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Abstract Many logics in the relevant family can be given a proof theory

in the style of Belnap's display logic (Belnap 1982). However, as originally

given, the proof theory is essentially more expressive than the logics they

seek to model. In this paper, we consider a modi�ed proof theory which

more closely models relevant logics. In addition, we use this proof theory

to provide decidability proofs for a large range of substructural logics.
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There is rather a lot of interest these days in what have come to be called

`substructural logics.' The term picks out logics in which the standard com-

plement of structural rules (in, say in a Gentzen proof theory or a natural

deduction system) are not all present. While much of this interest is rather

recent | arising since Girard's landmark \Linear Logic" (Girard 1987),

some of it has quite a history; for example the last 35 years have seen a

great deal of work on relevant logics (see the two volumes of Entailment

(Anderson and Belnap 1975, Anderson et al. 1992) for a history of some of

the work of this tradition). This paper is �rmly in the latter tradition. How-

ever, much of what goes on here will be useful for the wider `substructural'

community, and a following paper (`Display and Decidability of Substruc-

tural Logics 2: The General Case') will generalise the results to apply to

substructural logics in their generality.

Nuel Belnap's display logic (Belnap 1982) was originally conceived to

provide a cut-free consecution calculus1 for relevant logics, particularly, the

relevant systems R and E. So, one would think, they would be ideally suited

for providing a Gentzen-style proof theory for all logics in the `relevant'

family. Alas, this is not been seen to be the case. Display logic, as it

stands, utilises boolean negation to do its work, and some logics in the

relevant family cannot be conservatively extended with boolean negation.

Some subtlety must be involved to get display logic to work in these cases.

Belnap's method is to impose a form of apartheid on structures. Those

not involving boolean negation are separated from those that do, and only

the �rst-class structures (those which don't inovolve boolean negation) are

allowed to take part in certain rules. The �rst major result of this paper is

that this is not necessary. Another, simpler subtlety which will do the trick.

We can treat all structures equally, and do without boolean negation. In the

second part of the paper we will then use the calculus to prove decidability

of a large class of substructural logics in the relevant family.

Before we can prove the results, or even explain the problem with boolean

negation, we must �rst give an account of the logics we wish to study.

1I am following Anderson and Belnap 1975 in using `consecution' in place of the more

prevalent `sequent.' Their reasons for doing so (given in Entailment) still hold, even if

no-one else has taken up the usage. Further to their reasons I will add another. `Sequent'

carries the idea of premises or conclusions being listed. In `consecution' the idea is muted.

In the setting of display logic premises and conclusions can be bunched together in a more

structured way than simply listing them. We co-opt `consecution' to do duty for this kind

of structured representation of premises and conclusions.
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1 Ternary Frames and Models

Relevant logics can be modelled in ternary frames.

frame A frame is a quadruple F = hW;N;R; �i where W is a

non-empty set (of worlds, or simply points) N is a distinguished

subset of W (of normal points, points at which all of the theses

of logic hold), R � W 3 is a ternary relation on W , of relative

accessibility (Rxyz if and only if relative to y, x is a possible an-

tecedent for a consequent z). Finally, � : W !W is a `dualising'

function to deal with negation. (The intended meaning is that

�A is true at x if and only if A is not true at x�. So x� is the

maximal point consistent with x.) A ternary frame must satisfy

a number of conditions.

� De�ne x � y to mean (9z)(z 2 N and Rxzy).

� N is `closed upward.' If x 2 N and x � y then y 2 N too.

� We require that for each x 2 W , x � x; and that for each

x; y; z 2W , x � y and y � z entail that x � z.

� Then R is appropriately `tonic.' For each x; y; z; x0; y0; z0 2

W , if Rxyz, x0 � x, y0 � y and z � z0 then Rx0y0z0.

� For each x 2W , x�� = x

� For each x; y; z 2 W , Rxyz if and only if Rz�yx� (as a

result, x � y if and only if y� � x�).

These conditions are no doubt rather arcane.2 However, they have some

beautiful models. To fuel the imagination, I will present one interesting

class of frames.

Take an arbitrary abelian group A = hA; e; � ; �1i. The corresponding

quadruple FA = hA; feg; RA;
�1i is a frame, where we de�ne RAabc as a�b =

c. To see this, note that a � b is simply a = b. As (9z)(z 2 feg and RAazb)

if and only if RAaeb which is simply a�e = b. So, � is trivially a partial order

and the tonicity requirement connecting � and R is ful�lled rather easily. It

is also true that a�1�1 = a for any a. The contraposition condition rewrites

2And they are also notationally di�erent to what you will �nd in a lot of the `relevant'

(and `relevance') literature. What I take to be Rxyz will often be written in much of

the rest of the literature including works by my earlier self (Restall 1993, Restall 1995)

as Ryxz. This is a mere notational di�erence. I choose this presentation in line with

Mike Dunn's gaggle-theoretic work (Dunn 1991, Dunn 1993), and because it makes the

`direction' of implication match with the order of premise combination. Getting ahead of

ourselves a little, we have A � (A ! B) ! B as a theorem, instead of (A ! B) � A !

B, making it clear that A ! B is the sort of thing that when given an A on the left

produces a B, just as the direction of the arrow indicates. Of course, in the presence of

the commutativity of fusion, or the commutativity of the �rst two places of R, it doesn't

matter which order you choose.
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as a � b = c if and only if c�1 � b = a�1. But that this holds in any abelian

group (but not in all groups) can be easily checked.3

We use frames to model deduction in a language. To do that, we need our

language.

propositional language Given a countable collection � of

atomic propositions, we de�ne our propositional language L(�)

by closing � under the connectives

? t � ^ _ � !

where ? and t are propositional constants, � is a unary operator,

and the rest are binary.

That gives us a language and structures in which to interpret the language.

To make the story complete we need to de�ne an interpretation.

UCLA propositions In any frame F , propositions are inter-

preted by suitable sets of points | namely those sets P which

are closed upward (so, if x 2 P and x � y then y 2 P too). Such

a set of points is called a UCLA proposition,4 and the set of all

ucla propositions is denoted `Prop(F).'

model Then a model M is a frame F together with a map

V : �! Prop(F), assigning a ucla proposition to each atomic

proposition in the language.

In any modelM we have a relation j= between worlds and propo-

sitions, given by induction on the structure of propositions.

� x j= p i� x 2 V (p) for p 2 �.

� x j= ? never.

� x j= t i� x 2 N .

� x j= �A i� x� 6j= A.

� x j= A ^B i� x j= A and x j= B.

� x j= A _B i� x j= A or x j= B.

� x j= A ! B i� for each y; z where Ryxz, if y j= A then

z j= B.

� x j= A �B i� for some y; z where Ryzx, y j= A and z j= B.

3This interesting class of frames will be further discussed in my paper \Functional

Frames for Substructural Logics" which will soon see the light of day.
4I'm indebted to Mike Dunn for this wonderful expression.
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In cases where more than one model is under discussion, instead of x j= A

we will write M; x j= A, to distinguish which supports relation is relevant.

Then we say M j= A if and only if M; x j= A for each x 2 N , and

F j= A if and only if M j= A for each model M on the frame F . Finally,

for a class C of frames, C j= A if and only if F j= A for each C 2 F . The

logic DW is determined by the class of all frames. (The more basic logic

B, sometimes discussed in the relevant literature, is given by replacing the

condition that Rxyz ) Rz�xy� by the weaker x � y ) y� � x�.)

A simple result about models is that in every model, every proposition

is interpreted as a ucla proposition in the frame. That is, we have the

following persistence property.

Lemma 1 (Persistence) For every model M, for all points x; y and for

every formula A, if M; x j= A and x � y then M; y j= A.

In what follows, we will write jjAjjM for the set of all points inM at which

the proposition A is supported.

Theorem 2 Every model M supports the following propositions

A ^B ! A A ^B ! B A! A _B B ! A _B

A ^ (B _ C)! (A ^B) _ (A ^C) (A! B) ^ (A! C)! (A! B ^ C)

(A! C) ^ (B ! C)! (A _B ! C) (A! B)! (�B ! �A)
��A! A

In addition, the propositions supported in a model are closed under the fol-

lowing rules

A! B;A ) B

A;B ) A ^B

A! B;C ! D ) (B ! C)! (A! D)

A , t! A

A �B ! C , B ! (A! C)

(Where `closure under A;B ) C' means, if M j= A and M j= B then

M j= C, and closure under A , B is simply closure under A ) B and

closure under B ) A)

Proving this result is a simple exercise in interpreting the conditions for

being a model.

Note that we do not have M j= A_B if and only ifM j= A or M j= B

(because the normal points N in a model could agree on a disjunction but

disagree as to which disjunct supports the disjunction). However, we can

argue from M j= A _ B to M j= A or M j= B if the frame is reduced,

meaning that N = fx : e � xg for some point e. Then one can reason as

follows: M j= A_B if and only ifM; e j= A_B if and only ifM; e j= A or

M; e j= B, if and only if M j= A or M j= B.
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Theorem 3 The theses and rules in Theorem 2 form a Hilbert axiomati-

sation of exactly the theses supported in all DW models. In other words, if

a proposition does not follow from those theses, by the application of those

rules, then there is a DW frame in which it is not supported.

There is no need to repeat the proof of this theorem here. Techniques

available in Routley and Meyer's original paper (Routley and Meyer 1973)

or in the standard references (Anderson et al. 1992, Dunn 1986) su�ce. We

construct a canonical model out of the non-trivial prime theories in DW,

and we can show that it refutes all non-theorems.

2 The Display Calculus

Gentzen-style proof theories deal with consecutions. A consecution is usually

a statement like A;B;C `̀̀̀̀̀ D;E, which is interpreted as: If each of A, B

and C are true, then (at least) one of D and E follow as a matter of logic.

Then the behaviour of the logical connectives are de�ned in terms of their

interaction with the means of combining premises or conclusions (here the

comma) and the turnstile.

It has been known for years that for relevant logics, and others in their

near vicinity, you need to use at least two kinds of premise combination

to adequately model the logic (Dunn 1974 and independently, Minc 1972).

One is the standard ^, which we shall call extensional conjunction, and the

other, the more exotic �, which we call intensional conjunction, or more

succinctly, fusion. We need both sorts of ways of putting premises together

in order to draw the distinctions relevant logics need.

The central point of the Belnap's display calculus is to �nd a version

of cut that is both valid and eliminable for relevant logics. In most cases

`simple cut' (sometimes called `pure transitivity')

X `̀̀̀̀̀ A A `̀̀̀̀̀ Y
(Cut)

X `̀̀̀̀̀ Y

is valid | in the sense that whenever X `̀̀̀̀̀ A and A `̀̀̀̀̀ Y are true under

interpretation, so is X `̀̀̀̀̀ Y | but it is not eliminable. We can't in general

eliminate this kind of cut rule because in the usual cut elimination proofs we

often have to perform a cut on a formula inside a structure, in the process

of pushing cuts back in a proof. Stronger forms of the rule, like versions

of the Mix rule not generally valid. (Most forms of Mix build in forms of

contraction or weakening that are not valid in our context.) The innovation

of display logic is to enrich the calculus in such a way as to ensure that

simple cuts are enough. If we ever wish to perform a cut on a formula inside a

structure, we can transform that consecution into an equivalent one in which

the formula of choice is either the entire antecedent or the entire consequent

of new consecution. This is called `displaying' the chosen structure. We
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achieve this by adding rules which allow structure to be moved around.

Belnap's rules are given as follows:5 in the �gure below, consecutions in the

same row are said to be immediately display equivalent. Display equivalence

is the transitive closure of immediate display equivalence.

