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Ruta Prov. 11, Km 10, Oro Verde, Entre Rı́os, Argentina
2Instituto de Investigación y Desarrollo en Bioingenieŕıa y Bioinformática, Oro Verde, Entre Rı́os, Argentina
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Nonlinear measures such as the correlation dimension, the correlation entropy, and the noise level were used in this article to
characterize normal and pathological voices.These invariantswere estimated through an automated algorithmbased on the recently
proposedU-correlation integral. Our results show that the voice dynamics have a lowdimension.The value of correlation dimension
is greater for pathological voices than for normal ones. Furthermore, its value also increases along with the type of the voice. The
low correlation entropy values obtained for normal and pathological type 1 and type 2 voices suggest that their dynamics are nearly
periodic. Regarding the noise level, in the context of voice signals, it can be interpreted as the power of an additive stochastic
perturbation intrinsic to the voice production system. Our estimations suggest that the noise level is greater for pathological voices
than for normal ones. Moreover, it increases along with the type of voice, being the highest for type 4 voices. From these results, we
can conclude that the voice production dynamical system is more complex in the presence of a pathology. In addition, the presence
of the inherent stochastic perturbation strengthens along with the voice type. Finally, based on our results, we propose that the
noise level can be used to quantitatively differentiate between type 3 and type 4 voices.

1. Introduction

The human voice is the most important means of communi-
cation among individuals. Thanks to vocal communication,
activities like asking for help are apparently trivial in our
daily routine. Thus, a voice disorder can limit our ability to
cover our most basic needs, producing a negative impact on
our quality of life. For this reason, it is very important not
only to increase our knowledge about themechanism of voice
production but also to characterize its dynamics in normal
and pathological conditions.

In the literature, several methodologies to assess human
voices can be found. However, their reliability depends on
the nature of the studied voice. Consequently, Titze proposed
a qualitative classification for voice signals [1]. The scheme
proposed by Titze divides the signals into three types: type 1
signals are nearly periodic voice signals, type 2 signals have
strong modulation or subharmonics, and type 3 signals are

characterized by a very irregular or even chaotic behavior.
Sprecher et al. proposed a modification to this scheme. They
redefined type 3 voices as being deterministic chaotic signals,
adding a fourth type that is characterized by a dominant
random-like behavior [2].

Figure 1 shows the time series, the state space reconstruc-
tion, and the spectrogram of each type of voice. A normal
voice (first column) is characterized for a quasiperiodic time
representation and a smooth attractor in the reconstructed
state space. Moreover, from its spectrogram, one can easily
observe the fundamental frequency and its harmonics. A
pathological type 1 voice (second column) displays a more
irregular time series than the normal voice. Notice that
although their attractors are similar, pathological type 1
attractor is not so smooth. Furthermore, both spectrograms
are also similar in the sense that one can still distinguish
a fundamental frequency and its harmonics. Nevertheless,
the noise content blurs the harmonics at high frequencies.

Hindawi
Complexity
Volume 2018, Article ID 2173640, 9 pages
https://doi.org/10.1155/2018/2173640

http://orcid.org/0000-0003-0643-2552
https://doi.org/10.1155/2018/2173640


2 Complexity

In the case of a pathological type 2 voice (third column), it
is possible to observe a less regular time series, compared
to the pathological type 1 voice. The volume occupied by
its attractor has been reduced and it is more difficult to
distinguish a smooth shape. In its spectrogram, one can
find subharmonic frequencies. The pathological type 3 voice
(fourth column) is characterized by an irregular time series.
The state space reconstruction is similar to the one of white
Gaussian noise. Its spectrogram shows the fundamental
frequency but its harmonics are rapidly blurred. Finally, a
pathological type 4 voice (fifth column) has an irregular time
series representation and a regular state space reconstruction,
like the type 3 voice. In its spectrogram, one can find a
fundamental frequency but not the harmonics.

These representations are useful to differentiate between
some kinds of voices, for example, between normal and
pathological type 3 voices. However, it is very difficult to
differentiate between a normal and a pathological type 1 voice
or between a type 3 and a type 4 voice.The importance of this
classification is based on the fact that traditional perturbation
measures like jitter and shimmer give reliable results if they
are applied to type 1 and type 2 signals. In contrast, nonlinear
dynamics concepts should be used to characterize type 3
voices, whereas they are unreliable when applied to type 4
signals.Moreover, until now, the classification of type 4 voices
has been done subjectively by visual inspection [2].

Over the last three decades, strong evidence about the
nonlinear behavior of the voice production mechanism has
been collected [3–6], leading the scientific community to
develop concepts and methods based on nonlinear dynamics
and chaos theories.There exist an extensive set of publications
in which those concepts have been used to characterize
healthy and pathological voices. The correlation dimension(𝐷) and the correlation entropy (𝐾2) are two quantities
that are used to characterize the complexity of a dynamical
system. The former can be thought of as an estimation of
the number of variables involved in the dynamics (degrees
of freedom) [7]. The latter measures the rate at which
information about the dynamics is lost over time. More
complex systems are commonly characterized by having
higher dimensions and entropy values [8].

