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CHAPTER I 

INTRODUCTION 

I started programming computers when I was 13.  As soon as I had mastered the 

subtleties of programming BASIC on a Radio Shack TRS-80, I started working on the 

serious problems of artificial intelligence, which for a 13-year old meant programming 

games.  I didn't care about mental representations or the frame problem at the time; I just 

wanted to write a really good game that would not bore me too quickly.  After I created my 

first virtual world, which consisted of a few obstacles placed in a torus-shaped environment 

resulting from wrapping the ends of the computer screen, I started programming some basic 

pursuit and evasion routines.  I soon found that I could always outsmart my routines, and I 

was quickly becoming bored. 

I was also lazy.  Yet Larry Wall, the inventor of the Perl programming language, 

claims that laziness is one of three programmer’s virtues along with impatience and hubris 

(Wall, Christiansen, & Schwartz, 1996, p. 609).  The idea behind laziness as a virtue is that a 

good programmer will go to great lengths to write a reusable routine so that he will not have 

to code the same basic routine again and again, thus resulting in an overall time savings.  My 

laziness also extended to expending large amounts of time thinking about the possibility of 

the kind of artificial intelligence I was hoping to achieve rather than spending the time doing 

actual coding.  After all, it would not be worth the effort to develop artificial intelligence 

routines if they were not possible.  (I had not yet acquired the programmer’s virtue of hubris.)  

As I traced through the requirements in my mind and planned how it would have to be done, 
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I began to realize that there was nothing inherently impossible about such an artificial 

intelligence existing, but it seemed impossible that anyone could actually do it, given the 

complexity of the task.  It would require a great many nested subroutines at such a depth that 

no one could keep in mind what each of the levels was doing.  For me it was a question of 

human limitations, not machine or algorithmic limitations.  So I concluded that no one would 

succeed in creating artificial intelligence algorithmically, and I proceeded to other projects.  

Of course, it was very likely that my laziness itself influenced my conclusions.  If artificial 

intelligence were possible in principle, it would certainly require a lot of work to achieve, so 

perhaps the human limitations that I predicted were a projection of my own laziness on the 

rest of humanity. 

Weak and Strong Artificial Intelligence 

Other programmers were not so lazy.  Their work has yielded many practical results, 

such as Optical Character Recognition or OCR for converting scanned images of text pages 

into text.  Handwriting recognition, speech recognition, and text-to-speech routines are also 

products of artificial intelligence research.  In the realm of games, the current range of real-

time strategy games and first person adventure games wildly exceed my own youthful hopes. 

Yet do any of these achievements really represent artificial intelligence?  John 

Searle’s distinction between weak and strong artificial intelligence is helpful in evaluating 

these results: 

According to weak AI, the principal value of the computer in the study of the 
mind is that it gives us a very powerful tool. . . .  But according to strong AI, the 
computer is not merely a tool in the study of the mind; rather the appropriately 
programmed computer really is a mind, in the sense that computers given the right 
programs can be literally said to understand and have other cognitive states. 
(1990, p. 67) 
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For strong artificial intelligence, intelligence lies within the computer program.  “The 

programs are themselves the explanations” (p. 67) of cognitive states.  What is significant 

about the program is not the language in which it was written or the kind of machine on 

which it is run, but rather the syntactical relations between the elements within the program, 

which correspond directly to elements within naturally occurring cognitive states. 

Surely no one thinks that humans obey the same pursuit and evasion routines as 

computer opponents in computer games, which would be the claim of strong artificial 

intelligence in this case.  It might be claimed, though, that these routines do demonstrate 

weak artificial intelligence, since the way in which these routines succeed provides some 

insight into the way humans themselves behave.  Different behavior routines can be 

implemented and tested in the games, and the ones that do not succeed show that those 

routines represent poor models of human intelligence.  If the routines that do not succeed are 

poor models, then by contrast, the ones that do succeed must be good models. 

This argument seems to be a version of an argument from coincidence: If an artificial 

intelligence program produces intelligent behavior, it would be coincidence if the logic in the 

program were not at least part of human intelligence.  Since such a coincidence is unlikely, 

the routines must provide a tool for understanding human intelligence itself.  Of course, the 

weakness of this form of argument from coincidence is readily apparent, since it could just be 

a coincidence that the logical routine simulates human behavior, and this sort of coincidence 

may in fact be very likely. 

I will put aside such indirect arguments, whether there is any merit in them or not, 

since I find it a more interesting question whether artificial intelligence programmers can 

code human intelligence directly.  This question relates primarily to strong artificial 



 

 

4 

intelligence in which the claim would be that a particular program does in fact demonstrate 

intelligence, because it was coded based directly on how human intelligence works.  I will 

also refrain from a review of the various candidates for artificial intelligence, since I do not 

think that I can add anything pertinent to what has already been said (e.g., Dreyfus, 1997).  

Before I outline the main problem I will address in this thesis, I will mention two of the more 

prominent criticisms of strong artificial intelligence, namely those offered by Hubert Dreyfus 

and John Searle.  My own argumentative strategy will emerge in the context of these two 

criticisms. 

Two Objections to Strong Artificial Intelligence 

Forming his criticism against the theoretical background of Husserl, Heidegger, and 

Wittgenstein, Dreyfus notes that “[artificial intelligence] researchers have implicitly tried to 

treat the broadest context or background [of intelligence] as an object with its own set of 

preselected descriptive features” (1997, p. 179).  But this strategy treats the world as an 

object within intelligence whereas intelligence properly appears within the world, which 

determines what it means to be an intelligent creature.  Dreyfus’s central criticism of 

artificial intelligence is that any explicit representation of the world sufficient for intelligence 

will never be complete.  He cites Husserl’s later concession that such an analysis forms an 

“infinite task.”  “Husserl thinks of intelligence as a context-determined, goal-directed 

activity” (p. 160).  In order to create artificial intelligence, the programmer must uncover 

each context in order to code that context into a program.  Yet each context itself arises 

within a further context, so the analysis will never seem to end.  Eventually the analysis must 

fall back on the brute fact of the being of the intelligent creature, in which all contexts and 

goals are already present, which is something that cannot be formulated in a series of logical 
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instructions (p. 180).  Any attempt to formulate such instructions will always be incomplete 

in some critical way.  It does not help the situation that artificial intelligence researchers have 

attempted to reduce the world in which artificial intelligence appears to “micro-worlds” in 

which the relevant features of the world are restricted to a more manageable set (p. 146).  

The completeness of the task must ultimately encompass the being of the intelligent creature, 

which cannot be represented algorithmically within the creature’s own intelligence.  Rather, 

the being of the intelligent creature forms the basis of its intelligence, so any putative 

representation of that being within its intelligence would seem to be incomplete.  At the very 

least, if the being of a creature could form the basis for the intelligent representation of its 

being, that representation does not seem to include the being that includes that same 

representation.  This line of argument suggests Gödel’s Incompleteness Theorem, but 

Dreyfus’s argument is founded on the phenomenology of Husserl and Heidegger, rather than 

on the interplay of completeness and consistency within human intelligence.  The key point 

of Dreyfus’s objection is that all of the contexts that make intelligence possible can never be 

identified such that they can be formulated into algorithmic steps. 

Searle’s criticism stems from his notorious “Chinese Room” thought experiment 

(1990), in which he imagines that a person is placed in a sealed room with minimal 

communication with the outside world.  People outside the room send messages written in 

Chinese to the person inside, but that person does not understand any Chinese.  Searle then 

supposes that the process of understanding Chinese could be formulated into a set of 

manipulative rules, which are available to the person in the room.  When messages are sent 

into the room, the person uses the rules to formulate a response, which is sent to the people 

outside.  The person understands no Chinese, so these instructions are written in the person’s 
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native language, for example, English.  The responses are perfectly intelligent, such that the 

people outside are convinced that whatever is in the room understands Chinese.  Searle then 

asks whether there is really any understanding of Chinese in the responses.  The person in the 

room does not understand Chinese, and Searle argues that there is nothing else involved in 

the response that does.  The resulting criticism of artificial intelligence arising from this 

thought experiment is that a set of manipulative rules cannot represent true understanding of 

anything.  Even if the artificial intelligence program does convincingly replicate aspects of 

human intelligence, it cannot properly be said to understand what it is doing solely on the 

basis of the formal symbolic manipulation it performs in the execution of the program.  If the 

program participates in a Turing test, it doesn’t necessarily mean anything it says, since 

meaning cannot be coded into rules.  Rather, meaning requires a set of capacities that operate 

in the background by virtue of which any mental activity means anything (1983, pp. 141-159; 

1992, pp. 175-196).  The relations of mental representations are what Searle calls the 

‘Network’, which seems to have a structure capable of being coded into algorithms.  Such a 

Network is what artificial intelligence workers use in their attempts to code intelligence into 

a program.  However, the Network itself has meaning only with reference to a set of non-

representational basic capacities and practices, such as seeing or eating, which Searle calls 

the ‘Background’.  Searle claims that this Background itself is something that cannot be 

coded into rules (1992, p. 193). 

I will not examine these criticisms in great detail, but will only briefly compare them.  

First, both criticisms claim that strong artificial intelligence will never exist, whereas my lazy 

youthful analysis supposed that it could exist, but could never be created due to human 

limitations.  Dreyfus claims that artificial intelligence can never capture all of the relevant 
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aspects of the world in which it needs to act intelligently, whereas Searle argues that even if 

it does, such putative intelligence lacks meaning and therefore is not really intelligent.  

Second, both arguments link intelligence to a broader background, namely the world that 

intelligence must represent in Dreyfus’s argument, and the capacities that give intelligence 

meaning in Searle’s argument.  The issue is whether the background can be taken as an 

object such that it can be coded into artificial intelligence.  In Dreyfus’s argument, the 

attempt to do so will inevitably fall back on the basic question of being, which links all 

contexts and goals, and which cannot be formulated into rules.  Comparably, in Searle’s 

argument, the attempt to formulate the Background into rules will fail because those 

capacities and practices that form the Background are themselves not necessarily 

representational. 

Argumentative Strategy 

The question of the ability to take the background as an object relates to the 

philosophical principle of Intentionality, which is the feature of mental states that they are 

about something.  If I want a piece of bacon, my desire exhibits Intentionality in that it is 

about something, namely a piece of bacon.  Like Dreyfus and Searle, I think that the notion 

of Intentionality poses a problem for artificial intelligence.  Rather than focusing on the 

background that intelligence requires, I will focus on the foreground, not of any putative 

instance of artificial intelligence, but on the act of creating an artificial intelligence program.  

In this thesis, I adopt a more modest goal than Dreyfus, Searle, or even myself in my earlier 

youthful evaluation of artificial intelligence.  I will not argue whether artificial intelligence 

can ever be achieved, but will simply outline the specific problems that Intentionality raises 

for artificial intelligence in the very act of attempting to create an artificial intelligence 
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system, specifically from the programmer’s point of view.  Intentionality is a factor in 

artificial intelligence in two ways: (1) if the goal of artificial intelligence is achieved, then the 

resulting system should exhibit Intentionality, and (2) this result will be achieved by a 

programmer whose own Intentionality plays some role.  This thesis will examine the 

relationship of these two aspects of Intentionality in artificial intelligence.  The 

programmer’s point of view is the key factor, in my opinion, since the programmer is the 

agent whereby artificial intelligence is achieved or not.  The tone of this thesis is primarily 

skeptical, in that certain claims have been made concerning both strong artificial intelligence 

and connectionism, but the involvement of the Intentionality of the programmer seems to 

offer reasons for doubting these claims.  Perhaps these claims can ultimately be vindicated in 

an unmodified form, but first these doubts will need to be removed by eliminating the 

Intentionality of the programmer as a factor in the attribution of intrinsic Intentionality to the 

resulting artificial intelligence system. 

There are a number of issues within the philosophy of mind that can be raised with 

regard to artificial intelligence, such as consciousness or qualia, namely the subjective nature 

of conscious experience.  I will ignore the questions of whether artificial intelligence systems 

can be conscious, whether they can instantiate qualia, whether consciousness and qualia can 

be represented in artificial intelligence, or whether consciousness and qualia can emerge 

from artificial intelligence systems.  Rather, I will focus on the cognitive aspects of artificial 

intelligence.  While it is true that I am thereby ignoring the more interesting questions in the 

philosophy of mind as related to artificial intelligence, I think there is merit to pursuing my 

more modest goals as a prerequisite for an examination of these questions.  I think it is 

pointless to argue whether a tower should have a flag on top when it is questionable whether 
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the tower can even be built on the designated foundations.  Even if it is argued that 

consciousness is essential to Intentionality, that the tower is not a tower without the flag, then 

my preliminary investigations on Intentionality in artificial intelligence should provide 

groundwork for evaluating that claim. 

The form of artificial intelligence that I have been discussing so far assumes that 

intelligence can be coded into a set of rules or algorithms and is therefore strong artificial 

intelligence.  I will follow the traditional designation and refer to this form as classical 

artificial intelligence.  A second form of artificial intelligence seeks not to model the acts of 

intelligence themselves, but rather seeks to model an artificial mind in which intelligence will 

arise.  This form is known as connectionism, since it posits that mental representations arise 

in the connections between nodes in a cognitive system, such as neurons in the brain.  My 

primary concern is with connectionism, not only since it is now more actively pursued than 

classical artificial intelligence, but also since my own research interests lie in connectionism, 

and therefore I am using this thesis as a prolegomena to my future research.  Yet I will still 

discuss the problems of Intentionality for classical artificial intelligence, primarily to put the 

problems for connectionism into stronger contrast. 

In Chapter II, I discuss the nature of Intentionality and the traditional philosophical 

problems that have been raised with regard to Intentionality.  In Chapter III, I outline four 

requirements for classical artificial intelligence related to Intentionality, and discuss the 

degree to which classical artificial intelligence can meet these requirements.  I offer an 

overview of connectionism in Chapter IV, its relation to neural networks, and the forms of 

neural networks that could comprise a connectionist system.  Chapter V contains the heart of 

my argument, identifying the aspects of Intentionality that cause problems for the 
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connectionist programmer comparable to the problems for the classical artificial intelligence 

programmer discussed in Chapter III.  Finally, I briefly outline what is essentially a research 

project in Chapter VI that attempts to overcome the problems of Intentionality. 
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CHAPTER II 

INTENTIONALITY 

Intentionality is a technical philosophical concept meaning the feature of mental 

states that they are directed at something.  If I desire a piece of bacon, my desire is directed at 

a piece of bacon.  Intentionality can also be understood as mental states being about 

something, which is known as an Intentional object.  Thus my desire for a piece of bacon is 

about the piece of bacon.  It is difficult to imagine any sort of desire that is not about 

something.  To say that I just desire, but don’t desire something, is really to say that I am 

feeling a certain way, perhaps empty inside.  It does not properly express a desire, which is 

always a desire for something.  A number of mental states besides desires likewise exhibit 

Intentionality, for instance, beliefs, hopes, and wishes, all of which can be understood as 

Intentional states. 

Right away, I need to distinguish the concept of Intentionality from the common 

notion of intentions and from another technical philosophical concept, intensionality.  I will 

use John Searle’s useful convention of capitalizing the philosophical term, ‘Intentionality’ to 

distinguish it from the ordinary term ‘intentions’.  This convention will also help somewhat 

to distinguish Intentionality from intensionality, which otherwise would have been 

differentiated from each other only by a ‘t’ and an ‘s’ in their spellings. 

Intentions relate to volition.  If I intend to fry a pound of bacon, I am commonly 

understood to be making a conscious decision to fry that pound of bacon as opposed to 

tossing it raw into a blender or doing something completely different.  Thus intentions relate 
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to the will, whatever the will may be and whether that will is free or not.  Besides these 

interesting philosophical questions, intentions remain a recognizable sort of mental state, 

separate from desiring, hoping, or wishing.  I can desire a pound of fried bacon.  I can hope 

that a pound of bacon will be fried.  I can wish that a pound of fried bacon be in front of me.  

