with the usual clause for �

� M; x j= A � B if and only if for each y where x � y if M; y j= A then

M; y j= B.

However we will not be able to prove the general property of general monotonic-

ity (if x j= A and y � x then y j= A too) unless there are conditions relating

the Ris and Cjs to �. The usual inductive proof fails when you get to

the modalities. In this way, the simple-minded combination of frame condi-

tions does not capture the simple-minded combination of logics. To capture

the combined logic we need do some more work. And the least amount of

work possible are the following minimal conditions, the �rst of which was

originally due to Bo�zi�c and Do�sen [2].
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� Whenever a � b and aRic there is some d where c � d and bRid.

� Whenever a � b and aCjc there is some d where c � d and bCid.

Note that in the second of these conditions the ordering relation is twisted.

This re
ects the fact that negation is order inverting. The conditions are

much more memorable when displayed diagrammatically.

Ri Ri Cj Cj

a

c

b

d

a

c

b

d
? ?

- �

. . . . . . . . .- . . . . . . . . .-

.........
?

.........
?

� �

��

Once we specify that any modal intuitionistic frame must satisfy these

conditions, we can show that modal formulae are preserved upward in frames.

The condition relating � to Ri is what we need to show that if a j= �iA

and a � b then b j= �iA too. The condition relating � to Cj ensures that if

a 6j= �jA and b � a then b 6j= �jA also.

It's not our place here to greatly further the study of intuitionistic modal

logics. Rather, we'll simply consider the properties of JM where M is a

semigroup logic. Speci�cally, we'll concern ourselves with two facts. First,

JM is a conservative extension of M (that's trivial). Second, JM is a

conservative extension of J (that's not so completely trivial).

First, we'll do away with the trivial facts. It is simple to see the following:

Theorem 9. For any semigroup logic M with a corresponding semigroup

S = hr1; : : : ; rm; c1; : : : ; cnjeq1; : : : ; eqli, JM is sound and complete with re-

spect to the class of intuitionistic frames F , such in which the modal ac-

cessibility relations are functional, and such that S
F

satis�es each equation

eqi.

Proof. Soundness is obvious. Any frame satisfying these conditions is

a frame for J, and it is a frame for M. For completeness we need just show

that the canonical frame is an intuitionistic modal frame, for we have already

seen that it satis�es the modal conditions. In the frame we use � to do work

for the intuitionistic relation �. The standard proof shows that this gets the

condition for the intuitionistic conditional right. The only interesting work

involves showing that the relationship between � and Ri and Cj is satis�ed.
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Recall that with single-alternative modalities we de�ne R0i and C 0j in the

single-alternative canonical frame as follows: we set x�i =
S
xRiy

y (where

Ri is de�ned as usual as a relationship between theories. Clearly we have

that if x � x0 then if xRiy we have x0Riy too (look back to the de�nition

if you can't see this immediately). So, if x � x0 then x�i � x0�i . Similarly,

we can show that x�j � x0�j . As we set xRiy if and only if y = x�i and

xCjy if and only if y = x�j we have our result. The canonical frame is an

intuitionistic modal frame.

So, to prove our �rst fact (that JM conservatively extends M) we need

only show that anything falsi�able in an M-frame is falsi�able in a JM-

frame. But that's trivial. Take anM frame, and on it, set � to be identity.

That's your required JM-frame.

Now it is trickier to establish the result in the other direction. We need

to show that for any thing falsi�able in a J-frame, there's a corresponding

JM-frame in which it can be falsi�ed. IfM is made up only of possibilities,

we can simply say that on the J frame we take each accessibility relation

Ri to be identity, ensuring both that the relations between each Ri and �

hold, and that each semigroup equation holds (well, they all reduce to saying

id = id). So, we'd be home. Proof theoretically this is just like saying: take

any proof of anything you might suspect to be intuitionistically underivable.

Replace all formulas of the form �iA by A. The result is still a proof. (Check

all of the rules involving positive modalities. Squint so that you can't see

the �is. The results are valid under this `reading'.) So, what we suspected

as being intuitionistically underivable isn't.

But life is not that simple in the presence of negations. And nor ought

we to have expected it to be, because our negations satisfy things like `

�(A^B) � �A_�B, �> ` ? and no amount of squinting will make both

of those valid at once. And there's good reason for that: some extensions

of J with respect to single alternative negations aren't conservative at all.

The obvious example is boolean negation. If we require that � be single

alternative, and that it satisfy �A ^A ` ?, then we know that the relation

C collapses to identity. Then if x � y we can argue that since yCy there

is some z where xCz and z � y. However, xCz tells us that z = x, and

hence that � is an equivalence relation: we have argued that if x � y then

y � x. So, J collapses to classical logic. (Proof theoretically we can argue

as follows: we have A ^�A ` ?. Hence �A ` A � ?, by residuation. Then

> ` A _ �A gives > ` A _ (A � ?), which is an intuitionistic undesirable.)

What assurance do we have that this doesn't occur in our semigroup

logics? One simple fact. We have de�ned our logics in terms of semigroups,
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and we can de�ne a model as follows. Take any J frame F , on a set U ,

and add a point u to U , making U+. On U+ we de�ne � as before, adding

that u � u (and u is unrelated to any element of U). Clearly � is still a

partial order. Now we de�ne each modality Ri and Ci, by specifying that

xRiy if and only if xCjy if and only if y = u. So what we have is that u is

the (only) modal alternative of any point in the original model. It is simple

to show that this de�nition satis�es the intuitionistic modal conditions. It

is almost as trivial to show that the resulting semigroup operations on the

frame satisfy the semigroup equations. They must, because the semigroup

operations are all identical: They are the constant function f : U+ ! fug.