The correlation integral is the quantity used to estimate𝐷 and 𝐾2 [9]. It has been widely used in the biomedical field
since it was proposed by Grassberger and Procaccia in the
early 1980s [9].

According to what we know so far, this correlation
integral has been used in all studies that have estimated 𝐷
and 𝐾2 from voice signals. However, it is well known that
the Grassberger and Procaccia approach is not robust in the
presence of noise, and it needs special conditions to converge
[10]. More robust variants of the correlation integrals have
been proposed, like the Gaussian kernel correlation integral
(GCI) [11] and the U-correlation integral [12].

Theobjective of this article is to characterize the dynamics
of normal and pathological voices through the correlation
dimension, the correlation entropy, and the noise level (𝜎).
Furthermore, we seek to statistically analyze these invariants
for the four types of voices. As a novelty, we obtain these
invariants usingU-correlation integral through an automated

algorithm [12] which allowed us to avoid subjective judge-
ments. Finally, we propose a new quantitative methodology
to differentiate between type 3 and type 4 voices.
2. Materials and Methods

The correlation dimension and the correlation entropy are
invariants that characterize the natural measure of a dynam-
ical system [13]. These invariants can be easily computed
from the correlation integral which is obtained from indirect
temporal measures of one of the variables of the system
[9]. For an observed stationary time series of length 𝑁,{𝑥𝑛}𝑁𝑛=1, the reconstructed 𝑚-dimensional delay vectors xi =(𝑥𝑖, 𝑥𝑖+𝜏, . . . , 𝑥𝑖−(𝑚−1)𝜏), 𝑖 = 1, 2, . . . , 𝐿 = 𝑁 − (𝑚 − 1)𝜏, must
be formed.The correlation integral𝐺𝑚(ℎ), in its general form,
is defined as the probability that the distance 𝑧̃ = ‖xi − xj‖
between two randomly selected𝑚-dimensional delay vectors
xi and xj is smaller than a value ℎ [13]:

𝐺𝑚 (ℎ) = ∫𝑔 (ℎ, 𝑧̃) 𝑓𝑚𝑧̃ (𝑧̃) d𝑧̃, (1)

where 𝑔(ℎ, 𝑧̃) is a kernel function and𝑓𝑚𝑧̃ (𝑧̃) is the probability
density function (pdf) of the distance between pairs of delay
vectors. In this article, we used the Euclidean distance.

TheGrassberger and Procaccia correlation integral𝐶𝑚(ℎ)
uses as a kernel function 𝑔(ℎ, 𝑧̃) = 𝐻(1 − 𝑧̃/ℎ), where𝐻(⋅) is
the Heaviside step function [9]. On the other hand, the GCI
proposed byDiks et al.,𝑇𝑚(ℎ), adopts𝑔(ℎ, 𝑧̃) = exp(−𝑧̃2/4ℎ2)
[11].Themain advantage of the GCI over the Grassberger and
Procaccia correlation integral is that the former allows us to
model the influence of additive noise on the scaling law.

For a zero-mean time series of variance 𝜎2𝑐 with additive
white Gaussian noise of variance 𝜎2𝑛 , the scaling rule is [11, 14,
15]

𝑇𝑚 (ℎ) ∼ ℎ𝑚 (ℎ2 + 𝜎2)(𝐷−𝑚)/2 𝑒−𝑚𝜏𝐾2
for 𝑚 󳨀→ ∞, √ℎ2 + 𝜎2 󳨀→ 0, (2)

where

𝜎 = 𝜎𝑛
√𝜎2𝑐 + 𝜎2𝑛 . (3)

It is important to say that all time series used in this
work were rescaled to have unitary standard deviation. In
this sense, 𝜎 is the noise level after rescaling; that is, 𝜎 → 0
corresponds to clean time series and 𝜎 → 1 implies a pure
stochastic process. The signal-to-noise ratio (SNR) can be
calculated as

SNR = 10 log10 (1 − 𝜎2𝜎2 ) dB. (4)

In practical applications, it is very important to be able to
quantify 𝜎, the noise level in the time series. This is because
it allows us to correct the estimations of𝐷 and𝐾2. Moreover,
the conclusions driven by the interpretation of the invariants
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Figure 1: Time series, state space reconstruction, and spectrogram of normal and pathological voices. First column: normal voice; second
column: pathological type 1 voice; third column: pathological type 2 voice; fourth column: pathological type 3 voice; fifth column: pathological
type 4 voice.

calculated in the presence of high levels of noise should be
taken carefully. For this reason, an estimate of the noise level
must be also reported, allowing the readers to be aware of
the limitations of the estimates. On the other hand, when the
data is taken under controlled conditions, like the voices in
the database analyzed herein, a high noise level can be seen
as an indicator of a dominant underlying additive stochastic
process.