However, none of these mental states is the same as intending to fry a pound of bacon, 

which, while not entailing action on my part, at least implies my future action of frying 

bacon. 

The relationship between intentions and Intentionality, according to Searle, is that 

“intending to do something is just one kind of Intentionality among others” (1983, p. 3).  

Intentions therefore are directed at or are about something, namely the action that is intended.  

In the case of my intention to fry a pound of bacon, the Intentional object is the act of frying 

a pound of bacon.  Consequently, the common notion of intentions fits within the broader 

scope of Intentionality, at least with regard to the relationship to an Intentional object.  

Though it is a potential issue within artificial intelligence, the relationship of the intention to 

the eventual action itself that may or may not occur will not concern me here, since my 

concern is with the Intentionality of the programmer in creating artificial intelligence. 

The philosophical concept of intensionality is related to the Fregean distinction 

between sense and reference (Frege, 1997a), which corresponds to the notions of intension 

and extension, respectively.  The distinction likewise corresponds roughly to the ideas of 

connotation and denotation.  In analyzing the meaning of a term, such as ‘bacon’, the 

extension of the term is that to which the term refers, namely the bacon itself.  The intension 

of the term is the meaning of the term, which in the case of ‘bacon’ does not seem to offer 

much distinction between its extension or reference.  The contrast becomes clearer in 



 

 

13 

analyzing a phrase such as ‘slippery slices of porcine flesh’, which has the same extension as 

‘bacon’, namely the bacon itself.  However, the senses of the two are different, since ‘bacon’ 

is a fairly simple designator term, whereas ‘slippery slices of porcine flesh’ expounds on the 

meaning of bacon by explicitly referencing the source of the bacon, and adds a somewhat 

poetic description of the end result. 

Extensionality and intensionality are considered properties of statements.  A 

statement is extensional if its terms can be replaced by other terms with the same extension 

while maintaining the truth of the statement.  For example, “Mark fried a pound of bacon” is 

extensional, since its truth is preserved when replacing ‘bacon’ with ‘slippery slices of 

porcine flesh’.  However, the statement “Mark believes that bacon is edible” is not 

extensional, since the substitution does not necessarily preserve the truth of the statement, for 

example, if Mark did not know what ‘porcine flesh’ meant.  Such a statement exhibits 

intensionality. 

According to Searle, the only relation between intensionality and Intentionality is that 

some statements concerning Intentional states exhibit intensionality (1983, p. 24).  The 

notions themselves are different, though Intentionality seems to help explain the 

intensionality of statements that ascribe intentional states.  For my purposes, intensionality 

has no immediate bearing on artificial intelligence, since it is not clear that an artificial 

intelligence programmer must specifically create a system that is capable of generating 

intensional statements.  Rather, the statements resulting from an artificially intelligent system 

will usually exhibit intensionality or extensionality without any specific intention to produce 

that result. 
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Nature of Intentionality 

It seems somewhat odd and even annoying that there should be three terms so similar 

yet with such different meanings, but this is a concern only in philosophical circles where the 

two technical terms of Intentionality and intensionality appear.  The current usage of 

Intentionality derives from Franz Brentano, who considered Intentionality as a distinguishing 

feature of all mental phenomena from physical phenomena.  “Every mental phenomenon 

includes something as object within itself, although they do not all do so in the same way” 

(1973, p. 88).  On this view, if something is a mental state, then it must exhibit Intentionality. 

Searle disagrees that every mental state is Intentional, and he offers as an example the 

fact that “there are forms of elation, depression, and anxiety where one is simply elated, 

depressed, or anxious without being elated, depressed, or anxious about anything” (1983, 

p. 2).  However, mental states such as belief must be Intentional states, since I cannot simply 

be in a state of belief without believing something.  For Searle, “every Intentional state 

consists of an Intentional content in a psychological mode [italics in original]” (p. 12).  The 

psychological mode is believing, hoping, wishing, desiring, and so forth.  The Intentional 

content can either be an Intentional object such as bacon, to which my desire is directed, or 

an action such as frying bacon, to which my intention is directed, or a proposition such as 

that bacon is good, to which my belief is directed.  In the latter case, Searle insists on the 

distinction between the Intentional content and an Intentional object.  If I believe that bacon 

is good, the Intentional object of my belief is not the proposition that forms its content, but 

rather the bacon that is the subject of the proposition.  Desires or actions or propositions 

themselves may be taken as Intentional objects, as when I self-consciously think about what I 

am desiring, doing, or proposing.  But for Searle, in the case of beliefs, the proposition is 
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merely the content of the Intentional state, whereas the Intentional object is the subject of the 

proposition (pp. 18-19).  

I will generally follow Searle in his analysis of Intentionality at least as far as these 

foundational principles, though I do not necessarily endorse his further conclusions about 

Intentionality, language, and the mind1.  What is important for my discussion is simply that 

some mental states are directed to Intentional objects or content.  I intend to show that this 

feature presents an important problem for artificial intelligence. 

Problems of Intentionality 

Before I begin to outline this problem, by contrast I will briefly mention some of the 

traditional problems of Intentionality, without reviewing any of the proposed solutions.  First, 

there is a question concerning the ontological status of Intentional objects.  If I believe that I 

like bacon, the Intentional object of my belief, according to Searle, is myself, and so there 

does not seem to be any additional ontological problem of the status of that Intentional object 

above the ontological status of the self.  However, if I desire bacon, the Intentional object of 

that desire is bacon, and the ontology of that bacon becomes a question.  I don’t desire the 

universal form of bacon, unless I am a Platonist or otherwise a realist about universals who 

explicitly desires that universal form.  I desire some specific bacon that I will eat.  Yet the 

specific piece of bacon that I will eat is not always known to me at the time of my desire.  

Furthermore, my desire may never be satisfied, since it may pass without my ever having 

                                                
1 For example, I am undecided about Searle’s distinction between the content and the object in the 

Intentional state of belief that I just outlined.  Perhaps in the Intentional representation of Intentional states, this 
distinction can be made, but I have a deep suspicion concerning the ontology of Intentionality.  Perhaps the 
connectionist study of Intentionality could help decide such an issue.  Furthermore, though I am sympathetic to 
Searle’s view on the irreducibility of the first person ontology of consciousness, I take a more radical view on 
consciousness such that any conclusions about consciousness derived from his Chinese Room thought 
experiment can be undermined. 
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eaten any bacon.  If my desire had been satisfied, the bacon that ultimately satisfied my 

desire could be understood as the Intentional object of my desire; yet if my desire remains 

unsatisfied, the Intentional object of my desire remains undetermined.  In such a case, it 

becomes difficult to say exactly what the status of the bacon that I desire is, given that there 

is no particular bacon corresponding to my desire. The situation is worse with respect to 

Intentional objects that do not exist or are impossible.  If I want my tongue to be composed 

of bacon such that I taste bacon continually, the Intentional object of my desire is apparently 

impossible, since bacon lacks the taste sensors required for a human tongue, and even if it 

were possible to create a tongue from bacon (unfried, I assume), there is no reason to think 

that such a tongue would taste itself.  In such a case, the ontology of that Intentional object 

becomes a problem.  This problem does not directly concern me here, since it will remain a 

problem in artificial intelligence as it is in human intelligence. 

Second, there is question concerning the relationship of Intentional states to 

consciousness.  Are all Intentional states conscious, and does consciousness require 

Intentional states?  This is potentially an issue for artificial intelligence, if consciousness is 

necessary for intelligence.  However, I am considering consciousness to be an additional 

question on top of artificial intelligence.  If an artificial system is not considered intelligent 

only because it lacks consciousness, then what it does achieve without consciousness can be 

considered a form of intelligence that would be a significant accomplishment in its own right. 

Third, there is a question concerning the relationship of Intentionality to 

representation.  This is also a concern for artificial intelligence, particularly in evaluating the 

debate between classical artificial intelligence and connectionism.  The issue of 

representations is first whether there are internal representations, and second whether these 
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representations can themselves be formulated representationally.  In terms of Intentionality, 

the first issue seems to dredge up aspects of the ontological question of Intentional objects 

and asks whether internal representations can be dispensed with altogether in designing 

artificially intelligent systems.  The second issue concerns the implementation of 

Intentionality within an artificial system, whether it can be achieved using the algorithmic 

approach of classical artificial intelligence, or whether a connectionist system must be used.  

There is a related issue whether connectionist systems really are just representational systems 

in disguise.  These issues will be discussed again in Chapter IV on connectionism, though I 

will not analyze the issues in depth there.  These questions concern the posited end result of 

artificial intelligence, namely the artificially intelligent system and what it must be like in 

relation to human Intentionality.  As I stated in the introduction, my approach to artificial 

intelligence here is from the point of view of the programmer attempting to implement 

artificial intelligence, which presents some interesting problems that do not seem to have 

been explored before, given the focus on the end result. 

An artificially intelligent system should exhibit Intentionality, if for example it is 

claimed that the system believes something.  How then will this be achieved?  The 

programmer could proceed on a trial-and-error basis, first creating a system and then 

checking whether it has Intentionality, assuming that there are criteria for Intentionality that 

can be applied to a mechanical system.  Both conceptually and in practice, this approach 

seems foolish.  I would not create a word processing program and check to see whether it has 

Intentionality.  If my goal is artificial intelligence, I will proceed by creating an artificial 

system that I think will result in intelligence.  In other words, I would intentionally create the 

Intentionality as a feature of the system, whether I think of it in these terms or not.  Since as 
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Searle notes, the intention of the programmer is itself an Intentional state, the Intentionality 

of the artificially intelligent system is bound to the Intentionality of the programmer.  For the 

purposes of this thesis, I am assuming that the programmer successfully and intentionally 

creates an artificially intelligent system according to the model of strong artificial 

intelligence, namely classical artificial intelligence.  It is possible that the programmer may 

succeed accidentally in achieving artificial intelligence, if for example, a “bug” in the 

program turns out to provide a key factor that the programmer missed in his intentional 

design.  Yet since strong artificial intelligence requires that the intelligence of the system 

arise precisely by means of the syntactical relations between representations, such a bug 

could have been included within the intentional design.  If, however, the accidental 

intelligence arises by virtue of some accidental connection between the hardware and the 

software, then the intelligence is not according to strong artificial intelligence, since it arises 

not solely by virtue of the syntactical relations.  The link between the Intentionality of the 

system to the Intentionality of the programmer is necessitated in strong artificial intelligence 

by the consideration that it is the programmer who designs and implements the syntactical 

relations within the program that exhibits Intentionality.  The next chapter examines in detail 

how this interplay of Intentionality works in the case of classical artificial intelligence, and 

what is required for it to succeed from the programmer’s point of view. 
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CHAPTER III 

INTENTIONAL REQUIREMENTS FOR CLASSICAL ARTIFICIAL 

INTELLIGENCE 

Assume that I as a programmer intend to write an artificial intelligence program.  

What is required to accomplish this?  Certainly there are a number of background practices 

and abilities with which I must have a level of competence, primarily competence in at least 

one programming language.  This presupposes that I have some means of implementing that 

programming language, for instance, that I know how to use a computer keyboard and a 

computer operating system and program compilers.  These background abilities are not of 

primary interest to me, so I will grant them all.  More importantly for my purposes here, my 

intention to write a program demonstrates that I have Intentionality, so if Intentionality is a 

requirement, it is already satisfied.  The specific question I will examine here is what is 

required of that Intentionality in order for me to succeed in writing an artificial intelligence 

program. 

I assume of course the possibility of writing such a program.  Even if no putative 

classical artificial intelligence program can possibly achieve genuine intelligence according 

to the model of strong artificial intelligence, if intelligence cannot possibly be reduced to 

algorithmic steps, I can still examine the requirements for the creation of such a program.  

Even if I as a programmer will never succeed, my intention to create such a program and my 

attempt to do so can still be analyzed.  If such strong artificial intelligence is truly impossible, 

then my examination could reveal some critical step in the creation process that fails.  I do 
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not think that I have identified such a critical failure, but what gets revealed in this 

examination becomes significant for my later examination of the claims of connectionism 

with regard to Intentionality.  Therefore I think that the effort spent in the examination of 

classical artificial intelligence is valuable, even if I do not uncover a new argument against 

classical artificial intelligence, which is not my goal in any case. 

Consequently, I will outline four requirements of the programmer with regard to 

Intentionality.  Briefly, they are: (1) Introspective access to Intentional states, (2) Detailed 

knowledge of Intentional states, (3) Ability to understand Intentionality as an Intentional 

object, and (4) Ability to project that Intentionality. 

Requirement 1: Introspective Access to Intentional States 

Suppose that I write a computer program that results in the following conversation 

between the program and a human: 

Human: What do you think about current affairs? 

Program: I think that President George W. Bush is 
making critical errors in his aggressive foreign 
policy. 

Human: Why? 

Program: Because the increase in aggression will 
merely foster further terrorism. 

This program may appear to demonstrate considerable intelligence, since it 

apparently understands the notion of current affairs and can explain its prior assertions.  

However, suppose that this program consisted entirely of the following pseudo-code2: 

                                                
2 Pseudo-code is a description of algorithmic steps to be implemented in a computer program, but not 

necessarily in any particular computer language.  My pseudo-code typically looks like code in the BASIC 
computer language, since that is the first computer language I learned, corrupted by subsequent work in the Java 
and Perl computer languages. 
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If Question = “What do you think about current 
affairs?” Then 

Print “I think that President George W. Bush is 
making critical errors in his aggressive foreign 
policy.” 

End If 

If Question = “Why?” Then 

Print “Because the increase in aggression will 
merely foster further terrorism.” 

End If 

If Question = “Do you like bacon?” Then 

Print “Yes, very much so.” 

End If 

This program would also result in the following conversation: 

Human: Do you like bacon? 

Program: Yes, very much so. 

Human: Why? 

Program: Because the increase in aggression will 
merely foster further terrorism. 

The program participating within this conversation is not very intelligent at all3.  The 

program outlined in pseudo-code is an example of what is known as a “canned program,” 

namely a program that merely offers pre-defined responses to pre-defined questions.  If the 

question posed does not exactly match any of the pre-defined questions, if I posed the 

                                                
3 There seems to be a common ontological imprecision concerning the bearer of intelligence in discussing 

classical artificial intelligence.  As a philosopher, I would say in a strict ontological sense that the bearer of 
intelligence is the system running the program.  Since classical artificial intelligence posits intelligence by 
virtue of the algorithmic steps within the program, and since that same program could run on different systems 
and exhibit the “same” intelligence (ignoring the philosophical distinction of type and token), it seems common 
usage to attribute intelligence to the program.  In discussing classical artificial intelligence at this point, I will 
employ the imprecise usage, since it seems more natural. 
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question “Do you enjoy bacon?” for example, then the program will not offer any response at 

all, or may offer a default response such as “I don’t understand what you mean,” if it has 

been suitably programmed.  The canned program outlined above does not even have 

sufficient intelligence to recognize that “Do you like bacon?” and “Do you enjoy bacon?” are 

really expressing the same question. 

How do I know that this program is not intelligent?  I suggest two possible criteria 

that lead to two possible approaches to the creation of artificial intelligence programs: a third 

person and a first person criterion.  According to the third person criterion, I observe the 

program in action, without knowing any of the details of its inner programming logic, and 

judge the program to be intelligent or not.  This is essentially the Turing test, which was 

demonstrated in the two sample conversations above.  I didn’t need to know what 

programming steps were contained within the program to make my evaluation, since the 

request to clarify the program’s claim that it liked bacon produced an explanation that did not 

follow from its context, which is not very intelligent. 

The first person criterion does require knowledge of the inner program logic.  

