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Abstract

We study the interpretation of Grzegorczyk’s Theory of Concatenation
TC in structures of decorated linear order types satisfying Grzegorczyk’s
axioms. We show that TC is incomplete for this interpretation. What
is more, the first order theory validated by this interpretation interprets
arithmetical truth. We also show that every extension of TC has a model
that is not isomorphic to a structure of decorated order types.
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1 Introduction

In his paper [Grz05], Andrzej Grzegorczyk introduces a theory of concatena-
tion TC. The theory has a binary function symbol ∗ for concatenation and two
constants a and b. The theory is axiomatized as follows.

TC1. ` (x ∗ y) ∗ z = x ∗ (y ∗ z)

TC2. ` x ∗ y = u ∗ v → ((x = u ∧ y = v) ∨
∃w ((x ∗w = u ∧ y = w ∗ v) ∨ (x = u ∗w ∧ y ∗w = v)))

TC3. ` x ∗ y 6= a

TC4. ` x ∗ y 6= b

TC5. ` a 6= b

Axioms TC1 and TC2 are due to Tarski. Grzegorczyk calls axiom TC2: the
editor axiom. We will consider two weaker theories. The theory TC0 has the
signature with just concatenation, and is axiomatized by TC1,2. The theory
TC1 is axiomatized by TC1,2,3. We will also use TC2 for TC.1

Andrzej Grzegorczyk and Konrad Zdanowski have shown that TC is essentially
undecidable. This result can be strengthened by showing that Robinson’s Arith-
metic Q is mutually interpretable with TC. Note that TC0 is undecidable —since
it has an extension that parametrically interprets TC— but that TC0 is not es-
sentially undecidable: it is satisfied by a one-point model. Similarly TC1 is
undecidable, but it has as an extension the theory of finite strings of a’s, which
is a notational variant of Presburger Arithmetic and, hence decidable.

We will call models of TC0: concatenation structures. We will call models of
TCi: concatenation i-structures.

We will be interested in a special class of concatenation structures: those
whose elements are decorated linear order types with as operation addition, or
concatenation of decorated order types. Let a non-empty class A be given. An
A-decorated linear ordering is a structure 〈D,≤, f〉, where D is a non-empty
domain, ≤ is a linear ordering on D, and f is a function from D to A. A
mapping φ is an isomorphism between A-decorated linear order types 〈D,≤, f〉
and 〈D′,≤′, f ′〉 iff it is a bijection between D and D′ such that, for all d, e in
D, we have d ≤ e ⇔ φd ≤′ φe, and fd = f ′φd. Our notion of isomorphism
gives us a notion of A-decorated linear order type. We have an obvious notion
of sum or concatenation between A-decorated linear orderings which induces a
corresponding notion of sum or concatenation for A-decorated linear order types.

1The theories TCi are theories for concatenation without the empty string, i.o.w. without
the unit element. One can show that TC is bi-interpretable with a corresponding theory TCε

via one dimensional interpretations without parameters.2 The theory TC1 is bi-interpretable
via two-dimensional interpretations with parameters with a corresponding theory TCε

1. The
situation for TC0 seems to be more subtle.
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We use α, β, . . . to range over such linear order types. We write DLOT(A) for
the universe of A-decorated linear order types with concatenation. Since, linear
order types are classes we have to follow one of two strategies: either to employ
Scott’s trick to associate a set object to any decorated linear order type or
to simply refrain from dividing out isomorphism but to think about decorated
linear orderings modulo isomorphism. We will employ the second strategy.

We will call a concatenation structure whose domain consists of (represen-
tatives of) A-decorated order types, for some A, and whose concatenation is
concatenation of decorated order types: a concrete concatenation structure. It
seems entirely reasonable to stipulate that e.g. the interpretation of a in a con-
crete concatenation structure is an decorated linear order type of a one element
order. However, for the sake of generality we will refrain from making this
stipilation.

Grzegorczyk conjectured that every concatenation 2-structure is isomorphic
to a concrete concatenation structure. We prove that this conjecture is false. (i)
Every extension of TC1 has a model that is not isomorphic to a concatenation
1-structure and (ii) The set of principles of valid in all concrete concatenation
2-structures interprets arithmetical truth.