The main disadvantage of the GCI is that it requires high
values of 𝑚 to obtain a convergent estimate of 𝐾2 [10, 15].
This is because the pdf of the interpoint distance changes with
the embedding dimension, whereas the GCI’s kernel does
not (see (1)). As a result, the convergence of the GCI to 𝐾2
is slowed down [12]. The last statement also applies to the
Grassberger and Procaccia correlation integral. As a solution,
we have recently proposed the U-correlation integral (UCI)
[12]:

𝑈𝛽𝑚 (ℎ) = ∫ Γ (𝛽/2, 𝑧/ℎ
2)

Γ (𝛽/2) 𝑓𝑚 (𝜎; 𝑧) d𝑧, (5)

where Γ(𝑎, 𝑡) is the upper incomplete Gamma function, Γ(𝑎)
is the Gamma function, and𝑓𝑚(𝜎; 𝑧) is the pdf of the squared
interpoint distance. There are two important aspects about
this correlation integral that deserve to be mentioned. First,
note that the UCI’s kernel function, given by

𝑔 (ℎ, 𝛽, 𝑧) = Γ (𝛽/2, 𝑧/ℎ2)Γ (𝛽/2) , (6)

has a parameter 𝛽 that is used to incorporate information
about the embedding dimension. In other words, this kernel
function is able to change according to𝑚. Second, we are now
working with the square of the interpoint distance, that is,𝑧 = 𝑧̃2, to reduce the computational cost.

The scaling law for the UCI is [12]

𝑈𝛽𝑚 (ℎ) = 𝜙2 (2𝜎)𝐷
Γ (𝐷/2) Γ ((𝛽 + 𝑚) /2)
Γ (𝛽/2) Γ (𝑚/2 + 1)

⋅ 𝑒−𝑚𝜏𝐾2 ( ℎ24𝜎2)
𝑚/2

⋅ 𝐹 (𝛽 + 𝑚2 , 𝑚 − 𝐷2 ; 𝑚 + 22 ; − ℎ24𝜎2) ,

(7)

where 𝜙 is a normalization constant and 𝐹(𝑎, 𝑏; 𝑐; 𝑡) is the
Gauss hypergeometric function. The UCI is approximated
with the U-correlation sum 𝑈̂𝛽𝑚(ℎ) which, in this article, is
calculated as follows: first, we obtain the squared distances
between each pair of𝑚-dimensional delay vectors 𝑧𝜔 = ‖xi −
xj‖2, where 𝜔 = {(𝑖, 𝑗) / 𝑖 = 1, 2, . . . 𝐿, 𝑗 = 1, 2, . . . , 𝐿, 𝑖 ̸= 𝑗},
and then

𝑈̂𝛽𝑚 (ℎ) = 1Ω
Ω∑
𝜔=1

𝑔 (ℎ, 𝛽, 𝑧𝜔) = 1Ω
Ω∑
𝜔=1

Γ (𝛽/2, 𝑧𝜔/ℎ2)Γ (𝛽/2) , (8)

whereΩ = 𝐿(𝐿−1).The evaluation of the function 𝑔(ℎ, 𝛽, 𝑧𝜔)
requires numerical integration which is computationally
expensive. Instead, we performed the evaluation through
spline interpolation of the function 𝑔(𝑡) = Γ(𝛽/2, 𝑡)/Γ(𝛽/2),
where 𝑡 ∈ [10−6, 102] for each value of 𝛽.

Once the correlation sum is calculated, we estimated 𝐷,𝐾2, and 𝜎 using coarse-grained estimators. These are explicit
expressions for 𝐷, 𝐾2, and 𝜎 as functions of 𝑚 and ℎ [13].
Such functions are useful because they allow us to estimate
the invariants and to visually confirm a scaling regime.
In [16], we have presented three coarse-grained functions:𝐷𝑈𝑚(ℎ), 𝐾𝑈𝑚(ℎ), and 𝜎𝑈𝑚(ℎ) which are based on the UCI.
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Table 1: Analyzed subjects: number and age.

Condition Number Age (years) mean ± SD
Male Female Male Female

Healthy 21 32 38.8 ± 8.5 34.1 ± 7.8
Pathologic 67 96 41.2 ± 9.2 37.6 ± 8.3

As an advantage, they can be calculated in an automated
manner from two U-correlation integrals. Moreover, we have
proposed an automated algorithm to estimate 𝐷, 𝐾2, and 𝜎
from these coarse-grained estimators [16].

2.1. Coarse-Grained Estimators Based on UCI. Here, we
present the coarse-grained estimators used in this study. A
more detailed description can be found in [12, 16].

