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The paradoxes of self-reference are genuinely paradoxical. The liar paradox,
Russell’s paradox and their cousins pose enormous difficulties to anyone who
seeks to give a comprehensive theory of semantics, or of sets, or of any other
domain which allows a modicum of self-reference and a modest number of logical
principles.

One approach to the paradoxes of self-reference takes these paradoxes as
motivating a non-classical theory of logical consequence. Similar logical prin-
ciples are used in each of the paradoxical inferences. If one or other of these
problematic inferences are rejected, we may arrive at a consistent (or at least,
a coherent) theory.

In this paper I will show that such approaches come at a serious cost. The
general approach of using the paradoxes to restrict the class of allowable infer-
ences places severe constraints on the domain of possible propositional logics,
and on the kind of metatheory that is appropriate in the study of logic it-
self. Proof-theoretic and model-theoretic analyses of logical consequence make
provide different ways for non-classical responses to the paradoxes to be de-
feated by revenge problems: the redefinition of logical connectives thought to
be ruled out on logical grounds. Non-classical solutions are not the “easy way
out” of the paradoxes.1

1 Non-Classical Solutions

In this section I will sketch the structure of non-classical approaches to the para-
doxes. They have straightforward general features: Firstly, we keep whatever
semantic, or set-theoretic principles are at issue. For example, if it is the liar
paradox in question, we can keep the näıve truth scheme, to the effect that

T 〈A〉 ↔ A

where 〈—〉 is some name-forming functor, taking sentences to names, and where
↔ is some form of biconditional. This scheme says, in effect, that T 〈A〉 is true
under the same circumstances as A. To assert that A is true is saying no more
and no less than asserting A.

1It does not follow that non-classical accounts of the paradoxes are misguided or wrong-
headed. On the contrary, I think that the general approach is quite sane, and have argued as
much in print [18].
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Secondly, we allow our language to contain a modicum of self-reference. We
wish to express sentences such as the liar: “This very sentence is not true.” If
the language in question is a natural language, then indexicals will do the trick.
If the language is a formal language without indexicals, some other technique
will be needed to construct sentences analogous to the liar. A Gödel numbering
and a means of diagonalisation will do nicely to give the required results.2

With such machinery at hand, we can reason as follows: Use a means of diagon-
alisation to construct a statement λ such that λ is equivalent to ∼T 〈λ〉. Then
reason as follows: λ ↔ ∼T 〈λ〉, but by the T -scheme, λ ↔ T 〈λ〉. Therefore
T 〈λ〉 ↔ ∼T 〈λ〉, and equivalently, λ ↔ ∼λ. We can then deduce λ ∧ ∼λ (from
an inference such as reductio: p → ∼p ` ∼p) and we have a contradiction.

If your favourite paradox is Russell’s, instead of the liar, the non-classical ap-
proach will keep the näıve class abstraction scheme

x ∈ {y : φ(y)} ↔ φ(x)

and you reason similarly, from the definition of the Russell class r as {x : x 6∈ x}.
If r ∈ r then r 6∈ r, and if r 6∈ r then r ∈ r. The same holds for Berry’s paradox,
the Burali-Forti paradox, and many others.3

The non-classical response to these paradoxes is to find fault with the logical
principles involved in the deduction. Most approaches to the paradoxes take
them to be important lessons in the behaviour of negation. There are two
different lessons we might learn. One is that the inference from A ↔ ∼A to
A∧∼A fails, since A might be (speaking crudely) neither true nor false. Another
possible lesson is that the inference from A∧∼A to an arbitrary B fails, since A
can be (speaking less crudely this time) both true and false. However negation
works, it cannot be Boolean. Boolean negation allows both inferences, and
inferring every statement from a the existence of liar sentence or a Russell set
is just too much. Boolean negation is rather too strong, so an alternative logic
of negation must be found [5, 6, 16, 17].

If you wish to define negation non-classically, there are many options avail-
able. You can define negation inferentially, taking ∼A to mean that if A,
then something absurd follows,4 or it can be defined by way of the equivalence
between the truth of ∼A and the falsity of A, and allowing truth and falsity
to have rather more independence from one another than is usually taken to
be the case: say, allowing statements to be neither true nor false, or both true
and false.5 The former account takes truth as primary, and defines negation in
terms of a rejected proposition and implication. In the context of the semantics
of relevant logics, this approach is sometimes called the Australian Plan. The
account which takes truth and falsity as on a par is sometimes called the Amer-
ican Plan. In either case, there are many options for the theorist seeking an
alternative account of negation.

2See Boolos and Jeffrey [4] for a review of the standard approach, and see Smullyan [21]
for more on what a language must contain to feature self-reference.