The plan of the paper is as follows. We show, in Section 2, that we have,
for all decorated order types α, β and γ, the following principle: (†) β ∗ α ∗
γ = α ⇒ β ∗ α = α ∗ γ = α.3 It is easy to see that every group is is a
concatenation structure and that (†) does not hold in the two element group.
We show, in Section 5, that every concatenation structure can be extended to
a concatenation structure with any number of atoms. It follows that there is a
concatenation structure with at least two atoms in which (†) fails. Hence, TC
is incomplete for concrete concatenation structures. In Section 3, we provide a
counterargument of a different flavour. We provide a tally interpretation that
defines the natural numbers (with concatenation in the role of addition) in every
concrete concatenation 2-structure. It follows that for every extension of TC1 is
satisfied by a concatenation 1-structure that is not isomorphic to any concrete
concatenation 1-structure, to wit any model of that extension that contains a
non-standard element. In Section 4, we strengthen the result of Section 3, by
showing that in concrete concatenation 2-structures we can add multiplication
to the natural numbers. It follows that the set of arithmetically true sentences
is interpretable in the concretely valid consequences of TC2.

Acknowledgments

Some of the results of this note were obtained during the Excursion to moun-
tain Ślȩz̀a of the inspiring Logic Colloquium 2007 in Wroc law and, in part, in
the evening after the Excursion. We thank the organizers for providing this
wonderful opportunity.

3This fact was already known. See: [KT06], problem 6.13. Our proof, however, is different.
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2 A Principle for Decorated Order Types

In this section we prove a universal principe that holds in all concatenation
structures, which is not provable in TC. There is an earlier proof of this principle.
See: [KT06], problem 6.13. Our proof, however, is different.

Theorem 2.1 Let α0, α1, α2 be decorated order types. Suppose α1 = α0∗α1∗α2.
Then α1 = α0 ∗ α1 = α1 ∗ α2.

Proof

Suppose α1 = α0 ∗α1 ∗α2. Consider a decorated linear ordering A := 〈A,≤, f〉
of type α1, By our assumption, we may partition A into A0, A1, A2, such that:

〈A,≤, f〉 = 〈A0,≤� A0, f � A0〉 ∗ 〈A1,≤� A1, f � A1〉 ∗ 〈,≤� A2, f � A2〉,

where Ai := 〈Ai,≤� Ai, f � Ai〉 is an instance of αi, Let φ : A → A1 be an
isomorphism.

Let φnA(i) := 〈φn[A(i)],≤� φn[A(i)], f � φn[A(i)]〉. We have: φnAi is of order
type αi and φnA is of order type α1.

Clearly, φA0 is an initial substructure of φA = A1. So, A0 and φA0 are
disjoint and φA0 adjacent to the right of A0. Similarly, for φnA0 and φn+1A0.
Take Aω

0 :=
⋃

i∈ω φiA0. We find that Aω
0 := 〈Aω

0 ,≤� Aω
0 , f � Aω

0 〉 is initial in A
and of decorated linear order type αω

0 . So α1 = αω
0 ∗ ρ, for some ρ. It follows

that α0 ∗ α1 = α0 ∗ αω
0 ∗ ρ = αω

0 ∗ ρ = α1. The other identity is similar. 2

So, every concrete concatenation structure validates that α1 = α0 ∗ α1 ∗ α2

implies α1 = α0 ∗α1 = α1 ∗α2. We postpone the proof that this principle is not
provable in TC to Section 5.

3 Definability of the Natural Numbers

In this section, we show that the natural numbers can be defined in every
concrete concatenation 1-structure. We define:

• x ⊆ y :↔ x = y ∨ ∃u (u ∗ x = y) ∨ ∃v (x ∗ v = y) ∨ ∃u, v (u ∗ x ∗ v = y).

• x ⊆ini y :↔ x = y ∨ ∃v (x ∗ v = y).

• x ⊆end y :↔ x = y ∨ ∃u (u ∗ x = y).

• n : Ña :↔ ∀m⊆inin (m = a ∨ ∃k ⊆ini m (k 6= m ∧m = k ∗ a)).

We write m,n : Ña for: m : Ña ∧ n : Ña. Etc.
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We prove the main theorem of this section.

Theorem 3.1 In any concrete concatenation structure, we have:

Ña = {an+1 | n ∈ ω}.

I.o.w, Ña is precisely the class of natural numbers in tally representation (start-
ing with 1). Note that ∗ on this set is addition.

Proof

Consider any concrete concatenation 1-structure A. It is easy to see that every
an+1 is in Ña.

