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Abstract: Stephen Read has recently discussed Bradwardine’s theory of
truth, and defended it as an appropriate way to treat paradoxes such as the
liar [13, 14]. In this paper, I discuss Read’s formalisation of Bradwardine’s
theory of truth, and provide a class of models for this theory. The models
facilitate comparison of Bradwardine’s theory with contemporary theories
of truth.

There are many different approaches to the logic of truth. We could agree with
Tarski, that the appropriate way to formalise a truth predicate is in a hierarchy,
in which the truth predicate in one language can apply only to sentences from
another language. Or, we could attempt to do without type restrictions on the
truth predicate. Bradwardine’s theory of truth takes the second of these options:
it is type-free, and admits sentences which say of themselves that they are not
true to be well-formed. We could take the behaviour of the paradoxes such as
the liar to motivate a revision of the basic logic of propositional inference, to
allow for truth-value gaps or gluts [9, 11, 15]. On the other hand, we could take
it that the paradoxes are no reason to revise our account of the basic laws of
logic: a novel account of the behaviour of the truth predicate is what is required.
Bradwardine’s account, as elaborated by Read, takes this second option.1 Finally,
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1This is a subtle matter: Read prefers a non-classical relevant account of logical conse-
quence [12], but this is not motivated by the theory of truth. Read’s re-telling of Bradwardine’s
account of truth is not revisionary for Read’s own theory of logic. And as we shall see, there is no
need to reject classical logic in order to follow Bradwardine’s analysis.
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we could attempt to give an account of the truth predicate on its own terms, by
elaborating the inference rules governing truth. Or we could attempt to define
the truth predicate in terms of other notions. Contemporary theories of truth
have largely eschewed this second option, in favour of attempting to retain as
much of Tarski’s biconditional A ≡ TpAq, and to mount a rescue operation for a
classical theory of truth by way of limiting our diet — by putting the theory on
a tightened regimen from among the smorgasbord of biconditionals.2 Like all
classical theories of truth that allow us to express liar sentences, Bradwardine’s
theory agrees that we cannot swallow the lot. However, Bradwardine gives us
guidance as to which T-biconditionals are to be accepted, by defining the truth
predicate in terms of a more fundamental notion.

So, Bradwardine’s theory of truth is type-free, it is non-revisionary with re-
gard to logic, and it defines the truth predicate in terms of other notions. The
T-biconditionals that the theory accepts are those that follow from more primi-
tive notion in terms of which the truth predicate is defined.

1 the syntax

The crucial notion in terms of which truth is defined is expressed grammatically
by neither a predicate nor an operator. The concept is simple: it is expressed in
claims of the form ‘x says that p’ or ‘x signifies that p’. The phrase ‘says that’ is
syntactically and semantically a hybrid. To form a sentence, we can substitute a
name or referring expression in place of ‘x,’ and another sentence in place of ‘p.’
These are some examples of sentences utilising says that in the intended sense.

1. The first sentence of Chapter 1 of Coffa’s Semantic Tradition says that for
better and worse, almost every philosophical development of significance
since 1800 has been a response to Kant.3

2. “Schnee ist weiß” says that snow is white.

3. Fee’s utterance “I’m happy here” says that she is happy at the University
of Melbourne.

4. “This very sentence is false” says that that very sentence is false.

5. There is some sentence (say, x) which says that x is not true.

In the (1) we pick out a sentence by giving a definite description. In (2) and (4)
we give a quotation name for a sentence (perhaps a particular use of a sentence),
and in (3) we give a quotation of an utterance. In (5) we quantify into that place.

2For one theory of truth among many which attempts to defend this “T-biconditionals on
a diet” approach, see Horwich’s Truth [8]. For one example of an account of truth that treats
the truth predicate as primitive, but attempts to give a principle for distinguishing which T-
biconditionals are to be accepted, see Leitgeb’s “What Truth Depends On” [10].

3J. Alberto Coffa, The Semantic Tradition from Kant to Carnap [2].
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In (1) and (2), complete sentences are found in the second place. In (3) it is a
complete record of an utterance in a context. In (4) the second component of
‘says that’ is a complete sentence “that very sentence is false”, but it contains
an anaphoric reference (the “that very sentence”) to the first part of the larger
sentence in which it is embedded. In (5) we quantify in to the second place: a
variable of quantification (the ‘x’) occurs inside the position, while it is bound by
a quantifier outside the position. All of these examples will count as well-formed
in the theory to be elaborated.

It may be very tempting to read “says that” as relating an agent to a propo-
sitional content, but we will not read it in this way. Our primary sense is Brad-
wardine’s sense of signifying. Fee did say that she was happy at the University
of Melbourne. However, in our sense, she did this derivatively by producing an
utterance which signified to that effect.