3A compendium of such paradoxes is given by Graham Priest [17].
4See, for example, Meyer and Martin’s account of negation as implying falsehood, and its

idiosyncrasies when combined with a relevant notion of implication [11]
5Three examples are four valued semantics of relevant logics, used by Dunn [8, 9] and

Belnap [2, 3], the semantics of Priest’s In Contradiction [17] and the semantics of Nelson’s
constructible falsity [15] and its extensions by Heinrich Wansing [23].
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I sketch this general typology of negation merely to indicate that I need not
take a stand on it. In what follows we will see that the paradoxes have more to
teach us than this. If we wish to be non-classical, we need to work with much
more than the logic of negation.

2 Curry’s Paradox

The paradox I have in mind can be found in a logic independently of its stand
on negation. The deduction appeals to no particular principles of negation, as
it is negation-free. Any deduction must use some inferential principles. Here
are the principles needed to derive the paradox.

a transitive relation of consequence: We write this by ‘`’. I take ` to
be a relation between statements, and I require that it be transitive: if A ` B
and B ` C then A ` C.

conjunction and implication: I require that the conjunction operator ∧ be
a greatest lower bound with respect to `. That is, A ` B and A ` C if and only
if A ` B ∧ C. Furthermore, I require that there be a residual for conjunction:
a connective ⊃ such that

A ∧B ` C if and only if A ` B ⊃ C

This is our connective of implication. (You may wonder how we might come
across such a connective. There are many ways to construct it. In the next
section we will examine some.)

a paradox generator: We need only a very weak paradox generator. We
take the T scheme in the following enthymematic form:

T 〈A〉 ∧ C ` A A ∧ C ` T 〈A〉

for some true statement C. The idea is simple: T 〈A〉 need not entail A.6 Take
C to be the conjunction of all required background constraints. It is true that
the sentence “snow is white” could be true without snow being white. However,
if “snow is white” is true and some background semantic theory is holds, then
it follows that snow is white. Conversely, if snow is white and the background
semantic theory holds, then “snow is white” is true. Let C be that background
semantic theory. It must simply give A under some background constraints
(such as some facts about language) we can infer A. (If you find it difficult to
construct the required background semantic theory. Do not worry. Take C to
be the conjunction of all truths: a maximally specific statement. Then we need
simply that there is no instance of A for which in which T 〈A〉 is true and A fails
to be true, or vice versa.)

diagonalisation To generate the paradox we use a technique of diagonalisation
to construct a statement λ such that λ is equivalent to T 〈λ〉 ⊃ A, where A is

6So, we need not take the range of the T -scheme to be propositions [10], as we do not need
to commit ourselves to the equivalence of T 〈A〉 and A.
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any statement you please. Then, with this A chosen, we reason as follows:

C ∧ T 〈λ〉 ` λ λ ` T 〈λ〉 ⊃ A

C ∧ T 〈λ〉 ` T 〈λ〉 ⊃ A

C ∧ T 〈λ〉 ∧ T 〈λ〉 ` A
(∗)

C ∧ T 〈λ〉 ` A

C ` T 〈λ〉 ⊃ A T 〈λ〉 ⊃ A ` λ

C ` λ C ∧ λ ` T 〈λ〉

C ` T 〈λ〉

from (∗)

C ∧ T 〈λ〉 ` A

T 〈λ〉 ` C ⊃ A

C ` C ⊃ A

C ∧ C ` A

C ` A

This is a problem. Our true C entails an arbitrary A.

This inference arises independently of any treatment of negation. The form of
the inference is reasonably well known. It is Curry’s paradox, and it causes a
great deal of trouble to any non-classical approach to the paradoxes [12, 13, 14,
20]. In the next section I show how the tools for Curry’s paradox are closer
to hand than you might think. Avoiding this paradox severely constrains the
non-classical theorist.

3 The Revenge Problem

There are many different ways to get the logical tools necessary for our prob-
lematic deduction. In particular, there are many ways to get a connective ⊃
which residuates conjunction. We will examine them one at a time.

boolean negation: If Boolean negation is present (write it “∼”) then we can
define A ⊃ B to be ∼A ∨ B. However, the non-classical theorist has explicitly
rejected Boolean negation, so we need not tarry here. This is not a problem by
itself.

intuitionistic Logic: The rule for the residual is satisfied by the conditional
of intuitionistic logic. Any semantic account which motivates intuitionism mo-
tivates the residual of conjunction. Now no non-classical theorist of the para-
doxes is going to explicitly use the intuitionistic conditional, for it is well known
to suffer from Curry-style paradoxes. Our point in the rest of the paper is to
show that the implicit acceptance of this conditional is deeply embedded in our
practices of logic.

