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Abstract. This paper gives an outline of three different approaches to the four- 
valued semantics for relevant logics (and other non-classical logics in their vicinity). 
The first approach borrows from the 'Australian Plan' semantics, which uses a unary 
operator ' , '  for the evaluation of negation. This approach can model anything that 
the two-valued account can, but at the cost of relying on insights from the Australian 
Plan. The second approach is natural, well motivated, independent of the Australian 
Plan, and it provides a semantics for the contraction-free relevant logic C (or RW). 
Unfortunately, its approach seems to model little else. The third approach seems to 
capture a wide range of formal systems, but at the time of writing, lacks a complete- 
ness proof. 

1. D E F I N I T I O N S  

In their paper 'Simplified Semantics for Basic Relevant Logics' (here- 
after 'SSI'), Priest and Sylvan gave a simplification of the usual ter- 
nary-relational frame semantics for relevant logics. The original se- 
mantics, due to Sylvan and Meyer, had to place many constraints on 
the ternary relation R, and it was quite unwieldy. In SS 1, a simplifi- 
cation of the original semantics is defined, and the construction was 
used to model the logic B +, BM, BD and B, using two different ap- 
proaches for negation - -  one using the dualising ' . '  operator, and the 
other, using a four-valued evaluation. In a subsequent paper, 'Simpli- 
fied Semantics for Relevant Logics (and some of their Rivals)' (here- 
after 'SS2'), I extended the simplified semantics to deal with most of 
the well-known relevant propositional logics (and some others). The 
treatment of negation in SS2 was purely by way of the dualising ' . '  
operator, famous in the semantics for relevant logics. In this paper we 
consider the alternative approach to negation that involves a 4-valued 
evaluation. 

While this paper is self contained with regard to the definitions and 
concepts involved, it sometimes defers to SS2 (which in turn, defers 
at times to SS1) for proofs of certain theorems. With that stated, it 
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should be noted that it is quite possible to understand this paper inde- 

pendently of  SS1 or SS2. 

1.1. The System BD 

The first set of  results deal with BD, a weak relevant propositional 

logic. To establish our terms, BD is expressed in a language 12, which 
has the connectives A, V, --+ and -7, parentheses ( and ), and a stock of 

propositional variables p, q . . . . .  Formulae are defined recursively in 

the usual manner, and the standard scope conventions are in force; A 

and V bind more strongly than ~ .  For example, p A q ~ r is short for 
(p A q) ~ r. We will use ~,/3 . . . .  to range over arbitrary formulae. 

The system BD has the following axioms and rules: 

A1. c~ --+ ~ 

A2. ~ - ~ V 3 ,  3 ~ V 3 ,  

A3. a A 3 --+ c~, ~ A /3 -~ 3, 

A4.  o~ A (3 V 7)  --~ (c~ A/3) V 7, 

AS. (e  --~/3) A (c~ --+ 7) ~ (e  --~/3 A 7), 

A6.  (c~ -+ 7)  A (/3 -+ 7)  -~  ( a  V/3 -~  7) ,  

A7.  ~(c~ V t )  ~ ~c~ A 73,  

A8.  -~(c~ A/3) ~ ~oz V -~/3, 

Ag.  ~ ~ ~ - ~ .  

If  (a l  - '"  ~n)//3 is a rule, its disjunctive form is the rule (TVal . . .  7V 
~n) / (7  V/3). The rules for B + are the following, along with their 

dusjunctive forms: 

OZ, Og ----+ /3 
R1. 

3 ' 

R2. c~, 3 
~ A 3 '  

R3. o~ -+/3 ,7  --+ 6 
(3 -~ 7) -~ (~ -~ ~ )  
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It is to be noted that the simplified semantics given can only model 
disjunctive systems. That is, systems such that the disjunctive form of 
every truth preserving rule is truth preserving. Not every logic satisfies 
this criterion - a notable candidate is E, for the disjunctive form of its 
characteristic rule, from c~ to (c~ --+/3) -~/3, fails to be truth preserving. 
The reason for this is that c~ V ~c~ is a theorem of E, but -~c~ V ((o~ --+ 

/3) --+/3) is a non-theorem. 

1.2. Semantics for BD 

In SS 1 a four-valued semantics was given for BD. Their semantics 
is a simplified version of the original ternary relational semantics for 
relevant logics. The important definitions concerning the structure are 
collected here. 

An interpretation for the language is a 4-tuple (g, W, R, I) ,  where 
W is a set of worlds, g c W is the base world, R is a ternary relation 
on W, and I assigns to each pair (w, p) of worlds and propositional 
parameters a truth value, I(w, p) C {0, 1 }. Truth values at worlds are 
then assigned to formulae inductively as follows: 

|  
|  
o l E  
e 0 E  
e l E  

I(w, ~ A/3) ** 1 E I(w, ct) and 1 E I(w, fl), 
I(w, ~ A 3) ~ 0 ~ I(w, a) or 0 E I(w, fl), 
I(w, c~ V/3) r 1 E I(w, c~) or 1 E I(w,/3), 
I(w, ~ V/3) ~ 0 C I(w, ~) and 0 C I(w,/3), 
I(g,c~ - , /3 )  r for all x E W(1 E I(x,c~) ~ 1 E I(x,  fl)), 

and for x r 9, 

| 1 E I(x,  o~ --+ ~) r for all y, z E W ( R x y z  ~ (1 ~ I(y, a) 
1 c I (z , /3)) ) .  

