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Abstract: Stephen Read’s work on Bradwardine’s theory of truth is some
of the most exciting work on truth and insolubilia in recent years [a} [5]-
In this paper, I give models for Read’s formulation of Bradwardine’s the-
ory of truth, and I examine the behaviour of liar sentences in those mod-
els. T conclude by examining Bradwardine’s argument to the effect that
if something signifies itself to be untrue then it signifies itself to be true
as well. We will see that there are models in which this conclusion fails.
This should help us elucidate the hidden assumptions required to under-
pin Bradwardine’s argument, and to make explicit the content of Bradwar-
dine’s theory of truth.

As has been made clear in many of the papers in this volume, the crucial feature
in Bradwardine’s theory of truth is the notion of signification. Expressed by a
‘connecticate’, which I shall write with the simple infix colon “:”, whenever t is
a singular term and p is a sentence

t:p

is another sentence, to be read ‘t signifies that p’, or simply ‘t says that p.
Bradwardine uses signification to define predicates of truth and falsehood: t is
false if and only if it signifies something that is not the case, and it is true if and
only if it signifies something, and everything it signifies is the case. Truth and

*This paper is a draft, and comments from readers are very welcome. Please check the webpage
http://consequently.org/writing/bradwardine-1liars|for the latest version of the paper,
to post comments and to read comments left by others. 9§ Thanks to Catarina Dutilh Novaes
and to the audience at the 1st Gpmr Conference in Medieval and Applied Logic for feedback on
some of the ideas in this paper. My most hearty thanks to Stephen Read for introducing me to
Bradwardine’s theory of truth, and for many emails and discussions about the details. 9§ This
research is supported by the Australian Research Council, through grant pro343388, and Keith
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falsity are defined notions, where the definitions utilise signification and what
we now call propositional quantification[f] Ft is (3p)(t : p & —p) — t is false if
and only if it says something that is not the case. (Notice the syntax. The colon
for “says that” binds more tightly than the conjunction, so “t : p & —p” is the
conjunction of “t : p” and “—p”.) Similarly, Ttis (Ip)(t:p) & (Vp)(t:p — p),
where ‘&’ expresses some kind of conjunction and ‘—’ expresses some notion
of implication. (For smooth exposition, I will introduce yet one more definition:
Dt is (3p)(t : p). This says that t is declarative: it says something. So, Tt is
Dt & (Vp)(t:p — p).)

The distinctive feature of Bradwardine’s approach is not merely this definition
of truth. It is what I will call Bradwardine’s axiom:

DEFINITION [BRADWARDINE'S AXIoM] Every proposition signifies or means con-
tingently or necessarily everything which follows from it contingently or nec-
essarily [4].

We may render the condition in the following way:
If t : p then if (if p then g) then t: g
Rearranging the conditionals, we might have another formulation
If (if p then q) then (if t : p then t: q).

The crucial issue in understanding Bradwardine’s axiom is what form of condi-
tional expression might be used in formulating it. What conditionals feature?

1 CLASSICAL COLLAPSE

If all of these conditionals are material, then we have

(P2>ag)D(x:pDx:q)

which we might call the material Bradwardine Axiom. The material axiom
collapses almost all distinctions concerning signification.

FACT [BRADWARDINE'S COLLAPSE] Under the material Bradwardine axiom

the non-declarative objects (the x such that =Dx) say nothing
the false declarative objects say everything, and

the true declarative objects say all and only what is the case.

*The vocabulary may cause some confusion. What Bradwardine calls a ‘propositio” is the de-
notation of the singular term “t’ in t : p. The propositio signifies. Propositional quantification,
in modern terminology, is quantification into sentence position. I will attempt to avoid talk of
‘propositions’ in any substantial sense which might ask us to choose between modern and me-
dieval terminology here.
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In other words, what an object signifies is completely determined by whether or
not it is declarative, and, if declarative, whether it is true or false.

Proof: The proof turns on the behaviour of the material conditional. We have

gD (x:p>x:q)

since ¢ entails p D ¢. It follows from this that if q is the case, then if x says
anything (if x is declarative) then x says q. All declarative objects say everything
that is the case. On the other hand, we have

pD(x:pDx:q)

In other words, if there is some p that x says, that is not the case, then x says
that q too. But q is arbitrary. In other words, if x is false, then x says everything.

All that remains are the non-declarative objects, but by definition, these are
those that say nothing at all. It follows that in the presence of the material
Bradwardine’s axiom, the falsehoods say everything, the truths say all and only
what is the case, and the non-declaratives say nothing. What is said collapses
into this tripartite division. .