infinitary disjunction: A Curry-paradoxical conditional can arise as a re-
venge problem for the non-classical theorist without explicitly motivating in-
tuitionistic implication. If we have infinitary disjunction at hand, such that a
(finite) conjunction distributes over infinitary disjunction, we can define B ⊃ C
to be ∨

{A : A ∧B ` C}
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This will satisfy the definition of ⊃. If A′∧B ` C then A′ `
∨
{A : A∧B ` C},

since A′ ∈ {A : A ∧ B ` C}. Conversely, if A′ ` B ⊃ C, we have A′ `
∨
{A :

A ∧ B ` C}. Then A′ ∧ B ` B ∧
∨
{A : A ∧ B ` C} and by the distribution

of conjunction over disjunction, A′ ∧ B `
∨
{A ∧ B : A ∧ B ` C} and clearly∨

{A ∧ B : A ∧ B ` C} ` C, so A′ ∧ B ` C by the transitivity of entail-
ment. Therefore, any semantic theory which motivates infinitary disjunction
and distributive lattice logic motivates the residual ⊃ of conjunction, and our
problematic inference. This seriously constrains non-classical solutions to the
paradoxes, for infinitary disjunction can be motivated in many different ways.

Proof Theory : If your favoured way to introduce connectives is by way of natural
deduction (introduction and elimination rules) then infinitary disjunction is no
less motivated than ordinary disjunction. To infer

∨
X from a statement A, it

is sufficient to infer a member of X.

A ` Bi

A `
∨
{Bi : i ∈ I}

If you can infer A from each element of X, then you can infer A From
∨

X too.

Ai ` B (each i ∈ I)∨
{Ai : i ∈ I} ` B

This rule is the left-hand Gentzen rule. For a traditional elimination rule for a
natural deduction system, you use

C `
∨
{Ai : i ∈ I} Ai ` B (each i ∈ I)

C ` B

which is equivalent, given the transitivity of entailment. These rules seem to
motivate the connective straightforwardly. However, a non-classical theorist of
the paradoxes must do one of two things. One response is to allow the connective
but to deny the distribution of conjunction over disjunction: that is, we do not
have

A ∧
∨
{Bi : i ∈ I} `

∨
{A ∧Bi : i ∈ I}

Such an approach has its own difficulties: however, it may be attempted. The
second response is to reject the definition of

∨
in some way. It must be argued

that this does not define a connective. This will require giving a precise account
of what proof-theoretical principles are permissible in the account of a logical
connective, and which principles are illicit. To avoid doing this is to leave the
theory open to Curry’s revenge.

The problem does not end here, however. The non-classical theorist must also
have something to say in areas other than proof theory, for we can define dis-
junction in many different ways.

The Algebra of Propositions: Some logicians treat the class of propositions as
an algebra. This algebra is closed under various operations, which have different
algebraic properties. The algebra of propositions is complete if it is closed under
arbitrary conjunctions and disjunctions. The non-classical theorist (who accepts
the distribution of conjunction over disjunction) must hold that the “intended”
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algebra of propositions is incomplete. This is not a particularly great burden in
and of itself. However, it becomes a burden when we consider the constructions
available which naturally complete incomplete lattices [7, 19].

Here is one result of this nature. If the lattice of propositions is incomplete,
then define a new lattice of propositions like this. The new propositions are
ideals of the old lattice. A set I of propositions is an ideal if and only if it is
closed under converse entailment (if a entails b and b ∈ I then a ∈ I too) and
disjunction (if a ∈ I and b ∈ I then a ∨ b ∈ I too). You can think of I as a set
of propositions such that you would like one of them to be true. Our conditions
ensure that we add into the set any other proposition such that making it true
will be enough to make one of our original choices true. (The smallest ideal
containing {a, b, c} is the set of all propositions entailing a∨b∨c. If any of these
propositions are true, then a ∨ b ∨ c is true, which ensures that either a or b or
c is true.)