X;Y `̀̀̀̀̀ Z Y `̀̀̀̀̀ �X;Z

X `̀̀̀̀̀ Y ;Z �Z;X `̀̀̀̀̀ Y �Y ;X `̀̀̀̀̀ Z

X `̀̀̀̀̀ Y �Y `̀̀̀̀̀ �X � �X `̀̀̀̀̀ Y

(1)

In this presentation, I have used the semicolon for premise combination

rather than the `�' of the rest of the display logic literature,6 simply because

the relevant logic literature has prior claim on `�' as an object-language

connective. In addition, I follow Kracht and Gor�e in making � a pre�xing

structural operator instead of the post�x of Belnap and Wansing, because

I wish to keep it as distinct as possible from the superscript � of the model

theory. We also use `̀̀̀̀̀ to form consecutions instead of the more traditional

`, which we keep for provability.

Note that the �rst row of equivalences is in some sense `incomplete,'

because we do not have a consecution equivalent to X;Y `̀̀̀̀̀ Z in which X

is the sole antecedent. This is not an oversight, because such a consecution

is given by the other rules. To see this, note �rst that X `̀̀̀̀̀ Y ;Z is display

equivalent to X `̀̀̀̀̀ Z;Y . And using this, we can show that X;Y `̀̀̀̀̀ Z is

display equivalent to X `̀̀̀̀̀ �(�Z; �Y ), so completing the �rst row.

These equivalences nicely model valid rules in our structures, when we

interpret the semicolon on the left to be fusion, and the semicolon on the

right to be �ssion, de�ned by setting A + B, the �ssion of A and B as

�A! B. You can check for yourself that the following stand or fall together

in every DW model.

A � B ! C B ! (�A+ C)

A! (B + C) �C �A! B �B � A! C

A! B �B ! �A ��A! B

This method works for `unwrapping' intensional structure. But what about

extensional structure? Belnap's solution is to invoke a parallel collection

of display postulates, connecting extensional conjunction on the left, with

extensional disjunction on the right, and with boolean negation tying them

5Modulo, of course, our preference for swapping the order of intensional conjunction.
6Which is not, as yet, as large as it deserves to be. Extant display logic works are, in

addition to the Belnap's original paper, there is the follow-on (Belnap 1990). Then Wans-

ing's paper (Wansing 1993) modi�es the display logic framework in order to model classical

modal systems with a unary structural operation instead of a binary one. Kracht 1994 pins

down the modal systems which can be modelled using structural extensions of Wansing's

methods, and he shows that the mere presence of a Cut-free display proof theory does

not entail decidability. Finally, Gor�e 1994a uses the Wansing-style modal interpretation

to simplify Belnap's original treatment of intuitionistic logic.

6



together. The problem with that suggestion is that in some of the systems

we are interested in modelling, there is no way to extend the system with

boolean negation. Suppose we have a modelM. To de�ne boolean negation

we must require that M; x j= �A if and only if M; x 6j= A. So, jj�AjjM =

WnjjAjjM. But this is not, in general, a ucla proposition. The only way to

ensure that ucla propositions are closed under complement is to collapse

the containment relationship � to identity. This is a hefty price to pay.7

Belnap discusses this possibility himself, and provides a way around it by

imposing a form of apartheid on structures. We will consider that method

at the end of Section 5. For now, we will examine a way of displaying

extensional structure without the use of boolean negation.

Granted that we must use extensional conjunction in an antecedent po-

sitions, we need a way to display both X and Y in X;Y `̀̀̀̀̀ Z. But this is

easy. Recall the deduction theorem. A^B ` C if and only if A ` B � C, if

and only if B ` A � C, where the � is at least an intuitionistic conditional.

This is no problem | we can interpret an intuitionistic conditional in our

frames without di�culty. M; x j= A � B if and only if for each y � x, if

M; y j= A then M; y j= B. The resulting set jjA � BjjM is always a ucla

proposition, as is easily veri�ed. We do not gain any new propositions by

enriching our expressive powers to include intuitionistic implication. We can

get the display properties we need by deeming the following consecutions to

be display equivalent.

X;Y `̀̀̀̀̀ Z X `̀̀̀̀̀ Y;Z Y `̀̀̀̀̀ X;Z (2)

The novelty is this: comma is interpreted as extensional conjunction in an-

tecedent position, and the intuitionistic conditional in consequent position.

This is a deviation from the normal behaviour of the comma in Gentzen sys-

tems, in which it behaves disjunctively in consequent position.8 However,

the innovation is appropriate. In the standard Gentzen system for intuition-

istic logic, the comma does not appear in the consequent position at all.9

We are free to de�ne how it ought to behave once it gets there.

Enough of motivation. Now for some de�nitions. First, we formally

7It is quite simple to show that CK (a logic we will meet later in this paper) is not

conservatively extended by boolean negation. Ed Mares has recently (Mares 1994) shown

that E is not conservatively extended by boolean negation either.
8Belnap mentions the possibility of a structural connective behaving as a conditional

in the `Further Developments' section of his original paper. It has taken until now for any

further development to take place.
9It does, however in some nonstandard systems. There is a `semi-traditional; Gentzen

system for J with a multiple consequent, treating the comma as disjunction, provided

that we are careful in our statements of the connective rules. Perhaps more interesting

is my colleague Gor�e's \Yet Another Way to Display Intuitionistic Logic" (Gor�e 1994b)

which uses this interpretation of consequent bunching to give a simple display calculus

for intuitionistic logic, and then presenting classical logic and intermediate logics as a

supersystems of intuitionistic logic given by adding only structural rules.
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de�ne the notion of a structure, where we add to what we have seen the

atomic structures 1 and I, which shall be important in what follows.

structure Any of 1, I, or a formula is a structure, and if X and

Y are structures, then so X;Y is a structure, X;Y is a structure

and so is �X.

consecution If X and Y are structures, then X `̀̀̀̀̀ Y is a

consecution.

display equivalence Two consecutions are said to be display

equivalent if and only if one can be transformed into the other

by way of the equivalences displayed in (1) and (2).

Now we can show that any substructure in a consecution can be displayed.

We need the de�nition of antecedent and consequent parts.

antecedent and consequent parts In X `̀̀̀̀̀ Y , we say X

is an antecedent part, and Y is a consequent part. Then, an-

tecedent and consequent parts of substructures of antecedent or

consequent parts are de�ned recursively as follows.

� If V;W is an antecedent part of a consecution, then so are

V and W . If V;W is a consequent part of a consecution,

V is an antecedent part of that consecution, and W is a

consequent part.

� If V ;W is an antecedent part of a consecution, then so are

V and W . If V ;W is a consequent part of a consecution,

then so are V and W .

� If �V is an antecedent part, then V is a consequent part. If

�V is a consequent part, then V is an antecedent part.

So, for example, in the consecution �(X; �Y ) `̀̀̀̀̀ �Z, these are the antecedent

parts

�(X; �Y ) Z X Y

and these are the consequent parts

�Z X; �Y � Y

To prove that any structure can be displayed, it is helpful to have the notion

of a context.

context A context is a structure with an arbitrary substructure

replaced by the Void (written `�'). Given a context f and a

structure X, f(X) is given by replacing the Void in f by X.
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So, for example f = X; (�; �Y ) is a context. f(Z;Y ) = X; ((Z;Y ); �Y ),

and f(�Y ) = X; (�Y; �Y ).

Note that in this example, when f is in an antecedent position, its Void is

also in antecedent position. But when it is in consequent position, instead

of its Void being in consequent position, it is still in an antecedent position.

This motivates the following de�nition.

antecedent/consequent positive/negative A context f is

said to be antecedent positive if the indicated X is an antecedent

part of f(X) `̀̀̀̀̀ Z, and it is antecedent negative if that X is a

consequent part of f(X) `̀̀̀̀̀ Z. It is consequent positive if that

X is a consequent part of Z `̀̀̀̀̀ f(X) and consequent negative if

that X is an antecedent part of Z `̀̀̀̀̀ f(X).

So, �� is both antecedent and consequent negative. X;� is both antecedent

and consequent positive, while �;X is antecedent positive but consequent

negative. (Note that every context is either antecedent positive or an-

tecedent negative, but not both, and similarly, either consequent positive

or consequent negative, but not both.)

With all of that done, we have a general `displayability' result.

Lemma 4 Any context f can be `unravelled' as follows. If f is placed in

antecedent position, then there is a corresponding context fa which is given

by displaying the Void in f . If f is antecedent positive, then f(X) `̀̀̀̀̀ Y is

display equivalent to X `̀̀̀̀̀ fa(Y ). If f is antecedent negative, then f(X) `̀̀̀̀̀ Y

is display equivalent to fa(Y ) `̀̀̀̀̀ X. Similarly, if f is placed in consequent

position, then there is a corresponding context f c, such that Y `̀̀̀̀̀ f(X) is

display equivalent to f c(Y ) `̀̀̀̀̀ X if f is consequent positive, or X `̀̀̀̀̀ f c(Y )

if it is consequent negative.

That lemma is more di�cult to state than to prove. Its proof is a simple

induction on the complexity of contexts.

Proof. If f = � then f is antecedent positive and consequent positive, and

fa = f c = �.

Suppose f = �g (so f(X) = �g(X) for some context g). Then fa =

gc(��), and f c = ga(��). The reason is as follows. fa(X) `̀̀̀̀̀ Y is simply

�g(X) `̀̀̀̀̀ Y and this is display equivalent to �Y `̀̀̀̀̀ g(X). This is display

equivalent to either of gc(�Y ) `̀̀̀̀̀ X or X `̀̀̀̀̀ gc(�Y ) depending on whether g

is consequent positive or negative. In either case, fa turns out to be gc(��)

as desired. Simlar reasoning gives f c = ga(��).

Suppose f = g; Z for some structure Z. (So, f(X) = g(X); Z.) Then

f(X) `̀̀̀̀̀ Y is simply g(X); Z `̀̀̀̀̀ Y , which is display equivalent to g(X) `̀̀̀̀̀
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Z; Y , which is equivalent to either of X `̀̀̀̀̀ ga(Z; Y ) or ga(Z; Y ) `̀̀̀̀̀ X depend-

ing on X. So fa is ga(Z;�). On the other hand, Y `̀̀̀̀̀ f(X) is Y `̀̀̀̀̀ g(X); Z,

which is display equivalent to g(X) `̀̀̀̀̀ Y;Z, so f c is ga(�; Z).

A similar argument is needed for f = Z; g, f = Z; g and f = g;Z. We

leave them to the willing reader. a

Note that with the display rules we have so far, X;Y `̀̀̀̀̀ Z is display

equivalent to Y;X `̀̀̀̀̀ Z. So, extensional conjunction is commutative. This

is obviously desirable if extensional conjunction in the display calculus is

to mimic extensional conjunction in our frames. However, we want more.

We need extensional conjunction to be associative, idempotent, and to allow

weakening. In addition we use the structural constant I which acts as the

absurdly false proposition ? in consequent position. The structural rules

we posit are as follows.

(eW)
X;X `̀̀̀̀̀ W

X `̀̀̀̀̀ W
(eK)

X `̀̀̀̀̀ W

Y;X `̀̀̀̀̀ W

(eB)
(X;Y ); Z `̀̀̀̀̀ W

X; (Y;Z) `̀̀̀̀̀ W
(IE)

X `̀̀̀̀̀ I

X `̀̀̀̀̀ Y

In addition we need structural rules to do duty for the constant t. It is

associated with intensional structure, by way of the equivalence A � t$ A.

The corresponding rules are these.

(1I)
X `̀̀̀̀̀ Y

X;1 `̀̀̀̀̀ Y
(1E)

X;1 `̀̀̀̀̀ Y

X `̀̀̀̀̀ Y

Finally, as in all good proof theories, we need a way to introduce connectives

on either side of the turnstile. The display system makes this quite simple

because we can postulate rules in which the formula introduced is either all

of the antecedent of the consecution, or all of the consequent of the consecu-

tion, because the display property ensures that this is no loss of generality.