We define the noise level functional as [12]

Δ𝑈𝑚 (ℎ) = 12 [𝐷̇𝛽=𝑚𝑚+2 (ℎ) − 𝐷̇𝛽=𝑚𝑚 (ℎ)] ≈ 4𝜎2ℎ2 + 4𝜎2
for 𝑚 ≫ 𝐷,

(9)

where

𝐷̇𝛽𝑚 (ℎ) = d ln𝑈𝛽𝑚 (ℎ)
d ln ℎ . (10)

This functional is the difference between the logarithmic
derivatives of two U-correlation integrals: 𝑈𝛽=𝑚𝑚 (ℎ), which is
the UCI calculated with squared distances 𝑧𝜔 coming from𝑚-dimensional delay vectors and a kernel with the parameter𝛽 = 𝑚, and 𝑈𝛽=𝑚𝑚+2 (ℎ). The last one is the correlation integral
obtained fromdistances between pairs of (𝑚+2)-dimensional
delay vectors and a kernel with the parameter 𝛽 = 𝑚.

We have shown in [12] that Δ𝑈𝑚(ℎ) is a function that
decreases monotonically from 1 to 0 on a scale proportional
to the value of 𝜎. From this noise functional, we can define
the noise level coarse-grained estimator as [12]

𝜎𝑈𝑚 (ℎ) = ℎ2√
Δ𝑈𝑚 (ℎ)1 − Δ𝑈𝑚 (ℎ) . (11)

The coarse-grained estimators for 𝐷 and 𝐾2 can be read
as [16]

𝐷𝑈𝑚 (ℎ) = 𝐷̇𝛽=𝑚𝑚 (ℎ) + Δ𝑈𝑚 (ℎ)1 − Δ𝑈𝑚 (ℎ) [𝐷̇
𝛽=𝑚
𝑚 (ℎ) + 2 (𝑚

− 1)(𝑈𝛽=𝑚−2𝑚 (ℎ)
𝑈𝛽=𝑚𝑚 (ℎ) − 1)] ,

(12)

𝐾𝑈𝑚 (ℎ) = − 12𝜏 {ln(
𝑈𝛽=𝑚+2𝑚+2 (ℎ)
𝑈𝛽=𝑚𝑚 (ℎ) )

+ ln(𝐷𝑈𝑚 (ℎ)𝑚 + 1)} + 12𝜏
⋅ ln[Δ𝑈𝑚 (ℎ) (𝑚 − 𝐷̇

𝛽=𝑚
𝑚 (ℎ)𝑚 − 𝐷𝑈𝑚 (ℎ) )

+ (1 − Δ𝑈𝑚 (ℎ)) (𝐷̇
𝛽=𝑚
𝑚 (ℎ)𝑚 + 1)] ,

(13)

respectively.
The calculation of𝐷𝑈𝑚(ℎ) requires the estimation ofΔ𝑈𝑚(ℎ)

and two correlation integrals: 𝑈𝛽=𝑚𝑚 (ℎ) and 𝑈𝛽=𝑚−2𝑚 (ℎ). On
the other hand, 𝐾𝑈𝑚(ℎ) depends on the correlation integrals𝑈𝛽=𝑚+2𝑚+2 (ℎ) and 𝑈𝛽=𝑚𝑚 (ℎ), Δ𝑈𝑚(ℎ), the logarithmic derivative𝐷̇𝛽=𝑚𝑚 (ℎ), and the coarse-grained estimator 𝐷𝑈𝑚(ℎ).
2.2. Database. This study was conducted using the Mas-
sachusetts Eye & Ear Infirmary (MEEI) Voice Disorders
Database, distributed by Kay Elemetrics [17]. We have chosen
a subset of 219 records (53 normal and 166 pathological) of
sustained phonation of vowel /a/ [18]. Each record was down-
sampled to 10 kHz and the subjects’ descriptive statistics are
presented in Table 1. From this set of voices, we excluded 3
records because they contained less than 8000 sample points,
ending with a total of 216 records to be analyzed.

For each record, a centered window of 𝑁 = 8000 data
points was selected and normalized to have zero mean and
unitary standard deviation. Then, the U-correlation sums
were computed for 𝑚 = {4, 6, . . . , 20}, 𝜏 = 10, and ℎ ∈[𝑒−5, 𝑒2]. Moreover, the nearest 10 temporal neighbors of
each delay vector were discarded [7]. Finally, Algorithm 1
was applied. We must clarify that the range of values for
the embedding dimension was selected taking into account
the studies conducted in [6, 19–21], where a low-dimensional
vocal system is suggested (𝐷 < 5 for pathological voices). On
the other hand, the embedding lag was selected as the average
lag (over all voices) where the first minimum of the mutual
information function occurs [7, 10].

In a preliminary study, the pathological records were
classified into Titze’s scheme based on the visual observation
of the time series and its spectrograms. The classification
resulted in 74 type 1 records and 81 type 2 records. The
remainder 11 voices where taken apart since these techniques
cannot differentiate between type 3 and type 4 voices.
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(1) Calculate 𝑈𝛽=𝑚𝑚 (ℎ) and 𝑈𝛽=𝑚−2𝑚 (ℎ) using Eq. (8) for𝑚 > 2.
(2) Calculate Δ𝑈𝑚(ℎ) using Eq. (9) and the UCIs obtained in step (1).
(3) Compute 𝜎𝑈𝑚(ℎ) with Eq. (11) and obtain the function 𝐹𝜎(ℎ). Estimate 𝜎 within a range

of ℎ centered at the value ℎ where 𝐹𝜎(ℎ) is minimum.
(4) Use 𝑈𝛽=𝑚𝑚 (ℎ), 𝑈𝛽=𝑚−2𝑚 (ℎ) and Δ𝑈𝑚(ℎ) to calculate𝐷𝑈𝑚(ℎ) (Eq. (12)) and obtain the

function 𝐹𝐷(ℎ). Estimate𝐷 within a range of ℎ centered at the value ℎ where 𝐹𝐷(ℎ)
is minimum.