To say “x says that p” is to predicate a property of the object (sentence or
utterance or other item) x (keeping p fixed), or to modify the sentence p (keeping
x fixed). In other words, “says that p” is a predicate for each choice of p, and
“x says that” is an operator, for each choice of x. The type distinction in the
grammar of “says that” wears on its sleeve the distinction between use and
mention. We shall define a truth predicate, and since it is a predicate, we shall
mention the sentences (or judgements or beliefs or other objects) that we shall
describe as true. On the other hand, it is not enough to merely predicate truth
of objects willy nilly or in an unprincipled fashion. Of course, we must predicate
truth of something in terms of its meaning: in other words, in terms of what it
says. Here, we make the jump from mention to use.

In what follows we shall write “x says that p” with the shorter expression
“x : p” — our syntax extends the grammar of first order logic with the clause
that if t is a term and A is a sentence, then t : A is also a sentence.

Bradwardine’s first contribution is the definition of truth in terms of our
new conceptual machinery. To be true is to say what is the case. To be false, is
to say what is not the case. To be declarative is to say something. Allowing for
the possibility (which will later become crucial) that individual expressions or
utterances can say more than one thing (or to speak more neutrally, could say
that p and say that q where ppq and pqq differ) then in the account of truth,
we must ask whether it suffices for truth that the expression say something
that is the case, or if we require the stronger condition that everything that is
says is the case. Bradwardine opts for the stronger of the two conditions. For
falsity, he opts for the weaker of the two conditions: since falsity is untruth (at
least, falsity is untruth for declarative objects — rocks and other objects that
say nothing are neither true nor false), it suffices for falsity that the object in
question says something that is not the case.

Now, the reader has almost certainly noticed that when talking of ‘some-
thing’ that is the case or that ‘everything’ that it says is the case, we have been
quantifying directly into the second place of ‘says that’ — we have been quanti-
fying into a position in which a sentence is used and not mentioned. This is the
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second crucial piece of machinery in Bradwardine’s theory: we need to make use
of what has come to be called propositional quantification.

At this point we must clarify a distinction between Bradwardine’s terminol-
ogy and modern vocabulary: quoting Read [13, page 191] we have

definition 1: A true proposition is an utterance signifying only as
things are.

definition 2: A false proposition is an utterance signifying other
than things are.

For Read and for Bradwardine, what is called a ‘proposition’ is what is denoted
by the referring expression in the first part of the claim of the form ‘x : p.’ The
proposition is the utterance or sentence or other object of which we are predicat-
ing truth. To confuse matters, we now use ‘proposition’ to describe quantifica-
tion into the second position, in which the sentence is mentioned but not used.
Often we might think of the semantic value or significance of a sentence in use
as a proposition, whether this is conceived of as a set of possible worlds, or a
structured meaning or some other thing. To keep matters as clear and precise as
I can, I will describe the objects of which we will predicate truth and falsity sen-
tences (thinking primarily of tokens, and not types, though we may sometimes
predicate truth of types if the sentences do not vary too much in significance
from context to context), or utterances or other such things. I will avoid talking
about propositions as much as possible in what follows, except when talking of
what is now called propositional quantification.

Propositional quantification is relatively straightforward syntactically. We
need only a stock of variables which may occur in sentence position, and quanti-
fiers that bind them. In many formal frameworks, the semantics of propositional
quantification is no more problematic: in Kripke semantics, or other model theo-
ries in which sentences are interpreted as sets of points, we allow any such set of
point to be the possible denotation of a propositional variable, and quantification
is modelled by varying the possible denotations of the corresponding variable
in the usual manner. In proof theoretical semantics, propositional quantification
is merely a degenerate form of second-order quantification in which the predi-
cate variable quantified is zero-place. The relevant rules are straightforward to
define. So, formally speaking, propositional quantification poses no difficulty.
However, its interpretation is a matter of dispute.4 Despite this difficulty, I will
take propositional quantification as a given, since it is necessary for the devel-
opment of Bradwardine’s account of truth — at least as Read reconstructs it.
Perhaps any success of the account will help in some small measure to vindicate
propositional quantification by way of its fruits.

4Some theories of truth in which propositional quantification plays a role are Horwich’s mini-
malism [8], and Grover’s prosentential theory [6]. Dorothy Grover’s work contains an interesting
defence of the significance of propositional quantification [5, 6, 7], and this work has been taken
up in Brandom’s inferentialist programme [1].
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The crucial definitions of the truth predicate, the falsity predicate and the
predicate of declarativeness are now possible:

definition [declarativeness, truth, falsity] For a language with “:” and propo-
sitional quantification, we may define the predicates D, T and F as follows:

» Dx is (∃p)(x : p)

» Tx is Dx∧ (∀p)((x : p) ⊃ p)

» Fx is (∃p)((x : p) ∧ ¬p)

So, an object is declarative if it says something, and it is false if it says something
that is not the case. It is true otherwise: if it says something, and that everything
it says is the case.5

Given the usual classical behaviour of the propositional connectives, and given
straightforward properties of propositional quantification, we have the following
immediate consequences of the definition.

lemma [consistency and bivalence] (∀x)¬(Tx∧Fx) and (∀x)(Dx ≡ (Tx∨Fx))

It is worth stepping through the proofs to see what properties of propositional
quantification are required.