So, we present the connective rules in Figure 1. Note that intensional con-

nectives (like!, � and t and �) are paired with intensional structure, while

extensional connectives (like ^, _ and ?) are either structure free, or paired

with extensional structure. Given all of these rules we can de�ne the notion

of a proof.

inference An inference is a pair of a set of consecutions (the

premises) and a consecution (the conclusion). In the case where

the set of premises is empty, the inference is said to be an axiom.
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(Ax) p `̀̀̀̀̀ p

(? `̀̀̀̀̀) ? `̀̀̀̀̀ I (`̀̀̀̀̀ ?)
X `̀̀̀̀̀ I

X `̀̀̀̀̀ ?

(t `̀̀̀̀̀)
1 `̀̀̀̀̀ X

t `̀̀̀̀̀ X
(`̀̀̀̀̀ t) 1 `̀̀̀̀̀ t

(^ `̀̀̀̀̀)
A;B `̀̀̀̀̀ X

A ^B `̀̀̀̀̀ X
(`̀̀̀̀̀ ^)

X `̀̀̀̀̀ A Y `̀̀̀̀̀ B

X;Y `̀̀̀̀̀ A ^B

(_ `̀̀̀̀̀)
A `̀̀̀̀̀ X B `̀̀̀̀̀ X

A _B `̀̀̀̀̀ X
(`̀̀̀̀̀ _1)

X `̀̀̀̀̀ A

X `̀̀̀̀̀ A _B
(`̀̀̀̀̀ _2)

X `̀̀̀̀̀ B

X `̀̀̀̀̀ A _B

(!`̀̀̀̀̀)
X `̀̀̀̀̀ A B `̀̀̀̀̀ Y

A! B `̀̀̀̀̀ �X;Y
(`̀̀̀̀̀!)

A;X `̀̀̀̀̀ B

X `̀̀̀̀̀ A! B

(� `̀̀̀̀̀)
A;B `̀̀̀̀̀ X

A � B `̀̀̀̀̀ X
(`̀̀̀̀̀ �)

X `̀̀̀̀̀ A Y `̀̀̀̀̀ B

X;Y `̀̀̀̀̀ A � B

(� `̀̀̀̀̀)
�A `̀̀̀̀̀ X

�A `̀̀̀̀̀ X
(`̀̀̀̀̀ �)

X `̀̀̀̀̀ �A

X `̀̀̀̀̀ �A

Figure 1: Connective Rules
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rule A rule is a set of inferences. For our purposes, the rules

are display equivalence (the set of all inferences where the (only)

premise is display equivalent to the conclusion), identity (which

is an axiom), (eW), (eK), (eB), (IE), (1I), (1E) and the connec-

tive rules. For the latter cases, each rule is simply the set of all

inferences of the form we have displayed. We will later consider

what happens when we add new rules to the calculus.

proof A proof of a consecution X `̀̀̀̀̀ Y is a tree, with X `̀̀̀̀̀ Y as

the root, and in which each node follows from all of its immediate

predecessors by some rule or other. A consecution is said to be

provable with cut if it has a proof in which we are have perhaps

used the rule Cut.

Lemma 5 For every formula A, the consecution A `̀̀̀̀̀ A has a proof.

Proof. The proof is an induction on the complexity of the formula A. The

base case is immediate. Here are the inductive steps for implication and

disjunction.

B `̀̀̀̀̀ B A `̀̀̀̀̀ A

A! B `̀̀̀̀̀ �A;B

A;A! B `̀̀̀̀̀ B

A! B `̀̀̀̀̀ A! B

A `̀̀̀̀̀ A

A `̀̀̀̀̀ A _B

B `̀̀̀̀̀ B

B `̀̀̀̀̀ A _B

A _B `̀̀̀̀̀ A _B

The rest of the steps are left to the committed reader. a

That completes the presentation of the display proof theory for DW. In

the next three sections we will show that, under a suitable interpretation, it

models validity in DW frames exactly.

3 The Completeness Proof

In this section we will show that with Cut we can prove anything that is

valid in all DW frames. We will show that for any formula A, valid in all

frames, 1 `̀̀̀̀̀ A is provable in the display calculus, using Cut. Then we will

indicate how this can be extended to arbitrary consecutions.10 Firstly we

will show that each of the rules in the Hilbert calculus preserve provability.

To start we need a simple lemma.

10This proof will proceed by way of the Hilbert Calculus for DW. This is a little

unsatisfactory, methodologically. A preferable method is to go directly from the display

calculus to frames (if X 6`̀̀̀̀̀ Y then there is a point in a frame in which X obtains but Y

doesn't). But that procedure is a little subtle. Another way to proceed is via an algebraic

representation, in terms of propositional structures, but to take that route would lead us

too far a�eld. So, in this section we will take the tried and true path via Hilbert systems,

and show that the results for theoremhood extend to arbitrary consecutions.

12



Lemma 6 We can prove 1 `̀̀̀̀̀ A ! B (using Cut) if and only if there is a

proof of A `̀̀̀̀̀ B (perhaps also using Cut).

Proof. From left to right we can reason as follows

B `̀̀̀̀̀ B A `̀̀̀̀̀ A

A! B `̀̀̀̀̀ �A;B 1 `̀̀̀̀̀ A! B
(Cut)

1 `̀̀̀̀̀ �A;B

A;1 `̀̀̀̀̀ B

A `̀̀̀̀̀ B

The other direction is a simple application of (1I) and (`̀̀̀̀̀!). a

As a result, with Cut we can show that modus ponens is admissible.

Corollary 7 If 1 `̀̀̀̀̀ A ! B and 1 `̀̀̀̀̀ A are provable then 1 `̀̀̀̀̀ B is too

(using Cut).

Similarly, adjunction is admissible.

Lemma 8 If 1 `̀̀̀̀̀ A and 1 `̀̀̀̀̀ B are provable then 1 `̀̀̀̀̀ A ^ B is provable

also.

The proof of that fact is a trivial result of contraction for comma. The more

di�cult rule is the transitivity fact.

Lemma 9 If 1 `̀̀̀̀̀ A ! B and 1 `̀̀̀̀̀ C ! D are provable then 1 `̀̀̀̀̀ (B !

C)! (A! D) is provable (perhaps using cut).

Proof. We can assume that we have proofs of A `̀̀̀̀̀ B and C `̀̀̀̀̀ D by Lemma 6,

and and then the proof of 1 `̀̀̀̀̀ (A! B)! (C ! D) goes as follows.

A `̀̀̀̀̀ B C `̀̀̀̀̀ D

B ! C `̀̀̀̀̀ �A;D

A; (B ! C) `̀̀̀̀̀ D

B ! C `̀̀̀̀̀ A! D

1 `̀̀̀̀̀ (A! B)! (C ! D)

a

Finally, we need to validate the rules for t and for fusion. The t rule is

provable quite simply. (Take it as an exercise.)

Lemma 10 1 `̀̀̀̀̀ t! A is provable if and only if 1 `̀̀̀̀̀ A is, using Cut.
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The fusion rules take a little more work.

Lemma 11 There is a proof of 1 `̀̀̀̀̀ A � B ! C if and only if 1 `̀̀̀̀̀ B !

(A! C) is provable (using Cut).

Proof. Firstly, suppose that there is a proof of 1 `̀̀̀̀̀ B ! (A ! C), or

equivalently, of B `̀̀̀̀̀ A! C by Lemma 6. Then this is a proof of A�B ! C,

and can be expanded to a proof of 1 `̀̀̀̀̀ A � B ! C.

A `̀̀̀̀̀ A C `̀̀̀̀̀ C

A! C `̀̀̀̀̀ �A;C B `̀̀̀̀̀ A! C
(Cut)

B `̀̀̀̀̀ �A;C

A;B `̀̀̀̀̀ C

A �B `̀̀̀̀̀ C

The other direction is similar.

A `̀̀̀̀̀ A B `̀̀̀̀̀ B

A;B `̀̀̀̀̀ A � B A � B `̀̀̀̀̀ C
(Cut)

A;B `̀̀̀̀̀ C

B `̀̀̀̀̀ A! C

aSo, each of the rules of the Hilbert system given in Theorem 2 preserve

provability. To complete the proof of our theorem we need to show that

each of the axioms are provable. They are (for proofs, check the appendix).

So, we announce our theorem.

Theorem 12 If F j= A for each frame F then 1 j= A is provable in the

display calculus, using Cut.

To extend the result to arbitrary consecutions, we need to show that if

X `̀̀̀̀̀ Y is valid in all frames (however we de�ne this) then X `̀̀̀̀̀ Y is provable.

So, in the rest of the section we provide an interpretation of X `̀̀̀̀̀ Y so that

it makes sense to speak of it holding in a frame. For that we provide a

translation from the language of consecutions to the language L�(�), which

extends L(�) by adding the binary connective �. We translate a consecution

into a formula as follows. Firstly, t(X `̀̀̀̀̀ Y ) = a(X)! c(Y ). Then we de�ne

a and c recursively in the obvious way.

a(A) = A c(A) = A

a(1) = t c(1) = � t

a(I) = �? c(1) = ?

a(X;Y ) = a(X) � a(Y ) c(X;Y ) = � c(X)! c(Y )

a(X;Y ) = a(X) ^ a(Y ) c(X;Y ) = c(X) � c(Y )

a(�X) = � c(X) c(�X) = � a(X)
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We then say that X `̀̀̀̀̀ Y holds in a model M when M j= t(X `̀̀̀̀̀ Y ). It

is a simple (but tedious) exercise to show that (using Cut) if we can prove

1 `̀̀̀̀̀ t(X `̀̀̀̀̀ Y ) in the display calculus (when extended with the appropriate

rule for �), then we can also prove X `̀̀̀̀̀ Y in the original display calculus

(without the use of the rule for �). I leave the details of this to the interested

reader. Instead of pursuing the niceties of this extension of the completeness

result, we will show that Cut is eliminable from the display calculus.

4 Cut Elimination

The proofs of the previous section make essential appeals to the Cut rule in

a number of places. It is our job in this section to show that any consecution

provable with Cut also has a Cut-free proof.

The proof Belnap gives is general and simple. I will sketch it here, but

refer the reader to his paper (Belnap 1982) for the details. For his proof we

need the concept of parametric structures in inferences.

parameters In an inference Inf falling under some rule, a

collection of instances of a structure X is said to be a family

of parameters if and only if for all structures Y , the inference

Inf(Y ), given by replacing all of those instances of X in Inf by

Y , is also an instance of that rule. A structure X occurring in a

family of parameters in an inference is said to be a parameter.

For example, any step of the form

(`̀̀̀̀̀ �)
X `̀̀̀̀̀ A Y `̀̀̀̀̀ B

X;Y `̀̀̀̀̀ A �B

both occurrences of X and its substructures are parameters, as are both

occurrences of Y and its substructures, but X;Y is not a parameter, and

neither is A, B or A � B.

congruence Two structures in an inference are said to be

congruent if they are members of some parametric family in that

inference.

So, in that rule instance above, both instances of X are congruent, as are

both instances of Y . If X = (�Y ;Z), then the instances of Y in X are

congruent to each other (and themselves) but they are not congruent to the

other instances of Y .

This de�nition di�ers from Belnap's account of parameters and congru-

ence, in that Belnap's appeals to the presentation of rules as schemas. The

way is open on this account to consider rules which cannot be presented
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as schemas | in fact, one can, on the present account, take the calculus

to have only one rule, given as the union of all the original rules. That

sort of presentation is not particularly perspicuous in practice, but it may

have theoretical advantages for an account of parameters. The point being

that an inference can have its parameters substituted for other structures

keeping validity. That need not mean that the result, after substitution, is

an instance of the very same rule as the original inference; for our purposes

we only need that the result is an instance of some rule or other. If there is

only one rule (encompassing all the original rules) then our account of being

a parameter is as liberal as it can be while still performing the task we will

need of it in the proof that follows.