According to this criterion, I compare the program logic to my own introspective analysis of 

my intelligence and judge whether the program is doing what I do or not.  Consequently, I 

see that the canned program is merely offering pre-defined responses, which is not what I do 

when I am asked a question, and I observe this in the instructions contained within the 

program logic, not merely the linguistic behavior as in the third person criterion.  In my case, 

I recognize the meaning of a question, not merely the exact words, and generate a response 

according to that meaning.  The canned program does not do that, so it is not intelligent. 
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Each of these criteria has conceptual problems associated with it.  The first person 

criterion takes a particular token of intelligence, namely my own, as a standard for 

comparison, such that differences between individual intelligences may not be properly 

acknowledged.  For example, I may judge a particular program to be unintelligent when 

compared to my intelligent behavior as revealed through my introspective analysis of what I 

am doing when I behave intelligently, whereas someone else may judge it to be intelligent 

according to his introspective analysis.  In such a case, there is a difference in comparison to 

two token intelligences.  This difference seems to require inter-subjective agreement to 

resolve the question of the intelligence of the program.  In comparing my introspective 

analysis with the other person’s, I may find that my analysis was incorrect, and that the other 

person’s analysis more correctly represents what I myself do internally in producing 

intelligent behavior.  Consequently, I could then agree that the program was intelligent.  This 

example argues against the infallibility of introspection, which is a significant topic in its 

own right (see Lyons, 1986).  Since inter-subjective comparison of introspective analysis 

demonstrated the problem, perhaps the third person criterion is preferable to the first person. 

Yet the third person criterion has its own problems, for instance, the possibility that a 

critical observation may not be made prior to the judgment.  If everything I observe about the 

program seems intelligent, that does not guarantee that in the next observation of the program 

it will also seem intelligent.  Perhaps the programmer has created a program that seems 

intelligent in most circumstances, but there are other circumstances in which it does not.  To 

make the evaluation of intelligence properly, it seems that I would need to see the program in 

all possible circumstances, which is impractical if not impossible.  This problem is partly the 

problem of induction in which the inference from particulars to universals is questioned, but 
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it is also a problem of finding a critical third person test to distinguish between genuine and 

counterfeit intelligence.  It seems that any putative critical test formulated precisely enough 

will entail results that may be counterfeited by a programmer who designs a program 

specifically to give such affirmative results, given knowledge of the critical test.  On the 

other hand, any putative critical test formulated sufficiently flexible to detect such 

counterfeits would rely upon human judgment to make the arbitration, and humans are not 

infallible in their judgment, even in inter-subjective judgments.  

Why is this not also a problem in judging the intelligence of humans?  It does not 

require observation in all possible circumstances in order to make such a judgment.  I think 

that it is not a problem in this case since the general intelligence of the type has been 

accepted.  The capacity for rationality is typically considered a defining attribute of 

humanity.  As such, any instance of humanity is easily granted intelligence given fairly 

minimal evidence, for instance, speech in a recognizable language.  In the case of a computer 

program, the intelligence of the type is what is precisely at issue, and therefore, the evidence 

required is much stronger.  If a human is caught in unintelligent behavior, that exception does 

not invalidate the intelligence of the type; however, a single counterexample in the case of 

putative computer intelligence does seem to question whether the intelligence of the type has 

been established.   There doesn’t seem to be an uncontroversial critical mass of putatively 

intelligent behavior identified for artificial intelligence in order to establish the intelligence of 

the type, such that these counterexamples can be dismissed as mere exceptions.  Perhaps this 

circumstance seems unfair or unjustified, but perhaps that should lead me to question my 

judgment of human intelligence, rather than to accept a looser standard for accepting 

artificial intelligence. 



 

 

25 

I think that the reason for this difference in standards is that the third person criterion 

itself seems to be dependent upon the first person to some extent.  In a similar way to 

Hume’s attack on induction, I could argue that observation of behavior alone cannot lead to 

any judgment of intelligence.  Rather it would lead to a mere collection of perceived actions 

presented in a certain order.  This collection may be recognized as intelligent by inter-

subjective agreement, for instance if I observed those actions and was told that they are 

intelligent.  However, the problem of particulars and universals arises again, since the 

ostensive attribution of intelligence to one token series of actions does not necessarily extend 

to another token series of actions.  Rather it requires the recognition of the type of action 

such that other tokens can be subsumed under the type.  Such recognition, at least, takes 

place from the first person point of view.  Consequently, it seems that any criteria of 

intelligence must entail both third person and first person aspects to succeed, since a first 

person criterion must be validated against third person inter-subjective agreement, and a third 

person criterion relies on first person recognition.  This combination makes the judgment of 

human intelligence much more natural, since the inter-subjective agreement that forms part 

of the criterion itself involves the presumption of intelligence in humans such that inter-

subjective agreement can be possible.  Of course, this does not strictly justify the difference 

in standards in judging intelligence between humans and machines, but it does suggest a 

reason why the difference occurs.  Perhaps this line of inquiry should be pursued further, but 

it would take me too far from my topic of concern in this thesis. 

I therefore turn from considerations of judgment of intelligence to considerations of 

creation.  Taken separately, the first person and third person criteria suggest two different 

approaches to creating an artificial intelligence program.  According to the first person 
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approach, I could perform an analysis of my Intentional states and attempt to code those 

states algorithmically into a program.  According to the third person approach, I could 

analyze instances of intelligent behavior and replicate the behavior within my program. 

The third person approach seems compatible with writing the canned program 

outlined earlier, since the canned program merely aims to produce some behavior that is 

intelligent.  In such a case, the structure of a canned program seems appropriate.  If certain 

stimulus is given, the program should output some canned response.  The intelligence of the 

response is sufficient for the intelligence of the system as a whole.  However, the task is 

complicated for the same reasons that the canned program was not considered intelligent, 

namely that the same stimulus may produce different behavior in different contexts.  

Therefore, the programmer must take context into account within the program, and therefore 

the program size and complexity will need to increase to accommodate the required contexts.  

To some extent, this context can be determined according to third person observation.  

Perhaps a particular stimulus always elicits the same response when issued within a 

restaurant as opposed to in a park.  Therefore, if in a restaurant, give response A to stimulus 

S; if in a park, give response B.  However, not all contexts reduce to something like a place.  

Consider the context of knowing that someone is lying.  If the liar were to elicit a response 

from the program based on the lie, in order to behave intelligently, the program needs to 

account not only for the discrepancy between the liar’s statement and the observable facts, 

but also the fact of the lie.  The program could merely respond “You are mistaken about the 

facts” to each of the liar’s statements, but it should also recognize not only the pattern of 

factual discrepancies, but also the difference between intentional lies and inadvertent 

mistakes.  Of course, this is also a problem for humans determining whether other humans 
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are lying or are merely mistaken.  My point is not that this distinction cannot be determined 

infallibly based on some third person evidence, but rather that whether the distinction is 

made infallibly or not, it must be made on some inner logic that cannot easily be devised 

directly from third party observation.   

This logic might be modeled on observations of a particular person, and careful 

observations may identify certain signs the person looks for in another to determine whether 

that other person is lying; however, the recognition that the person is identifying signs of 

lying goes beyond direct observation.  There is an inference from the observation that the 

person looked at the other person’s palms to the judgment that the person was checking to 

see whether the other person’s palms were sweating.  It seems to me that the reason this 

particular inference was made, as opposed to an inference that the person was checking 

whether the other person had “I am a liar” written on his palms, is that my observations are 

correlated with my introspective awareness of what it means to be a liar and the effects of 

lying on a human body.  This introspective awareness is mediated by memory, since I do not 

need to be lying myself in order to judge that someone else is lying.  This memory has 

Intentional content, most likely in the form of a proposition, such as “When I lie, my palms 

sweat.”  This proposition in turn relies on the recognition of the state of lying, which seems 

to me to depend on first person awareness of that state.  The proposition remembered could 

be in a universal form, such as “A lying human typically has sweaty palms,” but I would 

argue that the notion of lying in this case still seems to involve first person awareness of that 

state, which is subsequently applied to the third person observation concerning sweaty palms, 

since the meaning of the term ‘lying’ is dependent both upon first person awareness and 

inter-subjective agreement.  So it seems that the conclusions of my observations themselves 
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are dependent on some first person awareness.  If I had no such awareness of lying, then I 

would never make the inference that someone checking another person’s palms is checking 

for a sign of lying.  I might simply be confused by his behavior. 

Therefore it seems that introspective awareness is a requirement for creating an 

artificial intelligence program, whether it appears as a factor in third party observations or 

whether it is used directly in a first person analysis of my Intentional states.  Of course, such 

a first person analysis is not free from third person influence.  For instance, even if I did not 

know about lying until I myself lied, I would not know that liars’ palms sometimes sweat 

unless I had noticed my own palms sweating, which is a third person observation of my own 

body.  Certainly the designation of such behavior of mine as “lying” is made through inter-

subjective agreement, since the correlation of a term to a particular type of behavior within a 

language requires the agreement of all speakers of that language.  Consequently, both first 

person introspection and third person observation are required. 

I singled out introspection over observation as a requirement for implementing 

artificial intelligence, since in the act of writing a program introspection is immediately used.  

Observation is still present in the form of memory, but introspection provides the critical 

bridge between remembered observations of intelligent behavior and the intended intelligent 

program.  I do not keep some example of intelligent behavior in front of me as I write the 

program; I do not have a liar continually lying in front of me as I program.  Rather, I 

remember instances of lying, whether my own lying or someone else lying, and 

introspectively analyze the structure of that lying with regard to its corresponding behavior 

and take that lying as an Intentional object to be implemented within my program. 



 

 

29 

The problem of incorrigibility of introspection is not important in this requirement, 

since it does not matter whether I correctly recognize whether I am lying at any particular 

moment.  It is sufficient for this requirement only that I recognize what it means to lie, even 

if I personally have never lied in my life.  This recognition is subject to questions of 

incorrigibility, though, since I may not correctly recognize that I am recognizing what it 

means to lie.  However, this recognition itself is not the point of the introspection in this case.  

The point is that the introspection is a precondition for the further step of programming the 

results of the introspection.  If that recognition were faulty in some way, the fault would be 

transferred forward into the artificial intelligence program.  Therefore, if incorrigibility of 

introspection is not an issue as I have claimed, infallibility most certainly is. 

The notion of introspection has fallen on hard times as of late (see Lyons, 1986).  I do 

not mean to support or rely on any particular notion of introspection in my argument, but I do 

think that there is a distinction underlying statements of the form “I just had a strange 

feeling” and “I just saw aliens eating raw bacon”.  Whatever underlies a statement of the first 

form is what I understand as introspection.  Perhaps mere consciousness suffices for this, but 

my views on consciousness would require expanding the scope of this thesis to address this 

point.  Therefore, I leave the notion of introspection largely unanalyzed.  My point in this 

requirement is that a different mode of access than third person observation seems necessary 

for the programmer in order to achieve Intentionality within an artificial intelligence 

program, whatever that introspective mode of access turns out to be upon further analysis. 

Requirement 2: Detailed Knowledge of Intentional States 

In order for me to understand what it means to have a particular Intentional state, I 

must have correctly recognized that I am in that Intentional state at least at one point in time.  
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Suppose that someone else were to explain to me what a particular Intentional state was like, 

such as believing.  What I would get from that person would be a set of sufficient conditions 

for believing, but I claim that such sufficient conditions are not necessarily sufficient for a 

full understanding of that Intentional state, though they will enable me to recognize that what 

I am experiencing at a particular time is believing, and that recognition will enable full 

understanding.  If the sufficient conditions that are given do in fact contain all the necessary 

conditions, introspection will make this clear in a way that the sufficient conditions 

themselves will not.  Note that this third person verification in receiving sufficient conditions 

from others is needed to overcome the fallibility of introspection.  If I think I believe that 

bacon is delicious, someone else can verify that I can distinguish bacon from a rotting fish 

wrapped in newspaper, and that whenever I eat a piece of bacon, I exhibit certain signs of 

pleasure, and therefore that I have correctly recognized the belief.  Consequently, this aspect 

of fallibility of introspection with regard to recognition of Intentional states can be overcome. 

Yet there is a more critical problem with the fallibility of introspection that faces the 

programmer.  William James distinguishes two general kinds of knowledge: “knowledge of 

acquaintance and knowledge-about” (1950, vol. I, p. 221).  ‘Knowledge-about’ is more 

important to the programmer than ‘knowledge of acquaintance’, since acquaintance requires 

the apprehension only of sufficient conditions for the Intentional state, whereas the 

formulation of the algorithm that instantiates that Intentional state in a computer program 

requires all the necessary conditions for that state, which only ‘knowledge-about’ can 

provide. The fallibility of introspection with regard to the recognition that I am in a particular 

Intentional state was fallibility of ‘knowledge of acquaintance’.  Introspection seems also 

fallible with regard to ‘knowledge-about’, as I suggested earlier with regard to the evaluation 
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of the intelligence of the program using the first person criterion.  A program may seem to 

me to be doing what I do when I think about something, but it may not seem that way to 

someone else. 

James notes that ‘knowledge of acquaintance’ and ‘knowledge-about’ are relative 

terms and do not refer to distinct knowledge types.  “But in general, the less we analyze a 

thing, and the fewer of its relations we perceive, the less we know about it and the more our 

familiarity with it is of the acquaintance-type” (p. 221).  There does not seems to be a 

definite point at which ‘knowledge-about’ ceases and ‘knowledge of acquaintance’ begins.  

Rather the two types are relative to each other in the sense that ‘knowledge of acquaintance’ 

involves the recognition of fewer analytical relations than ‘knowledge-about’.  Given this 

relative nature of the two knowledge types, if inter-subjective agreement can mitigate the 

fallibility of introspection with regard to ‘knowledge of acquaintance’, it should likewise 

address the fallibility of introspection with regard to ‘knowledge-about’.  What is required is 

simply greater analysis of the relations such that the sufficient conditions that make 

recognition possible are gradually built up and augmented such that they become more like 

the necessary conditions involved in complete ‘knowledge-about’ something.  James himself 

seems to hold this opinion.  “The only safeguard is in the final consensus of our farther 

knowledge about the thing in question, later views correcting earlier ones, until at last the 

harmony of a consistent system is reached [italics in the original]” (p. 192).  Here James 

relies not merely on an immediate inter-subjective agreement, but a historical, dialectical 

process resulting in the final consensus.  Assuming that such a consensus could be reached, 

this poses a practical problem to the programmer, in that he does not necessarily want to wait 
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years, decades, or even centuries until such a consensus is reached about the nature of 

particular Intentional states; he wants to program right away. 

Of course such a consensus need not have already occurred prior to the programmer 

beginning an artificial intelligence program.  Rather, the programming attempt itself seems to 

be part of the dialectical process as an “empirical inquiry” (Newell & Simon, 1997).  My first 

attempt at representing a particular instance of intelligence in a computer program will 

invariably be critiqued and criticized by others, who find that the algorithm coded into the 

program does not match the introspective analysis of their own Intentional states.  This 

criticism leads me to make corrections to my program, resulting not only in a better program, 

but also another round of criticisms requiring me to make further corrections.  The hope is 

that this dialectical process ultimately would reach a point of consensus.  Hubert Dreyfus’s 

argument mentioned earlier was that this process was an “infinite task,” given the nature of 

the interconnected relationships within the intelligible world.  Consequently, no such 

consensus could be reached. 