Notice that the principles grounding this collapse are that g entails p > g and
that ~q entails p D q. Both of these principles are valid in intuitionistic logic as
well, so an intuitionistic understanding of Bradwardine’s axiom fares little bet-
ter that the classical one. An intuitionist cannot conclude (on the basis of logic
alone), that t is either true or false: the argument for this relies on the intuition-
istically invalid law of the excluded middle. However, even intuitionistically,
given the material Bradwardine axiom, all truths say the same thing (namely,
everything that is the case), and all falsehoods say the same thing (namely ev-
erything). The extra ‘wriggle room” provided by the failure of the law of the
excluded middle may provide more discrimination in some things may say, but
this collapse of signification among the truths and the falsehoods is nonetheless
crippling for Bradwardine’s programme.

So, we must move further afield in logical space to find an appropriate con-
ditional to express the connection required in Bradwardine’s axiom. It seems to
me that there are two major options on the table for retaining Bradwardine’s
axiom without collapse. The first is to move to a kind of relevant implication.
This is Read’s preferred option, and it has the virtue of explicitly allowing for
what Bradwardine draws to our attention: both necessary and contingent con-
sequences [3]. Relevant implication may be very robustly contingent without
being material or extensional. A crucial principle in strong relevant logics is the
principle of assertion:

p—(p—4q) —q)

which cannot hold if the conditional has any modal force. The fact that p is the
case does not mean that in other circumstances where p — q is the case, then
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q is the case, if those other circumstances need not be ones where p is truef| In
relevant logics such as Anderson and Belnap’s R, the principle of assertion holds
and the conditional expressed is contingent.

The other option is to ignore contingent consequences to concentrate on
necessary ones: we require merely that if p strictly implies g, then t : p strictly
implies t : q. In this paper, I will consider models which encompass both choices.
We shall look at models in which

p—gqentailst:p —t:q

where ‘—’ expresses some kind of non-truth-functional conditional, whether
relevant or strict. These are intensional conditionals, and so, modelling them
will require intensional models.

2 INTENSIONAL MODELS

The models of this section will be structures in which we can interpret sentences
in the language in which Bradwardine’s theory is expressed. That is, sentences
in a language containing the connecticate *, the conditional ‘—,” quantification
over objects ‘(Vx)’, and quantification into sentence position ‘(Vp)'. (We will
later consider conjunction and negation, but the current suite of items of the
language will suffice for this section.) The models we will consider will allow us
to interpret sentences in the language

DEFINITION [FRAMES] A frame is a structure (P,R,0,{D, : a € P},{Sq: d € D})
with

a set P of points

a ternary relation R on P, interpreting the conditional

a non-empty set O of objects

subsets D}, of O of objects declarative at point p

a binary relation Sq on P for each d € D]

The points are points of evaluation in a frame: sentences are evaluated as holding
or not relative to a point in the frame. In modal models, these points are con-
sistent and complete evaluations of the language (they model “possible worlds”
if you like to think of it that way). In models for relevant logics, the points
also evaluate formulas in the same way, but the requirement of consistency and

completeness (with respect to negation) is not imposed. Formulas with free vari-
ables are also evaluated at points, but this must take into account not only the

2So, this rules out temporal understandings of the conditional, in which p — q holds if when-
ever p holds, g holds. We may have p true now. It does not follow that whenever p — q holds, q
holds, since later, p may fail to hold.

3We will only evaluate S4 from point a if d is in D4, so we can add the restriction that aS4b
only if d € D, but we need not do so, as it makes no difference to do without it.
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point at which evaluation occurs, but also the value of the variable. The value
of a variable in term position will be a member of the domain O of objects, since
this is the possible semantic value for a term. The value of a variable in sen-
tence position will be a set of points, since this is the possible semantic value
for a sentence. (If two sentences hold at exactly the same set of points, they are
indistinguishable as far as a model is concerned.) So, an assignment o of values
to the variables in our language will assign to each object variable an element of
O and each propositional variable a subset of P.
Now we have enough structure to define evaluations on our frames.

DEFINITION [MODELs] Given a language with a number of atomic predicates, a
model M on a frame (P,R,0,{D, : a € P},{Sq : d € D}) is determined by the
interpretation of the non-logical vocabulary.

For an n-place predicate, [F] : P — P(O™). The extension of an n-place predicate
is a function returning a set of n-tuples of objects for each point in the domain.