The beauty of Belnap's cut elimination argument is the way in which he

isolates the requirements that a calculus must meet in order for Cut to be

shown to be eliminable by his proof. The requirements are as follows. Along

the way we will see how they are met in the current calculus.

C2 Congruent parameters are occurrences of the same structure. This is

satis�ed by the way we de�ned congruence.

C3 Each parameter is congruent to at most one constituent of the conclu-

sion of Inf. This may be veri�ed by eye in the presentation of all of

the rules. As Belnap points out, the `Mingle' rule

X `̀̀̀̀̀ Y

X;X `̀̀̀̀̀ Y

does not satisfy this condition. We could not even salvage the rule by

replacing the one occurrence of X in the premise with X;X, under

the condition that the �rst X in the premise be congruent to the �rst

X in the conclusion (and the second to the second), since under any

account of congruence all X's are congruent to one another, because

you cannot change one without changing the others, while keeping

validity. (Unless we have other rules present, of course.)

C4 Congruent parameters are either all antecedent parts or all consequent

parts of Inf. This may be veri�ed by eye in all of the rules we have. It

only ensures that we don't have really strange rules, in which struc-

tures may swap from being in antecedent position to consequent.

C5 If a formula is non-parametric in the conclusion of Inf, it is either the

entire antecedent or the entire consequent of that conclusion. Non-

parametric formulae are said to be the principal constituents of Inf.

This may be veri�ed by eye in our rules. Note that the requirement

is only that non-parametric formulas are entire antecedents or con-

sequents. There are non-parametric structures which are not either
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entire antecedents or entire consequents (see �X in the conclusion of

(!`̀̀̀̀̀) for example).

C6/7 Each rule is closed under simultaneous substitution of arbitrary

structures for congruent formulae. This fact is given by our de�ni-

tion of congruence.11

C8 If there are inferences Inf1 and Inf2 with respective conclusions X `̀̀̀̀̀ A

and A `̀̀̀̀̀ Y with A principal in both instances, then either X `̀̀̀̀̀ Y is

identical to one of X `̀̀̀̀̀ A or A `̀̀̀̀̀ B or it is possible to pass from

the premises of Inf1 and Inf2 to X `̀̀̀̀̀ Y by means of inferences falling

under the rules together with instances of Cut in which the cut formula

is a subformula of A. This is the only condition which requires a

signi�cant amount of checking. The only cases in which we haveX `̀̀̀̀̀ A

and A `̀̀̀̀̀ Y with A principal in both consecutions is where one of the

consecutions is the axiom p `̀̀̀̀̀ p, but in that case both are, and X `̀̀̀̀̀ Y

is identical to both the earlier consecutions, or the case in which both

consecutions come by matching connective rules. I will provide the

details for conjunction, because it involves our di�erent treatment of

extensional structure. The rest are proved in a similar vein.

X1 `̀̀̀̀̀ B X2 `̀̀̀̀̀ C

X1;X2 `̀̀̀̀̀ B ^ C

B;C `̀̀̀̀̀ Y
(Cut)

B ^ C `̀̀̀̀̀ Y

X1;X2 `̀̀̀̀̀ Y

This can be transformed to the following proof, with Cuts on B and

C.

X2 `̀̀̀̀̀ C

X1 `̀̀̀̀̀ B

B;C `̀̀̀̀̀ Y

B `̀̀̀̀̀ C; Y
(Cut)

X1 `̀̀̀̀̀ C; Y

C `̀̀̀̀̀ X1; Y
(Cut)

X2 `̀̀̀̀̀ X1; Y

X1;X2 `̀̀̀̀̀ Y

This family of conditions is enough to ensure that any consecution which

can be proven with the aid of Cut can also be proven without it. This result

can be approached in two stages.

11In what is otherwise an excellent paper, Kracht 1994 complains needlessly about this

condition. He says that `it makes no sense to substitute structures for formulas' (footnote

1, page 9). This is mistaken. Formulae are structures, so replacing a formula with a

structure is a restricted case of replacing a structure with another structure. No category

mistake is involved.
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Lemma 13 Parametric Stage If for each of X `̀̀̀̀̀ M and M `̀̀̀̀̀ Y there

are derivations ending in inferences in which the respective displayed M 's

are not parametric, and for all proper subformulae M 0 of M , X 0 `̀̀̀̀̀ Y 0 is

derivable if X 0 `̀̀̀̀̀ M 0 and M 0 `̀̀̀̀̀ Y , then X `̀̀̀̀̀ Y is derivable too.

Proof. This is a simple application of the condition C8. a

Lemma 14 Principal Stage Part 1. Suppose that X `̀̀̀̀̀ M is derivable,

and that for all X 0, if there is a derivation of X 0 `̀̀̀̀̀ M ending in an inference

in which the displayed M is not parametric, then X 0 `̀̀̀̀̀ Y is derivable. Then,

X `̀̀̀̀̀ Y is derivable.

Part 2. Suppose that M `̀̀̀̀̀ Y is derivable, and that for all Y 0, if there is

a derivation of M `̀̀̀̀̀ Y 0 ending in an inference in which the displayed M is

not parametric, then X `̀̀̀̀̀ Y 0 is derivable. Then, X 0 `̀̀̀̀̀ Y is derivable.

We refer the reader to Belnap 1982 and the later Belnap 1990 for the proofs

of this and the following theorem.

Theorem 15 In any display calculus satisfying C2 to C8, Cut is elim-

inable.

This is the core of the cut elimination argument, applying the principle and

parametric stages, by induction on the complexity of the cut formula.

In addition to C2 to C8, Belnap provides another condition.

C1 Each formula which is a constituent of some premise of an inference is

a subformula of some formula in the conclusion of that inference.

This is veri�ed by eye in each inference we have presented. As a result, we

have the subformula theorem.

Theorem 16 Any display calculus satisfying C1 has the subformula prop-

erty. That is, any Cut-free proof of the consecution X `̀̀̀̀̀ Y contains only

(structures made up entirely of) subformulae of the formulae in X and Y .

So, as a result, the display calculus as we �rst presented it is a complete

proof procedure for the logic of DW frames. The remaining task is to show

that it is also sound.

5 The Soundness Proof

We must show that any consecution provable in the display calculus is valid

when interpreted in structures. For every consecution of the form X `̀̀̀̀̀ Y ,

we can interpret it as a statement l(X) � r(Y ) about ucla propositions

l(X) and r(Y ) in an appropriate model.

We must then show that each display postulate is valid under a suitable

interpretation in the models. As stated above, we will interpret consecutions
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as statements about ucla propositions. The interpretation must vary with

respect to whether the structure appears in an antecedent or consequent

position. The de�nition is recursive, and it goes as follows:

l(A) = jjAjjM r(A) = jjAjjM
l(I) = W r(I) = ;

l(1) = N r(1) = fx : x� 62 Ng = N̂

l(X;Y ) = l(X) \ l(Y ) r(X;Y ) = l(X) � r(Y )

l(X;Y ) = l(X) � l(Y ) r(X;Y ) = r(X) + r(Y )

l(�X) = dr(X) r(�X) = dl(X)

In the table above we use these de�nitions: � � 
 = fz : 9x 2 �;9y 2


 where Rxyzg, � + 
 = fz : 8x; y where Rxzy; (x� 62 � ) y 2 
)g,

� � 
 = fz : 8y � z(y 2 � ) y 2 
)g and �̂ = fx : x� 62 �g, for all ucla

propositions �; 
.

Lemma 17 For any ucla propositions �; 
; � and �, the following equiva-

lences hold.
� \ 
 � � () � � 
 � � () 
 � � � �

� � 
 � � () 
 � �̂ + �

� � 
 + � () �̂ � � � 
 () 
̂ � � � �

� � 
 () 
̂ � �̂ () ^̂� � 


� �N = �

To prove this we �rst take a detour into the semantic corollary of contrapo-

sition.

Lemma 18 For all � and 
, � + 
 = 
 + �.

Proof. Take z 2 � + 
. Then we can reason as follows

z 2 � + 
 () 8x; y(Rxzy ) (x� 62 � ) y 2 
))

() 8x; y(Rxzy ) (y�� 62 
 ) x� 2 �))

() 8x�; y�(Ry�zx� ) (y�� 62 
 ) x� 2 �))

() 8x; y(Rxzy ) (x� 62 
 ) y 2 �))

() z 2 
 + �

So, � + 
 � 
 + �, which is su�cient for our result. a

Using this speeds up our proof of the previous lemma.

Proof. Take � � 
 � �. We wish to show that 
 � �̂ + �. So, take z 2 
.

If Rxzy and x� 62 �̂ then by the de�nition of ,̂ x 2 �, and y 2 � follows

from our assumption that � � 
 � �. So, z 2 �̂ + � as desired. The converse

argument is similar.

Now take � � 
 + �. We wish to show that �̂ � � � 
. Take a y 2 �̂ � �.

This means that there are x 2 �̂, z 2 � where Rxzy. But this means that

19



x� 62 �. Now, � � 
+ �, so we have z 2 
+ �, and as a result, for any x and

y (and in particular, the ones we have before us) Rxzy ) (x� 62 � ) y 2 
).

The two antecedent conditions are satis�ed here, so y 2 
 as we desired.

For the converse, suppose �̂ � � � 
. Take z 2 �, in order to show that

z 2 
 + �. Suppose that z 62 
 + �, for the sake of argument. That means

z 62 � + 
, by our previous lemma, and hence, that there are x; y where

Rxzy, x� 62 � and y 62 
. But this means that x 2 �̂, and then z 2 � with

Rxzy gives y 2 �̂ � � � 
, contradicting y 2 
. This means we must have

had z 2 
 + � as desired.

The other condition, to the e�ect that � � 
 + � () 
̂ � � � � follows

from this condition by the commutativity of +.

The �nal conditions are trivial. Since x�� = x, we have ^̂� = � for any

set � and � � 
 () 
̂ � �̂. Finally, by the constraints on N we must have

� �N = �. a

validity in M A consecution X `̀̀̀̀̀ Y is valid in M just when

l(X) � r(Y ).

So, by Lemma 17 we have the following result.

Corollary 19 For any model M, display equivalences and structural rules

preserve validity in M.

The only results not given by Lemma 17 are the extensional structural rules,

but these follow immediately from the interpretation of comma in antecedent

position by intersection, and I in consequent position by ;.

Theorem 20 If a consecution X `̀̀̀̀̀ Y is provable in the display calculus,

then it is valid in any model M.

Proof. By induction on the length of the proof. The axioms obviously

hold in M, as l(p) � r(p), l(1) � r(t) and l(?) � r(I) always. In our

previous lemma we have shown that display equivalences, and intensional

or extensional structural rules preserve validity in a model. The connective

rules remain. Consider (!`̀̀̀̀̀). Suppose that l(X) � r(A) and l(B) � r(Y ).

Then l(A ! B) = jjA ! BjjM = fx : 8y; z where Ryxz(y 2 jjAjjM ) z 2

jjBjjM)g. But this is a subset of fx : 8y; z where Ryxz(y 2 l(X) ) z 2

r(Y ))g since jjAjjM = r(A) and jjBjjM = l(B). And this is easily seen to

be dl(X) + r(Y ) = r(�X;Y ), as desired. The results for the other connective

postulates are similar, and are a good exercise in manipulation of ucla

propositions in frames. a

As a result, the display calculus is sound. The axioms are valid in models,

and all rules preserve validity. As a corollory of this result, if 1 `̀̀̀̀̀ A is

provable in the display calculus, then for any model M, M j= A.
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This semantic proof di�ers from the usual proof-theoretic methods in

that we interpret consecutions directly in models instead of giving every

consecution a corresponding formula. There is a point to this. Firstly, it

heightens the awareness that display logic and frames are kissing cousins

(an awareness which will be further heightened in the following section).