Note that the falsity of a conditional is arbitrary according to this defi- 
nition of  an evaluation. This is because BD is very weak with regards 
to negated conditionals. No negated conditionals are theorems, no 
conditionals of the form a ~ 7(/3 --, 3') are provable where a contains 
no negated conditionals, and so on. So BD tells us very little about 
the falsity of  conditionals, and this is reflected in the semantics. The 
trouble that this causes for extending semantics to stronger systems 
will be made obvious later. 
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For all the oddity with conditionals, the extensional connectives and 

negation have the standard semantic clauses for a four-valued eval- 

uation (each formula gets one of the four values are g ,  {0}, { 1 } and 

{0, 1 }). This kind of evaluation for connectives dates back at least 

Dunn's work published in 1976 and Belnap's in 1977. A three valued 

version due to Priest emerged in 1979, and it has been rediscovered 

many times since. Because this way of evaluating formulae gained a 

lot of currency with relevant logicians in the United States, it is called 

the American Plan in contrast to the antipodean approach using the 

Routley-Meyer star, the Australian Plan. 

Then semantic consequence is defined in terms of truth preservation 

at 9, the base world. In other words, 

O ~ a r for all interpretations ( g , W , R , I ) ( 1  ~- I(9,/3) 

for all/3 E | =~ 1 = I(9, c~)). 

The soundness and completeness result for BD can then be consisely 

stated as follows. 

THEOREM 1. I f  | U {a} is a set of  sentences, then 

where ~- is the provability relation of  BD. 1 

As in SS2 we will make a cosmetic alteration to the above definition 

of an interpretation. It is easily seen that the truth conditions for ' ~ '  

can be made univocal if we define R to satisfy Rgxy  e ,  x = y. From 

now, we will use the definition of an interpretation with an appropri- 

ately modified relation R. 

It was shown in SS1 that this semantics is sound and complete with 

respect to BD. Some of the positive extensions of this semantics triv- 

ially extend to the four-valued interpretation - -  the proofs in SS2 

translate easily into the four-valued context. To be precise, in the table 

below, the semantics with condition Dn added is sound and complete 
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for the logic BD + Cn. 

e l .  a A (a  -~/3) ~ / 3  DI .  

C2. (a  --*/3) A (/3 -+ 7) ~ (a  ~ 7) D2. 

C3. (a  -~/3) ---, ((/3 --+ 3') ~ (a  -~ 7)) D3. 

C4. (a  ~ ,6) ~ ((7 ~ a)  ~ (7 ~ / 3 ) )  D4. 

c5.  (a -~ (a ~ / 3 ) )  ~ (a ~ / 3 )  DS. 

C6. a ~ ( (a  --+/3) ~ / 3 )  D6. 

C7. (o~ -~ (/3 -~ 7)) -* (/3 -~ (a  - ,  7)) D7. 

C8. (a  ~ (/3 ~ 7))  ~ ( (a  ~ / 3 )  ~ (a  ~ 7)) D8. 

C9. (c~ ~ / 3 )  ~ ( (a  ~ (/3 ~ 7))  ~ (a  ~ 7))  D9. 
oz 

C10. (a  ~ / 3 )  ~ / 3 ,  and its disjunctive forms D10. 

Where we have defined: 

R2abcd = (~x)(Rabx A Rxcd), 

R2 a(bc)d = (3x)(Rbcx A Raxd), 

R3 ab(cd)e = (3x)( Re abxe A Rcdx). 

Raaa 

Rabc ~ R2a(ab)c 

R2abed ~ R2b(ae)d 

R2abcd ~ R2a(bc)d 

Rabe ~ R2 abbc 

Rabc ~ Rbac 

I~2 abcd ~ R2 aebd 

R2 abcd ~ R3 ae(bc)d 

R2 abcd ~ _R3bc(ac)d 

Raga 

For the proof of  this fact, we defer to SS2, where the proofs are given 
for the two-valued interpretation. In the four-valued context, the proofs 
are identical, except for the cosmetic alteration of '1 = '  to '1 E',  and 
we will consider them done. 

In SS2, an addition is made to the notion of an interpretauon, to 

deal with more extensions to the basic logics. A containment relation 
on W was defined to be a relation satisfying the following conditions: 

I ( I (a ,p )= 1 ~ I (b ,p)= 1) for each 
propositional 
variable p, 

a <<. b ~ I Rbcd ~ Raed i f a C 9 ,  

k Rbcd ~ c <~ d if a = g. 

Then could be shown (by induction on the complexity of  c~) that it sat- 
isfied a <~ b ~ (I(a, oz) = 1 ~ I(b, a)  = 1) for any formula a. This is 
the relevant property of  a containment relation. To have an analogous 
relation in the four-valued context, we need both that a ~< b ~ (1 C 

I(a, a) ~ 1 C I(b, a)), and a ~< b ~ (0 E I(a, c~) ~ 0 E I(b, ~)), to en- 
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sure that the induction step for negation goes through. Unfortunately, 

as the falsity condition for a conditional is arbitrary, there is no way of 

ensuring that the latter condition is satisfied in the case where ~ is a 

conditional. So, the extensions that need a containment relation cannot 

be modelled in this manner. Extensions involving negation are like- 

wise ruled out, for they explicitly use the dualising ' , '  operator, which 

is unavailable in this context. So, we are left in a sorry state. There 

are two alternatives available. Firstly, we will unashamedly steal from 

the ,~-semantics to give a four-valued interpretation for (almost) any- 

thing that has a ~-interpretation, and secondly, we will add negation 

conditions for implication, to give a smoother semantics for a num- 

ber of systems. Before we can do that, however, we need to give an 

overview of the ,-semantics, and of the canonical model construction 

used to prove completeness results. 

1.3. The '~' Semant i c s  

A ~-interpretation for our language is a 5-tuple (g, W, R , / ,  *), where 

g, W and R are as before (so R g x y  ~ x = y), ~ is a function from W 

into itself. I has been altered to be a function from pairs of proposi- 

tional parameters and worlds to the set {0, 1}, instead of to the p o w e r  

se t  of {0, 1}. Then I is extended inductively as follows: 

�9 I ( w ,  (~ A/3)  = 1 ~ I ( w ,  c~) = 1 and I (w , /3 )  = 1, 

�9 I ( w ,  a V /3 )  = 1 ~> I(w, c~) = 1 o r  I ( w , / 3 )  = 1, 

�9 I ( w ,  -~a )  = 1 r I ( w * ,  c~) = O, 

�9 I ( x ,  a --+/3) = 1 ~ for all y, z E W ( R x y z  ~ ( I (y ,  a) = 1 

X(z,/3) = 1)). 