For a constant term t, [t] € O. The extension of a term t is a choice of an object
in O. We extend the notion of the denotation of a term to be relative to an
assignment of variables [t] to include the interpretation of variables: [x]y is
the value that « assigns to the variable x. For uniformity, we write “[t] " for
all terms t, even for constant terms where the extension does not depend on the
assignment .

Given this information, a model 9t defines a relation I of satisfaction, evaluat-
ing formulas relative to assignments o and points a € P:

M, «, a |- p iff the point a is in the value that « assigns p.

M, «, a - Fty - - -ty iff the n-tuple ([t1]«, ..., [tnl) is in the extension [Fl,.
M, o, al- AABIff M, o, al- Aand M, «, a IF B.

M, o, alF—Aiff M, o, a lf AH

M, «, a - A — B iff whenever Rabe, if MM, &, b I- A then M, «, c I- B.

M, o, al- (Vx)A iff M, &', a |- A for every x-variant o’ of .

M, o, al- (Vp)A iff M, «’, al- A for every p-variant &’ of «.

M,o,a Ikt Aiff [tle € Dq and for each a’ where aSyy,  a’, we have
M, o, a’ IFA.

The novelty in this definition is the last clause, evaluating signification. A claim
of the form t : A holds at point a if and only if (1) the denotation of the term
t is an object that is declarative at point a, and (2) in every point accessible

4This clause treats negation as boolean. In a wider range of models for relevant logics, we
would rather do without boolean negation in favour for a negation that goes further in respecting
relevance considerations. Here, however, boolean negation will suffice.
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from a, by way of the binary relation Sy, (the relation determined by the
denotation of t) the formula A holds. This makes t : A act as a normal modal
operator when the denotation of the term t is declarative. I have discussed the
choice of this interpretation elsewhere [7]. The choice of this interpretation
is motivated by two factors. First, it allows us to simply construct models in
which we can investigate what does not follow from the Bradwardine axiom.
Given a model in which the Bradwardine axiom holds, if something else does
not hold, then it is not a consequence (relative to the background logic of the
model, at least) of the Bradwardine axiom. Second, the novel consequences of
this particular interpretation are not, in themselves, overly problematic. For
example, one consequence of this interpretation is as follows. If we interpret
A AB as holding at a point if and only if A and B both hold at that pointf]|then
it follows that t : Aand t : Bentailst: AAB. If t: A and t : B both hold at a
point q, then [t] is declarative at a, and A and B both hold at all of the points
Sy, -accessible from a. It follows that A A B holds at all of these points, and
hence that t : A A B holds at a.

So, the closure of signification under conjunction is a consequence of how
we have interpreted it in these models. I do not know whether or not Bradwar-
dine explicitly or implicitly assumes this condition, but it does not seem unduly
implausible. So, models in which it holds do not (on this account at least) look
problematic.

The reader with a little experience of models of modal logic may think that I
have skewed these models in favour of relevant logics by using a three-place
relation to interpret the conditional, instead of a two-place relation. It is true
that the generality of a three-place relation is used to model relevant logics such
as R (in which logical truths such as p — p need not hold at every point, since we
want to find counterexamples to the validity of the argument from q to p — p).
However, they may be used to interpret strict conditionals from modal logic.
For example, if we set Rabc to hold if and only if b = ¢, then the resulting
conditional “—" interpreted by R is the strict implication of the logic s5, where
necessity is interpreted as truth at every pointE]

Now, we have enough information to interpret the language, and to define
entailment as preservation of holding at points in our models. These models
make satisfaction closed under entailment (if all A points are B points, then all
points at which t : A holds are points at which t : B holds), but the Bradwardine
axiom does not necessarily hold. It is not necessarily the case that A — B entails
t: A — t:B. For this, we need to impose one condition connecting the relation
R and the relations S4.

DEFINITION [BRADWARDINE FRAMES] A frame is a Bradwardine frame if and only
if the following conditions hold between R and Sq:

5This is the case in standard models for modal logics, and also in ternary relational models for
relevant logics, so it is not a particularly controversial assumption
These are the models discussed in my earlier paper [7].
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For all points a, b, ¢, if Rabc and d € Dy, then d € D too.

For all points a, b, c,c’, if Rabe, d € Dy, and ¢Sqc’, then there is some point b’
where bS4b’ and Rab’c’.

This suffices to ensure that if A — B holds at a then so doest: A — t: B, so
A — Bentails t: A — t: B in our models, as required.

FACT [BRADWARDINE'S AXIOM IN BRADWARDINE FRAMES| [n any model on a Brad-
wardine frame, if A — B holds at a, then so doest: A — t: B.