Display logic proofs are ways of reasoning about frames. Secondly, it is

important because it gives us a soundness result for any fragment of the

language under consideration. We need not have � in our propositional

language in order to show that any display logic proofs involving semicolon

are valid. Fusion is simply an operation on ucla propositions (which may

or may not be expressible in the language we are interpreting), and as an

operation, it must satisfy the conditions laid down in the display logic rules.

Similarly, 1 models a ucla proposition. In the antecedent it is interpreted

as N , and in the consequent, N̂ . We may have a way of talking about N

in our language (here, t) but we need not. In the logic DW which does not

have t, we can still show that any DW proof is sound, because frames for

that logic must have such a set N anyway, and it must satisfy the properties

we require of it. Similarly in logics without the intuitionistic-style �, the

frame must have a containment relation �, and � does feature as a function

on ucla propositions, even if it is not featured in the language of the logic

under discussion. All of the display logic constructs (here we have semicolon,

comma, �, 1 and I) have analogues in frames, independently of whether they

occur in the language we use to reason in frames.

This is not the case with Belnap's original use of boolean negation. In

most frames, boolean negation is not an operation on ucla propositions.

It is an operation on arbitrary sets of points in a model, and in Belnap's

formulation of display logic, structures correspond to arbitrary sets of points,

not only ucla propositions. This is why he needs to invoke apartheid to deal

with logics which are not conservatively extended by boolean negation (such

as intuitionistic logic, E, and CK). While I agree with Belnap's comment12

that there is no problem in principle with our calculus using concepts which

cannot be expressed in the language we originally considered, there is an

important distinction to be made. Either the new concepts can be added

conservatively (such as backward looking modalities in conventional modal

logic, or fusion and � in relevant logics) or they cannot (such as boolean

negation in intuitionistic logic and in E and CK). In the latter case, the

extra concepts cannot simply be added to the logic without cost. Of course,

you can get a di�erent logic with the new concept (extending intuitionistic

logic with boolean negation on intuitionistic frames to get what is essentially

S4) which contains the old logic as a special class of formulae (say, the

necessitated formulae). But then the expressive power of the language is

essentially increased; the new operation does not keep you within the bounds

12In endnote 13 (Belnap 1982).
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of the old class of ucla propositions. That can be a Bad Thing. Proof search

becomes more complicated because there is essentially more available to be

proved.13

6 Division of Labour

The display calculus proof theory and frames-based model theory bear sim-

ilar marks. The rules for connectives are one thing, and then underneath

them, you can modify the structure in order to get stronger logics. In the

display calculus, you add structural rules. With frames, you add conditions

on the ternary relation. The structural constants comma, semicolon and

star are tied intimately to the features �, R and � in ternary frames. In

adding structural rules, or adding conditions to frames, you do not change

the behaviour of the connectives, rather, you change the behaviour of the

`substrate' with which the connectives interact.

Most work on either the semantics or the proof theory of relevant logics

has only examined a small number of extensions to the basic DW, showing

how they are all modellable with corresponding conditions on the ternary

relation R or additions to the structural rules of the proof theory, or what-

ever. That is truly the way of the past. If we have the means for truly

general results, we should make use of them. I, for one, do not know which

logics in the relevant family will turn out to be interesting or useful in future

research, so we will consider a truly large class of extensions of DW. We

will consider extensions of the display calculus which add any number of

structural rules each of the form

X `̀̀̀̀̀ Z

Y `̀̀̀̀̀ Z

Where X and Y are structures containing only formulae, I, 1, comma and

semicolon. We restrict ourselves in this way for two reasons. Firstly, it is

much simpler to not worry about the e�ects of �. Secondly, most of the

popular extensions to DW are given by adding of rules of this form. For

example, the following are examples of such structural rules.

X; (Y ;Z) `̀̀̀̀̀ W
(B)

(X;Y );Z `̀̀̀̀̀ W

X; (Y ;Z) `̀̀̀̀̀ W
(B0)

(X;Z);Y `̀̀̀̀̀ W

X `̀̀̀̀̀ Z
(CII)

1;X `̀̀̀̀̀ Z

(X;Y );Z `̀̀̀̀̀ W
(C)

(Y ;X);Z `̀̀̀̀̀ W

X `̀̀̀̀̀ Z
(K)

Y ;X `̀̀̀̀̀ Z

X;X `̀̀̀̀̀ Z
(W)

X `̀̀̀̀̀ Z

13It is fairly clear | at least to me | that these considerations have more than a

little connection with the in-house relevant logic dispute about the propriety of boolean

negation, and the broader dispute about the validity of disjunctive syllogism. Following

through these considerations must, however, be left to another place and another time.
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It is easy to see that adding a structural rule of this form to the display

calculus is equivalent to adding an axiom of the form A! B to the Hilbert

system, where A and B are confusions.14

confusion t is a confusion, > is a confusion, any propositional

variable is a confusion, and if A and B are confusions, then so

are A � B and A ^B.

So, axioms of this form include

(p � q) � r ! p � (q � r) (p � q) � r! p � (r � q) t � p! p

(p � q) � r! (q � p) � r q � p! p p! p � p

and many, many others.15 Given a confusion A, there is a corresponding

condition RA which encodes what the ternary relation must be like in order

for the fusion to be true at a point. The condition is de�ned by induction

on the complexity of R.

The condition RA(x) Given a confusion A, with atomic

propositions among p1; : : : ; pn, the corresponding conditionR
A(x)

is de�ned recursively.

Rt(x) = x 2 N

R>(x) = true

Rpi(x) = xi � x

RB�C(x) = 9z19z2(R
B(z1) ^R

C(z2) ^Rz1z2x)

RB^C(x) = RB(x) ^RC(x)

So, RA(x) means, given that M; xi j= pi for each i, then M; x j= A. We

have the following result.

Lemma 21 In any model M, for any confusion A with atomic constituents

p1; : : : pn, M; x j= A if and only if there are x1; : : : ; xn 2 W such that for

each i, M; xi j= pi and R
A(x).

Proof. A simple induction on the complexity of A. M; x j= pi if and only

if there is some xi where M; xi j= pi and xi � x. M; x j= t if and only

if x 2 N , M; x j= > always. This deals with the base cases. For the

14This terminology stems from Meyer and Slaney, but I expand the notion to include

t and > which are obviously the empty fusion and the empty conjunction respectively.

As all close readers of (Slaney to appear) will note, this is parallel to Slaney's nuanced

distinction between the null multiset (in which every element occurs zero times) and the

null set (which simply has no elements).
15To see how many others, note that A�> and >�A act as backward looking modalities

�1A and �2A, with accessibility relations yR1z = (9x)Ryxz and yR2z = (9x)Rxyz. With

two independent modalities there are lots of things to play with. Wait for my forthcoming

\Functional Frames for Substructural Logics" for more discussion of this point.
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induction steps, note thatM; x j= B �C if and only if there are z1; z2 where

M; z1 j= B, M; z2 j= C, and Rz1z2x. But by hypothesis, M; z1 j= B if and

only ifRB(z1) andM; z2 j= C if and only ifRC(z2), giving us our condition.

The case for conjunction is trivial. a

So, in any model we have conditions under which a confusion is supported

at a point. We can strengthen this result as follows, giving us a condition

under which the relation RA holds of a point x in a frame.

Lemma 22 Given a modelM, and a confusion A with constituents p1; : : : pn,

such that there are points xi where M; x j= pi if and only if xi � x, then

M; x j= A if and only if RA(x).

Proof. For RA(x) ) M; x j= A, use Lemma 21. For the other direction,

another induction on the complexity of A su�ces. Clearly if M; x j= t if

and only if x 2 N , M; x j= > always, and M; x j= pi if and only if xi � x.

For the induction steps, note that M; x j= B � C if and only if for some

z1; z2 where Rz1z2x, R
B(z1) and R

C(z2) (by hypothesis), but this is exactly

RB�C(x). The case for conjunction is similar. a

This lemma is enough to give us a strong correspondence result.

Theorem 23 For any confusions A and B with constituents p1; : : : ; pn, a

frame F satis�es (8x; x1; : : : xn)(R
A(x)) RB(x)) if and only if F j= A!

B

Proof. For left to right it is a simple exercise of proving that F j= A ! B,

given the condition. Suppose the frame satis�es (8x)(RA(x) ) RB(x)).

Then suppose M; x j= A, for some model M on F . Then, there must be

x1; : : : ; xn such that M; xi j= pi for each i, and RA(x) (by Lemma 21). But

this means that RB(x), and by Lemma 21 we have M; x j= B as desired.

Now for right to left, we use Lemma 22 instead. Suppose that F j= A!

B. Then given x1; : : : ; xn, construct a modelM in which V (pi) = fx : xi �

xg for each i. So, M; x j= pi if and only if xi � x. Suppose RA(x). Then

by Lemma 22, M; x j= A. So by the condition that F j= A ! B we have

M; x j= B too, and Lemma 22 gives us RB(x) as desired. a

This last theorem gives us a soundness result ensuring that any extension of

DW by an axiom of the formA! B, whereA andB are confusions, is sound

with respect to the class of frames satisfying the condition corresponding to

A ! B. It also gives us a correspondence result. Any frame validating

A ! B must also satisfy the corresponding condition. It does not yet give

us completeness. We have yet to show that the canonical model for a logic

including A! B satis�es corresponding condition corresponding to A! B.

We cannot do this simply by way of the results we have so far, because we

cannot apply Lemma 22, since it appeals to an evaluation which makes a
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proposition true only at xi and those points containing xi. For many points

in the canonical model, there are no such `witnessing formulae.'16 Rather,

we must argue directly that the canonical model satis�es the corresponding

condition. For this we need a little more argument.

Recall that the canonical structure is made up of particular sorts of

theories, namely non-trivial prime theories.17

theory A theory is a set of formulae a closed under conjunction

(if A 2 a and B 2 a then A^B 2 a) and entailment (if A `̀̀̀̀̀ B is

provable and A 2 a then B 2 a). A theory a is said to be prime

if in addition, whenever A _ B 2 a either A 2 a or B 2 a. A

theory a is said to be trivial if ? 2 a or a = ;.

Given any theories a; b; c, we de�ne ab to be fC : 9A 2 a;B 2 b where `

A � B ! Cg and Rabc if and only if ab � c. Then we can set N to be the

set of all non-trivial prime theories containing t. The resulting structure

is said the canonical frame. It is simple to show that a � b if and only

if a � b. The canonical model is given by assigning V (p) = fa : p 2 ag.

The completeness result involves showing that this structure satis�es the

condition M; a j= A if and only if A 2 a. A crucial step in the proof is

the squeezing lemma, a folkloric result in relevant logics. See the standard

references (Anderson et al. 1992, Dunn 1986) for the proof.

Lemma 24 If c is a non-trivial prime theory, and if ab � c then there are

non-trivial prime theories a0 � a and b0 � b where a0b0 � c.

In order to prove completeness we need to show that the canonical frame

satis�es the condition RA )RB , if we have A! B (and all its substitution

instances) as a theorem (or equivalently if the display calculus has the corre-

sponding structural rule). To do that, we will need to show that for any non-

trivial prime theory x, and any theories x1; : : : ; xn, if R
A(x; x1; : : : ; xn) then

RB(x; x1; : : : ; xn). So, we will take �rst an arbitrary collection x1; : : : ; xn of

theories in the canonical frame, and given them, we will de�ne theories which

will match the process of building up theories referred to in the conditions

RA and RB . The de�nitions we need are as follows.

theory corresponding to a formula Given a collection

x1; : : : ; xn of theories, and a confusionA with atomic constituents

p1; : : : ; pn, we de�ne the theory A(x1; : : : ; xn) corresponding to

A (as a function of x1; : : : ; xn) as follows.

� pi(x1; : : : ; xn) is xi.

� t(x1; : : : ; xn) = fA : ` t! Ag.