These semantics are sound and complete with respect to the logic BM, 

which is BD + R4 - A9, where we have 

c~ --4 fl 
R 4 .  

~ / 3  - - ~  "-nO~ ' 

To model B, which is BM + R4 and BD + R4 we require that for all 

W ,  W ~'~ ~ W .  
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1.4. Canonical Models 

Our canonical model structure will use certain kinds of  theories (sets 
of  formulae) as worlds, and we will define a relationship R between 

them. A sentence is true in a world just in case it is in the world and 
false in a world if its negation is in the world. The constructions and 

results we need are below: 

. If  I I  is a set of / ; -sentences ,  H__+ is the set of all members of  H 

of the form c~ ~ / 3 .  

o Z >n o~ r Z u H ~  F a. 

. Z i s  a H-theory if and only if a,/3 E Z ~ a A/3 E Z, and, 

o Z i s p r i m e c ~ ( a V / 3 E E ~ a E E o r / 3 E Z ) .  

, I f  X is any set of  U-theories, the ternary relation/~ on X is 
defined thus: 

RI IFA <=~ F = A 

RZFA ~ (3' --+ ~ ~ Z ~ (3' E F ~ ~5 E A)) if Z • FI. 

| Z is U-deductively closed ~ (Z ~-n o~ ~ c~ c Z). 

, If  2; is a set of formulae, Z* = {~: ~c~ ~ Z}. 

In all of  the above definitions, if U is the empty set, the prefix 'H- '  is 
omittedi so a o- theory  is simply a theory, and so on. The following 
results are proved in SSI: 

LEMMA 2 (Priming). 

�9 I f  Y. is a prime H-theory with 3  ̀ ---+ 6 ~{ Z, then there are prime 
U-theories, F and A such that RZFA, 3  ̀E F and 6 ~ A. 

| I f  Z, F and A are H-theories, such that RZFA and A is prime, 
then there is a prime F' D F where RZF~A. 

| I f  Z, F and A are U-theories, such that RZFA and A is prime, 
then there is a prime Z' D_ Z where /gZTA.  

�9 I f  Z, F and A are H-theories, such that RZFA and ~ r A, then 
there are prime H-theories F' and A' such that F C_ F', 6 ~ A', 
and A C_ A '. 

The completeness of  the simplified semantics is then demonstrated in 
the following way. Given a set of  formulae | U (c~}, such that | t z c~, 
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we construct an interpretation in which O holds at the base world, 

bur c~ doesn't. Firstly, note that there is a prime theory 1-I such that 

11 _D O, but o~ r l-I, by Lemma 2. The worlds of the interpretation are 

the H-theories, except that 11 and 17" are duplicated, so 17J and H J* act 

like ordinary worlds (and not the base world), in that R17TA iff for 

each c~ ~ / 3  E gI', if c~ E F, /3 E A. 9 is 17 itself and R is as defined 

above. Then we determine I, by assigning I(E,p) = 1 r p E E for 

each propositional variable p and 17-theory Z. It can then be proved 

that I(Z,/3) = 1 ~ / 3  E E for each formula/3, so we have that O holds 

at 17, the base world, and ~ does not. This construction is called the 

almost canonical interpretation, for it differs from the canonical inter- 

pretation given in SS 1, by way of the duplication of the base world. 

2. FOUR VALUES BEYOND BI) 

The matter of finding a four-valued semantics for B is not as sim- 

ple as giving it a ,-semantics. We will show that such a semantics 

does exist, and demonstrate soundness and completeness. First, how- 

ever, we need a preliminary result, and some terminology. A two- 

valued interpretation with a ' , '  operator will henceforth be called a 

z-interpretation. The first result establishes the connection between 

these ,-interpretations and four-valued interpretations. 2 

THEOREM 3. Any ,-interpretation that models B generates a four- 

valued interpretation on the same set of worlds, with exactly the same 

truths in each world. 

Proof Let the ,-interpretation be (9, W, R , / , ,  ,~). We define a four- 

valued interpretation (9, w, R,/4) by requiring 

1 E I4(w, c~) if and only if I , (w,  o~) = 1, 

0 E I4(w, a) if and only i f / , (w* ,  a) = 0 

for each world w and sentence a, a n d ,  is the world 'inversion' map 

of the ,-system. In a picture, this is: 
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w w* 

,- interpretat ion 

Fig. 1. 

to 

four-vMued interpretat ion 

It is clear that the four-valued interpretation has exactly the same 

truths in each world as the .-interpretation. All we need to do is to 

show that 14 actually gives a four-valued interpretation. This is the 

case, as the inductive definitions of a four-valued interpretation are 

satisfied. 

1 E ]-4(w, oL A f )  r 1 -=- ] . ( w ,  o~ A f )  

1 = / . ( w ,  a) and 1 = / . ( w ,  f )  

<=~ 1 6 I4(w, cO and 1 ~ I4(w,/3) 

0 E I4 (w,a  Aft )  ~ 0 = ]-.(W*, a A f )  

*~ 0 = / . ( w * ,  a)  or 0 = L(w*,  f )  

'I~ 0 C I4(W, 0~) or 0 E -/4(w, f )  

1 c I4(w, ~ a )  ** 1 = L ( w ,  ~ a )  

e* 0 = [.(w*, a) e* 0 e I4(w, a) 

0 E Ia(w,-~a) e~, 0 = / . ( w * ,  ~a)  

<=~ 1 =/ . (w**,  a) e~. 1 = / . ( w ,  a) 

"~ 1 ~ I4(w, a) 

1 E h ( w ,  a ~ / 3 )  ~ 1 = I . ( w ,  a ---,/3) 

(Vw')(l .(w' ,  a) = 1 ~ L(w ' ,  f )  = 1) 
(Vw')(1 E/4(w' ,c t )  ~ 1 E Ia(w',13)) if w = g, 

e4, (Vz, y) where R w z v  ( L ( z , a )  = 1 ~ / . ( y , f )  = 1) 
e .  (Vx, u) where Rwzy (1 ~ I4(z ,a )  ~ 1 E/4(Y, f ) )  otherwise. 