(5) Obtain 𝐾𝑈𝑚(ℎ) (Eq. (13)) using 𝑈𝛽=𝑚𝑚 (ℎ), Δ𝑈𝑚(ℎ) and𝐷𝑈𝑚(ℎ). Calculate the function𝐹𝐾2 (ℎ). Estimate 𝐾2 within a range of ℎ centered at the value ℎ where 𝐹𝐾2 (ℎ) is
minimum.

Algorithm 1: Automated estimation of attractors’ invariants.

Following the definition of type 4 voices given by Sprecher et
al. in [2], we calculated the coarse-grained estimators 𝐷𝑈𝑚(ℎ)
and 𝐾𝑈𝑚(ℎ) for these 11 voices. Then, we grouped together
the voices that did show a scaling regime (finite correlation
dimension and entropy) as type 3 and those that did not as
type 4.
3. Results

Thefirst result of the simulations can be observed in Figure 2.
It shows the coarse-grained estimators 𝜎𝑈𝑚(ℎ), 𝐷𝑈𝑚(ℎ), and𝐾𝑈𝑚(ℎ) for a normal voice (Figures 2(a), 2(f), and 2(k)), a
pathological type 1 voice (Figures 2(b), 2(g), and 2(l)), a
pathological type 2 voice (Figures 2(c), 2(h), and 2(m)), a
pathological type 3 voice (Figures 2(d), 2(i), and 2(n)), and
a pathological type 4 voice (Figures 2(e), 2(j), and 2(o)).

It is important to observe that all coarse-grained estima-
tors present a scaling region, except the ones for correlation
dimension and 𝐾2 entropy of type 4 voices. This highlights
the suitability of these estimators to analyze normal and
pathological (type 1, type 2, and type 3) voices.

As it can be observed in the first row of Figure 2, the noise
level is greater for the pathological voices than for the normal
voice and, in the pathological case, it increases along with
the type. This means that, for both normal and pathological
voices, there is an underlying stochastic component and its
level increases in the presence of pathology.

The behavior of the estimator 𝐷𝑈𝑚(ℎ) is presented in the
second row of Figure 2. As it can be seen, this estimator sug-
gests a value of𝐷 ≈ 1.25 for normal voices and slightly greater
values for pathological type 1 and type 2 voices. However,
it is difficult to say whether there is any difference between
the analyzed normal and pathological voice. Nevertheless,
these results suggest that the voice production system has a
relatively low dimension.

Regarding the estimator 𝐾𝑈𝑚(ℎ), it can be observed from
the third row of Figure 2 that, for the voices analyzed herein,
the estimator converges to values close to zero. This suggests
the presence of a strong harmonic component. Furthermore,
there exists a small increase of𝐾2 entropy from normal voice
to pathological type 1 voice and from the latter to pathological
type 2 voice. This reflects an increasing degree of irregularity
which is often associated with an increase in complexity.

For the type 3 voice, it can be observed in the fourth col-
umn of Figure 2 that the noise level coarse-grained estimator
converges to a higher value than the one corresponding to the
type 2 voice. However, it is still possible to observe a scaling
range in both 𝐷𝑈𝑚(ℎ) and 𝐾𝑈𝑚(ℎ). Moreover, these estimators
converge to higher values than the ones for type 2 voice. On
the other hand, for the type 4 voice (fifth column of Figure 2),
it is not possible to find a scaling range either in dimension
or in the entropy estimator. This behavior is expected since,
by definition, these types of voices have an infinite value of
dimension and entropy.

As we mentioned before, this kind of nonlinear tech-
niques should not be used with type 4 voices. Note that, from
the curves of𝐷𝑈𝑚(ℎ) and𝐾𝑈𝑚(ℎ) (Figures 2(j) and 2(o), resp.),
it is not easy to decide whether there is a scaling range. In this
sense, an untrained person could erroneously determine its
existence, resulting in misleading estimations.

On the other hand, a scaling range can be found for 𝜎𝑈𝑚(ℎ)
(Figure 2(e)), and it converges to a very high noise level value𝜎 ≈ 0.5 (SNR ≈ 4.77 dB). This suggests that the dynamics
are mostly ruled by the underlying stochastic component. It
is important to mention that this behavior is consistent in all
voices that did not have a scaling region on𝐷𝑈𝑚(ℎ) and𝐾𝑈𝑚(ℎ)
(type 4 voices). Based on this result, we suggest that a high
value of 𝜎 could be a quantitative indicator of type 4 voices.