16If there are � formulae, there are 2� points in the canonical model.
17For those that don't recall this, there are many ways the memory can be refreshed

(Anderson et al. 1992, Routley and Meyer 1973, Dunn 1986, Restall 1993).
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� >(x1; : : : ; xn) = ; (the empty theory).

� (A�B)(x1; : : : ; xn) = A(x1; : : : ; xn)B(x1; : : : ; xn) (using the

de�nition of the fusion of two theories given before).

� (A^B)(x1; : : : ; xn) = fC : for some C1 2 A(x1; : : : ; xn) and C2 2

B(x1; : : : ; xn); ` C1 ^ C2 ! Cg.

Note that the theory corresponding to A ^ B is larger than the theories

corresponding to A and B respectively (speci�cally, it is the closure of their

union). This may seem counter-intuitive, given the connection between con-

junction and intersection, but it is the right decision. The theory corre-

sponding to A is simply this: given that the atomic propositions pi in A are

interpreted as being true only at points in the canonical model containing

the theory xi, then A is true at a point in the canonical model if and only if

that point contains the theory A(x1; : : : ; xn). The theory corresponding to

a conjunction is a bigger theory (as it contains everything in the theories of

either conjunct) so it is true at fewer points, as one would expect.

Lemma 25 Where x1, : : : , xn, and x are points in the canonical model,

RA(x) in the canonical model if and only if A(x1; : : : ; xn) � x.

Proof. By induction on the construction of A. Clearly the result holds for

A = t, > or pi. Consider the case for conjunction (B ^ C)(x1; : : : ; xn) � x

if and only if B(x1; : : : ; xn) � x and C(x1; : : : ; xn) � x. So, we have

our induction step. For fusion, (B � C)(x1; : : : ; xn) � x if and only if

B(x1; : : : ; xn)C(x1; : : : ; xn) � x, and by the squeezing lemma this means

that there are prime theories z1 � B(x1; : : : ; xn) and z2 � C(x1; : : : ; xn)

where z1z2 � x (that is, Rz1z2x) and this is enough for this case of the

induction step. So, the lemma is proved. a

This is almost enough for our completeness result. We need only one more

lemma.

Lemma 26 If ` A! B, then for any theories x1; : : : ; xn, B(x1; : : : ; xn) �

A(x1; : : : ; xn).

Proof. By induction on the complexity of A it is simple to show that

C 2 A(x1; : : : ; xn) if and only if there are some Ei 2 xi such that `

A(E1; : : : ; En) ! C. (Where A(E1; : : : ; En) is the formula resulting from

substituting Ei for pi in A.) But then we can reason as follows. If C 2

B(x1; : : : ; xn) then there are Ei 2 xi such that ` B(E1; : : : ; En)! C. Since

` A(E1; : : : ; En) ! B(E1; : : : ; En) (by uniform substitution on ` A ! B),

we have ` A(E1; : : : ; En) ! C. But this means that C 2 A(x1; : : : ; xn) as

desired. a

Theorem 27 If ` A ! B, then the canonical model structure satis�es the

corresponding condition, (8x)(RA(x)) RB(x)).
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Proof. Suppose ` A ! B. Then for any non-trivial prime theory x, and

any theories x1; : : : ; xn, if A(x1; : : : ; xn) � x then B(x1; : : : ; xn) � x, by

Lemma 26. But A(x1; : : : ; xn) � x if and only if RA(x) and similarly

B(x1; : : : ; xn) � x if and only if RB(x), so we have for any x, if RA(x)

then RB(x) as desired. a

So, we have a large family of extensions to DW. Any logic extending DW

by adding a collection of axioms of the form A ! B, where A and B are

confusions, has a corresponding display calculus rule, and a condition on

DW frames, together with a soundness, completeness, and correspondence

result. These extensions include the famous ones B, B0, C, CII, K and W.

This gives us the familiar class of relevant logics

Logic Extra Rules

TW B, B0

T B, B0, W

EW B, B0, CII

E B, B0, CII, W

C B, B0, C

R B, B0, C, W

CK B, B0, C, K

But the resources we have available permit many other extensions too.

We must be careful: Not any extension of DW by a class of rules of the

form

X `̀̀̀̀̀ Z

Y `̀̀̀̀̀ Z

where X and Y are confusions will preserve Cut elimination or the sub-

formula property. An axiom of the form A ! A � B will not preserve the

subformula property, for example. For its rule will be

X;Y `̀̀̀̀̀ Z

X `̀̀̀̀̀ Z

which does not satisfy condition C1. We need a smaller class of rules. In

addition, the `Mingle' rule does not satisfy condition C3. However, these

are the only two conditions we need consider. Every other condition is

automatically satis�ed by these extensions.

proper axioms and rules An axiom of the form A ! B,

whereA andB are confusions with atomic propositions p1; : : : ; pn
is said to be proper if every pi in B appears somewhere in A and

no pi appears more than once in B. The rules corresponding to

proper axioms are said to be proper rules.
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Note that each of B, B0, C, CII, K and W are proper.

Theorem 28 Every extension of DW by proper rules has a Cut-free display

calculus with the subformula property.

Proof. A simple matter of checking each of C1 to C8. That the rules are

proper means C1 and C3 are taken care of. For the rest, note C2 and

C6/7 are satis�ed by de�nition, C4 is trivial because the rules modify only

antecedent parts, and the constituents of confusions in an antecedent are

still antecedent parts. For C5 there are no non-parametric formulae |

these are purely structural rules. Similarly, the rules do not a�ect C8 which

deals with connective rules or axioms. a

7 Decidability

Even though display logic is much more expressive than traditional Gentzen

systems (we have means of moving structures around and nesting antecedents

inside consequents, inside antecedents, and so on) it still yields decidability

results in certain cases. The key idea is to show that in proof search we

do not need to backtrack through all possible consecutions from which a

consecution may have come (because there are in�nitely many; consider the

display rules, (1E) or (eW), each of which can destroy material). Rather,

we show that if any consecution has a proof, then a terminating search pro-

cedure will �nd a proof, and if it does not have proof, the procedure will

terminate. To do this, we need to gain control of contraction, and the inten-

sional display rules. The intensional display rules are the simplest to take

care of.

�-reduced structures A structure is �-reduced if and only if

it has no substructures of the form � �X. Clearly any structure

is display equivalent to a �-reduced structure. Given a structure

X, its reduced asterisked form X is de�ned as �X if X is not

of the form �Y , and Y if X is of the form �Y . Clearly if X

is �-reduced, so is X . Given a consecution S, its �-reduction is

given by replacing all substructures of the form ��X by X, until

the result is �-reduced.

Clearly we should have no need to use non-�-reduced structures in any proof

a �-reduced consecution. The only reason we might have to introduce a

structure of the form � �X in a proof is in the connective rule (!`̀̀̀̀̀). But

once we replace that by its equivalent �-reduced cousin

(!`̀̀̀̀̀)0
X `̀̀̀̀̀ A B `̀̀̀̀̀ Y

A! B `̀̀̀̀̀ X ;Y

we can get away without any stacked asterisks in our proofs.
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Lemma 29 Any �-reduced consecution has a �-reduced proof. That is, it

has a proof in which every structure that appears is �-reduced.

Proof. Take any proof of a �-reduced consecution. Consider the tree you

obtain by replacing every consecution in the proof with its �-reduction. The

resulting tree is a proof, as can easily be checked by examining each rule.

The only di�culty could be caused by (!`̀̀̀̀̀), but that has been dealt with.

The only other rules which introduce asterisks do so on formulae which are

either the entire antecedent or the entire consequent (so no stacking can

occur there) or display rules (but if S1 and S2 are display equivalent, so are

their �-reductions). So, the result remains a proof. a

Dealing with (1E) and (eW) is more di�cult. For that, we need more notions

of `needless structure,' and a broader notion of equivalence.

equivalence Two consecutions X `̀̀̀̀̀ Y and Z `̀̀̀̀̀ W are said to

be equivalent if one can be transformed into the other by means

of display equivalences or (eB).

Note that two eqiuvalent consecutions convey exactly the same proof the-

oretic information. They are interderivable, and in addition, they contain

the same amount of structure. No structure is introduced or destroyed by

these rules, unlike (eW), (eK) and the 1 rules.

nearness In any consecution X `̀̀̀̀̀ Y , the substructures Z1

and Z2 are near if X `̀̀̀̀̀ Y is equivalent to Z1; Z2 `̀̀̀̀̀ W , or

W `̀̀̀̀̀ �(�Z1; �Z2) (those instances of Z1 and Z2 being indicated).

Here the idea is that an instance of a structure X is super
uous if it occurs

nearby another instance of the same structure. For clearly, we can weaken

in a duplicate of X at will, and contraction will allow us to eliminate it.

super
uous 1s In X `̀̀̀̀̀ Y , a 1 occurring as a substructure

is said to be super
uous if the structure is display equivalent to

Z;1 `̀̀̀̀̀ W . (That 1 being indicated.)

The idea here is the same. If I get rid of super
uous 1s, I lose no information,

because the 1 rules allow us to add them or get rid of them as our hearts

desire.

Note that we are relying on a principle of re-identi�cation of structures

though rules. This can be formally de�ned, but we will not pause to do so

here. Rather, we will consider when it is possible to delete structure from a

consecution.

deletion A substructure Z can be deleted from a �-reduced

consecution X `̀̀̀̀̀ Y if and only if it is a substructure of some

structure in X `̀̀̀̀̀ Y , containing a comma or a semicolon. (In
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other words, it is not any of X, Y , X and Y .) The result of

deleting Z from X `̀̀̀̀̀ Y is given by replacing the structure in

which Z appears by a structure without Z, by way of the follow-

ing rules. Replace any of W ? Z, Z ? W , W ? �Z or �Z ? W by

W , where ? is either comma or semicolon.

For example, we can delete Z in X; (Y ; �Z) `̀̀̀̀̀ X;Y to get X;Y `̀̀̀̀̀ X;Y .

We cannot delete X in �(Y ; �Z) `̀̀̀̀̀ �X because the resulting consecution

would have no consequent.

Using this notion of deletion, we can de�ne the reduction of a consecution

in terms of deleting super
uous structures.

reduction For any �-reduced consecution X `̀̀̀̀̀ Y , de�ne its

reduction r(X `̀̀̀̀̀ Y ) as follows. For any instances of Z nearby

to another Z, delete the �rst such Z (from left to right) which

can be deleted (it is simple to see that at least one such Z can

be deleted, lest they fail to be nearby each other). For any

deletable super
uous 1s, delete them. If the super
uous 1 is the

entire antecedent, then the consecution is of the form 1 `̀̀̀̀̀ Y ;Z.

Replace this consecution by Y `̀̀̀̀̀ Z. If the super
uous 1 is the

entire consequent (starred) then the consecution is of the form

�(Z;W ) `̀̀̀̀̀ �1. Replace this by Z `̀̀̀̀̀ W .

A consecution is reduced if and only if X `̀̀̀̀̀ Y = r(X `̀̀̀̀̀ Y ). Clearly

a consecution is reduced if and only if it has no super
uous 1s and no

structures nearby another instance of the same structure.

semi-reduced A consecution is semi-reduced just when ei-

ther it is reduced, or it has a super
uous 1, such that upon its

deletion, the consecution is reduced, or it has two instances of a

structure X nearby one another, such that upon the deletion of

one, the consecution is reduced. A proof is semi-reduced i� all

of its constituent consecutions is.

To accommodate our desire to use only reduced consecutions, or perhaps

semi-reduced consecutions in a proof, we need modify the extensional con-

nective rules a little, in order to incorporate (eW) into them. We replace

(`̀̀̀̀̀ ^) and (`̀̀̀̀̀ _[1; 2]) by the following rules.