Proof: Suppose that A — B holds at a in our model. To show that a lFt: A —
t : B (we suppress mention of « and 97 since these do not vary in this proof) we
consider b and ¢ where Rabc, and b IF t : A. We wish to show thatc IFt: B
too. Since b I- t : A we have [t], € Dy. By the first condition on Bradwardine
frames, we have [t], € D, too Now that [t]x € D, we can ask the second part
of the question concerning t : B at c. Suppose that ¢Sy, ¢’. Does ¢’ I- B? The
second condition on Bradwardine frames tells us that since Rabc and ¢Sy ¢/,
we have some b’ where bS;, b’ and Rab’c’. Since b IF t : A and bSyy, b/, we
have b’ I A and since Rabc and a I A — B we have ¢’ IF B as desired. This
concludes the prooff] .

Many frames are Bradwardine. In fact, all frames for strict conditionals are
Bradwardine. A conditional is strict if the ternary relation modelling it is es-
sentially a binary relation. We have A — B at a if and only if all of the points
accessible from a are such that if A holds there, so does B. As ternary relational
frames, Rabc only when b = c.

FACT [STRICT IMPLICATION FRAMES ARE BRADWARDINE| If Rabe only if b = ¢, then
the frame satisfies the Bradwardine condition.

Proof: Immediate consequence of the definition of the condition. .

If R is a genuinely ternary relation, the Bradwardine condition has some bite.
Not every frame on a ternary relation is Bradwardine.

ExAMPLE Let P be the set of positive natural numbers {1,2,3,...}, and define
Rimn if and only if n divides both 1 and m evenlyJ)

7This reasoning would have failed had we allowed the denotation of t to vary from point to
point, or we would have had to impose a more complex condition connecting R and the declarative
objects.

8This result is straightforwardly extended to a correspondence result. Suppose that a frame is
not a Bradwardine frame. Then it is not difficult to construct a model such that there is a point a
at which p — q holds but x : p — x : q does not.

9This is a model for the positive fragment of the relevant logic R.
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If we have some object d that is declarative at 4 but not 2 then the first part
of the Bradwardine frame condition fails, since R64 2 (2 divides 6 and 4) but d is
declarative at 4 but not 2.

If we have an object d that is declarative everywhere, and a relation Sy such
that and nSqm if and only if n # m, then we have, for example, R222 and 2543,
but there is no number m such that R2m 3 since 3 does not divide 2.

So, many frames do not satisfy the Bradwardine condition. However, it is not
too difficulf™|to construct frames for the relevant logic R which satisfy the Brad-
wardine condition. These frames will occupy us for the next sections.

3 LIARS AND BRADWARDINE’'S ARGUMENT

Bradwardine’s most interesting contribution to the discussion of the Liar para-
dox is the argument to the effect that if something says of itself it is false, then
it also says of itself that it is true. The argument, as discussed by Read, is as
follows:

. suppose s : Fs, that is, suppose some proposition, s, says of itself
that it is false, and suppose that it is false. By [the definition of F], it
follows that something s says fails to obtain: (3p)(t: p & —p), if not
that s is false then something else s says, call it q. Then if it’s not ¢
that fails to hold, it must be Fs that fails to hold, i.e., Fs = (q — —Fs)
(%), indeed, by Residuation and Bivalence, (Fs & q) = Ts. But
s:Fs, and s : g, so by [the Bradwardine condition], s : Ts. Thus any
proposition which says of itself that is not true (or false), also says
of itself that it is true. 5} page 311]"

This argument essentially uses a notion of conjunction, expressed by “&,” and a
notion of entailment, expressed by “=,” together with negation. The argument
uses a number of principles: the definition of the falsity predicate F, and a strong
version of the Bradwardine axiom — we infer from s : Fs and s : q, with (Fs &
q) = Ts to s : Ts. This is not only the closure of signification under entailment,
but also the kind of conjunction expressed by “&.” This principle seems properly
stronger than Bradwardine’s axiom as I have stated it, but (given a reasonable
interpretation of “&”), it seems not unreasonable.

The other significant step in the argument is the inference to (*): the con-
clusion that Fs entails g — —Fs, for the particular choice of g — the “something
else” said by s. I will show that this step does not follow from the Bradwardine
condition, by constructing models in which it fails.