Clearly, then, under interpretation, each semigroup equation is satis�ed.

Under composition, modalities collapse. Not completely: ��A is not the

same as ��A, for the �rst is positive, and the other negative. However,

��A and �A are equivalent in this frame, as are �A and ��A.

In this new frame F+ we can invalidate anything which doesn't hold in F

by taking the same evaluation into U and evaluating atomic formulae at u in

any way you like. This is still a countermodel for the intuitionistic formula,

as u is `intuitionistically isolated' from U . So, we have proved the following.

Theorem 10. For any semigroup logic M, JM is a conservative extension

of J.

This result is not easily generalised. If we add the `identity' modality h�i,

considering monoid actions on the frame,3 then we have the di�culties we

have sketched above. This di�culty is present if we allow inverses to our

modalities, hence giving us group actions on frames. Assuming that the

equations in our monoid or group are balanced however, we have a conserv-

ative extension. Recall that pw1 = w2q is balanced if and only if w1 and w2

have the same character. We assume that � is positive (if it were negative

we'd have boolean negation, and that's giving up before we start) and that

w and w�1 have the same character (if present). That means that when we

use ri for a possibility, we use r�1i for a possibility too, and similarly for

cj , c
�1

j and negations. We assume this because otherwise, the presence of

cjc
�1

j = � would give us unbalanced equations at the outset.

In any monoid (or group) with presentation hr1; : : : ; rm; c1; : : : ; cn;

eq1; : : : ; eqli in which all equations eqi are balanced, any other equations

which hold in that structure must also be balanced. Note that these equa-

tions may be monoid equations (involving the identity �) or group equations

(involving inverses). In this structure, because every equation is balanced we

can be assured that the de�nition of elements being positive or negative is

3Monoids are semigroups with an identity. We have �x = x� = x for every element x.
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consistent. An element w is positive when pw = �q is balanced, and negative,

when that equation is unbalanced.

So, we can show that if the modal logic M has only balanced axioms,

then JM is a conservative extension of J. We need just for any J-frame F

to construct a JM-frame in which F is a subframe. But this is not di�cult.

Take the monoidM = hr1; : : : ; rm; c1; : : : ; cn; eq1; : : : ; eqli, and de�neMF as

follows. Its elements are ordered pairs hx;wi of F elements andM elements.

We set hx;wiRihy; vi just when x = y and wRiv. Similarly, hx;wiCihy; vi

just when x = y and wCiv. The trick is with �. We de�ne hx;wi � hy; vi

just when x � y and w = v when w is positive, and when x � y and w = v

when w is negative.

Before showing that this is truly a JM-frame, we will pause to give the

reader more of and idea of what's actually going on. What we have done is

taken a modal frame made from the monoid of the logic itself. Accessibility

in this original frame is de�ned as follows: xRiy if and only if rix = y and

xCjy if and only if cjx = y. The monoid (group) of actions of a monoid (or

group) upon itself is just itself, so this is a model for our target modal logic.

We replace each monoid element with the J-frame F , keeping intuitionistic

accessibility internal to each copy of F , except that we invert the frame

at negative points. Modal accessibility on this extended structure simply

moves you between `clusters' just as you would in the original modal frame,

and it keeps you at the same point in the intuitionistic frame. Intuitionistic

accessibility is as before, but inverted at negative points. The original frame

is present at � (at least) because that point is positive.

Now to verify that this is a JM-frame. Clearly � is still a partial order,

since the disjoint union of partial orders is a partial order, and the converse

of a partial order is a partial order. The monoid (group) of actions on MF

is simply M, as it moves intuitionistic structures as en masse. We have

only to prove that it satis�es the intuitionistic modal conditions. Suppose

that hx;wiRihy; vi, and that hx;wi � hx0; w0i. This means that riw = v

and x = y, that w = w0, and that if w is positive, x � x0, and if w is

negative, x0 � x. Consider the point hx0; vi. We have that hx0; w0iRihx
0; vi,

since x0 = x0, and riw
0 = riw = v. Similarly, hy; vi � hx0; vi, because if w

is positive, so is v (since ri is positive and riw = v) so y = x � x0 gives us

the result. Alternatively, if w is negative so is v, so y = x � x0 gives us the

result.

Similar reasoning works with Cj. If hx;wiCjhy; vi and hx;wi � hx0; w0i,

we must have x = y, cjw = v, w = w0 and x � x0 if w is positive or

x � x0 if w is negative. In either case hx0; vi completes the square. We have

hy; vi � hx0; vi, as y = x � x0 when w is positive, and y = x � x0 when w is
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negative. If w is positive then v = cjw is negative, so we have x0 � y as we

wanted, and if w is negative, then v is positive, and x0 � y obtains, as we

wanted. Finally, hx0; w0iCjhx
0; vi as x0 = x0 and cjw

0 = cjw = v.

So, we have the following extended result.

Theorem 11. For any modal logic M de�ned in terms of balanced equa-

tions, the logic JM conservatively extends J.

That completes our small tour of combining logics in a non-classical setting.

The results here generalise to other logics with a frame semantics, such as

relevant logics. But I leave that generalisation for another time, and another

place.4
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