In order to find a noise level value that allows us to
differentiate between type 3 and type 4 voices, we select by
visual inspection all voices that did not show a scaling region
on the estimators 𝐷𝑈𝑚(ℎ) and 𝐾𝑈𝑚(ℎ). Then, for each signal,
we estimate the noise level value from 𝜎𝑈𝑚(ℎ) and select the
minimum of these values (𝜎thr = 0.4) as a threshold.
3.1. Automated Estimation of Invariants. In order to obtain
reliable estimations of 𝐷, 𝐾2, and 𝜎, it is essential to verify
the existence of a scaling behavior over the coarse-grained
estimators. Once it is found, one has to choose a range ofℎ values from which to estimate the invariants. This choice
is critical since, in practical application, the coarse-grained
estimators strongly vary as a function of the scale. To avoid
subjective judgements, we have proposed an algorithm (see
Algorithm 1) for the automated estimation of 𝐷, 𝐾2, and 𝜎
based on the coarse-grained estimators 𝐷𝑈𝑚(ℎ), 𝐾𝑈𝑚(ℎ), and𝜎𝑈𝑚(ℎ), respectively [16].



6 Complexity

−4 −2.875 −1.75 −0.625 0.5
0

0.05

0.1

0.15

0.2


U m
(ℎ

)

ＦＨ(ℎ)

0

0.05

0.1

0.15

0.2


U m
(ℎ

)

−4 −2.875 −1.75 −0.625 0.5
ＦＨ(ℎ)

0

0.05

0.1

0.15

0.2


U m
(ℎ

)

−4 −2.875 −1.75 −0.625 0.5
ＦＨ(ℎ)

−2.5 −1.625 −0.75 0.125 1
0

0.2

0.4

0.6

0.8


U m
(ℎ

)

ＦＨ(ℎ)

0

0.2

0.4

0.6

0.8

−2.5 −1.625 −0.75 0.125 1
ＦＨ(ℎ)


U m
(ℎ

)

0

1.5

3

4.5

6

D
U m
(ℎ

)

−4 −2.875 −1.75 −0.625 0.5
ＦＨ(ℎ)

0

1.5

3

4.5

6
D

U m
(ℎ

)

−4 −2.875 −1.75 −0.625 0.5
ＦＨ(ℎ)

0

1.5

3

4.5

6

D
U m
(ℎ

)

−4 −2.875 −1.75 −0.625 0.5
ＦＨ(ℎ)

0

1.5

3

4.5

6

D
U m
(ℎ

)

−2.5 −1.625 −0.75 0.125 1
ＦＨ(ℎ)

0

1.5

3

4.5

6

D
U m
(ℎ

)

−2.5 −1.625 −0.75 0.125 1
ＦＨ(ℎ)

0

0.01

0.02

0.03

0.04

K
U m
(ℎ

)

−4 −2.875 −1.75 −0.625 0.5
ＦＨ(ℎ)

0

0.01

0.02

0.03

0.04

K
U m
(ℎ

)

−4 −2.875 −1.75 −0.625 0.5
ＦＨ(ℎ)

0

0.01

0.02

0.03

0.04

K
U m
(ℎ

)

−4 −2.875 −1.75 −0.625 0.5
ＦＨ(ℎ)

0

0.01

0.02

0.03

0.04

K
U m
(ℎ

)

−2.5 −1.625 −0.75 0.125 1
ＦＨ(ℎ)

0

0.01

0.02

0.03

0.04

K
U m
(ℎ

)

−2.5 −1.625 −0.75 0.125 1
ＦＨ(ℎ)

(a)

(f)

(k)

(b)

(g)

(l)

(c)

(h)

(m)

(d)

(i)

(n)

(e)

(j)

(o)

Figure 2: Coarse-grained estimators 𝜎𝑈𝑚(ℎ), 𝐷𝑈𝑚(ℎ), and 𝐾𝑈𝑚(ℎ) for normal and pathological voices. First column: normal voice; second
column: pathological type 1 voice; third column: pathological type 2 voice; fourth column: pathological type 3 voice; fifth column: pathological
type 4 voice. The curves for𝑚 = {4, 6, . . . , 20} are color-coded in grayscale where the lightest gray corresponds to𝑚 = 4.

This algorithm selects the scaling range where those
invariants should be estimated based on the next criteria: (i)
the coarse-grained estimator must be constant for a range of
scale values and (ii) the value of the invariant should converge
as the embedding dimension increases.

The algorithmbegins by approximating theU-correlation
integrals 𝑈𝛽=𝑚𝑚 (ℎ) and 𝑈𝛽=𝑚−2𝑚 (ℎ) for different𝑚 values (𝑚 >2) using (8). Note that 𝑈𝛽=𝑚−2𝑚 (ℎ) must be calculated for𝑚 > 2 since the shape parameter of the incomplete Gamma
and Gamma functions must be greater than zero. Next,
the logarithmic derivatives 𝐷̇𝛽=𝑚𝑚 (ℎ) and 𝐷̇𝛽=𝑚𝑚+2 (ℎ) must be
computed in order to obtain Δ𝑈𝑚(ℎ) (see (9)). Observe that
the correlation integral 𝑈𝛽=𝑚𝑚+2 (ℎ) is equal to the correlation
integral 𝑈𝛽=𝑚̂−2

𝑚̂
(ℎ) evaluated at 𝑚̂ = 𝑚 + 2. In this

article, the logarithmic derivatives were obtained using a
wavelet transform approach [22]. This produces a smooth
version of the derivatives allowing us to better estimate the
invariants.