Whether Dreyfus’s criticism holds or whether a final consensus could validate this 

empirical inquiry is not my primary concern here.  Therefore, I will leave it as an open 

problem associated with the requirement that the programmer have detailed knowledge of his 

Intentional states.  More importantly for my purposes, the level of detailed knowledge 

required appears to extend beyond the relationships among Intentional states to the 

Intentionality itself that underlies these Intentional states.  If Intentionality is a feature of 

intelligence in the Intentional states that are exhibited, it seems that knowledge of the 

necessary conditions for Intentionality in general are required to implement those Intentional 

states, as I will address next. 
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Requirement 3: Ability to Understand Intentionality as an 
Intentional Object 

Introspection compounds the Intentionality of Intentional states.  In thinking about a 

mental state involving an Intentional object, I take the mental state itself as an Intentional 

object.  This act is not particularly problematic for the programmer, who routinely performs 

such introspection.  However, if an artificial intelligence program is to be truly intelligent, it 

will need to exhibit Intentionality with regard to its artificial mental states.  If I code my 

complete knowledge of particular Intentional states into a computer program, I do not yet 

have any warrant to claim that the program exhibits Intentionality, any more than a book that 

contained a complete description of those Intentional states would exhibit Intentionality in 

itself.  As noted earlier, the programmer typically does not create a program and then check 

to see whether it exhibits certain features; rather he intentionally designs the program to 

exhibit those features.  If one of those features is Intentionality, then it seems that the 

programmer must take Intentionality itself as an Intentional object. 

Thus far this requirement seems trivial, since in writing the last sentence, I myself 

took Intentionality as an Intentional object.  However, as with other Intentional states, mere 

acquaintance is not sufficient for the programmer.  Detailed knowledge is required, so it 

seems that the programmer must become an expert on Intentionality.  Of course, Searle wrote 

an entire book on Intentionality (1983), so it seems possible for the programmer to use such a 

book rather than performing an analysis of Intentionality on his own.  Yet Searle avoids an 

issue in his analysis that the programmer cannot, namely the implementation (p. 15).  Searle 

is concerned to describe the logical properties of Intentionality, however they are 

implemented.  This knowledge is useful to the programmer, but not sufficient.  The 

programmer must go further and figure out how Intentionality can arise within a system, in a 
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similar way as a neuroscientist would figure out how Intentionality arises within a biological 

brain. 

This requirement and its problems are related to the last requirement that I will 

present, and so I will discuss them at length together.  The neuroscientist seems to have a 

certain advantage over the programmer in studying the implementation of Intentionality in 

that the neuroscientist’s understanding of Intentionality will be mapped directly to the study 

of the brain.  Whatever possible explanatory gap this leaves, it is different from the problems 

that the programmer faces, since the programmer’s understanding of Intentionality must be 

abstracted from the form in which it appears within his own brain, such that it can be 

projected outward, not explanatorily onto another brain, but creatively onto a non-biological 

computer system. 

Requirement 4: Ability to Project Intentionality 

The programmer’s understanding of Intentional states must be projectable, by which I 

mean that the programmer must be able to take his understanding out of the context of his 

naturally occurring mental states in such a form that it can be placed in another context, most 

importantly in the context of procedural steps written in some language.  If his understanding 

were not projectable, he could never intentionally code those Intentional states into a 

computer program, but could only contemplate those Intentional states and their relationships 

in his own mind.  As noted in the previous requirement, not only must those Intentional states 

be projectable, but so must the Intentionality underlying the states, since the necessary 

conditions for Intentionality in general are part of the necessary conditions for specific 

Intentional states. 
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The ability to abstract this Intentionality in order to make it projectable entails 

abstracting from the peculiarly human context in which it appears.  To some extent, this is 

already done in the contemplation of Intentionality within other animal species.  Searle, for 

example, is willing to grant mental states to his dog (1992, p. 73) and presumably thereby 

Intentional states as well.  If Searle’s dog wants a piece of bacon, just as I do, then Searle’s 

dog likewise has Intentional states.  It seems that we share the same Intentional object, 

namely the piece of bacon, but I don’t know whether this entails that we both have the same 

Intentional states.  Perhaps dog Intentionality is significantly different than human 

Intentionality.  Still, there may be some warrant for abstracting the same Intentionality from 

both cases, based on shared features of those instances of Intentionality.  This basis seems to 

be precisely the same as the reason that Searle is willing to grant mental states to his dog, 

namely “because I can see that the causal basis of the behavior in the dog’s physiology is 

relevantly like my own” (p. 73).   

Therefore, it seems possible that the programmer could capitalize on the 

neuroscientist’s efforts by taking the neuroscientist’s results on how Intentionality arises in 

different biological brains, assuming that such results can be achieved, abstracting the pattern 

of Intentionality from its biological implementations, and projecting that abstraction onto a 

computer program.  Yet here the programmer runs into the possible problem that certain 

cognitive functions cannot be encoded algorithmically, as I will discuss briefly with regard to 

connectionism later.  Whether those cognitive functions operate according to representational 

relations, the programmer must take them as representations in order for them to be 

projectable, but it is not clear whether the subsequent algorithms resulting from this 

projection truly capture the cognitive function so represented.  This problem is not directly 
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important to me, since my concern in this thesis is with the Intentionality of the programmer 

in writing an artificial intelligence program, whether using a classical artificial intelligence or 

a connectionist model.  

Personally, I do not know how to project Intentionality algorithmically within a 

program, perhaps because I do not have detailed knowledge of Intentionality as an 

Intentional object, in accordance with the previous requirement.  If I had such knowledge, I 

would write a very different sort of work than this one.  However, I do not have an argument 

against the possibility that Intentionality could ever be projected programmatically.  Searle 

believes that he has several arguments (see 1992, pp. 197-226), but I will not review and 

critique them here.  From the point of view of the programmer, however, there is one way 

that Intentionality may seem to be projected.  I will take some time to critique this approach, 

since it bears directly on the practice of connectionism that I will discuss later. 

An Object-Oriented Approach to Programming Intentionality 

The approach I have in mind divides the process into two stages: (1) projecting the 

form of the Intentional states, and (2) projecting the Intentionality of those states.  The first 

stage defines the Intentional object as an object and defines the mode in which the object 

appears in the state, such as desiring or hoping, and the second stage makes that object and 

mode into an Intentional state.  Immediately, there is a potential problem in that it may be the 

case that the two processes are not distinct at all, and that Intentionality arises as an 

integrated rather than a staged process.  More importantly for my purposes here is the 

relationship of this alleged Intentionality within the program to the programmer’s own 

Intentionality.  Consequently, I will argue that claims of Intentionality deriving from this 

approach are made doubtful precisely because of the role of the programmer’s Intentionality.  
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Note that this is not the only possible approach to programming Intentionality within 

classical artificial intelligence, but the results of the investigation into this approach will be 

useful in understanding the problems that I will later raise for connectionism, which is my 

primary concern in this thesis. 

Assuming that I have complete knowledge of a particular Intentional state and its 

Intentional object, in accordance with the second requirement outlined in this chapter, it is 

certainly possible for me to represent the internal and external structures of the state and its 

object.  I could do so simply by writing out those structures in English or some other 

language.  Having done so in a natural language, it also seems possible for me to represent 

that knowledge within an artificial language, such as a computer language.  Different 

languages support different syntaxes for accomplishing such a task.  There is an approach 

within computer languages that derives from the work of Frege (1997b), which is particularly 

useful in this regard, namely object-oriented programming, such as in the C++ or Java 

languages.  This approach allows the programmer to encode data relationships within 

structures called “classes” that can be instantiated into data entities called “objects”.  Such 

classes can be instantiated into multiple objects, which thereby share certain defining 

properties according to their class.  Not only can static properties be defined within classes, 

but also functional relationships between properties as determined by actions known as 

“methods” performed on the objects.  Consider, for example, the following pseudo-code that 

defines a class called “Bacon” with several properties and their relationship: 

class Bacon { 

 property Cooked default value = “false”; 

 property Texture default value = “slippery”; 

 method Cook_It { 
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  Let Cooked = “true”; 

  Let Texture = “rough”; 

 } 

} 

There are two properties, called “Texture” and “Cooked”, which initially have the 

default values “slippery” and “false”, respectively.  The idea here is that when I buy bacon at 

the store or rip it directly out of a pig, bacon naturally comes uncooked with a slippery 

texture.  The method called “Cook_It” defines an action that changes the properties of the 

bacon.  After I cook bacon, it is obviously then cooked, and its texture becomes rough.  

These properties may already be set when I get the bacon, as for example, if I am served 

bacon in a fine restaurant.  Typically in such a case, I do not experience the bacon first as raw 

and then cook it.  I receive it already cooked.  Programmatically, this feature is conveyed by 

passing parameters to the class when it is instantiated and then creating an initialization 

method to adjust the properties accordingly.  For instance, I could modify the previous 

pseudo-code as follows:  

class Bacon (parameter Is_Cooked default value = 
“false”) { 

 property Cooked default value = “false”; 

 property Texture default value = “slippery”; 

 method initialization { 

  If Is_Cooked = true Then 

   Let Cooked = “true”; 

   Let Texture = “rough”; 

  End If 

 } 
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 method Cook_It { 

  Let Cooked = “true”; 

  Let Texture = “rough”; 

 } 

} 

When I am given the bacon, I typically know whether it is cooked or not, which state 

is represented in this example by the parameter “Is_Cooked”, set by default to the value 

“false”.  Initialization methods, such as the one explicitly called “initialization” in this 

example, are activated whenever the class is instantiated into an object.  If the parameter 

“Is_Cooked” is true, the method will set the “Cooked” and “Texture” properties accordingly; 

otherwise, the properties will retain their default values.   

Accordingly, it seems as though the form of Intentional objects could be encoded 

very easily using such an object-oriented approach.  Given this form, projecting of 

Intentionality itself would seem to be accomplished by merely instantiating the class into an 

object, as for example in the following pseudo-code: 

Let My_Bacon = instance of Bacon; 

If a class is instantiated in an object, then the fact that an object exists seems to entail 

Intentionality.  Furthermore, Intentional states related to those objects could be encoded as 

methods associated with a class representing a creature capable of having those Intentional 

states.  In other words, Intentional states are states of someone whose activation is directed to 

an object instantiated from a class.  For example, the following pseudo-code represents 

someone desiring bacon: 

class Person { 

 property Desiring; 
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 method Desire (parameter About_What) { 

  If About_What = “bacon” Then 

   Let Desiring = instance of Bacon; 

  End If 

 } 

} 

When instantiated, this “Person” has a property “Desiring” that is empty if the person 

does not desire anything.  If the person does desire something, the method “Desire” is called 

with a parameter “About_What” that indicates what the desire is about.  If this parameter is 

set to “bacon”, this method in turn sets the “Desiring” property to be an instance of the 

“Bacon” class, and consequently the person would have bacon as an Intentional object in the 

“Desiring” mode.  Of course, the method would need to be much more flexible to handle a 

wide variety of objects of desire besides bacon.  Still, this seems to satisfy Searle’s 

description of Intentional states mentioned earlier, in which “every Intentional state consists 

of an Intentional content in a psychological mode [italics in original]” (1983, p. 12).  The 

mode is represented by the property “Desiring”, and the content is the value of this property, 

such as an instance of the “Bacon” class. 

I have two main criticisms of the claim that this program exhibits Intentionality: (1) 

the putative Intentionality of the system is parasitic on the Intentionality of the programmer, 

and (2) the Intentionality of a particular object is undermined by the underdetermination of 

the formal structures of that object that are instantiated by assignment. 
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The focus of my first criticism is the instantiation of the class into an object, such as 

the pseudo-code statement, “Let My_Bacon = instance of Bacon.”4  Such assignment 

statements occur not only in object-oriented languages, but also in procedural languages such 

as BASIC or C, such as “Let X = 2”.  Not only is the very writing of this statement an 

intentional act of the programmer, but the form of the statement is itself of an intentional act.  

The programmer’s intention is that the program intend to take one thing as another.  I think 

that it is incorrect to say that the program truly intends to take one thing as another, but rather 

the interpretation of what it does is an artifact of the programmer’s own Intentionality in 

writing the program in this way.  What it does in itself is thus subject to interpretation. 

The programmer sees the program doing what it was intended to do, and may 

therefore be inclined to see Intentionality within the system, since the program takes an 

object to be an instantiation of a particular class.  Even a non-programmer observing the 

results of the program might be willing to grant Intentionality to the program.  This seems to 

be a clear instance of what Searle calls “as-if Intentionality” (1992, p. 78), based precisely on 

the intention of the programmer to create Intentionality.  This ascription need not be 

restricted to the programmer who created the program, but may be recognized by someone 

else examining the code.  In such a case, I think it is the nature of the assignment statement 

that misleads the interpreter.  The assignment statement leaves any putative Intentionality 

within the system merely as a projection of the programmer’s intentions, rather than as native 

Intentionality arising within the system.  Human Intentionality does not appear to consist 

                                                
4 There is an aspect of Platonism in this kind of assignment, in that the class or Form must exist in its 

perfection prior to its instantiation in an object.  Whereas according to Plato the Forms exist in a different realm, 
in this case all the Forms must exist within the program itself.  It seems problematic that I would already have 
explicitly defined within me all possible classes that I could ever use, and therefore strange that an artificial 
intelligence program needs to have all classes pre-defined.  Of course, there are programming languages such as 
LISP that allow the program itself to create new structures or classes dynamically without having previously 
been defined, which may address this concern. 
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merely in the assignment of an empty placeholder entity to be an object of a particular type, 

and therefore it does not seem proper to grant a machine Intentionality in the analogous case.  

Such Intentionality remains dependent upon the recognition of the program’s action as 

Intentionality, and therefore is parasitic on human Intentionality.  If Intentionality happens to 

arise natively within such a system, it might be by virtue of some accidental interaction 

between hardware and software, but if it does not arise solely by virtue of the algorithmic 

steps within the program, then it is not classical artificial intelligence.  If the algorithmic 

steps include a bare assignment statement that is intended to suffice for Intentionality, then 

such putative Intentionality is a mere relic of the programmer’s intention, and therefore the 

perceived Intentionality is parasitic on the programmer’s own Intentionality.  Requirements 3 

and 4 concerning the ability to take Intentionality as a projectable Intentional object do not 

seem to have been met. 

It might be objected that this seems to be a problem only when considering the 

writing of the program.  Once the program runs on a computer, the functioning of the 

program on the system corresponding to the bare assignment statement will no longer take 

the form of a bare assignment as I have presented it here.  For example, in the instantiation of 

class into an object, a certain kind of function is called, known as a “constructor” function, 

which performs various tasks as part of the creation of the object.  It may be claimed that it is 

what happens during the constructor function that grants Intentionality.  Yet I would counter 

that, on the one hand, if it is claimed that what grants Intentionality is what the hardware 

does in conjunction with the constructor function, such as allocating physical memory on the 

computer, then it is not a case of classical artificial intelligence, since it is not by virtue of the 

algorithmic steps that Intentionality arises, but rather by virtue of the physical 
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implementation.  On the other hand, if it is claimed that the constructor function contains 

algorithmic steps that grant Intentionality, then those algorithmic steps must not themselves 

contain any assignment statements else the problem is merely pushed down a level.  For the 

constructor function not to issue any new assignment statements means that the algorithmic 

steps within the function must act on existing data structures, which must have been allocated 

by some assignment statement elsewhere.  Therefore, I do not think that the problem of the 

deficiency of assignment statements in creating Intentionality can be avoided within classical 

artificial intelligence by appealing to the functioning of the system running the program. 