So, every .-interpretation that models B gives a four-valued interpre- 

tation on the same set of worlds and with the same truths in the same 

worlds. [] 
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We say that a four-valued interpretation with a corresponding . -  
interpretation is closed under duality, because it is easy to show that 
a four-valued interpretation has a corresponding .-interpretation if and 
only if for every world w, there is another world w* such that 

I(w, a) = { 1 ) <=> I(w*, a) : { 1 ), 

I(,o, ~)  = {0 )  <=> i (w*,  ~)  : {0) ,  

I (w,  cO = o r  I(w*,  a) = {0, 1 }, 
I(w, a) = {0, 1 } <=> I(w*, a) = ~. 

for each sentence a, The world w* is said to be the dual of the world 
w - -  so, a four-valued interpretation is closed under duality if and 
only if the dual of  every world in the interpretation is also a world 
in the interpretation. This condition is too difficult to check when pre- 
sented with a four-valued model. An equivalent condition that is sim- 
pler to check is provided in the following theorem: 

THEOREM 4. A four-valued interpretation (9, W,  R, I) that models B 
is closed under duality if and only if there is an involution ,: W --+ W 
such that 

�9 0 E I(w, p) if and only if 1 f[ I(w*, p) 
�9 0 E I(w, ~ --+ 13) if and only if 1 f~ I(w*, a --+ t3) 

for  each world w, propositional variable p, and formulae ~ and 13. 
Proof The 'only if' part is immediate, as these conditons are a 

subset of the conditions we have closure under duality. The other part 
is a matter of proving that 0 E I(w, ~) if and only if 1 ~f I(w*, a) for 
each w and a. The other half of the conditions follow from the fact 
that w** = w. 

To show that 0 E I(w, oO if and only if 1 r I(w*, a), we use induc- 
tion on the complexity of formulae. The base case, and the case for --4 
are given. The case for conjunction is as follows - -  0 6 I(w, a/x 13) if 
and only if 0 E I(w, a) or 0 E I(w, 13) if and only if 1 r I(w*, a) or 
1 f[ I(w*, a) if and only if 1 r I(w*, a A 13). The cases for disjunction 
and negation are similar, and are left as an exercise. [] 

This condition is simple enough to check at the level of propositional 
parameters, and the remaining portion of the condition deals with fal- 
sity conditions for entailment, which have to be explicity specified in 
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a four-valued model, in any case. While this is saving the four-valued 

interpretation by an explicit use of '*' ,  which the four-valued inter- 
pretation is designed to avoid, there does not seem to be any way of 
avoiding it, if  the truth conditions of  entailments are to be kept as they 
are, as some kind of  duality operator is the natural way to model rule- 
contraposition, which is the characteristic rule of B. In any case the 
construction we have just given is enough to prove the following theo- 

rem: 

THEOREM 5. The collection of four-valued interpretations closed 
under duality is sound and complete with respect to B. 

Proof It is an immediate corollary of the fact that the ,-interpreta- 
tions that satisfy w** = w are sound and complete with respect to B, 
but an independent proof is possible. We need to show that the rule 
(c~ --4/3)/(-7/3 ~ 7c~) holds in all four-valued models closed under du- 

ality. To see that this is the case, assume that for all w, 1 E I(w, c~) 
1 E I(w,/3). So, if 1 C I(w, 7/3), we must have 0 E I(w,/3), and so, 
1 r I(w*,/3). This means that 1 9~ I(w*, cz) by our assumption, and 
hence 0 E I(w, c~). This results in 1 C I(w, 7~), which is what we 
wanted. This gives us soundness. 

Completeness can be obtained by the standard canonical model con- 
struction; it suffices to show that in the interpretation consisting of the 
prime H-theories, the dual of  every world is also a world. To see that 
this is the case, consider Z, a prime H-theory. Set Z* = {~: 7~ r Z}. 
Y~* is a H-theory, as if ~,/3 E Z*, then 7~, 7/3 r Y~, so 7c~ V 7/3 r Z as 
Z is prime, and as F-n -~c~ V -7/3 +-+ 7(~ A/3), we have ~(~ A/3) r Z, 

giving o~ A/3 E Z*. If c~ c Z* and F-n ~ ~ / 3 ,  then if/3 r 2" we have 
7/3 E Z, and 114 gives F-rI 7/3 --+ ~0~, so 7c~ E Z, contradicting c~ E Z*. 
Z* is prime, as o~ V/3 E 2" gives ~(c~ V/3) r 2, and so -~0~ A 9/3 C 2. 
This gives - ~  r Z or 7/3 r 2, that is, o~ E Z* or/3 E 2". 

Z* is a dual of Z, as 1 E I(2,  aO ~ c~ E 2 ~  -,~o~ E 2 ~ -,c~ r Z* 
1 r I(Z*, 7c~) r 0 ~' I(Z*, c~). And 0 E I(2,  oO r 1 E I(2,  ~c~) r 
~ c 2 r  ~ r Z* ** 1 r I (2" ,  o0. [] 

In this way, any four-valued model of B can be converted to a two- 
valued model, and conversely. So the results for axioms and rules ex- 
tending B also hold for the four-valued semantics, when an appropriate 



150 GREG RESTALL 

dualising o p e r a t i o n ,  is made explicit. This means that we can use the 

definition below for the containment relation: 