Clearly, every element of of Ña is either a or it has a predecessor. The
axioms of TC1 guarantee that this predecessor is unique. This justifies the
introduction of the partial predecessor function pd on Ña. Let α be the order
type corresponding to a. Let β0 be any element of Ña. If, for some n, pdnβ0 is
undefined, then β0 is clearly of the form αk+1, for k in ω.

We show that the other possibility cannot obtain. Suppose βn := pdnβ0 is
always defined. Let A be a decorated linear ordering of type α and let Bi be
a decorated linear ordering of type βi. We assume that the domain A of A is
disjoint from the domains Bi of the Bi. Thus, we may implement Bi+1 ∗ A just
by taking the union of the domains.

Let φi be isomorphisms from Bi+1 ∗ A to Bi. Let Ai := (φ0 ◦ · · · ◦ φi)(A).
Then, the Ai are all of type α and, for some C, we have B0 = C ∗ · · · ∗ A1 ∗ A0.
Similarly B1 = C ∗ · · · ∗ A2 ∗A1. Let ω̆ be the opposite ordering of ω. It follows
that β0 = γ ∗ αω̆ = β1 = pd(β0). Hence, β0 is not in Ña.4 A contradiction. 2

We call a concatenation structure standard if Ña defines the tally natural num-
bers. Since, by the usual argument, any any extension of TC1 has a model with
non-standard numbers, we have the following corollary.

Corollary 3.2 Every extension of TC1 has a model that is not isomorphic
to a concrete concatenation 1-structure. In a different formulation: for ev-
ery concatenation 1-structure there is an elementarily equivalent concatenation
1-structure that is not isomorphic to a concrete concatenation 1-structure.

Note that the non-negative tally numbers with addition form a concrete concate-
nation 1-structure. Thus, the concretely valid consequences of TC1+∀x (x : Ña),
i.e., the principles valid in every concrete concatenation 1-structure satisfying
∀x (x : Ña) are decidable.

4Note that we are not assuming that γ is in A.
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4 Definability of Multiplication

If we have two atoms to work with, we can add multiplication to our tally
numbers. This makes the set of concretely valid consequences of TC non-
arithmetical. The main ingredient of the definition of multiplication is the
theory of relations on tally numbers. In TC, we can develop such a theory. We
represent the relation {〈x0, y0〉, . . . , 〈xn−1, yn−1〉}, by:

bb ∗ x0 ∗ b ∗ y0 ∗ bb ∗ x1 ∗ . . . bb ∗ xn−1 ∗ b ∗ yn−1 ∗ bb.

We define:

• r : REL :↔ bb ⊆end r,

• ∅ := bb,

• x[r]y :↔ x, y : Ña ∧ bb ∗ x ∗ b ∗ y ∗ bb ⊆ r.

• adj(r, x, y) := r ∗ x ∗ b ∗ y ∗ bb.

Clearly, we have: TC ` ∀u, v ¬u[∅]v. To verify that this coding works we need
the adjunction principle.

Theorem 4.1 We have:

TC ` (r : REL ∧ x, y, u, v : Ña) → (u[adj(r, x, y)]v ↔ (u[r]v ∨ (u = x ∧ v = y))).

We can prove this result by laborious and unperspicuous case splitting. However,
it is more to do the job with the help of a lemma. Consider any model of TC0.
Fix an element w. We call a sequence (w0, . . . , wk) a partition of w if we
have that w0 ∗ · · · ∗ wk = w. The partitions of w form a category with the
following morphisms. f : (u0, . . . , un) → (w0, . . . , wk) iff f is a surjective and
weakly monotonic function from n + 1 to k + 1, such that, for any i ≤ k, wi =
us ∗ · · · ∗ u`, where f(j) = i iff s ≤ j ≤ `. We write (u0, . . . , un) ≤ (w0, . . . , wk)
for: ∃f f : (u0, . . . , un) → (w0, . . . , wk). In this case we say that (u0, . . . , un) is
a refinement of (w0, . . . , wk).

Lemma 4.1 Consider any concatenation structure. Consider a w in the struc-
ture. Then, any two partitions of w have a common refinement.

Proof

Fix any concatenation structure. We first prove that, for all w, all pairs of
partitions (u0, . . . , un) and (w0, . . . , wk) of w have a common refinement, by
induction of n + k.