My second criticism addresses the formal aspect of representing Intentional states and 

objects in classes.  The problem that I see here is that ultimately the structure of the class 

must be represented in some fundamental data type on the computer, such as an integer or a 

string, that itself is ultimately reduced to data bits within the computer system.  Reduced in 

this way, I think there is a question as to what makes a particular object an Intentional object 

of one kind as opposed to another.  The pseudo-code of the bacon class that I outlined earlier 

had two properties, “Cooked” and “Texture”, but many other objects have these 

representational properties, such as any other kind of meat or even vegetables.  Even if a set 

of properties is defined with regard to bacon that identifies it distinctly from vegetables or 

other meats, those properties are represented in the computer in low-level data types.  The 

property may be labeled “Cooked”, but it is essentially just a binary variable, which could 

have been labeled “Hairy” or “Transcendental”, which in turn would have defined something 

quite different.  The meaning of the putative Intentional object within the program is 

underdetermined by its underlying data structures.  For the system, these data structures are 

merely collections of related values, whether numbers or words or references to other data 
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structures, and on a binary computer, these values are ultimately reduced to binary bits, 

namely ones or zeroes.  The labeling of properties in this case is potentially deceiving, since 

in practice the property indicated by the label “Cooked” really does stand for such Intentional 

content, but only for the programmer.  Those labels exist only as tokens within the 

programming language that the programmer uses to develop the program, whether BASIC or 

C++ or Java or some other language.  The programmer’s code must be compiled into 

machine code5 in order for the computer to run the program, at which time the labels 

themselves are removed by the compiler software and replaced by bare references to data 

locations.  Consequently, the system has no awareness of the labels at all, let alone awareness 

of the meaning of the labels.  For the system, the putative Intentional object is merely a 

collection of data relations.  If such a collection of data relations could correlate to several 

different Intentional objects, then the putative Intentional object is underdetermined with 

regard to its data relations within the system.  It cannot be a particular Intentional object, 

since there is no difference within the system between that Intentional object and another 

with the same data relations.  Yet if the size and complexity of such a collection uniquely 

correlates to a particular Intentional object, the question remains whether this unique 

correlation within the underlying data structures is sufficient to qualify as Intentionality or 

whether it is merely correlation. 

Here my criticism intersects with both Dreyfus’s and Searle’s criticisms of classical 

artificial intelligence that I mentioned earlier.  Perhaps a particular representation of an 

Intentional object is underdetermined in its own underlying data structures, but that 

                                                
5 Machine code is a series of binary data fed as instructions or data directly to the computer’s central 

processing unit or CPU, which has been designed to interpret particular numerical values in the binary data as 
particular instruction.  In the case of an interpreted language platform such as Java or many forms of BASIC, 
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representation within the context of other representations may uniquely determine a 

particular Intentional object.  This representational situation is comparable to Searle’s notion 

of a Network of Intentional beliefs (1983, 65-71).  Both Dreyfus and Searle claim that this 

Network itself is inadequate: for Dreyfus, because it must encompass the being of the 

creature itself; for Searle, because the Network has meaning only against a background of 

abilities and practices.  Since neither the being of a creature nor the background of abilities 

can fully be represented algorithmically, the task will always remain incomplete, and 

therefore Intentionality will never be achieved in such a case.  For my part, I am not prepared 

to agree with Dreyfus or Searle that the task is impossible, but given the challenge of the 

underdetermination of underlying data structures, I think the task is prohibitively difficult. 

Evaluation 

I have outlined four requirements in this chapter related to the Intentionality of the 

programmer that must be met if the programmer is to succeed in intentionally creating a 

genuine artificial intelligence program.  The problems associated with introspective access to 

cognitive functions and complete knowledge of such functions may be solved through a 

combination of first person and third person methods.  However, the need to take 

Intentionality itself as an Intentional object such that it is both completely defined and 

projectable seems to be a more difficult problem.  If the putative Intentionality within the 

system remains parasitic on human Intentionality, then it seems that the programmer’s 

knowledge of Intentionality as a projectable Intentional object is faulty or incomplete.  The 

                                                                                                                                                  
however, the programmer’s code is compiled into an intermediary byte code format which the interpreter 
implements into machine code when the program runs. 
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perceived Intentionality in such a case leaves the Intentional objects underdetermined in their 

underlying data structures, further weakening any claim for Intentionality within the system. 

Whether these problems prove fatal for classical artificial intelligence, I will leave as 

an open question.  I have outlined the requirements of Intentionality for classical artificial 

intelligence primarily to set the stage for a comparable discussion of Intentionality within 

connectionism, which I will discuss next.  However, the two major problems identified here, 

namely parasitic Intentionality and underdetermination of underlying data structures, will 

reappear within the practice of connectionism. 
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CHAPTER IV 

CONNECTIONISM 

It might be supposed that connectionism was developed in response to the problems 

of classical artificial intelligence, specifically to address those problems.  In truth, both 

approaches to artificial intelligence arose approximately at the same time, which makes a 

better story in my opinion, in which both approaches struggle against the other for 

ascendancy.  For a brief history, see Dreyfus and Dreyfus (1990). 

Connectionism is an interpretation of neural networks in which cognitive functions 

arise as a result of the connections between nodes in such a network.  Unfortunately, there is 

not a single interpretation of the meaning of these connections, as I will discuss later.  Before 

I review the various interpretations, I will outline the general principle of neural networks 

and distinguish the two primary forms of neural networks. 

General Principles of Neural Networks 

Neural networks are a processing paradigm in computer science in which the 

processing of a system does not occur at a single, central point in a serial fashion, as derived 

from the Turing machine model and its later implementation in a von Neumann machine.  A 

Turing machine is a logical conception involving a single executive control function that 

reads and writes data from a tape and processes that data as instructions in accordance with a 

set of rules in a pre-defined table in reference to a number of internal states that can be read 

and modified by the system itself according to those rules.  Von Neumann developed this 

logical conception into an architecture for a digital computer on which modern computers are 
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based.  In both cases, there is a single point at which the instructions are processed, in the 

Turing machine as an abstract role that is performed, and in the von Neumann machine as a 

definite piece of hardware, namely the computer’s central processing unit or CPU.  In a 

neural network, however, processing is distributed across multiple processing points, or 

nodes, and proceeds in a parallel fashion with each node working at the same time as other 

nodes.  Any biological brain is a neural network in which neurons comprise the processing 

nodes as physical entities.  Brains are natural neural networks, but what are most often 

studied in the discipline of neural network research are artificial neural networks.  Such 

networks are typically simulated on serial computers, such as any personal computer, but 

they may also be created using physical processing nodes, such as an array of personal 

computers or even a collection of pot-bellied pigs suitably connected together.  Computer 

simulations of neural networks are most useful, since the structure and processing rules 

within the software may be changed more easily than an array of hardware units, whether of 

electronic components or of pigs. 

Connectionism depends upon neural networks, but research into neural networks need 

not depend upon connectionist interpretations.  Neural network research has become a 

discipline in its own right, whose goals include the analysis of data relations within neural 

networks and the creation of new types of neural networks that perform better than other 

types of networks.  Consequently, a researcher into neural networks may not care about 

mental representations or the relationship of artificial neural networks to the cognitive 

functions of the human brain at all. 

Figure 1 shows a fairly representative structure for a neural network.  Each circle 

represents a processing node, and the arrows indicate the flow of data from one node to  
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Output layer
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Input layer

 

Figure 1. Typical neural network structure. 

another.  There are usually three layers of nodes within a network, an Input layer, an Output 

layer, and a middle processing layer known as a Hidden layer, because these nodes have no 

direct connection outside the network except through the nodes in the Input and Output 

layers.  A network need not explicitly have these three layers, but it will almost always 

display these same three functions, namely receiving data from outside the network, 

processing the data internally, and passing the results of the processing outside the network. 

The Input layer will receive some value, but that value may represent data in a high 

level form, such as the price of pork belly futures on the commodities market, or in a lower, 

more raw form, such as a reading from a voltmeter.  Likewise, the value that is output by the 

Output layer might be in one of these forms.  In either case, the network is simply processing 

values.  There can be quite a large number of nodes in each layer, and there may in certain 

cases be several hidden layers.  



 

 

50 

Note that in the typical example in Figure 1, each node in the Input layer is connected 

to each node in the Hidden layer, and likewise each node in the Hidden layer is connected to 

each node in the Output layer.  This is a common structure, but is not necessary.  For 

example, some nodes in the Input layer might not connect to certain nodes in the Hidden 

layer.  Nor must the hierarchy of layers be strictly observed.  A node in the Input layer might 

by-pass the Hidden layer entirely and connect directly to the Output layer.  Furthermore, data 

flow need not always be in the direction from Input layer to Output layer.  Nodes in the 

output layer might be connected back to nodes in the Hidden layer, such that the results of 

the network are themselves taken to be inputs to the same network for further processing. 

The processing within each node needs to take the data passed to it and decide what 

data to pass on to the next layer, if any at all.  This processing may take different forms and 

implement different rules, but the typical approach is inspired by the processing of actual 

neurons within a biological brain.  Associated with each input path is a weight value that is 

applied to the incoming value.  All weighted inputs to a node are combined and compared to 

some threshold value.  If the sum of the weighted inputs exceeds or is equal to the threshold 

value, then the node will output some value, otherwise it outputs nothing or the value 0.  A 

node using this sort of processing is known as a Threshold Logic Unit, and is illustrated in 

Figure 2.  More sophisticated processing algorithms have been devised, but most if not all of 

them share the same technique of using weighted sums to determine the output according to 

some formula.  I will not review other processing types, since the specific algorithm used 

within a node is not significant for my purposes here (for details, see Gurney, 1997; and 

Picton, 2000).  What is important to appreciate here is that the kind of processing within a 

neural network is distinctly different from the kind exhibited in classical artificial  
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Figure 2. Typical processing within a single node. 

intelligence.  There the processing steps mirrored the programmer’s reflective understanding 

of the structure of intelligent operations, whereas here the processing does not seem to 

correspond to anything recognizable in intelligence.  Rather, each node within the system 

takes values from other nodes and combines them in some way to provide a single output 

value, which it passes on to still other nodes. 

Taken abstractly, such a neural network would merely be an intellectual curiosity in 

which the interrelationship of values could be traced throughout the network.  However, 

values within the network, at least the input and output values, typically have some meaning, 

and therefore the network is understood to be doing something, such as making a decision.  If 

my input values are the price of pork belly futures over the past few days, my output values 

could represent a decision either to buy, to sell, or to hold my contracts.  A common use of 

neural networks is pattern recognition, in which the raw data of some phenomenon, such as 
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pixel patterns from an image, are input to the network, and the network recognizes whether 

the input is a letter of the alphabet or a face, for example. 

How can a neural network make such decisions?  This decision or recognition ability 

is a result of the patterns of weights within the system.  Given a suitably configured system 

of weights, the proper output will be given to the appropriate inputs.  How are such suitable 

weights determined?  Such weights are a result of the training of the network.  There are two 

broad categories for training in a neural network:  supervised and unsupervised learning. 

Supervised Learning Networks 

If a network is to be trained using a supervised learning method, a set of training data 

is required.  Training data consists of a set of inputs and the correct set of outputs.  This 

correlation of inputs to outputs is not generated by the neural network, but is created 

externally.  I may, for example, watch the price of pork belly futures over several days and 

record what I understand to be the correct response to the data, whether to buy or sell or 

whatever.  Or I may collect a series of images and record whether that image is a particular 

letter of the alphabet.  Such training data provides a set of paradigm cases in which the 

network should give the indicated output when given the corresponding input. 

Yet given such input, a neural network will typically not provide the correct output on 

the first try, since the weights are not properly set.  The weights must be adjusted such that 

the correct response is given by the Output layer.  It is a difficult task to know exactly how to 

adjust particular weights, since the contribution of each node to the end result is not known 

beforehand.  Adjusting the weights for a node too far in a particular direction may seem to 

give the correct results for a particular set of training data, but may give wildly erroneous 

results in another set. 
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There are a number of training methods, which I will not review here (see Gurney, 

1997; and Picton, 2000), but which typically make numerous minor adjustments to the 

weights in the system until the functioning of the system settles into a stable pattern.  Each 

minor adjustment in a weight typically makes some contribution to the resulting output of the 

system, whether correctly or as an error, though very small changes may make no 

appreciable difference.  This contribution is used as a basis for re-adjusting that weight in the 

appropriate direction, whether increasing or decreasing.  The weight is typically not changed 

much at all, but is only nudged in the correct direction.  Since there is an interdependence of 

weight factors within the system, it will often take very many iterations of such minor 

adjustments until the total arrangement of weights produces the correct results for a particular 

set of training data.  Yet that would only provide correct results for that instance.  

Consequently, the process is repeated for different sets of training data until the network 

provides correct results for all the training data.  Such a training method is known as “back-

propagation of error” since the net error of the results in a particular attempt is pushed back 

into the network as a guide for adjusting the weights. 

Thus far the network is trained for specific training data, but if the training data cover 

an appropriate range of possible cases, the network will be able to apply its system of 

weights correctly to novel cases of input data.  Therefore, rather than merely being able to 

reproduce my decisions concerning whether to buy or to sell my pork belly futures, the 

network will be able to monitor future prices and make such good decisions that I could 

entrust my entire portfolio of pork belly futures to its judgment.  Such is the hope for this sort 

of system, at least. 
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Again, the particular algorithm used within the training process is not important for 

my purposes.  What is important is that within supervised learning, a set of training data is 

created by the programmer in which the desired outputs are matched to a set of inputs.  Then 

the network is trained such that it can reproduce those outputs given the same inputs. 

Unsupervised Learning Networks 

There is another general type of neural network that does not require such forced 

learning, whose learning is therefore unsupervised as opposed to the supervision required in 

creating a training set and adjusting the weights properly.  Unsupervised learning commonly 

occurs within network architectures that are called “self-organizing nets,” usually employing 

a technique called “competitive learning.” 

Figure 3 shows an example of such a self-organizing net featuring competitive 

learning.  The important difference between this network and the network in Figure 1 is that 

nodes in the same layer are connected to each other.  Node B is connected to nodes A, C and 

D.  Though not shown for reasons of simplicity, these other nodes in this layer are likewise 

interconnected as node B is.  The interconnections within this layer serve as inhibitory inputs 

to the other nodes in the layer.  Thus the output of node B has a negative weight in node A 

that tends to inhibit node A’s output.  The effect of this inhibitory influence is to make the 

nodes within this layer compete for their output.  The node that inhibits its competitors most 

is the one whose output will prevail over the others for a given set of inputs.  Consequently, 

given an initial random set of weights within such a network, and given some set of inputs, 

one of the nodes A, B, C or D will prevail over the others, and will therefore be considered 

the winner. 
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Figure 3. Competitive learning in a self-organizing network. 

There is still some training that occurs in such a network, since given an instance of 

competitive success by node B, the stimulating weights associated with the input to node B 

will be strengthened to reinforce the positive results from this node, and the inhibitory 

weights on nodes A, C and D will be strengthened to reinforce the negative results from these 

nodes.  Consequently, the system trains itself as it operates, though it may still require 

external judgment concerning the criterion to determine at what point the network is 

adequately self-organized. 

The benefit of this sort of network over a network that requires supervised training is 

not only that the set of training data need not be correlated to specific desired outputs 

beforehand, but also that the possible outputs need not be determined beforehand.  The 

programmer need not stipulate whether the system is supposed to distinguish between bacon 

or pork chops, since the self-organizing principles of the network would classify the 
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incoming data into different groups that might represent bacon or pork chops.  Thus the 

network could be understood as discovering certain features of the input data, such that the 

output from the system determines a topography of the data. 

There are many variants of networks employing unsupervised learning, which I will 

not review here (see Gurney, 1997; and Picton, 2000).  What is important for my purposes is 

that such networks have the capability of classifying input data into categories without those 

categories being determined by the programmer beforehand.  After it has processed several 

sets of data, the weights within the system are set to reinforce the categories that it has 

organized within itself, such that after a certain point in time, further training is not 

necessary, since it will correctly classify novel sets of data in accordance with the weights it 

has already established. 