The noise levelmust be calculated from a range of ℎwhere
the coarse-grained estimator 𝜎𝑈𝑚(ℎ) is nearly constant and its
variation across the𝑚 values is the smallest. In this sense, for
the noise level, we define the functions [16]

𝐴𝜎 (ℎ) = 1𝑀
𝑀∑
𝑖=1

d𝜎𝑈𝑚𝑖 (ℎ)
d ln ℎ ,

𝑉𝜎 (ℎ) = 1𝑀 − 1
𝑀∑
𝑖=1

(𝜎𝑈𝑚𝑖 (ℎ) − 𝜎̂𝑈 (ℎ))2 ,
𝐹𝜎 (ℎ) = 𝐴𝜎 (ℎ) 𝑉𝜎 (ℎ) ,

(14)

where 𝑚 ∈ {𝑚1, 𝑚2, . . . , 𝑚𝑖, . . . , 𝑚𝑀} and 𝜎̂𝑈(ℎ) is the
average of 𝜎𝑈𝑚(ℎ) across 𝑚. 𝐴𝜎(ℎ) is the average over 𝑚 of
the derivative of 𝜎𝑈𝑚(ℎ) with respect to ln ℎ, 𝑉𝜎(ℎ) gives the
variation of 𝜎𝑈𝑚(ℎ) across 𝑚, and 𝐹𝜎(ℎ) is the product of the
two aforementioned functions. We propose to estimate 𝜎
within a range of ℎ centered at the ℎ value at which 𝐹𝜎(ℎ) is
minimum.This way, 𝜎 is estimated in a range of ℎ centered in
a plateaued region (scaling region) of 𝜎𝑈𝑚(ℎ), and its value is
consistent through the parameter𝑚.

The correlation dimension and the correlation entropy
can be determined using the coarse-grained estimators𝐷𝑈𝑚(ℎ) (see (12)) and 𝐾𝑈𝑚(ℎ) (see (13)), respectively. To find
a range of ℎ values to estimate 𝐷 and 𝐾2, we use a similar
approach, but from functions 𝐹𝐷(ℎ) and 𝐹𝐾2(ℎ), respectively.
The functions 𝐹𝐷(ℎ) and 𝐹𝐾2(ℎ) can be computed similarly
to 𝐹𝜎(ℎ) but using the coarse-grained estimators 𝐷𝑈𝑚(ℎ) and𝐾𝑈𝑚(ℎ), respectively.

The estimation of each invariant for the whole group of
signals is presented in Figure 3. Figure 3(a) shows a box plot
of the noise level estimation for normal (N), pathological type1 (PT1), pathological type 2 (PT2), pathological type 3 (PT3),
and pathological type 4 (PT4) voices. As it can be observed,𝜎 is greater for pathological voices than for normal ones.
However, it is not possible to establish a statistical difference
betweennormal and pathological type 1 and type 2 voices.On
the other hand, we can differentiate normal frompathological
type 3 and type 4 voices. It is very important to say that the
group labeled as TP4 was selected because they have a noise
level value 𝜎 > 0.4. Note that, using this threshold, we can
separate type 3 from type 4 voices.

The box plot of the correlation dimension is presented
in Figure 3(b). There is an increase of 𝐷 from normal to
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Figure 3: Invariant estimation box plot: (a) noise level, (b) correlation dimension, and (c) correlation entropy. Normal (N), pathological type1 (PT1), pathological type 2 (PT2), pathological type 3 (PT3), and pathological type 4 (PT4) voices.

pathological voices. For normal voices, the median is 𝐷 =1.4; for pathological type 1 voices, 𝐷 = 1.68; for type 2
voices, 𝐷 = 2.23; and for type 3 voices, 𝐷 = 2.99. From
these results, we can establish that the vocal system has a
low dimension, even in the presence of a pathology. The
group TP4 is not shown in this plot since, by definition, its
dimension is infinite. Regarding the correlation entropy, it is
shown in Figure 3(c) that there is a small increase of𝐾2 from
normal to pathological voices. However, it is not possible to
find a statistical difference between normal, pathological type1, and pathological type 2 voices. The median correlation
entropy estimated for normal voices is 𝐾2 = 0.0038, for
pathological type 1 voices is 𝐾2 = 0.0053, for pathological
type 2 voices is 𝐾2 = 0.0068, and for pathological type 3
voices is𝐾2 = 0.012.
4. Discussion

Bearing in mind that the used records were taken in a
controlled environment, we could associate the noise level
with the strength of an additive stochastic component that
coexists with the dynamic producing the voice. There is a
tendency of 𝜎 to increase its value from normal voices to
pathological ones. This can be seen as an increase of the
power of the stochastic component caused by the presence
of a pathology. Moreover, in pathological voices, 𝜎 increases
its value along with the voice type.