If either n or k is 0, this is trivial. Suppose (u0, . . . , un+1) and (w0, . . . , wn+1)
are partitions of w. By the editor axiom, either (a) u0 ∗ · · · ∗ un = w0 ∗ · · · ∗wk

and un+1 = wk+1, or there is a v such that (b) u0 ∗ · · · ∗ un ∗ v = w0 ∗ · · · ∗ wk

and un+1 = v ∗ wk+1, or (c) u0 ∗ · · · ∗ un = w0 ∗ · · · ∗ wk ∗ v and v ∗ un+1 =
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wk+1. We only treat case (b), the other cases being easier or similar. By the
induction hypothesis, there is a common refinement (x0, . . . xm) of (u0, . . . , un, v)
and (w0, . . . , wn). Let this be witnessed by f , resp. g. It is easily seen that
(x0, . . . xm, wk+1) is the desired refinement with witnessing functions f ′ and g′,
where f ′ := f [m + 1 : n + 1], g′ := g[m + 1 : k + 1]. 2

We turn to the proof of Theorem 4.1. The verification proceeds more or less as
one would do it for finite strings.

Proof

Consider any concatenation 2-structure. Suppose REL(r). The right-to-left
direction is easy, so we treat left-to-right. Suppose x, y, u and v are tally
numbers. and u[adj(r, x, y)]v. There are two possibilities. Either r = bb or r =
r0∗bb. We will treat the second case. Let s := adj(r, x, y). One the following four
partitions is a partition of s: (i) (b, b, u, b, v, b, b), or (ii) (w, b, b, u, b, v, b, b), or
(iii) (b, b, u, b, v, b, b, z), or (iv) (w, b, b, u, b, v, b, b, z). We will treat cases (ii)
and (iv).

Suppose σ := (w, b, b, u, b, v, b, b) is a partition of s. We also have that τ :=
(r0, b, b, x, b, y, b, b) is a partition of s. Let (t0, . . . , tk) be a common refinement
of σ and τ , with witnessing functions f and g. The displayed b’s in these
partitions must have unique places among the ti. We define mσ to be the
unique i such that f(i) = m, provided that σm = b. Similarly, for mτ . (To
make this unambiguous, we assume that if σ = τ , we take σ as the common
refinement with f and g both the identity function.)

We evidently have 7σ = 7τ = k and 6σ = 6τ = k − 1. Suppose 4σ < 4τ .
It follows that b ⊆ v. So, v would have an initial subsequence that ends in b,
which is impossible. So, 4σ 6< 4τ . Similarly, 4τ 6< 4σ. So 4σ = 4τ . It follows
that v = y. Reasoning as in the case of 4σ and 4τ , we can show that 2σ = 2τ

and, hence u = x.

Suppose ρ := (w, b, b, u, b, v, b, b, z) is a partition of s. We also have that τ :=
(r0, b, b, x, b, y, b, b) is a partition of s. Let (t0, . . . , tk) be a common refinement
of ρ and τ , with witnessing functions f and g. We consider all cases, where
1τ < 6ρ. Suppose 6ρ = 1τ + 1 = 2τ . Note that 7ρ = 6ρ + 1, so we find: b ⊆ x,
quod non, since x is in Ña. Suppose 2τ < 6ρ < 4τ . In this case we have a b
as substring of x. Quod non. Suppose 6ρ = 4τ . Since 7ρ = 6ρ + 1, we get a b
in y. Quod non. Suppose 4τ < 6ρ < 6τ . In this case, we get a b in y. Quod
impossibile. Suppose 6ρ ≥ 6τ = k − 1. In this place there is no place left for z
among the ti. So, in all cases, we obtain a contradiction. So the only possibility
is 6ρ ≤ 1τ . Thus, it follows that u[r]v. 2

We can now use our relations to define multiplication of tally numbers in the
usual way. See e.g. Section 2.2 of [Bur05]. In any concrete concatenation 2-
structure, we can use induction to verify the defining properties of multiplication
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as defined. It follows that we can interpret all arithmetical truths in the set of
concretely valid consequences of TC.

Corollary 4.2 We can interpret true arithmetic in the set of all principles valid
in concrete concatenation 2-structures.

5 The Sum of Concatenation Structures

In this section we show that concatenation structures are closed under sums.
This result will make it possible to verify the claim that the universal principle
of Section 2 is not provable in TC. The result has some independent interest,
since it provides a good closure property of concatenation structures.

Consider two concatenation structures A0 and A1. We write ? for concate-
nation in the Ai. We may assume, without loss of generality, that the domains
of A0 and A1 are disjoint. We define the sum B := A0 ⊕ A1 as follows.