(1 E I (a ,p )  ~ 1 E I(b ,p))  for every 
propositional 
variable p, 

a <. b ~ Rbcd =~ Racd  if a ~ 9 

Rbcd ===> c <~ d if  a = g 
b* ~< a* 

and it will satisfy the condition that for all a ,  if a ~< b, then 1 E 

I(a,  a)  ~ 1 E I(b, a). So, the results of  SS2 show us that we can 

extend B by adding any axiom from among the following, by using 

the appropriate rules: 

C l l .  a --+ (3 ~ / 3 )  
C12. fl ~ (a  ~ ~) 

C13. a ~ (~ ~ (7 ~ a))  
C14.  a --~ (/3 --~ a A 3)  

C15. (a  A ~ ~ 7) 
(~ ~ (3 ~ 7)) 

C16. (a  ---, 3) V (3 ~ a)  
C17. a -~ (a  ~ a)  
C18. ( a  A 3 -+ 7 )  -~ 

((~ -~ 7) v (3 -* 7)) 

C19. (a  ~ -~c0 ~ ~ a  

c 2 o .  (a  ~ ~ )  -~ (~ ~ - ~ )  
C21. a V -~a 

D l l .  Rabc ~ b <~ c 
D12. Rabc =~ a <~ c 

D13. R2abcd ~ a <~ d 
D14. Rabc ~ a ~ c and b ~< c 
D15. R2abcd ~ for some x b ~< x, 

c ~< x and R a x d  
D16.  a ~< b or b ~ a 
D17. R a b c ~  a <~ c or b ~< c 
D18. Rabc and R a d e  ~ for some x 

b <~ x , d  <~ x and 
( R a x c  or R a x e )  

D19. Raa*a for a ?~ g, 
and g* ~< g 

D20. Rabc =:~ Rac*b* 
D21. g* ~ g 

The four-valued semantics given here is not particularly exciting - -  

the reason for the four-valued semantics is to get away from dualising 

operators, and to give negation a more pleasing modelling. One way 

of doing this is to introduce another ternary relation S, to deal with 

false conditionals. This is the original American plan, and could be 

followed in the simplified case. However, there is a smoother possi- 
bility that uses n e i t h e r ,  nor a ternary S, and which will capture the 

relevant logic C (but not much else, it seems). 
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3. NATURAL FOUR-VALUED SEMANTICS 

It was noted at the end of SS1 that the thing that makes the four-valu- 
ed semantics difficult is contraposition. One way to address this is to 
rewrite the truth conditions for the conditional as follows, 'wiring in' 
the validity of  contraposition: 

1 e I(w, ~ -+/3) if  and only if for each x, y where Rwxy,  

1 e I(x,  ~) ~ 1 c I(y,/3) and 0 e I(x,/3) ~ 0 c I(y, c~). 

In this case, the rule form of contraposition, 

-'1/3 ---4 --1OL 

is given, but some of the theorems and rules of B + fail. What is need- 
ed is a policy for the falsity of  conditionals. If this is left arbitrary, 
there is no guarantee that an axiom such as (c~ --+ /3) A (c~ ~ "I,) 
(o~ -+ /3 A "7) will come out as true, for the falsity of the consequent 
will not deliver the falsity of the antecedent. One policy for the falsity 
of conditionals is motivated by the result from strong relevant logics, 
to the effect that where ~ o/3 (the 'fusion' of ~ and/3) is defined as 
-~(c~ --+ -7/3), we have that: 

(~ o/3 ~ ,~) ~ (~ ~ (/3 ~ ~)). 

This gives a connection between a negated conditional - -  c~ o/3 - -  

and a purely positive formula. The corresponding condition on the 
conditional would then be: 

0 e I(w, ~ ~ / 3 )  if  and only if there are x, y, 

where Rxyw,  1 c I(x,  ~) and 0 c I(y,/3). 

Given this, the contraposition axiom becomes logically true, so the 

semantics is sound for B + C20 (more commonly known as DW), but 
is not complete. If we add the condition D6, that Rabc ~ Rbac for 

each a, b, c, we have completeness for DW + C6, which we will call 
DWA (for 'asserting DW' ,  as the implication satisfies C6, which is 
commonly called 'assertion'). It is important that assertion hold, for 
it is only in its presence that the biconditional connecting the fusion 
and the nested implication. We call this kind of semantics a natural 
four-valued semantics. 
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THEOREM 6. The natural four-valued semantics is sound with re- 
spect to DWA. 

Proof We need to show that if (9, W, R , / )  is an interpretation, 

then the axioms of DWA hold at 9, and the rules are truth-preserving 
at g. It is not entirely trivial, so we will work the details for A6, R1, 

R3 and assertion, and leave the rest for the reader. 

For A6, suppose that 1 E I(w,  (a ~ 7) A (/3 ~ 7)). We wish to show 

that 1 E I (w,  a V/3 --, 7). To that end, assume that for some x, V where 

Rwxv,  1 E I (x ,  a V/3). Without loss of  generality, it is a that is true 

- -  that is, 1 E I (x ,  a).  1 E I(w,  a ~ 7) gives us 1 E I(y,  7) as desired. 

Now suppose that for some x, V where Rwxy ,  0 E I(V, 7). In that 
case, 1 E I (w,  ~ --* 7) gives 0 E I(x,  a) and similarly, 1 E I(w,/3 --~ 7) 
gives 0 E I(x,/3). This gives 0 E I (x ,  a V/3) as desired. 

On the other hand, suppose that 0 E I(w,  a V/3 --* 7)- That means 

that for some x, V where Rxvw,  1 E I(x,  a V/3) and 0 E I (v ,  7)- In 
this case, without loss of  generality, 1 E I(x,/3). But then we have that 

0 E I(w,/5 ~ 7) and hence 0 E I(w, (a --, 7)/x (/3 --* 7)) as desired. 

This gives us A6. 

For R1, suppose that 1 E I(9, 7 V c0 and 1 E I(9, 7 V (~ ~ / 3 ) ) .  I f  
1 E I (9 ,7 )  then 1 E I(9,7V/3).  Otherwise, 1 E I(g,c~), 1 E I(g,c~ --* ~) 
and R9gg give 1 E I(9, iS) and hence, 1 E I(9, 7 v/3), as desired. 