°Not too difficult with the aide of a computer, at least.
] have harmonised the notation with that used in this paper, and marked a step with ‘(x)’ for
later reference.
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EXAMPLE [A MODAL MODEL] Let P be the two points a and b. Let Rabe if and only
if b = ¢, so the logic of implication is the strict implication of the modal logic ss.
Let O, D4 and Dy, contain the object 1. We set xSy if and only if x # y. That
is, aSib and bSa, but neither aS;a nor bS;b. Let A be a term whose denotation
is the object 1. We will show that A : FA holds at a and at b, but that A : TA
fails at both a and at b. This model provides a counterexample to Bradwardine’s
argument in the background logic s5.

First, let p hold at b but not a. Then A : p holds at a, since p is true at all of
the points S; accessible from a (namely, b). However, —p also holds at a, so we
have (A: p) A—p, so (Ip)(A: p A—p) holds at a. In other words, FA holds at a.
By symmetric reasoning, FA holds at b too, since here, (A : =p) A ——p holds.

Therefore, FA holds both at a and at b. Therefore, since 1 is a declarative
object at both a and b, A : FA holds at a and b too, since FA holds at every point
accessible from @, and at every point accessible from b. So, the object 1 is a liar:
it signifies of itself that it is false.

Does it signify of itself that it is true? No. Since FA holds at a and b, TA fails
at both a and b. Therefore, A : TA fails at a (since at the Sy accessible point, b,
TA fails), and it fails at b (since at the Sy accessible point, a, TA still fails).

So, in this model the Bradwardine axiom holds, we have an object that sig-
nifies itself to be false (in each point of the model), it is false (in each point of
the model), yet it does not signify itself to be true. This is a counterexample to
Bradwardine’s argument. Step (x) in the argument fails, since the other prin-
ciples used hold in our model. What this means we will consider soon. Before
that, however, we will show that counterexamples may be constructed in rele-
vant models as well.

EXAMPLE [A RELEVANT MODEL] This is more difficult construction, since models
for relevant logics are more complicated. I will not go through the details of
models for the relevant logic R here. Appropriate texts to read are numerous
and widely available |1, 2 3} [6]. Instead, I will sketch some simple models of a
logic stronger than R, the Boolean relevant logic KR. These models are simple,
and they do not force us to answer difficult questions concerning the interaction
between signification, Truth, Falsity and an intensional (non-Boolean) notion of
negation. A relation R is a KR relation if and only if

There is some point 0 such that ROab if and only if a = b.

Raaa for every point a.

Rabc iff Rbac iff Racb for all points a, b, c.

If R(ab)cd then Ra(bc)d. That is, if there is some e where Rabe and Recd then
there is some f where Rbcf and Rafd.

The conditions are motivated as follows: the first, ROab if and only if a = b
tells us that there is a point at which the conditionals that hold are those that are
valid on the model. In particular, at 0, A — A holds. (It may fail at other points:
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if Rabc where b # ¢, and A holds at b but not ¢ then A — A fails at a.) For
the second, Raaa tells us that if A and A — B hold at a then B holds at a too.
In other words, A, A — B entails B. For the third, the first component (Rabc iff
Rbac) tells us that if A holds at a then (A — B) — B holds at a too. The second
component (Rabc iff Racb) tells us that if A — B holds at a, then =B — —A
holds at a too, if we interpret “—” in the usual Boolean manner: —p holds at a
point iff p fails at that point. The final and most complicated condition tells us
that if A — B holds at a, then (C — A) — (C — B) holds at a too. These models
interpret the whole of the classical relevant logic KR.

Now we can construct our particular KR model in which Bradwardine’s con-
clusion fails. The domain of points of this model is the set {0, 1,2}. We interpret
the ternary relation R in the following way:

RO 1 2
ojo 1 2
101 012 12
212 12 012

where Rabce holds if and only if the number ¢ is found in the a-row and b-
column of the table. In other words, we have R110, R111 and R112 (this is the
“012” in the middle of the table), but R121 and R122 but not R120 (since we have
“12” in the 1-row and 2-column), and so on. This is a model for KR. Verifying
this (especially the last condition) is a non-trivial matter.

Now, take A to be a term in our language, and let its denotation be an object
1 that is declarative at every point. Let the relation S; be defined by setting 05,1,
1512 and 2S;1. We can think of S; as a function, where 05t = 1, 15t = 2 and
25t = 1. When we model “A :” we can then say that A : A holds at a if and only
if A holds at ast.