The definition of type 4 voices given by Sprecher et al. [2]
states that these signals are characterized by pure stochastic
oscillations; therefore, their dimension is infinite [10]. In
practice, it is not possible to measure an infinite correlation
dimension value since it is bounded by the embedding
dimension used to calculate the correlation integral. Instead,
an infinite correlation dimension is inferred if there is not
a scaling regime in the coarse-grained estimator of 𝐷. In
previous studies, this was done through visual inspection,
which is always a subjective judgement [2, 19].

One interesting aspect of the coarse-grained estimator𝜎𝑈𝑚(ℎ) is that, in the type 4 signals analyzed here, it always
presents a scaling range from which to estimate 𝜎, although𝐷𝑈𝑚(ℎ) and 𝐾𝑈𝑚(ℎ) have no scaling regions. These results led
us to think that the noise level can be used as an objective
measure to discriminate between type 3 and type 4 voices.

The threshold proposed here (𝜎thr = 0.4) was set using
the voice signals that did not present a scaling regime in𝐷𝑈𝑚(ℎ) and 𝐾𝑈𝑚(ℎ). With this threshold, we were able to well
separate type 3 and type 4 voices. Nevertheless, we are aware
that this threshold was selected based on observations from
this database. This finding must be validated with a more
extensive study involving a larger number of records and
voice care professionals.

Our estimations of correlation dimension are in con-
cordance with other studies [6, 19–21]. In [23], Choi et al.
conducted a very similar simulation over the Kay Elemetrics
database.They reported a mean value of𝐷 = 1.57 for normal
voices and an increased dimension value for pathological
ones. Moreover, they obtained a decreasing SNR (it was
calculated according to [24]) with the type of the voice, being
the lowest for type 3 voices. However, they did not analyze
type 4 voices. Another study by Zhang and Jiang conducted
over the Kay Elemetrics database reported amean correlation
dimension of 𝐷 = 1.51 for normal voices and 𝐷 = 3.17 for a
groupwith vocal tremor [25]. As far aswe know, all researches
conducted on normal and pathological voices have used the
Grassberger and Procaccia correlation integral to estimate𝐷 and 𝐾2. This methodology has the disadvantage that its
estimations are sensitive to noise presence, requires large 𝑚
values to converge, and does not give an estimation of the
noise level [10, 13]. However, other variants like the Gaussian
correlation integral have not been used.

Regarding the correlation entropy, our results suggest
that pathological type 1 and type 2 voices have a slightly
greater value than normal ones. Furthermore, these three
types of voices have a 𝐾2 value close to zero, suggesting
nearly periodic dynamics. For type 3 voices, the values of 𝐾2
are the greatest, meaning more irregular and unpredictable
dynamics. These values are comparable with those presented
by Yan et al. [26]. They reported an estimation of 𝐾2 for
normal (mean value 𝐾2 = 0.014) and esophageal phonation
(mean value 𝐾2 = 0.023) subjects. In [27], Calawerts et al.
calculated the largest Lyapunov exponent for type 1, type 2,
and type 3 voices using the Kay Elemetrics database. Their
results suggest an increase of the value of the largest Lyapunov
exponent along with the type of the voice. Our results are in
concordance with this study since we obtain an estimation of
correlation entropy that not only is greater for pathological
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voices than for normal ones but also increases with the type
of the voice.

5. Conclusions

In this article, we have studied normal andpathological voices
through the correlation dimension, the correlation entropy,
and the noise level. These invariants were estimated using
an automated algorithm based on coarse-grained estimators
derived from the U-correlation integral. The results suggest
that the voice production dynamical system has a low dimen-
sion.The value of𝐷 is greater for pathological voices than for
normal ones.Moreover, its value also increases alongwith the
type of the voice. Regarding the correlation entropy, its value
is very low for normal and for type 1 and type 2 pathological
voices. Although a more extensive study is still needed, this
finding suggests that the system dynamics have a harmonic
oscillatory behavior. On the other hand, pathological type 3
voices present higher values of𝐾2, implying a more complex
behavior which is reflected in a more irregular dynamic. The
noise level can be interpreted as the power of a stochastic
perturbation intrinsic to the voice production system. Our
results show that 𝜎 is greater for pathological voices than
for normal ones. Furthermore, it increases along with the
type of voice, being the highest for type 4 voices. This means
that the presence of the stochastic component is stronger
in pathological voices. Based on these results, in this work,
we have proposed a quantitative criterion that can be used
to differentiate between type 3 and type 4 voices. We are
aware of the limitation of the reduced samples of type 3 and
type 4 voices. In this sense, these preliminary results will
be validated with a more extensive study involving a larger
number of records and voice care professionals.
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