Connectionist Interpretations of Neural Networks 

The study of neural networks as such is a field in itself.  The interpretation of neural 

networks for cognitive science and philosophy is connectionism.  These interpretations 

typically are formed based upon the positions taken on the issues of mental representation 

and computability of thought and often arise in contrast to the Language of Thought 

hypothesis.  This hypothesis holds that thought occurs in the form of mental representations 

that have semantic and syntactic relations to each other in the same way that a language does 

(Fodor, 1990).  These language-like representations have genuine causal powers and are not 

merely useful devices for discussing the experience of cognition while not necessarily 

referring to the underlying mechanism of thought.  The Language of Thought hypothesis 

holds that these syntactical structures of representations depend upon the underlying physical 

structure of the brain, which explains their causal powers, and that the semantic features of 
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mental representations are due precisely to their syntactical features.  Under the Language of 

Thought hypothesis, my belief that bacon is delicious is a product of my mental 

representations of bacon and of the property of being delicious, each of which bears a 

syntactic relation to the other within my thought that is similar or the same as in the 

statement of the propositional content of my belief.  These representations have sufficient 

causal powers in relation to other mental representations that I hold such that they result in 

my particular belief state. 

If the Language of Thought hypothesis is correct, then classical artificial intelligence 

may be a possibility, since the programmer need only uncover the exact nature of the mental 

representations as well as their semantic relationships and replicate them within the syntax of 

a computer language.  If existing computer languages are insufficient to model such 

representations and semantic relationships, then it would still seem possible to create a new 

computer language with adequate capabilities, since the representational nature of thought 

under this hypothesis makes it projectable in some form of external representation.  Of 

course the attempt to formulate natural language comprehension within classical artificial 

intelligence has not completely succeeded, but this is not definitive proof that the Language 

of Thought hypothesis is incorrect.  Rather it may simply show that just as the strict 

formulation of natural language is more complex than was previously imagined, so is the 

Language of Thought. 

Thus the Language of Thought hypothesis is compatible with the notion of the 

computability of thought, depending upon the computability of language.  If thought does 

have a language-like structure, then that structure can be formulated into a series of rules, and 

those rules can in turn be coded in such a way that a digital computer or some other 
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calculating device can implement those rules by means of more basic calculative functions.  

The relations of each of these levels ultimately means that thought can be formulated into a 

form such that it can be computed.  The notion of syntax in a computer language itself 

derives from language.  Any formulation of computational steps in the creation of a computer 

program requires syntax within a formal system of symbols, whether the language used is 

BASIC, C++, Assembly language, or even low-level machine code.  Logically these last two 

statements do not entail that language is computable, but parallels between language and 

programming may seem compelling. 

Various connectionist theorists take differing positions on the issue of mental 

representations and computability.  The Language of Thought hypothesis holds one view of 

mental representations, namely that such representations have a language-like structure and 

not merely semantic structure.  Another view is that representations are structured like 

pictures.  Within a connectionist system, it is not obvious whether there are language-like 

representations, pictorial representations, or any representations at all.  Whereas it is obvious 

that there is some computation occurring within the connectionist system, explicitly within 

the processing of a single node, it is not clear that computation occurs between 

representations within the system, if in fact there are representations at all. 

Terence Horgan identifies three notable interpretations among connectionist thinkers 

(1996, pp. 95-96).  The most common interpretation is that there are mental representations 

within a connectionist system, but that these do not have a language-like or pictorial structure 

at all.  Rather the structure of mental representation that appears within neural networks takes 

the form of activation vectors distributed throughout the hidden nodes of the system.  These 

vectors appear as the weighted values exchanged between nodes.  Therefore, there is 
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computation among these vectors, but the distributed and interconnected nature of these 

vectors means that the computation cannot be understood as taking place among 

representational entities such as the Language of Thought and the pictorial theory of mental 

representations hold.  The syntactic requirement of the Language of Thought hypothesis 

seems to demand that representations be separable, in order for there to be proper syntactical 

structures between the representations.  Within a connectionist system, however, it is not 

clear or even possible to determine the demarcation between one putative representation and 

another. 

A second interpretation denies that there are representations at all within 

connectionist systems, primarily because any putative representation posited by the first 

interpretation among the hidden nodes of the system plays no explanatory role in the 

understanding of cognition.  If I think I recognize something corresponding to the 

representation “salty” in the hidden nodes of a connectionist system that recognizes bacon, 

that does not mean that what I take to be that representation has causal powers as a 

representation, since the system would function just as well without my recognition of any 

representations within its hidden nodes, and in fact would function just as well whether there 

are any representations at all present within the system.  Connectionists may posit such 

representations, but they are merely mapping folk psychological notions onto the 

connectionist system for convenience.  The representations seen in this way are not 

fundamental, but are simply devices used in understanding the connection between the 

underlying cognition and folk psychology. 

A third interpretation, held by Horgan himself, agrees with the Language of Thought 

hypothesis that there are mental representations and that they typically do take the form of 
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language-like structures; however, this interpretation denies that the relationships between 

these representations are computable.  Rather, the relations between mental concepts take the 

form of dynamical systems that are not reducible to linear algorithmic computation, but 

rather employ differential equations to describe the behavior of complex systems.  There is 

therefore some computation involved in the functioning and description of the system, but 

the computation that underlies the mental concepts within the system is not a computation 

between those concepts as such.  There is no computation between the concepts of “salty” 

and “fatty” that is involved in the mental representation of “bacon”, though there is 

computation underlying the complex system in which these concepts and representations 

arise. 

I will not attempt to evaluate these interpretations directly in this thesis, since more 

fundamentally, I doubt that there is sufficient data available on which to base any such 

interpretation properly.  In the next chapter, I will challenge the notion that there can be any 

grounds for holding any of these interpretations yet, based on the current practice of 

connectionism.  The problem, as I will argue, is the role of the Intentionality of the 

programmer. 
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CHAPTER V 

PROBLEM OF INTENTIONALITY FOR CONNECTIONISM 

In contrast with classical artificial intelligence and its problems, connectionism 

appears better suited for achieving artificial intelligence.  After all, connectionism and neural 

networks were based upon the processing structures in biological brains, so the connectionist 

strategy for achieving artificial intelligence is to replicate artificially the underlying 

structures of naturally occurring intelligence. 

The connectionist goal of creating an artificial brain seems less ambitious than the 

coding of cognitive functions algorithmically as in classical artificial intelligence; yet the 

issue of mental representations that is so central to classical artificial intelligence continues to 

be an issue for connectionism.   If, for example, Horgan’s interpretation of connectionism is 

correct, and connectionism can show that mental representations have structures similar to 

language but that the relations between them cannot be computable, this interpretation would 

show why classical artificial intelligence thought that it could encode cognition 

algorithmically, but could not succeed.  The language-like structures of mental representation 

seem amenable to algorithmic representation, in the way that one language can be translated 

into another; however, since the relations between those representations are not computable, 

no algorithm can provide a successful translation of those relations. 

Yet Horgan’s is only one competing interpretation of connectionism.  How can one 

adjudicate between these competing interpretations?  It depends on what is taken as a 

representation in a connectionist system.  I will argue here that these interpretations cannot 



 

 

62 

yet be adjudicated, since the current practice of connectionism has not yet yielded sufficient 

data on the nature of representations on which a rigorous interpretation can be based.  The 

problem here again is Intentionality, and once again the culprit is the programmer.  The 

objections that I raise are directed specifically at aspects of the current practice of 

connectionism, not at connectionism in general.  In the following chapter, I will offer a 

proposal whereby connectionism might amend its practice to overcome these objections. 

Problems with Supervised Trained Networks 

Consider the following remark by Paul Churchland in explaining the way a particular 

connectionist system recognizes faces:  “Not to put too fine an edge on it, what the network 

has developed during training is a family of rudimentary concepts, concepts that get 

variously activated by sensory inputs of the appropriate kind [italics in the original]” (1995, 

p. 50).  In this case, Churchland is discussing a network that features supervised training, 

namely that a training set of data was created in which the correct outputs were matched to 

the appropriate inputs, and the weights in the network were adjusted to give the correct 

results for the training data using the technique of back-propagation of error. 

At the very least, I think what Churchland says here is imprecise.  Consider the 

sample neural network in Figure 4.  Suppose that this network were fed raw sensory data in 

the form of values from various sensors that register certain qualities of the fragrance of an 

air sample, in other words, that it were fed raw smells.  The task of this network is to 

distinguish between various pork products.  Consequently, the output nodes A, B, and C 

represent whether the input smell is from bacon, ham, or pork chops, respectively.  Of 

course, a good network of this kind would need either to include a comprehensive set of 

output possibilities, or a default output node that would register when the input smell was  
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Figure 4. Sample supervised trained network classifying pork products. 

none of the other output nodes, and this will become significant later.  In order to train the 

set, I would create a training set of values taken from sensors that had been fed samples of 

bacon, ham, and pork chops of different varieties and correlate those values to the correct 

output values in each case.  I would then perform training runs using the sample data, and 

adjust the weights in the system until the network correctly classified all of my training data.  

Thereafter, when fed new raw smell data, say from a nice Virginia ham, I would expect the 

network to classify that novel data correctly as ham rather than as bacon.  

According to Churchland, this network has developed a set of rudimentary concepts 

corresponding to bacon, ham, and pork chops.  If Churchland means by “rudimentary” 

something corresponding to Searle’s as-if Intentionality, I would agree.  The network 

certainly behaves as if it had concepts.  Furthermore, if the statement is intended to indicate 

that concepts seem to result in some way from the pattern of weights in a network, then I 
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would likewise agree.  A biological brain capable of forming concepts seems to have 

available only the mechanism of such a system of weights in order to form concepts.  

However, if Churchland’s statement is intended to make a claim that the network in question 

reveals anything significant about the nature of the particular concepts in question, then I 

think the claim has overstepped its justification in the data. 

The problem, as I see it, is in the assignment of meaning to the output layer.  The 

programmer assigns output node A to represent bacon, and node B to represent ham, and so 

forth.  It certainly does not matter which node is assigned to which concept, since the pattern 

of weights in the middle layer would still train to essentially the same pattern.  But the very 

act of assignment in this case is a close parallel to the act of assignment in classical artificial 

intelligence, in that the programmer is projecting his own fully formed Intentionality onto the 

system by an intentional act in the form of “Let node A represent bacon.”  That projected 

Intentionality is then reinforced in the system by the process of training, in which the raw 

sensory data is pre-associated with the programmer’s own representation of that data as an 

Intentional object.  Note that this situation is distinctly different from what happens in a self-

organizing network, in which the assignment of nodes is performed by the system itself, 

though as I will discuss shortly, a self-organizing network is not immune from problems.  

Within a trained network, however, the assignment of nodes is an intentional act of the 

programmer, projecting his Intentionality onto the system, just as the assignment of a 

variable to represent an object of a specific class in classical artificial intelligence merely 

projected Intentionality onto the system rather than creating conditions whereby 

Intentionality could arise intrinsically within the system. 
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This intentional projection in the case of a neural network, however, seems different 

than in the case of classical artificial intelligence, in which the projected Intentionality seems 

to remain in the system as an artifact of that projection.  It could be argued that in the case of 

a neural network, the act of training serves to reverse the effect of the intentional projection 

of Intentionality.  By adjusting the weights in the system, the assignment of output nodes is 

given a “native” foundation in the network, since the intended Intentionality implied in the 

output nodes is not left merely as an artifact of the programmer’s act of intentional 

assignment, but rather it is given a foundation and justification in itself such that the 

Intentionality of the output nodes could arise in its own right. 

To a certain extent I agree with this argument.  There seems to be some grounding of 

Intentionality within a connectionist system that is missing in a classical artificial intelligence 

program.  However, I claim that traces of the programmer’s intentional act of assigning 

concepts to the output nodes still remain within the system, such that any claims of genuine 

Intentionality must be questioned.  Furthermore, any claims that the resulting network reveals 

something significant about the concepts at issue must likewise be questioned, given the role 

of the programmer’s Intentionality in these cases. 

The first issue is the nature of the output itself.  A single node within a single output 

layer represents an entire concept.  Churchland himself notes that this configuration is 

unrealistic.  “That small population of cells is there only to provide the researchers with a 

convenient means of monitoring the network’s performance.  It is not intended to correspond 

to anything in the brain” (p. 51).  There is no reason to think that the concept of bacon within 

my brain is represented by a single neuron, or that the distinguishing of bacon from ham and 

pork chops in my brain occurs between three neurons, as in Figure 4.  In reality, the 
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structures are much more complex, and the simplicity of the structure in the connectionist 

system is designed to simplify the task of the researcher in evaluating the effects of the 

hidden layer.  Yet if the realistic structure of the output is more complex than as a single 

node within a single layer of nodes, then it seems to me that the structures of weights within 

the hidden layer that determine that output must be correspondingly more complex.  

Consequently, that complexity of the output would seem to be part of the concept as well, not 

merely in the pattern of weights in the hidden node that contribute to that output considered 

as a single compact entity.  The complex structure of the output is not a simple content in the 

form of a positive value output through node A in my example in Figure 4, representing 

bacon by virtue of that positive value.  Rather, the content and the complex form of the 

output would seem to be bound up in each other.    This complexity cannot be seen in a 

connectionist system such as the example in Figure 4, precisely for the reason that the system 

is set up to mirror the programmer’s Intentionality in the output, namely one node 

representing each Intentional object.  Therefore, what can be claimed about concepts from 

such a system is merely a hypothetical statement, namely, “If concepts could be represented 

at a single nodal point, then the system of weights in the middle layer of the network 

represents their relations.”  To this extent, Churchland is correct in attributing a rudimentary 

system of concepts to the network.  However, the system is too rudimentary to say anything 

significant about the concepts themselves, for instance, how those concepts relate to other 

concepts.  Some other connectionist system may not be so rudimentary, but it would need 

first to determine how concepts in general could be implemented within a connectionist 

system, and it seems problematic to determine this in a system that simply posits a concept at 

a single nodal point. 
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The second issue I have is with the relations of the output nodes to each other, given 

the selection of the particular output nodes to be trained into the system.  This selection 

seems to be either arbitrary on the part of the programmer, or represents the programmer’s 

own Intentional analysis of the conceptual relations that the network is supposed to 

implement.  Within the system, of course, the output nodes do not have any direct relation to 

each other, at least in my example, since the nodes are not directly connected to each other.  

Rather, data flows into them from the hidden nodes and not from other output nodes.  There 

could be a network in which the output nodes are connected to each other, and I will consider 

such cases below.  The relations I consider here are the indirect relations resulting from the 

training.  The distributed nature of a connectionist system means that the weights throughout 

the system do not correspond exclusively to one concept or another.  Each weight contributes 

to the output in a greater or lesser extent, and the particular extent is determined during the 

training process.  This means that if there were just one additional output node in the output 

layer, the weights would need to be adjusted differently to accommodate the extent to which 

each node affects the additional output node.  The direct consequence of this situation is that 

whatever rudimentary concepts are developed in the hidden layer are determined against the 

entire set of concepts selected for representation within the system.  The programmer’s 

choice of which concepts to assign in the output layer shapes the conceptual scheme in the 

hidden layer (see Dreyfus & Dreyfus, 1990, p. 331).  Nor is it clear whether the relation of 

the conceptual scheme given one set of outputs has any determinate relation to the conceptual 

scheme given the same set of outputs with the addition of a single output node.  A new 

output mode does not merely add a new part onto the system, like adding a new module, 

since the network functions by means of interconnected nodes.  It may be that the pattern of 
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weights in the hidden nodes is determined so holistically relative to the output nodes that the 

conceptual schemes between the two systems are incommensurable.  The difference between 

the two systems is not merely that certain weights are different; rather all of the weights are 

different.  In this sense, the system of concepts that the network develops is not rudimentary 

in the sense that it is an early form on which the system builds its mature system of concepts.  

Rather the system of concepts is rudimentary in that it is deficient in comparison to the 

system of concepts it requires relative to a larger set of potential outputs.  It is deficient 

because the true range of the conceptual scheme is much broader than the restricted group of 

outputs that the programmer has selected. 