For R3, suppose that 1 E I(g, e V (c~ --, 3)) and 1 E I(9, e v (7 --* 5)). 

We wish to show that 1 E I(9, e V ((/3 ~ 7) ~ (c~ ~ 5))). If  1 E I(g, e), 
we have our result. Otherwise we have that 1 E I(9, c~ ~ /3) and 

1 E I (g ,  7 ~ 5). 
Suppose that 1 E I(w,/3 ~ "7). Then if for some x, y where Rwxv,  

1 E I(x,  a) we have 1 E I(x,/3), and so 1 E I(y, 7), giving 1 E I(y, 5), 
so 1 E I (w,  a ~ /3). Conversely, if 0 E I(y, 5), we have 0 E I(y,'7), 
and so 0 C I(x,/3), giving 0 E I(x,  oO, and so we have 1 E I(w, a ~ 5). 

I f  0 E I (w,  c~ ~ di), then there are x, y where Rxyw,  1 E I(x, ~) and 

0 E I(y, 5). Our assumptions give us 1 E I(x,/3) and 0 E I(y, 7), and 

so 0 E I(w,/3 ~ "7). These all give us that 1 E I(g, (/3 ---* "7) ~ (c~ 
6)) as desired. 

For assertion, suppose that 1 E I(w,  a). We wish to show that 1 E 
I (w,  (a ---, /3) ~ /3). If  R w x y  and 1 E I(x,  ~ ~ /3), R x w y  gives us 
1 e I(w,/3). I f  R w x y  and 0 E I(x,/3), we have 0 E I(y, o~ ~ /3)as 
1 E I(w,  c~). This gives us 1 E I(w,  (a ~ / 3 )  ~ /3 ) .  
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If 0 E I(w, (a ~ /3) ~ /3), we have x, y where Rxyw,  1 E I(x, a 
/3) and 0 E I(y,/3). But this gives us 0 E I(w, a) as desired. So, 1 c 

I(g,  c~ ~ ((c~ ~ / 3 )  --, /3)).  
So soundness is proved. [] 

We need a small lemma for the proof of completeness. 

LEMMA 7. A logic extending DW contains assertion iff it contains 
the rule 

a ~ (/3 -~ ~) ~-/3 ~ ( ~  ~ ~) 

Proof To obtain assertion, apply the rule to ~- (a -+/3) ~ (a -+/3). 
To obtain the rule, suppose that we have O ~- a --+ (/3 -+ -y), for some 

set of  sentences | Then, | ~- ((/3 -+ -y) ~ -y) --+ (a -~ "7), by R3, and 
as ~/3 --+ ((/3 --+ ~,) ~ "y), we have | ~-/3 --+ (a  --+ -y), as desired, r-q 

THEOREM 8. The natural four-valued semantics is complete with 
respect to DWA. 

Proof We will use the almost canonical model, modified to satisfy 
permutation. In other words, we will show that the collection of all 
prime U-theories (with YI duplicated in the usual fashion), w i t h / ~  
defined as 

R'ZFA if and only if Va,/3, a -+/3 C Z ~ (a c F 

fl c A) for E , F  r YI. 

(Note that if R'EFA, and a -~/3 ~ Z, then 7/3 ~ ~c~ E Z by contra- 
position, and hence, if --/3 E F, -~a c A, so our definition parallels the 
truth-conditions for conditionals, albeit, not explicitly.) 

R ' r IFA if and only if R~FI-IA if and only if F = A. 

Define I by requiring that: 

1 EI(E,p)  if and only i f p  c Z, 

for p a propositional parameter, 

0 EI(E,p)  if and only if ~p E Z, 

for p a propositional parameter, 
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and that it satisfy the usual inductive definitions of an interpretation. 
We just need to show that 1 E I(Z, o0 if and only if a E Z, and 0 E 
I(Z, a) if and only if -~a c Z for every formula a. We do this by the 
usual induction on the complexity of the formulae. 

�9 It works by stipulation on the base case. 
�9 1 E I ( E , c ~ A / 3 )  

if and only if 1 E I(s  ~) and 1 E I(s (by the inductive 
definition of I), 
if and only if ~ E s and/3 E s (by the inductive hypothesis), 
if and only if o~ A/3 e s (as s is a H-theory). 
0 e I(X,o~ A/3) 
if and only if 0 E I(s  ~) or 0 E I(Z,/3) (by the inductive defini- 
tion of I), 
if and only if -~a E Z or -,/3 E E (by the inductive hypothesis), 
if and only if ~a  V -1/3 E Z (as Z is a prime H-theory), 
if and only if --,(a A/3) E Z (by A8), 

�9 The case for disjunction is dual, and is left as an exercise. 
�9 1 ~ I(Y, , -~a)  

if and only if -~a E s (by hypothesis), 
if and only if 0 E I(Z, a). 
The other case for negation is dual. 

�9 1 E I ( x ,  c~ - ~ / 3 )  

if and only if for each F, A where R'ZFA (1 E I(F, ~) ~ 1 E 
I(A,/3)). 
If ~ --+ /3 c Z, then we have for each ]7, A where R'ZFA (1 E 
I(F, a ) .  1 E I(A,/3)) by the definition of R'. 
If a ~ /3 ~ E, then we have F, A where Rs c~ E F and 
/3 r A, (even in the case Z = H), by a part of Lemma 2. To 
show that R'ZFA, note that if F = l-I, we can take F = 11'. 