(`̀̀̀̀̀ ^)0
X `̀̀̀̀̀ A X `̀̀̀̀̀ B

X `̀̀̀̀̀ A ^B
(`̀̀̀̀̀ _)0

X `̀̀̀̀̀ �(�A; �B)

X `̀̀̀̀̀ A _B

It is clear that any proof using the old rules can be made into a proof using

the new rules by inserting appropriate weakenings, contractions and display

equivalences. Finally, we need to ensure that proofs do not loop back on

themselves.
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irredundant A proof is said to be irredundant just when no

consecution appears twice in any of its branches.

Lemma 30 Any provable reduced consecution has an irredundant semi-

reduced proof.

Proof. Take a proof of X `̀̀̀̀̀ Y , and apply r to every node. The result is

almost a proof. Clearly all its leaves are axioms, because for every axiom

C, r(C) is also an axiom. All we need do is add some semi-reduced con-

secutions between premises and conclusions of `reduced' rule applications

to make them fall under the rules as we have presented them. Clearly dis-

play equivalences, and extensional structural rules survive unscathed, except

for (1E), (1I) and (eW) which collapse into the identity rule (in which the

premise is the same consecution as the conclusion). For connective rules

we need more work. We will do the work for conjunction, implication and

negation, and leave the rest for the willing reader.

Firstly the conjunction rules. How can we make r(A ^ B `̀̀̀̀̀ X) follow

from r(A;B `̀̀̀̀̀ X)? If r(A;B `̀̀̀̀̀ X) is A;B `̀̀̀̀̀ X 0 for some X 0, we can

go to A ^ B `̀̀̀̀̀ X 0, but this may not be r(A ^ B `̀̀̀̀̀ X) for two reasons.

Either X 0 may contain a matching A ^ B which we need to eliminate (by

an application of (eW)), or X might have contained matching instances of

A and B matching the A and B in the antecedent of A;B `̀̀̀̀̀ X. So we

must use (eK) (and display rules) to weaken them back. Then the result

is r(A;B `̀̀̀̀̀ X), as required. In this proof the only threat to reduction

would be the two appearances of A ^ B in a consecution, appearing for a

little while until we could delete one. But this is still within the bounds of

semi-reduction.

If r(A;B `̀̀̀̀̀ X) is not of the form A;B `̀̀̀̀̀ X 0, we must do a little more

work. This is either because one of A or B was deleted, either because it

matched an A or B in X or they matched each other. In either case, we can

go from r(A;B `̀̀̀̀̀ X) to a semi-reduced consecution of the form A;B `̀̀̀̀̀ X 0

(semi-reduced if A = B) by judicious applications of display rules and (eW)

and then to A ^B `̀̀̀̀̀ X 0, in which we can weaken in any required instances

of A and B, and use (eW) to eliminate any matching instance of A^B. The

intervening steps are all semi-reduced.

For (`̀̀̀̀̀ ^)0 the reasoning is simpler. r(X `̀̀̀̀̀ A) must be of the form

X 0 `̀̀̀̀̀ A, and r(X `̀̀̀̀̀ B) must be of the form X 00 `̀̀̀̀̀ B. X 0 and X 00 can

only di�er because in X 0 an A has been deleted, and in X 00 a B has been

deleted. (Note that had we used the original (`̀̀̀̀̀ ^) rule we would have been

in trouble, because in the move from X `̀̀̀̀̀ A and Y `̀̀̀̀̀ B to X;Y `̀̀̀̀̀ A ^ B

there is no way to keep semi-reduction in general.) Use (eW) to add A and

B if necessary (keeping semi-reduction) to produce X 000, and then we can

infer X 000 `̀̀̀̀̀ A ^ B, which becomes r(X `̀̀̀̀̀ A ^ B) upon the deletion of any

matching A ^B in X. The intermediate consecutions are all semi-reduced.
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For (!`̀̀̀̀̀)0, r(X `̀̀̀̀̀ A) and r(B `̀̀̀̀̀ Y ) must be of the form X 0 `̀̀̀̀̀ A

and B `̀̀̀̀̀ Y 0, so we can immediately infer A ! B `̀̀̀̀̀ X ;Y . Then X or Y

might be a super
uous 1, in which case we must delete one. Then we have

r(A! B `̀̀̀̀̀ X ;Y ), as no other reductions are possible.

For (`̀̀̀̀̀!), r(A;X `̀̀̀̀̀ B) is either A;X 0 `̀̀̀̀̀ B or A `̀̀̀̀̀ B. In the �rst

case, deduce X 0 `̀̀̀̀̀ A ! B, and delete any matching A ! B in X 0, to get

r(X `̀̀̀̀̀ A ! B). In the other case, use (1I) to deduce A;1 `̀̀̀̀̀ B (semi-

reduced) and then 1 `̀̀̀̀̀ A! B (reduced).

For (� `̀̀̀̀̀), r(�A `̀̀̀̀̀ X) is of the form �A `̀̀̀̀̀ X 0, so we can deduce �A `̀̀̀̀̀

X 0. In this consecution we delete any matching �A to get r(�A `̀̀̀̀̀ X) as

desired. The case for (`̀̀̀̀̀ �) is totally dual.

If this proof is not irredundant, simply excise the branch sections between

repetitions of a consecution. The result remains a proof. a

We are nearly home. To complete the proof of decidability it is simply a

matter of �nding a notion of complexity which will not increase in a proof

from root to branch, and then to put the pieces together. Because of the


exibility of the display rules, we have to be quite subtle in our notion of

complexity.18

complexity The complexity com(X `̀̀̀̀̀ Y ) of the consecution

X `̀̀̀̀̀ Y is determined by induction on its construction. Firstly

we de�ne the complexity of a structure appearing within a con-

secution.

� com(p) = com(?) = com(t) = 1.

� com(A ^B) = com(A _B) = max(com(A); com(B)).

� com(�A) = com(A) + 1.

� com(A! B) = com(A � B) = com(A) + com(B) + 1.

� com(I) = 1.

� com(1) = 1, unless that 1 is super
uous, in which case its

complexity is zero.

� com(�X) = com(X).

� com(X;Y ) = com(X) + com(Y ) + 1.

� com(X;Y ) = com(X)+com(Y )+1 if X;Y is in consequent

position.

� com(X;Y ) = max(com(X); com(Y )) ifX;Y is in antecedent

position.

18This notion is essentially due to Giambone 1985, modi�ed for the setting of display

logic.
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Then we set com(X `̀̀̀̀̀ Y ) to be the least value of com(X 0) +

com(Y 0) where X 0 `̀̀̀̀̀ Y 0 is equivalent to X `̀̀̀̀̀ Y . We need this

subtlety because we wish p `̀̀̀̀̀ p; q to have the same complexity

as p; p `̀̀̀̀̀ q, since we can pass from one to the other freely. For

our purposes, display equivalent consecutions are informationally

identical, so we need to keep their complexity the same.

Lemma 31 In any proof, complexity decreases from root to leaves.

Proof. Inspect each of the rules. Clearly display equivalences and (eB) keep

complexity invariant, by construction. Of the structural rules only (1E) and

(eW) add new structure, but these do not change complexity.

The connective rules must be examined case by case. We will work

through the conjunction, and implication and negation rules, leaving the

rest for the reader. Take (^ `̀̀̀̀̀). The way we have de�ned it, the complexity

of A;B `̀̀̀̀̀ X will be identical to the complexity of A ^ B `̀̀̀̀̀ X, as A;B in

antecedent position has the same complexity as A ^ B, and these are near

the same structures.

For (`̀̀̀̀̀ ^)0, it is clear that the complexity of X `̀̀̀̀̀ A and X `̀̀̀̀̀ B is no

greater than that of X `̀̀̀̀̀ A ^B.

Now consider (!`̀̀̀̀̀)0. The indicated A ! B in the conclusion is not

super
uous (there is nothing nearby). Similarly, nothing in X could be

nearby anything in Y , so the complexity of X `̀̀̀̀̀ A and that of B `̀̀̀̀̀ X

are strictly less than that of A ! B `̀̀̀̀̀ X;Y , since we have traded in a

connective, unless the X in the conclusion is a super
uous 1. Then the

complexity still cannot increase because the complexity of X `̀̀̀̀̀ A is simply

complexity of A, plus one. The complexity of A! B `̀̀̀̀̀ X ;Y must at least

match this.

Now take (`̀̀̀̀̀!). Complexity does not increase from conclusion to premise,

because the X cannot be a super
uous 1, and any matching within the X in

the conclusion must be duplicated in the X occurring in the premise. The

only fancy work is when the A! B matches an A! B occurring in X. In

that case, the complexity is at most constant from conclusion to premise,

because we retain the matching A ! B in the X in the premise, while we

trade the other A ! B, for an A, a B and a semicolon, while the X may

become a super
uous 1.

Finally, negation. In both rules we trade in �A for �A, thereby reducing

the complexity of the structures. As these structures occupy the same place

in their respective consecutions, complexity cannot increase. It can only

decrease because there are more display equivalences of the upper consecu-

tion because of the increased freedom given by the asterisk in place of the

negation. a
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Lemma 32 Given a consecution X `̀̀̀̀̀ Y , and a natural number m there are

a �nite number of semi-reduced consecutions built up from subformulae of

formulae in X and Y , and with complexity no greater m, and only a �nite

number of semi-reduced structures of complexity no greater than m� 1.

Proof. By induction on m. The result holds for m = 2. Structures of

complexity 1 are formulae involving only atoms, conjunction and disjunction.

There are �nitely many of these in X `̀̀̀̀̀ Y . These can only be put together

by the comma in the antecedent, or asterisk, and there are only �nitely

many ways to do this, keeping semi-reduction. Finally, we may have a

single super
uous 1. Again, only �nitely many possibilities there. So, there

are only �nitely many possibilities for consecutions of complexity 2.

Now suppose the result for n < m, and consider consecutions of com-

plexity m. Any such consecution must contain only the following sorts of

structures.

� A subformula of A (�nitely many of these) or the star of a subformula

of A (�nitely many of these).

� X;Y , or X;Y in consequent position, where X and Y have complexity

less than m, made up of subformulae of A, and by hypothesis, there

are �nitely many of these, or the star of such a structure (and there

are �nitely many of these).

� Or we could add a super
uous 1 without addition of complexity, but

we can add only one in the whole consecution. So this does not increase

the number greatly.

� An X;Y in consequent position, where each of X and Y have com-

plexity less than m. Each of X and Y can themsleves be of the form

Z;W , but eventually the process must stop. These structures must

have complexity less than m and not of the form Z; Y , and hence

there must be �nitely many of them. The structure X;Y may only

repeat one such structure, lest the consecution fail to be semi-reduced.

So, we must have �nitely many of these.

Since the consecution must be made from these structures, there are only

�nitely many such consecutions. a

Theorem 33 Whether X `̀̀̀̀̀ Y is provable or not is decidable.

Proof. Generate a proof search tree of r(X `̀̀̀̀̀ Y ) as follows. Enter r(X `̀̀̀̀̀ Y )

as the bottom node. Above each consection C occurring at height k in the

tree, enter nothing if C is an axiom, or branch and add every semi-reduced

C 0 where C is the conclusion of some rule for which C is the conclusion and

such that the tree is irredundant.
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This procedure is e�ective, and it has the �nite fork property (there are

only a �nite number of consecutions to add at each step) and the �nite

branch property (there are only a �nite number of consecutions which can

appear in such a tree, and they cannot repeat along a branch. So, the tree

is �nite. Clearly, however, if r(X `̀̀̀̀̀ Y ) has a proof, it has an irredundant,

semi-reduced proof, so it will appear as a subtree of the search tree. a

This decidability result extends quite simply to extensions of DW too. All

we need is the �nite branch and �nite fork properties to be maintained, and

the generation procedure to be e�ective.


atness A proper rule is said to be 
at if for every instance

the complexity of the premise is no greater than the complexity

of the conclusion.

Theorem 34 Any logic extending DW with a decidable set of 
at structural

rules is decidable.