The first thing to verify is that the Bradwardine condition holds in this
frame. In this case, we need to verify that if Rabc then Rabstcst. This con-
dition is satisfied in our model, and it is not tedious to check. If a = 0, then RObc
iff b = c and then, RObStcS! too, since bSt = ¢5t. When a # 0 if Rabc, we have
Rabstcst, since a # 0 and bSt # 0 (s; sends each point to 1 or 2 but not 0) and in
this case, Rabst1 holds and Rabs'2 holds. We know that ¢3! is either 1 or 2, and
hence Rab®icst. So, the condition holds. It is a Bradwardine frame.

Now TA is false at every point, and FA is true at every point. Choose a point
b. We choose the extension of the proposition p so that it is true at every point
other than b. Then at b, A : p is true, since p holds at bS. Yet at b, —p is
true (negation is Boolean). So, at b we have (Ip)(A : p A —p), where we treat A
extensionally in the usual fashion. Indeed, if we treat conjunction intensionally,
by setting A & B true at a point ¢ when there are a and b where Rabe, A holds at
a and B holds at b (which is required for the residuation condition A & B — C
if and only if A — (B — C)), then we also have, at b, (Ip)(A : p & —p) since
Rbbb. With either definition of falsity (using the intensional conjunction & or
the extensional conjunction A) FA holds at b.
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Similarly, since A : p — p fails at b (we have Rbbb), it follows that TA fails
at b. So, at every point, TA fails, =TA holds and FA holds too. So, from any point
b, —=TAis true at bSt, so at b, both A : FA and A : =TA holds. On the other hand,
from b, we have TA failing at bst, so A : TA fails at b. So, we have a relevant
conterexample to the conclusion to Bradwardine’s argument to the effect that if
A : FA then A : TA. We have an object that says of itself that it is not true (at
each point of the model). It doesn’t say of itself that it is true (at any point of
the model).

What do these counterexamples mean for the Bradwardine’s argument? The
argument appeals to a principle — the step marked (x) — that fails in these models.
Consider the relevant model, though what I write holds in the s5 model as well.
What is curious in this model is the way that what A signifies varies from point
to point. Let p hold at 2 only, and let g hold at 1 only. Then it follows that from
the perspective of point 0, we have A : p, but we do not have A : p at point 2
itself. At point 2 we have A : ¢ instead, where q and p are jointly inconsistent
(they hold together nowhere). So, at point 0 we have both

A:q qg— A:pA—(A:q))

which, when you think about it, is a very odd combination. At point 0, A says
that q (it says “the world is like point 2”), but if that is the case, then A is not
true, since in that circumstance, A no longer says that g, it says that p.

To consider the step () in Bradwardine’s deduction. At 0, in the model, we have
A : FA, and indeed, FA holds at 0. It does follow that something A says fails to
obtain. In the argument, we are asked to “call it q.” There are two different
interpretations for any ¢ that fails to obtain at 0 and is said by A at 0. It can hold
at {2} or at {1,2}. Let’s take {2}, as it is the most specific statement, from which
the most follows. Our sentence q is true at 2 only. We do have (A: g A\ —q) at
0, and also (A: g & —q). Then the argument continues:

Then if it’s not q that fails to hold, it must be Fs that fails to hold,
i.e, Fs = (q — —Fs) (%)

This is the step that fails in our model. At 0 we have FA. But we do not have
q — —FA at 0, since R022 and g holds at 2, yet —FA fails at 2, since FA holds at 2
as it does everywhere in our model.

Why does this step fail in our models? It seems to me that I cannot say that
if g then —TFA, since we have that if q then A would not have said that q. It
would have said something else, had q been the case. In other words, we have a
counterexample to the principle A : ¢ — (q — A : q) in this model. The failure
of this condition seems crucial, and it is quite possibly a principle one might
implicitly assume — since it is valid when “—" is read materially. However, the
principle seems suspicious to a relevantist. If A signifies ¢, then how does this
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fact follow (relevantly) from q? If the only argument is an appeal top — (q —
p), this will cut no ice for the relevantist, since it is relevantly invalid. Can this
principle be motivated on relevantist grounds, without collapsing distinctions of
relevance? There seem to be three options on the table, if we wish to keep a rich
theory of signification.

1. Endorse a modal Bradwardine axiom but not a material Bradwardine ax-
iom.

2. Keep the relevant Bradwardine axiom, but reject Bradwardine’s conclusion
that liars signify their own truth.

3. Motivate a principle, such as t : p — (p — t: p), which might undergird
step ().

I do not know which choice ought to be made. T hope it suffices to present
them, to allow us all to investigate the options, for Bradwardine’s intriguing and
fruitful theory of truth.
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