It might be argued that a complete set of outputs within a given topic would negate 

this issue, since the programmer’s choice of outputs would then match the complete 

possibilities within the topic.  For example, if a connectionist system were created to identify 

letters of the alphabet, the programmer would assign each letter to an output node, and that 

would exhaust the possibilities.  However, such an argument assumes that the recognition is 

always made among letters of the alphabet, which would still result in a hypothetical 

statement of the concepts in the system: “If the system only considers letters of the alphabet, 

then the system of concepts of such letters would be in such and such a way.”  Humans do 

not merely distinguish between letters of the alphabet, but they also distinguish letters from 

punctuation, for example.  If the system of concepts within the hidden nodes is determined 

holistically, then the concepts of each letter will be incommensurable in systems either 

including or excluding punctuation.  The situation is even worse, since letters are not only 

distinguished relative to other letters and punctuation, but also between non-grammatical 

marks or shapes, such as triangles or smiley-faces.  Unfortunately, the full range of possible 
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marks cannot be given within such a system, so if systems of concepts are incommensurable 

in the way I have suggested, then the concept of a particular letter within such a connectionist 

system is not even rudimentary in the sense of deficiency, since its putative deficiency cannot 

possibly be made up.  The holistic nature of concepts demands that all concepts be 

represented in the output, which seems to be a practical impossibility. 

Perhaps this holism is not ultimately a problem.  In the end, it may be discovered that 

a particular concept can be instantiated in a small portion of the network without having all 

other concepts present; however, the nature of that concept must first be determined.  Given 

that the individual weights within the network contribute not to a single concept, but 

potentially to all putative concepts given in the output nodes, if claims about the nature of the 

concept are made based on a subset of concepts within the network, there is some reason for 

wondering whether that claim is dependent upon the programmer’s particular selection of 

concepts.  If it were possible to represent all concepts in the output, then this doubt would be 

eliminated, and it might be possible subsequently to show that the same nature of the concept 

is exhibited in networks in which only a subset of concepts were included in the output.  

Alternately, if it were possible to show that the same nature of the concept is exhibited in a 

sufficient series of networks each implementing a subset of concepts, this doubt would be 

reduced, though there would still be questions concerning what would count as a sufficient 

series of conceptual subsets. 

The third issue I have is with the potential underdetermination of the system as a 

whole.  In the network in Figure 4, for example, I assigned output node A to represent bacon.  

What makes this node bacon as opposed to something else?  As a result of its training, the 

system of weights seem to make it bacon, but as noted in the last issue, this determination as 
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bacon is only in contrast to ham or pork chop or whatever happens to be selected within the 

output layer.  Beyond the issue of relativity to the output, there is the issue of the meaning of 

the network as a whole.  In itself, the network is merely data in a dynamical relationship.  

However, what gives meaning to that data does not seem necessarily within the system itself, 

but is imposed from outside, from the programmer.  The bacon-detecting system is fed raw 

smells, but these smells take the form of values presented to the system.  The system itself 

does not necessarily take these values as smells, but merely processes them as values.  

Likewise, the system does not necessarily take values in node A in the output layer as bacon, 

but merely processes the output as a value.  The system seems indifferent to the nature of the 

data except as mere values.  Where this becomes a problem for the comprehension of 

concepts in connectionism is that an entire system may have the exact same weights and may 

process the exact same values as another system representing different inputs and different 

outputs.  Suppose that I create and train a network to classify moral acts based on some set of 

inputs.  If it so happens that this network is identical to my bacon detecting network except 

for the labels that I assign to the input and output nodes, would I then conclude that moral 

acts have fundamentally the same conceptual structure as pork products?  Such a coincidence 

seems unlikely, but given the wide possibility for inputs and outputs among concepts, it does 

seem at least possible that some coincidences may occur.  In such a case, it does not seem 

even proper to say that the resulting system of concepts in its hidden layer is even 

rudimentary, since it is in fact indeterminate, since the meaning of the system is 

underdetermined by its structure. 

These three issues are intertwined with regard to their possible resolution.  A 

particular network may be underdetermined in its conceptual meaning if its output nodes are 
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taken to be simple singular points of output, but if their complexity is taken into account, the 

chance for coincidence of structure given different outputs is greatly reduced, if not 

eliminated, thereby increasing the chance that the activity of the system itself results in 

genuine Intentionality.  Likewise, the underdetermination of the system may be resolved if 

the outputs are not intentionally selected and assigned by the programmer.  Furthermore, the 

complexity required in the output nodes may address the way in which concepts arise in 

ways that are not relative to a complete set of alternative outputs.  These three issues relate 

directly to the parasitic Intentionality and underdetermination noted in the consideration of 

classical artificial intelligence.  The projection of Intentionality in the output nodes and the 

selection of a particular set of outputs as intentional acts makes any apparent Intentionality in 

the connectionist system parasitic on the Intentionality of the programmer or the interpreter, 

and the possibilities of underdetermination noted in both approaches are roughly parallel.  

The central issue here is again the Intentionality of the programmer, both in selecting output 

nodes that singly represent the programmer’s own Intentional objects and in training the 

system to replicate the programmer’s recognition of those Intentional objects given the same 

sensory input. 

Problems with Self-Organizing Networks 

Not all networks are trained in a supervised manner.  Consequently, the possibility of 

unsupervised training of a network may provide a means whereby the Intentionality of the 

programmer may not pose a problem for the connectionist system.  In such a network, the 

programmer does not assign the meaning to a particular output node and does not train the 

network intentionally to produce the desired Intentional output from a training set of data.  
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Rather, the training within the system is designed to reinforce the selections that the network 

itself makes. 

Consider the revised bacon-detecting network in Figure 5, designed to be a self-

organizing network.  Initially, the outputs of the system are not assigned any meaning at all.  

Rather, the raw smell data input to the system activates the initially random settings of the 

weights, such that a particular smell pattern activates one output node more than the others.  

The inhibitory pathways across the output layer cause the strongly activated node to reduce 

the output of the other nodes, explicitly drawn for node B in the example, though it should be 

understood that each node has similar inhibitory pathways.  The unsupervised training of the 

network reinforces the success of the strongly activated node and the failure of the other 

nodes by adjusting its weights accordingly.  Eventually, this self-training of the network will 

organize the smells across a number of its output nodes, possibly leaving some nodes as 

undetermined, as with node D in the example. 

The programmer has not intentionally assigned any of the nodes to represent 

anything, but the system seems to have assigned some meaning to it on its own.  Here it does 

seem that the system has developed its own system of concepts, however rudimentary it may 

be, and the Intentionality of the programmer did not interfere with it.  Yet the simple 

classification in a single output node does not seem to have any meaning in itself, but rather 

exists as an abstract distinction in relation to the competing output nodes.  “Obviously, it is 

up to the user to interpret the output” (Picton, 2000, p. 115).  In itself, the output is merely a 

value in a node, and as such has no intrinsic meaning other than that of a mere value.  If there 

is any meaning understood in the output of the system, the meaning derives from the 

interpretive act of the programmer.  With such interpretation, there arises again the  



 

 

73 

A B C D

raw smells

Stimulating input

Inhibiting input

(bacon)
?

(ham)
?

(pork chops)
? ?

 

Figure 5. Sample self-organizing network classifying smells. 

possibility that the Intentionality of the interpreter may compromise the system in some way.  

Yet if such is the case, it does not compromise the system as egregiously as in classical 

artificial intelligence or in supervised learning networks, since the system is clearly doing 

quite a bit of work on its own. 

First, I note that there is still potential for underdetermination of the system as a 

whole.  It may happen that two different types of input data may be self-organized in exactly 

the same way.  Unlike the case of underdetermination in supervised training networks, here I 

might want to say that such a coincidence indicates a similarity in structure between the two 

sets, because the similarity arose from the system itself, rather than as an accidental artifact 

of the programmer’s projection of Intentionality.  Yet the fact of such a coincidence indicates 

that the system itself is indifferent to what it is doing, since the inputs and outputs are simply 

values.  I might interpret the system as classifying smells, but that is because I know that the 
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values that I am feeding it are smells and not sounds.  Yet for the system itself, there is no 

immediate difference between values as smells or as sounds. 

Second, this problem with underdetermination of the system as a whole leads 

naturally to an underdetermination of the particular outputs.  For example, I understand the 

output from node A to be a classification of a smell as bacon, not because I intentionally 

designate the node that way, but because I empirically interpret it as such.  If I place a piece 

of bacon in front of the sensor, I see that node A is registered, which happens every time I 

place a piece of bacon in front of the sensor and never when I do not.  I then conclude that 

node A represents bacon.   If I suddenly change the sensors to register sounds and not smells, 

without retraining the network, I might in the same way interpret the output from node A to 

represent a baritone voice.  The system itself does not know the difference.  In other words, 

the putative difference in Intentional content is not determined intrinsically by the system, 

but is interpreted extrinsically by the programmer.  

Therefore the attribution of concepts to such a system can only be made in a very 

rudimentary way, in which the output remains as neutral nodes, as Quine put it in another 

context (1992, p. 34).  The content of such nodes is not given by the system itself, but only 

the relations between such neutral nodes in the output layer.  Yet if such relations were 

sufficient to determine an Intentional object, then given a case of systemic 

underdetermination, say between smells and sounds, there would be no conceptual difference 

between bacon and baritone voices, for example.  Since I take it that there is a difference 

between such concepts, either the bare relations are insufficient to determine the Intentional 

object or underdetermination is not a possibility.  I have been arguing for the possibility of 

underdetermination, so I think that there must be more to the concept recognized in the 
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interpretation of the output than the system itself is presenting, particularly before any 

Intentionality is attributed to the system.  Without a fuller determination of the concepts, the 

system would only display as-if Intentionality. 

There is a further problem with self-organizing networks that bears directly on the 

Intentionality of the programmer rather than on the Intentionality of an interpreter.  Given a 

set of sensory inputs, a self-organizing network determines certain features of the data that 

can be interpreted conceptually.  I will ignore for the moment the possibility of 

underdetermination in the interpretation of the results.  The connectionist researcher has no 

control over what features the self-organizing net organizes.  Rather, he must stand back 

passively and see what develops from the system.  On one hand, this necessity provides a 

measure of objectivity preventing the programmer from biasing the system with his own 

Intentionality.  On the other hand, it restricts his access to a connectionist investigation of 

certain concepts, particularly higher-level concepts only indirectly depending on raw sensory 

data.  In order to investigate such concepts, the programmer must either pass the network 

higher order data or must extend the structure of the network.  If I choose to pass higher 

order data, such as stock prices, then the interpretation of such input as stock prices 

represents a projection of my own Intentionality onto the system in a way that passing it raw 

smell or sound data would not, since those stock prices exist solely in the context of human 

social practices, whereas raw sensory data has at least a component that can be considered 

independent of human practices.  Any putative conceptual results would then fall into the 

same problems with parasitic Intentionality facing supervised training networks.  If on the 

other hand I choose to extend the structure of the network, I risk designing the system with a 

structure mirroring the structure of my own Intentional objects, which then poses the same 
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problems with parasitic Intentionality facing classical artificial intelligence.  If I structure a 

self-organizing network with the goal of producing higher order representations from raw 

data, the intentional design of the network seems to represent my understanding of own 

Intentional object corresponding to that higher-level representation.  Here again, my own 

Intentionality is projected onto the system, this time in the form of network structure.  

Consequently, I think it would be problematic to claim that the representation within the 

network corresponds to an intrinsic Intentional object; rather, the putative representation is 

simply a mirror of the programmer’s Intentional object.  The challenge in such an 

investigation is to create intentionally a higher-level connectionist system in which the only 

Intentionality projected on it is the intention that the system develops Intentional objects on 

its own. 

Conclusion 

I framed this chapter in terms of the need to interpret connectionism with regard to 

mental representations.  This in turn depends upon the recognition of such mental 

representations within a connectionist system.  Given current connectionist practice, I think 

that it is problematic even to acknowledge such representations in a supervised training 

network.  The Intentionality of the programmer, both in assigning output nodes to stand for 

Intentional objects as well as conducting the training process to reinforce that projected 

Intentionality, compromises the status of concepts recognized within the system.  Any 

interpretation of connectionism on the basis of such concepts as representations is an 

interpretation of parasitic Intentionality inherited from the acts of the programmer and not of 

pure representations in the system itself. 
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Although self-organized networks insulate the system from the programmer’s 

Intentionality to a large degree, their underdetermination both as a whole and in their 

particular outputs indicate that whatever concepts are inherent in the system remain in such a 

rudimentary state that they are insufficient to serve as evidence in interpreting 

connectionism.  There is a chance, though, that the programmer can extend self-organizing 

networks to address these problems.  The next chapter outlines a program of study whereby 

this might be accomplished. 
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CHAPTER VI 

CONNECTIONISM REFINED 

If the Intentionality of the programmer does pose a problem both for classical 

artificial intelligence and for connectionism, the question remains whether it is an intractable 

problem or one that can be solved by changes within the respective practices.  With regard to 

classical artificial intelligence, if a solution is possible, it is not immediately clear what form 

it might take.  The difficulty with classical artificial intelligence is that any putative 

Intentionality within the system seems to be a direct product of the Intentionality of the 

programmer.  For the system to use a concept, the structure of that concept must be mapped 

out by the programmer in advance, and the use of the concept ultimately reduces to a simple 

assignment statement representing the acquisition of an Intentional object.   

The case with connectionism is appreciably different, since the intentional acts of the 

programmer affect the putative Intentionality of the system less directly than in classical 

artificial intelligence.  The programmer intentionally creates a system, but does not 

intentionally create the Intentionality.  Rather, the programmer intentionally creates a system 

in which Intentionality can arise on its own.  My argument in the previous chapter was that 

this goal of self-arising Intentionality in an artificial system is still compromised by the 

Intentionality of the programmer by the particular practice of assigning Intentional meanings 

to certain nodes in the system or to the system as a whole, whether intentionally in advance 

of the network’s activity as in a trained network or interpretively after a self-organizing 

network has performed its self-organization.  Given the indirect relation of the Intentionality 
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of the programmer to the putative Intentionality of the system, it does seem possible to 

overcome the problems that the Intentionality of the programmer poses to connectionism by 

modifying the questionable practice. 

Proposal for a Corrective Practice 

The Intentionality of the programmer seems to enter into the connectionist system in 

the assignment of Intentional meaning to the input nodes, the output nodes, and to the system 

as a whole.  Yet the interpretation of the system as a whole seems dependent upon the 

assignment of the input and output nodes.  If I assign various pork products to the output 

nodes of the system, then the system as a whole is interpreted as a pork product classification 

system.  Therefore, the focus for the correction of connectionist practice seems to be the 

input and output nodes. 

For many connectionist systems, the input nodes seem to pose no more of a problem 

than human sensory input itself poses.  While it is possible to input values with pre-existing 

Intentional content to a system, such as prices of pork belly futures or stock levels of bacon 

in a grocery store, many connectionist systems start with more basic input corresponding 

fairly closely to the sensory input that a biological creature might receive.  One fanciful 

example of this was the raw smells input to a self-organizing network that classified the 

smells of various pork products in Figure 5.  A more common example is the replication of 

visual input through the retina by breaking a picture into component elements or pixels and 

feeding the light or color values for each pixel into separate input nodes in a network.  

Another possibility is the replication of audio input by inputting the amplitude of sound 

waves at various frequencies to separate input nodes.  The biology of sensation and 

perception provides connectionism with fairly uncontroversial ways to input data to a 
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connectionist system without involving the Intentionality of the programmer.  Even though 

that raw input can be understood as an Intentional object by the programmer, such Intentional 

content need not be recognized as such in the input to the system, but rather the data can be 

accepted merely as raw input from which the system derives Intentional content.  If input can 

be understood as raw sensory data in a biological system, the same input should be 

understood the same way in an artificial system.  Therefore, it seems that current practice 

already adequately isolates the input to a system from the Intentionality of the programmer.  