Proof. Clearly the proof procedure is no more complex. We add a decidable

set of 
at structural rules. We have e�ectiveness because of the decidability

of the class of rules, we have the �nite fork property because at any fork we

add only structures made of subformulae of the original consecution, and of

no greater complexity (by the 
atness of the rules), and we have the �nite

branch property because complexity still decreases | the rules are 
at. a

Since B, B0, CII, C, and K are 
at (but notoriously, W is not), we have the

following corollary.

Corollary 35 Each of TW, EW, C, and CK are decidable.

There are many other 
at, proper rules, such as

X `̀̀̀̀̀ Y
(�n1 )

[X; I]n `̀̀̀̀̀ Y

X `̀̀̀̀̀ Y
(�n2 )

n[I;X] `̀̀̀̀̀ Y

for each n, where 0[I;X] = X, and n+1[I;X] = I; n[I;X] and similarly,

[X; I]0 = X and [X; I]n+1 = [X; I]n; I. This gives us many other decidable

logics extending DW to work with. The rules (�n1 ) and (�n2 ) correspond to

the axioms �n1A! A and �n2A! A, where, you will recall, we have de�ned

�1A to be A � > and �2A to be > � A.

This fact should be kept in tension with Kracht's result that not only

are there undecidable displayable logics (which relevant logicians knew since

Urquhart showed that R and E were undecidable) but that in fact it is un-

decidable in general whether a displayable logic is decidable (Kracht 1994).

This is true; display logic is very expressive, and when you have the power to
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talk about arbitrary semigroups, you know you're looking for trouble when

it comes to decidability. But this ought not be a case for mourning. Two

facts should be kept in mind. Firstly, the world is a complex place, and any

logical formalisms which do it justice in terms of expressive power are simply

going to be undecidable. This is not a problem with the formalism, but a

simple fact about the world. Display logic has just this expressive power.

Secondly, just as there are decidable subsystems of classical �rst-order logic,

so there are decidable displayable logics. And in fact, many of these are

interesting systems, such as the relevant logics without contraction we have

seen. A large class of displayable logics | those with 
at structural rules |

are decidable, and of independent interest.

8 Comparisons with Other Methods, and Future Work

The chief alternative to this presentation of the decidability of relevant logics

has been the traditional Dunn-Minc systems, using the decidability proof of

Giambone 1985, modi�ed by Brady 1991 to deal with negation. Brady's

innovation is important: he replaces formulae with signed formulae (instead

of A you have TA or FA), thereby encoding enough symmetry between truth

and falsity to model negation. However, it does not have the expressive

power of display logic. For one thing, the system as it stands cannot be

extended to model quanti�cation. The problem is the distribution of the

universal quanti�er over disjunction. The display logic framework can easily

prove this, since it in e�ect allows repetition in consequent position (by

way of �, which is as you would expect of an intuitionistically underivable

proposition). The proof is left as an exercise for the committed reader.

Display logic is a smoother framework than Brady's in a number other

respects. Not only does our system give us a decidability result for EW (as

our system uses a structural constant 1 to model t, so we can have a rule for

CII without breaking the subformula property, and we can independently

handle the complexity of rules involving 1), but it more closely mirrors the

frame semantics of our logics. We have exactly three structural operations |

semicolon, comma and � corresponding with the notions of R, � and � on

frames. This makes the framework a natural home for a proof theory of

relevant logics.

The other standard way of proving decidability of logics with a worlds

semantics is by �ltration and the �nite model property. This method works

for DW, but the standard proofs fail for logics with axioms like B and B0.

It is as yet unknown whether these logics have the �nite model property. As

a result only a proof theoretical argument, like ours, has so far been found

for this range of logics. Clearly there is opportunity for more work to be

done here, in reading proof search as a process of model generation. We

must leave this for another day.

There is also scope for extending the results to rules which fail to be 
at.

Not every decidable logic has 
at structural rules. In either of the origi-
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nal Belnap representation or the simpler Wansing representation of classical

modal logics, a simple logic like S4 has rules in which the modal structure

increases from conclusion to premises. The logic is still decidable. In this

case, some kind of control over the structure needs to be maintained, just as

we have gained control over the purely extensional structure of the comma

and the asterisk. This seems quite possible, after all, only a �nite number

of `modal pre�xes' di�er in proof theoretical sense, so a normal form result

should be rather easily obtained. Another result worth keeping in mind is

the work done on decision procedures for combinators. It is well known

that indentity in the free term algebra generated by application among the

combinators B, C and K is decidable. This is the algebraic analogue of

the 
atness of the rules B, C and K. It is less known that some `increas-

ing' combinators, like L (given by the rule Lab = a(bb)) are also decidable

(Statman 1989, Sprenger and Wymann-B�oni 1993). It remains to be seen

how results like these can be applied to our setting.

Further work needs also to be done on correspondence between condi-

tions on frames, axioms, and display rules. We have done the simple case

for confusions (which as far as I can tell is new with this paper). Much more

needs doing for general correspondence results. In the absence of boolean

negation this is not easy, for we have a large degree of freedom in construct-

ing points in the canonical model structure. You need only look at the

current state of intuitionistic modal logic to see that general correspondence

results are much harder to �nd in the absence of boolean negation.

We also ought consider logics without negation, or with a negation with-

out all of the properties we have assumed here. For example, the logic P of

Peirce monoids, studied in Restall 1994, cannot be conservatively extended

with a contraposing negation of the kind we've discussed. A contraposing

negation adds B0 to any logic with B. (That's an exercise. Derive B0 from B,

given the display rules.) But some logics, like P brook no form of commu-

tativity, even the restricted commutativity in B0. So, P resists the kind of

treatment we have seen. However, not all is lost. We could treat intensional

conjunction like extensional conjunction, and display it by simple residua-

tion. In the case of P, we need two residuals, for left and right residuation.

For the logic P itself, this is not particularly useful | Restall 1994 already

gives us a cut-free Gentzen proof theory yielding decidability | the gain will

be found in the study of supersystems of P, such as that given by the addi-

tion of boolean negation.19 Then we have a system for which the extensional

structure has the original Belnap display rules, and the intensional structure

19
P is useful in theoretical linguistics. A string x has type A ! B if whenever x has

type A, the concatenation yx has type B, x has type A ^ B if and only if it has types

A and B, and it has type A _ B if and only if it has either type A or type B. It seems

sensible to consider the type :A, which a string has if and only if it doesn't have type

A. That is boolean negation. The logic P: is the resulting system. Not much is known

about it.
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has the negation-free residuation display rules. For a detailed treatment of

this and other topics in the region the reader must wait for this paper's

sequel.

Finally, there is work to be done in implementing the decision proce-

dure. At �rst sight this seems tremendously complex. Keeping track of

matching pairs and super
uous 1s is a computationally expensive job. As

is testing for reduction and semi-reduction. However, we need not imple-

ment the proof search in the way set out in the decidability proof. Rather,

it seems more sane to work with reduced sequents througout, making the

rules of the implemented system the `reduced' versions of our original rules.

This is analagous to the formulation of a consecution calculus in which an-

tecedent and consequent are sets of formulae, resulting in contraction being

implicit in the statements of the rules. Proof search need not be completely

na��ve, either. We may distinguish between invertible and non-invertible

rules, applying the former before the latter, and making a sanity check be-

fore embarking on a non-invertible rule.20 By utilising such simple insights

as these, we should be able to implement a display logic theorem prover for

substructural logics without too much pain. It could also serve as a proof

assistant in cases when the logic fails to be decidable, such as R.

With these new vistas opened up before us, as a result of the groundwork

of this paper, the time has come to �nish the presentation of the results we

have so far, and to explore the landscapes ahead.21

9 Appendix

Here are the promised proofs of the rest of the axioms and rules of DW.

A `̀̀̀̀̀ A

A;B `̀̀̀̀̀ A

A ^B `̀̀̀̀̀ A

B `̀̀̀̀̀ B

A;B `̀̀̀̀̀ B

A ^B `̀̀̀̀̀ B

A `̀̀̀̀̀ A

A `̀̀̀̀̀ A _B

B `̀̀̀̀̀ B

B `̀̀̀̀̀ A _B

I `̀̀̀̀̀ A

? `̀̀̀̀̀ A

20Such as in Slaney 1994's minlog, a theorem prover for intuitionistic and minimal logic,

which checks consecutions given by non-invertible rules for classical provability before

attempting to prove them.
21Thanks to Rajeev Gor�e for many very fruitful conversations, and to Nuel Belnap, for

the wonderful ideas of Display Logic. Thanks are also due to John Slaney, who helped

me see the possibility of the decidability argument, Mike Dunn, whose work on gaggle

theory has shaped my thinking in more ways than I can tell, and Steve Giambrone, whose

ground-breaking decidability results amaze me more and more after working though all

of the details. Finally, an audience at the arp, especially Errol Martin, Bob Meyer, and

John Slaney, helped me sort out the interpretation and presentation of these results.
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A `̀̀̀̀̀ A B `̀̀̀̀̀ B

A;B `̀̀̀̀̀ A ^B

A;B `̀̀̀̀̀ (A ^B) _ (A ^ C)

B `̀̀̀̀̀ A; (A ^B) _ (A ^ C)

A `̀̀̀̀̀ A C `̀̀̀̀̀ C

A;C `̀̀̀̀̀ A ^ C

A;C `̀̀̀̀̀ (A ^B) _ (A ^ C)

C `̀̀̀̀̀ A; (A ^B) _ (A ^ C)

B _ C `̀̀̀̀̀ A; (A ^B) _ (A ^ C)

A;B _C `̀̀̀̀̀ (A ^B) _ (A ^ C)

A ^ (B _ C) `̀̀̀̀̀ (A ^B) _ (A ^ C)

A `̀̀̀̀̀ A B `̀̀̀̀̀ B

A! B `̀̀̀̀̀ �A;B

A! B;A! C `̀̀̀̀̀ �A;B

A; (A! B;A! C) `̀̀̀̀̀ B

A `̀̀̀̀̀ A C `̀̀̀̀̀ C

A! C `̀̀̀̀̀ �A;C

A! B;A! C `̀̀̀̀̀ �A;C

A; (A! B;A! C) `̀̀̀̀̀ C

(A; (A! B;A! C)); (A; (A! B;A! C)) `̀̀̀̀̀ B ^ C

A; (A! B;A! C) `̀̀̀̀̀ B ^ C

A! B;A! C `̀̀̀̀̀ A! B ^C

(A! B) ^ (A! C) `̀̀̀̀̀ A! B ^C

A `̀̀̀̀̀ A C `̀̀̀̀̀ C

A! C `̀̀̀̀̀ �A;C

A! C;B ! C `̀̀̀̀̀ �A;C

A `̀̀̀̀̀ �(A! C;B ! C);C

B `̀̀̀̀̀ B C `̀̀̀̀̀ C

B ! C `̀̀̀̀̀ �B;C

A! C;B ! C `̀̀̀̀̀ �B;C

B `̀̀̀̀̀ �(A! C;B ! C);C

A _B `̀̀̀̀̀ �(A! C;B ! C);C

A _B; (A! C;B ! C) `̀̀̀̀̀ C

A! C;B ! C `̀̀̀̀̀ A _B ! C

(A! C) ^ (B ! C) `̀̀̀̀̀ A _B ! C
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A `̀̀̀̀̀ A

B `̀̀̀̀̀ B

�B `̀̀̀̀̀ �B

�B `̀̀̀̀̀ �B

A! �B `̀̀̀̀̀ �A; �B

A! �B `̀̀̀̀̀ �B; �A

B;A! �B `̀̀̀̀̀ �A

B;A! �B `̀̀̀̀̀ �A

A! �B `̀̀̀̀̀ B ! �A

A `̀̀̀̀̀ A

�A `̀̀̀̀̀ �A

�A `̀̀̀̀̀ �A

��A `̀̀̀̀̀ A

��A `̀̀̀̀̀ A
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