�9 0 c I (Z ,  ~ - + / 3 )  
if and only if there are F and A where R'FAY,, c~ E F and -7/3 E 
A. 
Firstly, if R'FAZ, a E F and -7/3 E A, then we have that (a --+ 
/3) -+/3 E F by assertion, which contraposed gives -,13 -+ -~(a -+ 
/3) E F, so R'FAZ gives -~(a ~ / 3 )  E g. 
Conversely, if -~(c~ --+ /3) E Y-, set F = {7: ~-rI c~ --~ 7} and 
A = {7: k-ri -7/3 ---+ 7}. Then cz c F and-~/3 E A. To show 
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that RFA~, assume that 7 ~ 6 E F and 7 E A. Then ~-rt a 

(3' ~ 6) and ~-n ~fl ~ 3'. Contraposing gives f-n a -~ (-~6 
-~7) and ~-n ~3' ~ /3, which together give ~-n a -+ (-~6 
/3). Assertion, with Lemma 7, yields ~-ri -~6 ~ (~ ~ /3), and 

contraposing finally gives I-r1 -~(o~ ~ /3) -~ 6, which assures 
us that 6 E Z, and hence that RFAcr. Applying the last part 
of  Lemma 2 gives prime theories F' _D F and A' _D A where 

RF'A'Z. To ensure that R'F'A'Z, if either of F ~ or A' are equal 
to H when considered as sets, identify them with H ~. This gives 
us the result, and completes the proof. [] 

Now DWA is not a logic of  much interest. Some of its extensions are. 
One of the usual extensions still work with this semantics, and this 
will give us a natural semantics for C (called RW, or R - W  by some) 
which is DWA+C3 

THEOREM 9. The condition D3 is sound and complete with respect 
to the axiom C3, in the natural four-valued semantics. 

Proof Completeness is easy - -  it involves showing that R' in the 
almost canonical structure satisfies the condition D3 under the assump- 
tion that C3. The proof in SS2 can be used for this, and the reader is 
referred there. 

Soundness is an order of magnitude more difficult, and so we will 
work the details. 

We have that R2abcd ~ R2a(ab)c. Assume that 1 E [(w, c~ ~ /3), 
we wish to show that 1 E I(w,(/3 ~ 7) ~ (a ~ 3')). To do this, 

assume that Rwxy ,  and that 1 E I(x,/3 ~ 3"). We wish to show that 
1 E I(y, ~ --. 9,). Assume that Ryz t  and that 1 E I(z,  a). Rwxy  and 
Ryz t  gives a y' where Rxy ' t  and Rwzy' .  It follows that 1 E I(y t,/3), 
and hence 1 c I(t,  3"). Further, if Ryz t  and 0 E I(z,  3"), we still have a 

y' where Rxy~t and Rwzyq  So, 0 ~ I(y ~,/3) and hence 0 E I(t, a) as 
desired. Thus, 1 E I(y, a--+ q'). 

Now assume that Rwxy ,  0 E I(x, a --* ~), and we wish to show that 
0 ~ I(y,/3 --, 3"). We have R z t x  where 1 E I(z,  a) and 0 ~ I(t, 3"). 
This gives R z t x  and Rxwy,  and hence there is an x ~ where Rtx 'y  and 
Rzwx' ,  and hence Rx ' ty  and Rwzxq  R w z x  ~ and 1 E I(z,  a) gives 



156 GREG RESTALL 

1 C I(x',/3), and 0 E I(t, 7) gives 0 c I(y,/3 --+ 7), as desired. This 

gives us that 1 c I(w, (/3 ~ 3') --* (a ~ ~/)). 
Now assume 0 E I(w, (/3 -~ "1') ~ (a  -~ 3')), and we wish to 

show that 0 c I(w, ~ ~ /3). So we have x, y where R x y w  and 1 c 

I(x,/3 ~ 7) and 0 c I(y, a ~ ~/). This in turn ensures that there are 

z, r where Rzty ,  1 E I(z,  ~) and 0 E I(t, ~/). R x y w  and Rx ty  give 

Rtzy  and Ryxw,  so we have a y~ where Rzy~w, R txy  I, which in turn 

gives Rxtyq So, 0 e I(y ~,/3) and hence Rzy~w gives 0 c I(w, a --*/3), 

as desired. 

This shows that 1 c I(g, (a  --*/3) ~ ((/3 --* 7) ~ (a  --+ 30)), as we 

wished. [] 

C K  and R are interestingly dual systems (see John Slaney's 'Finite 

Models for Non-Classical Logics '  to see some examples of  the duality 

between them). The natural semantics gives another setting in which 

their duality can be exposed - -  for the expected way of restricting R 

to model these systems both fail, for 'dual '  reasons. 

To perform the extension to CK, we would need to expand the defi- 

nition of a containment relation: 

(1 E I(a,p) ~ 1 E I(b,p)) for each 
propositional 
variable p, 

(0 E I(a, p) ~ 0 E I(b, p)) for each 
a ~< b ~ propositional 

variable p, 

Rbcd ~ Racd if a ~ g, 

Rbcd ~ c <~ d if a = g. 

Rcda ~ Rcdb 

and then show that it did what we wished of it. An easy induction on 

the length of formulae shows that if ~ is a containment relation on 
( g , W , R , I }  then a ~< b, then a ~< b ~ (1 E I (a ,a)  ~ 1 E I(b,a)) and 

(0 c I(a, a) ~ 0 E I(b, a)) for every formula a. 

Then, to extend using C12, note what happens when you attempt 
to show soundness using the standard condition D12. Assume that 
the condition Rabc ~ a <~ c holds in an interpretation. We wish to 

show that 1 E I(g,/3 --+ (a  -~ /3)). To do that, we need to show 
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that (among other things) if 1 E I(w,/3), then 1 E I(w, a ~ /3), and 

to do that, we need to show that if R w z y  and 0 E I(z,/3), we have 

0 E I (y ,  a).  This does not seem to be ensured. We have that R z w y  by 

the condition for assertion, and so, a: ~ y gives 0 E I(y,/3). But R w z y  

gives w <~ y and so 1 E I(y,/3). So, if we are sure that y is consistent 

(that is, for no/3  is I(y,/3) = {0, 1}), we can ensure that our condition 

holds (if vacuously). What  we would need to do is show that in the 

presence of  C12, a consistency assumption on worlds could be made. 