This much is already gained by connectionism over classical artificial intelligence, in which 

the input typically must already be grasped as an Intentional object in order for the 

algorithmic steps in the program to work on it. 

Consequently, the assignment of Intentional meaning to the output remains the 

problematic factor.  In a supervised training network, the Intentionality of the programmer is 

blatantly imposed on the system both by the arbitrary assignment of each node to represent 

some Intentional content, and by the reinforcement of the assignment by a training process 

based on training data in which the programmer’s own Intentionality is already correlated 

with sample input data.  In a self-organized network, this problem was less blatant, since the 

system itself made the assignments to particular nodes and reinforced the assignment itself 

through internal adjustments of its weight values.  Yet the problem still arises since the self-

organized output is still subject to the interpretation of the programmer, in which the 

programmer’s own Intentionality gets projected down onto the system.  A self-organized 

network structure seems close to achieving native Intentionality, but there is a remaining 

problem in how to eliminate the need for the programmer to interpret the self-organized 

output. 
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This problem seems almost intractable, since any presentation of results by the 

connectionist system is subject to interpretation by the programmer.  What the programmer 

sees in the system is a network of interrelated values resulting in a set of values in certain 

nodes understood to be output nodes.  Without interpretation, those values simply remain 

values for the programmer, and therefore challenge the recognition of cognition amid such 

values.  The entire connectionist and neural network project seems reduced to an intellectual 

curiosity in which values get transformed into other values.  Such a curiosity seems 

comparable to the games that used to be played in the early days of handheld calculators, in 

which numbers are entered into a calculator and certain rules are given, whether for 

multiplying or dividing by other numbers.  In the end, the calculator is turned upside-down, 

and the inverted numbers seem to spell out words.  There is no point analyzing such apparent 

words and the inverted numbers representing them or analyzing the numerical 

transformations that led to such results.  The relations between the numbers and the words 

recognized in the end are mere formal coincidences.  Yet in a connectionist system, the 

correlation between the numerical output of the system and the interpretation seems much 

more than coincidence.  There does seem to be some genuine process within the connections 

of the network corresponding to cognition.  The problem ultimately remains in the form of 

the output, since it does not seem obvious that any concept naturally results in a single value 

at a single point. 

The solution, it seems to me, lies in the presentation of output from the system in a 

form that naturally corresponds to the inevitable interpretation that the programmer is going 

to give to the output.  How do I recognize the functioning of any concept within another 

person?  As discussed in Chapter II, I recognize concepts through third-person observation, 
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correlated against first-person recognition, validated against third-person inter-subjective 

agreement.  I observe someone identifying a piece of bacon and recognize that the 

identification correlates to my own identification, which is validated against the inter-

subjective agreement of such identification confirmed in every successful use of the term 

‘bacon’ in conversations dating back to the time I was first taught the word ‘bacon’ by my 

parents.  There is interpretation in this process in the first-person correlation, yet this form of 

recognition of concepts in another person is not typically accused of projecting Intentionality 

onto that other person.  The difference between this case and the interpretation of 

connectionist systems that I have been criticizing is the nature of the third-person observation 

and the inter-subjective agreement.  What is observed is not merely a value emerging from a 

single node, and what is agreed upon is not merely that the value from the node will represent 

a particular Intentional content.  To correct the practice of connectionism and to reduce the 

potentially questionable effects of the interpretation of the output according to the 

programmer’s own Intentionality, I suggest that the connectionist system must exhibit what 

another person exhibits, namely behavior. 

It should be obvious that this suggestion does not reduce the project of connectionism 

to any form of philosophical behaviorism, since the behavior in this case is not the focus of 

the research, but rather a means of isolating the interpretation of the programmer from the 

underlying cognitive mechanisms.  The connections in the network are still the focus of 

research, since the connections are what underlie the behavioral response to the input.  The 

Intentionality of the system arises because of the connections of the nodes in the network, not 

merely because of the behavioral response to the input.  There is still room for a behaviorist 

to claim that it is because of the behavioral dispositions which these connections yield that 
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mentality arises, but this is a competing claim to the connectionist interpretation and not a 

necessary consequence of it.  For a behaviorist, the necessary behavior might just as well 

result from a non-connectionist system, whereas for the connectionist, behavior without the 

underlying cognitive structure of connections is insufficient for cognition.  The 

methodological demand that the system display behavior enables the connectionist interpreter 

to analyze those underlying cognitive structures as they natively occur within the system, free 

from any contaminating influences of extrinsic Intentionality.  Of course, the interpretation 

itself is still Intentional content for the interpreter and therefore may be a projection of the 

interpreter’s Intentionality rather than a recognition of any native Intentionality; however, in 

such a case, the fault lies with the interpreter and not the programmer, since the system has 

been created free of the programmer’s Intentionality.  Such errors are also not distinct to an 

interpretation of connectionism, but could arise in the same way for an interpretation of 

human behavior. 

The behavior that I have in mind is anything recognizable to the interpreter as a 

native manifestation of underlying concepts.  The interpreter must observe the system doing 

something, not merely observe the internal functioning of the system.  The behavior must be 

more than the output of values in an Output layer, which I have argued is underdetermined 

with regard to the Intentionality of the intended output.  Consequently, the system would 

need to be given some physical or virtual presence, such that the interpreter could observe it 

doing something, so it may need to be given a body and appendages or a simulation of these.  

Thus the connectionist project of modeling a mind may need to be extended to the task of 

modeling a complete organism in order to fulfill its goals.  Such an organism could well be 

an instance of as-if Intentionality: the system behaves merely as if it understood what bacon 
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is.  What would give this interpretational as-if Intentionality the status of genuine 

Intentionality is the cognitive structure in the form of the network of nodes and the system of 

weights that result in that behavior.  Thus the conceptual output no longer terminates in a 

value in a single nodal point, but rather terminates in a complex pattern of actions that 

depend on certain conceptual structures.   

The identification of the exact structures corresponding to the particular concepts thus 

becomes a matter of empirical research.  Such research is certainly more difficult than in 

previous connectionist models, in which the intentional assignment of Intentional content to 

output nodes restricted the scope and therefore the size of the system, such that only a 

relatively small number of hidden nodes needed to be examined in order to identify the 

putative conceptual structures.  Clearly, a system capable of producing recognizable 

intelligent behavior would need to be much larger than any system illustrated here.  There 

would need to be many hundreds or even thousands of layers needed to produce even the 

most rudimentary of intelligent behavior, and perhaps even this is an underestimation.  

Within so large a network, not all of the connections and weights may contribute 

significantly to the behavior under study, and not all of those that do may represent a 

particular concept inherent in the behavior.  Such empirical research would need to sift 

through a lot of data, which is inevitably subject to interpretation.  Yet such interpretation 

would no longer represent the Intentionality of the programmer, but rather the same 

theoretical methodology present in any scientific research, whether into the neurological 

functions of the brain or into the structure of an atom.  The special problems of Intentionality 

for connectionism disappear, leaving the general problems of science. 
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One way to achieve this sort of behavior would be to create a connectionist brain 

within a robotic body, as with MIT’s Cog project (Dennett, 1995).  However, such a 

connectionist brain would need to be initially untrained, even with regard to the operation of 

its robotic limbs, else the preliminary work to make the limbs move correctly risks 

introducing the Intentionality of the programmer and the engineer as to how such functioning 

should occur.  Consequently, when activated, the robot would very likely flail about 

randomly, possibly breaking laboratory equipment and injuring the stray researcher.  

Eventually, it is hoped that the robot could be trained to control its actions, as the system of 

weights within its connectionist brain become developed, correlating its random movements 

with the input from its visual field and other sensors.  Perhaps such a system could be created 

with all the behavioral dispositions sufficient for genuine Intentionality already present, but 

the intentional design of such a system would need to be evaluated to ensure that the 

Intentionality was not parasitic on the Intentionality of the designers.  In any case, such a 

project would not contribute to the development of connectionism as a discipline. 

Another approach is merely to simulate such embodiment within a computer system 

as a virtual reality world.  The connectionist system in this case would be linked to a virtual 

body and appendages within a virtual world, and certain of its output nodes would be tied to 

virtual mechanisms enabling it to manipulate those appendages and to maneuver within its 

virtual world.  The virtual world would be presented to the connectionist system by means of 

visual and possibly tactile input fed to it according to its position and orientation within the 

virtual world.  As with the robotic approach, the connectionist system would need to be 

initially untrained, such that it could develop its own Intentionality within the virtual world. 
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Of course, this approach may not succeed.  One problem is that researchers may 

never be able to induce intelligent behavior in such an artificial or simulated organism.  A 

biological organism typically exhibits pleasure and pain behavior, which enables training by 

means of positive and negative reinforcement.  It is not clear what would be required in order 

for positive and negative reinforcement to occur within a connectionist system.  Failing this, 

the robot or virtual organism may flail about wildly forever without coordinating its actions 

and sensations in a recognized cognitive structure.  Any proposal to incorporate pleasure and 

pain mechanisms risks reintroducing the Intentionality of the programmer or engineer, and 

introduces the problem of absent qualia and consciousness. 

Another problem is that researchers may never be able to make any sense of the 

internal data gathered from such a system in order to reach conclusions about the nature of 

cognition.  Data in a connectionist system is multi-dimensional, since at any point in time, 

there is data dispersed throughout the network of nodes in the form of weights and values 

transferred between nodes.  Furthermore, this data is extended temporally, since these data 

values exist at every moment in time.  The researcher must therefore examine not only the 

relationships of the weights and values within the structure of the network, but the changes in 

those relationships across time.  Furthermore, this data will need to be correlated between 

separate instances of relevantly similar behavior in order to identify similarities of internal 

cognitive structure.  The task of data analysis seems quite daunting. 

Benefits 

The motivation for correcting certain practices in connectionism was to overcome the 

problems raised by the Intentionality of the programmer, but there appear to be some further 

benefits.  For example, I think that this suggested correction addresses the criticisms levied 
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against classical artificial intelligence by both Dreyfus and Searle.  By situating the 

connectionist system in a world, whether the physical world or a virtual world, the system 

need not represent the entire world internally or algorithmically prior to its acting within that 

world.  Both Dreyfus and Searle appear favorably disposed toward connectionism yet 

express reservations about the current state of connectionism (Dreyfus & Dreyfus, 1990, 

p. 331; Searle, 1992, pp. 246-247).  Perhaps my suggestion for a correction of connectionist 

practice would advance the field to a point at which both critics could recognize the 

possibility of genuine intelligence within an artificial system. 

Such a system would also provide a level of transparency to the inner workings of a 

cognitive system that would not be available to empirical research on biological brains, since 

such research always risks destroying or at least interfering with the normal function to be 

studied.  For any given behavioral action, all the values within the system can be identified 

and traced.  Long-term changes can be traced over time, charting the structure of learning 

within the system.  Of course, current connectionist models exhibit the same sort of 

transparency, but the abstracted subjects of study within most current connectionist models 

are much more restricted than the possibilities that are opened in examining all the details of 

a simulated organism in contact with an environment. 

Perhaps more significantly for philosophy, the revised practice of connectionism 

offers an opportunity to examine empirically the extent and limits of empiricism in general.  

If a connectionist system is presented as a blank slate to a world, whether virtual or 

otherwise, if concepts can be induced into the system solely by virtue of its experience with 

that world, then empiricism as a philosophical doctrine would seem to gain some support.  

The success of the connectionist system could guide neurological research to demonstrate 
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that humans acquire concepts in the same way as the artificial connectionist system.  Of 

course, such support is empirical support, so there may be some methodological problems 

remaining there for empiricism as a philosophical doctrine.  Still, it may happen that it is 

discovered empirically that only within certain structures can intelligent behavior be induced, 

thereby identifying the prior physical grounds for subsequent empirical acquisition of 

concepts. 

Out of such research, connectionism would be able to offer a well-founded 

interpretation of neural networks with regard to the nature and role of representations within 

cognition.  Rather than defining representations within a theoretical context, the researcher 

would be able to demonstrate the nature of representations within a connectionist system 

based on an analysis of the data, possibly even demonstrating that there is nothing properly 

corresponding to representations at all.  With such a demonstration, an interpretation of 

connectionism would seem much better grounded. 
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CHAPTER VII 

CONCLUSION 

There is a lot of neural network research that does not aim to simulate human 

concepts or to produce Intentionality within the system, but rather aims merely to explore 

new connectionist structures and new learning algorithms.  The problems of Intentionality 

that I raised here do not affect such work, given their goals.  The problems become 

significant when such neural network research is implemented in particular cases and when 

philosophical interpretations are imposed on such implementations that make conclusions 

about cognition in general.   

My argument here is that any such conclusions cannot be justified so long as the 

models used in the explanation entail a putative Intentionality within the system that is 

parasitic on the Intentionality of the programmer.  If an argument does not rely on particular 

models as examples, but merely uses the general principles of connectionism, thereby 

appearing to avoid the problems of the Intentionality of the programmer, then it seems that 

the argument has insufficient foundation for making strong claims about cognition and 

ultimately falls back on the very weak claim that cognition arises in the connections between 

nodes, as between the neurons in a biological brain.  The interpretation of this generalization 

of connectionism that is needed to understand cognition fully requires specific explication 

and demonstration of concepts in action, thereby requiring particular models of cognition, 

and thereby encountering the potential problem that the Intentionality of the programmer 

poses. 
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My suggestion for overcoming this problem is to extend the practice of 

connectionism such that the connectionist system is embodied within a complete organism, 

whether virtual or robotic, which is studied just as a natural organism is studied, with the 

additional benefit that its internal structure is transparently available to the researcher without 

altering or destroying the subject of study.  Not only would the connectionist interpretations 

of neural networks be grounded better using demonstrable data, but also the very approach 

enables an investigation into the philosophical doctrine of empiricism, thereby providing 

better grounding for empiricist assertions or criticisms. 

Connectionism risks stagnation the same way that classical artificial intelligence 

seemed to stagnate.  After some initial successes, connectionism may not be able to advance 

further and fulfill its promises, possibly lapsing solely into a commercial endeavor.  My 

identification of the Intentionality of the programmer as a problem for connectionism is 

intended to isolate a factor that might be responsible for such stagnation.  My proposed 

solution to that problem is intended to chart a path away from stagnation not only toward a 

fulfillment of the goals of cognitive science, but also toward a revitalization of the debate 

concerning empiricism in philosophy. 
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ABSTRACT 

Connectionism seems to avoid many of the problems of classical artificial 

intelligence, but has it avoided all of them?  In this thesis I examine the problem that 

Intentionality, the directedness of thought to an object, raises for connectionism.  As a 

preliminary approach, I consider the role of Intentionality in classical artificial intelligence 

from the programmer’s point of view.  In this investigation, one problem I identify with 

classical artificial intelligence is that the Intentionality of the programmer seems to be 

projected onto the system, rather than the programmer creating a system whereby 

Intentionality arises intrinsically within the system. 

In considering the current practice of connectionism, the same problem with 

Intentionality reappears.  The assignment of Intentional content to input or output nodes in a 

neural network likewise projects the Intentionality of the programmer onto the system, and 

that projection is often reinforced by the training process of the neural network.  However, 

connectionism seems to have an advantage over classical artificial intelligence in this respect, 

in that there is a form of neural network in which the network itself organizes the output 

nodes.  The challenge is to utilize these self-organizing networks without having the 

programmer project Intentionality onto the system in an act of interpretation. 

I suggest that the way to overcome these problems in connectionism is to embody the 

neural network within a world, whether physical or virtual, and to allow the system to 

develop concepts purely empirically.  In this manner, connectionism can make scientific 

observations concerning the nature of cognition without the risk of contamination from the 

programmer’s own Intentionality. 
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