• The domain of B consists of non-empty sequences w0 · · ·wn−1, where the
wj are alternating between elements of the domains of A0 and A1. In
other words, if wj is in the domain of Ai, then wj+1, if it exists, is in the
domain of A1−i.

• The concatenation σ ∗ τ of σ := w0 · · ·wn−1 and τ := v0 · · · vk−1 is
w0 · · ·wn−1v0 · · ·wk−1, in case wn−1 and v0 are in the domains of dif-
ferent structures Ai. The concatenation σ∗τ is w0 · · · (wn−1 ?v0) · · ·wk−1,
in case wn−1 and v0 are in in the same domain.

In case σ∗τ is obtained via the first case, we say that σ and τ are glued together.
If the second case obtains, we say that σ and τ are clicked together.

Theorem 5.1 The structure B = A0 ⊕ A1 is a concatenation algebra.

Proof

Associativity is easy. We check the editor property TC2. Suppose σ0 ∗ σ1 =
z0 · · · zm−1 = τ0 ∗ τ1. We distinguish a number of cases.

Case 1. Suppose both of the pairs σ0, σ1 and τ0, τ1 are glued together. Then,
for some k, n > 0, we have σ0 = z0 · · · zk−1, σ1 = zk · · · zm−1, τ0 = z0 · · · zn−1,
and τ1 = zn · · · zm−1.

So, if k = n, we have σ0 = τ0 and σ1 = τ1.
If k < n, we have τ0 = σ0 ∗ (zk · · · zn−1) and σ1 = (zk · · · zn−1)∗ τ1. The case

that n < k is similar.

Case 2. Suppose σ0, σ1 is glued together and that τ0, τ1 is clicked together. So,
there are k, n > 0, u0, and u1 such that σ0 = z0 · · · zk−2u0, σ1 = u1zk · · · zm−1,
u0 ? u1 = zk−1, τ0 = z0 · · · zn−1, and τ1 = zn · · · zm−1.
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Suppose k ≤ n. Then, τ0 = σ0 ∗ (u1zk · · · zn−1) and σ1 = (u1zk · · · zn−1)∗ τ1.
Note that, in case k = n, the sequence zk · · · zn−1 is empty. The case that k ≥ n
is similar.

Case 3. This case, where σ0, σ1 is clicked together and τ0, τ1 is glued together,
is similar to case 2.

Case 4. Suppose that σ0, σ1 and τ0, τ1 are both clicked together. So, there
are k, n > 0, u0, u1, v0, v1 such that σ0 = z0 · · · zk−2u0, σ1 = u1zk · · · zm−1,
u0 ? u1 = zk−1, τ0 = z0 · · · zn−2v0, τ1 = v1zn · · · zm−1 and v0 ? v1 = zn−1.

Suppose k = n. We have u0 ? u1 = zk−1 = v0 ? v1. So, we have either (a)
u0 = v0 and u1 = v1, or, for some w, either (b) u0 ? w = v0 and u1 = w ? v1,
or (c) u0 = v0 ? w and w ? u1 = v1. In case (b), we have: σ0 ∗ w = τ0 and
σ1 = w ∗ τ1. We leave (a) and (c) to the reader.

Suppose k < n. We have:

σ0 ∗ (u1zk · · · zn−2v0) = τ0 and σ1 = (u1zk · · · zn−2v0) ∗ τ1.

The case that k > n is similar. 2

It is easy to see that ⊕ is a sum or coproduct in the sense of category theory.
The following theorem is immediate.

Theorem 5.2 If a is an atom of Ai, then a is an atom of A0 ⊕ A1.

Finally, we have the following theorem.

Theorem 5.3 Let A be any set and let B := 〈B, ∗〉 be any concatenation struc-
ture. We assume that A and B are disjoint. Then, there is an extension of B
with at least A as atoms.

Proof

Let A∗ be the free semi-group on A. We can take as the desired extension of
B, the structure A∗ ⊕B. 2

Remark 5.4 The whole development extends with only minor adaptations,
when we replace axiom TC2 by:

• ` x ∗ y = u ∗ v → ((x = u ∧ y = v) ∨̇ (∃!w (x ∗ w = u ∧ y = w ∗ v) ∨
∃!w (x = u ∗ w ∧ y ∗ w = v))

Here ∨̇ is exclusive or.
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