Now the ideals behave just like propositions. The conjunction of a class of
ideals is the intersection of that class. The disjunction of a class of ideals is the
smallest ideal containing that class. The entailment relation among ideals is
just the relation of inclusion. The collection of ideals forms a complete lattice.
Every set of ideals has a disjunction and a conjunction. The logic of the set of
ideals is very similar to the logic of propositions out of which it was constructed.
However, it is complete.7

This is not merely a mathematical construction with no possibility for inter-
pretation. Given an algebra of propositions, any ideal in the structure can be
treated as a proposition, with simple truth conditions: I is true just when one
member of I is true. Given a class I of propositions, it makes sense to commit
yourself to the claim that one member of I is true, and this claim ought to be
true just when one member of I is true.8

To avoid revenge, the non-classical theorist explain the point at which this
reasoning breaks down. There is some ideal in the structure such that the truth
of a member of I is not expressible in the domain of propositions. This is a
strange result indeed, and it is a cost to the non-classical theory. It seems that
the class of propositions of the language must forever remain incomplete.9

Once this version of the revenge problem is avoided, there yet is another way
in which Curry’s paradox might take its revenge.

State Models: Perhaps the simplest way to construct infinitary disjunction is by
way of what we might call “state models” of our logics. In a state model, each
proposition is modelled by the set of states in which that proposition is true.
Possible worlds models for modal logics are one form of state model.

Given a state model, it seems that infinitary disjunction is close at hand.
Take a class of propositions. Their disjunction is true at the union of the
class of sets of states at which each proposition in that class is true. The
disjunction is true at a state just when one member of the disjunction is true

7The proof is not difficult, but I will not rehearse it here [7, 19].
8It would be very odd for a non-classical logician to reject this step, for she is the one

defending the equivalence of T 〈A〉 and A.
9It will not do, either, to say that there are too many ideals to be expressible in a finitary

language. For we do not need infinitary expressions to justify the existence of the residual ⊃:
The only infinitary disjunctions we need are those of the form

∨
{A : A ∧ B ` C} and these

can be expressed in a finitary fashion.
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at that state. This will define a proposition, which is the infinitary disjunction
in the language. This construction relies on the notion that this class of states
gives rise to a proposition. The non-classical theorist is free to reject this.
However, to do so would require an explanation of which classes of states do
give rise to propositions and which do not, and to explain why it rules out the
kind of infinitary disjunction sufficient for generating the conditional for Curry’s
revenge.

4 Choices

Here, then, are the choices for any theory which seeks to give an account of the
paradoxes of self-reference.

reject large disjunctions: This requires formulating responses to each of
the arguments of the previous section. This has not been done, as yet, and it is
unclear what a non-classical theory which takes those arguments seriously might
look like. In particular, it would aid the cause of the non-classical theorist to be
able to point to a particular class of propositions and to explain why that class
has no disjunction. It is unclear what such an explanation could look like.

reject distribution: A crucial step in each argument has been the distribu-
tion of conjunction over disjunction. This inference has been under question for
a number of reasons; primarily in quantum logic and in substructural logics. It
is unclear how to motivate the failure of distribution in this context. It would be
very nice to be able to point to a particular case of distribution and to have an
explanation of why the premise is true but the conclusion fails. Such explana-
tions are forthcoming in quantum logic (even if they are not always convincing).
We need one to motivate the failure of distribution for non-quantum reasons.
Uwe Petersen has the most fully developed non-classical theory of the paradoxes
which lives without distribution [16]. However, no-one has given an explanation
of why distribution fails, other than as an artefact of the proof theory. J. L. Bell
has developed a semantics for quantum logic which motivates the failure of dis-
tribution [1]. It would be a great advance too if such a semantics could help
explain a failure of distribution in the case of the paradoxes.

reject the transitivity of entailment: This may be seen to be cutting
off one’s nose to spite one’s face, but this approach has its proponents. Neil
Tennant gives one theory of consequence which abandons the transitivity of
entailment [22]. Tennant does not do this for reasons of the paradoxes, and
Tennant’s non-transitive logical systems do not seem to help in this case. For
Tennant, if we have a proof from A to B and a proof from B to C is valid,
then we do not necessarily have a proof from A to C, but we do have either a
refutation of A (a proof from A to the empty conclusion) or a proof of C (a proof
of C from the empty premises) or a proof from A to C. So, for our purposes we
may talk of arguments being weakly valid if and only if there is a Tennant-proof
of some superset of the premises to some superset of the conclusions, and this
notion of consequence is transitive, and it does all that we need to generate the
paradoxes. Avoiding the transitivity of consequence in Tennant’s style does not
suffice for avoiding Curry’s revenge.

reject the strong laws: To live without the T -scheme or the näıve class
comprehension scheme is to give up the goal of giving a non-classical account
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of the paradoxes. If the fault isn’t with the logic but is with the semantics or
the mathematics or whatever else we used, then the paradoxes do not motivate
a non-classical logical theory. A classical one will do.

Each approach has its cost. None are straightforward. There is much work left
to do, if we wish to give any account of the account of the paradoxes, including
those which involve revising logical theory.10
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