However, once this is done, more than C K  is captured. So it seems 

that C K  escapes this modelling. 

Dual problems beset the introduction of anything that will take C 

up to its contraction-added (and more famous) cousin R. The obvi- 

ous candidate to add to C to get R is C5 (which is the inference of 

contraction, in axiom form), but any of C1, 2, 8, 9 or 19 would do 

as well. (The same problems beset all of  them, because in the con- 

text of  the conditions on R that we have, each condition can be trans- 

formed into the others.) In the context of  DWA, C5 is equivalent to 

(a  o a --+/3) --+ (a  -~/3) which in turn is equivalent to a ~ a 0 a. Now 

the truth and falsity conditions for fusion can be deduced from those 

for implication. We wish to show that a -+ a o a hold at g, under the 

condition that Rabc ~ Rabbc. (Which gives, when a = 9, that Rbbb.) 

To get the conditional to hold, we need that for all w, if 0 E I(w, a o 

a),  then 0 E I(w, a). Now 0 E I(w, a o a) iff 1 E I(w, a -+ -,a), which 

is simply that for all x, y where Rwxy,  if 1 E I(x,  a), 0 E I(y, a). 

In the context of  RS, all we have to go on is that Rwww,  so we have 

that if 1 E I(w, a), 0 E I(w, a). This is not enough to show that 

0 E I(w, a),  for I(w, a) might simply be empty. The soundness proof 

grinds to a halt at this point. Of  course, if  the completeness of each 

world is ensured, the soundness proof goes through, but again, more 

than R is captured if this line is followed. 

So, the natural four-valued semantics is incredibly discerning - -  it 

will only brook a modification to give C, and none of the other stan- 

dard deviant systems (like R) can be modelled in this way. Clearly, 

other possibilities ought to be examined. 
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4. A N O T H E R  P O S S I B I L I T Y ?  

Another possibility for the negation condition for a conditional co- 

mes from considering the conditions for the truth of a conditional. If  

for a ~ /3 to be true at w we need for each x, y where Rwxy, if 

is true in x then/3 is true in y, and if/3 is false in x then a is false in 

y, then for a --+ /3 to be false at w we should have a counterexample 

to this. Provided that we construe a counterexample as a situation in 

which the antecedent is true and the consequent false. A natural way 

of formulating this is as follows. 

0 E I(w, a --+/3) iff for some x, y where 

Rwxy, either 1 E I(x, a) and 0 E I(y, ~) or 1 E I(y, cO 

and 0 c I(x,/3) 

The semantics with this condition gives more than DW. One thing we 

get is the rule 

c~ A ~/3 
-~(~ ~ / 3 ) "  

Another extra is the axiom 

-~(oe --+ 7)  A (o~ ~ - t3)  --~ ~(o~ -+ /3 )  

which holds in all of the model structures. This is a theorem of clas- 

sical logic, but it is not a theorem of R or of CK, 3 and so, it is not a 

theorem of any systems weaker than these. It follows that again, sys- 

tems like R and CK cannot be modelled along these lines - -  further- 

more, nothing weaker than R or CK can be modelled with this seman- 

tics. Whatever they capture, the systems will be a new family, outside 

the standard relevant systems. 

If  we take • to be the propositional constant that satisfies I- • --+ a 

for each c~ (•  is false only in each world) and if we use ' - '  to desig- 

nate a strong negation defined by -c~ mdf o~ - - +  • our axiom can be 

recast as 

-~ - c~ A (c~ - - ,  -~/3) ~ ~ ( ~  ~ / 3 )  

or dually, as 

(~ -~ r )  --, -c~ v -~(~ ~ ~ ) .  
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This has a certain plausibil i ty about it. If  you read ' - a '  as "a  is ab- 

surd", then it is read as "If  a is not  absurd, and if a then %3, then it is 

not the case that if a then /3"  or dually, "If (if a then/3),  then either a 

is absurd, or it is not  the case that if a then ~/3." 

The new axiom and rule s e e m  to characterise the new condit ions in 

the semantics,  but  completeness  has not been proved. We will sketch 

the difficulty in proving it, so others can have a crack at it. Taking 

the almost  canonical  model  structure as before, we must  ensure that 

if RZFA,  then "7 E F a n d - ~  E A ensures that-7(')' --+ 5) E Z. This 

does not  seem to follow from our original definition of R, so we must  

add it as another  restriction on R. This is no problem in itself. The 

difficulty arises with the proofs of the pr iming lemmas.  We must  have 

that if a ~ /3 ~ Z, then there are A and F where a E A and/3  r A 

and RZFA.  Proving that the modified R relation holds between the 

theories constructed with the old method seems impossible.  The usual 

completeness  proof  does not work, and as none have yet been found, 

completeness  for the new semantics must  be left as an open problem. 

NOTES 

] It should be noted that the probability relation 'F-' used here is distinct from the 
'F-' that appears in other sections of the relevant logic literature. In our case, O ~ c~ 
iff there is a proof of a that uses premises from among the elements of | In 'A 
General Logic' by Slaney, for example, O F- c~ iff there is a proof of/31/x.../~/3,~ 
a for some/31 E O. These notions are distinct. In the notion Slaney uses, it turns 
out that (9 b- a iffor every theory in which the elements of O are true, so is c~. 
In our notion, the theories in question are restricted to those that are r e g u l a r  (or 
d e t a t c h e d  - -  meaning that if a ~ /3 and a are in the theory, so is/3) and n o r m a l  

(containing all the theorems). 
2 The connection between the two- and four-valued systems has a long history, as 
can be seen in RLR section 3.2. I make no claim to originality in this section, other 
than noting that the connection between the two kinds of system still holds in the 
simplified case. 
3 It is simple to check its failure in the matrices RM3 and L3. 
4 Thanks to Graham Priest for helpful discussion on many of the issues covered in 
this paper. 
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