Proof: To show consistency, suppose that Ta. It follows that Da, and that
(∀p)(a : p ⊃ p). If it were the case that Fa, then we would have (∃p)(a : p∧¬p),
so for some p, a : p and ¬p. But by Ta, we have a : p ⊃ p, so we have a
contradiction. It follows that ¬(Ta∧ Fa), and hence, (∀x)¬(Tx∧ Fx).

For bivalence, from right to left, notice that if Ta then Da by definition. If
Fa then (∃p)(a : p∧ ¬p) (a says something false), so it follows that (∃p)a : p (a
says something), so Da. So, (Ta ∨ Fa) ⊃ Da. Conversely, suppose that Da. If
¬Fa, then ¬(∃p)(a : p ∧ ¬p), and by elementary quantifier moves and classical
connective manipulation, we have (∀p)(a : p ⊃ p). In other words, given Da, if
¬Fa then Ta. So, if Da then Ta ∨ Fa, and we have proved the biconditional in
both directions.

So, truth and falsity provide a mutually exclusive and exhaustive categorisation
of the declarative objects. Truth and falsity behave as one would expect, on the
basis of very weak assumptions: the presence of “:” and propositional quantifi-
cation. Not only this, but we can see Bradwardine’s analysis of paradoxes like
the liar.

fact [liar sentences are false (and not true)] If λ : ¬Tλ, then it follows that
Fλ (and ¬Tλ as well).

5Continually bracketing ‘x : p’ will get tedious. In what follows we will read all expressions
involving ‘:’ with ‘:’ binding most tightly. So, Tx is an abbreviation of Dx ∧ (∀p)(x : p ⊃ p).
If I wished to say that x said that p ⊃ p, I would use brackets around the conditional like this:
x : (p ⊃ p).
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Proof: The proof is straightforward. If λ : ¬Tλ, then we have Dλ, since λ says
something. Now, if Tλ, then it would follow that (∀p)(λ : p ⊃ p), and hence
λ : ¬Tλ ⊃ ¬Tλ. But we have agreed that λ : ¬Tλ, so it would follow (if λ were
true, i. .e., if Tλ) then ¬Tλ. In other words, we have proved Tλ ⊃ ¬Tλ, which is
simply ¬Tλ. The liar sentence λ is not true. Since it is declarative, it must follow
that it says something that is not the case — and hence, it follows that λ is false,
as well.

Since λ is false, it says something that is not the case. But what else could λ say
that is not the case? The assumptions that we have made so far do not tell us.
We know that λ : ¬Tλ, and this, in fact, is the case (it is the case that ¬Tλ). But
my utterance that ¬Tλmust perforce, differ from λ itself, for my utterance may
well be true, and λ is not. The definitions tell us that there is something else
that is the λ says that is not the case, without isolating what it might be.

One candidate is that λ says that Tλ. Tλ is not the case, and if λ declares its
own truth, then this is where it goes wrong and is false. According to Read [13],
Bradwardine took himself to have an argument for the conclusion that the liar
says of itself that it is true. This distinguishes Bradwardine’s account from
the later account of John Buridan which assumes without argument that every
declarative says of itself that it is true.

Bradwardine’s argument for this claim is a subtle one [13]. We will not
consider it here. Instead, we need to develop the theory a little more, for we have
not quite arrived at Bradwardine’s theory of truth. What makes Bradwardine’s
account distinctive is not the definitions of truth or falsity, or the treatment of
the falsity of the insolubilia. Instead, it is the following postulate, which I shall
call “Bradwardine’s Axiom.”

definition [bradwardine’s axiom] Every proposition signifies or means con-
tingently or necessarily everything which follows from it contingently or nec-
essarily [13].

We may render the condition in the following way:

If x : p then if (if p then q) then x : q

Rearranging the conditionals, we might have another formulation

If (if p then q) then (if x : p then x : q).

The crucial issue in understanding Bradwardine’s axiom is what form of condi-
tional expression might be used in formulating it. If all conditionals are material,
then we have

(p ⊃ q) ⊃ (x : p ⊃ x : q)

which we might call the material Bradwardine’s Axiom. While perhaps ini-
tially appealing, this reduces Bradwardine’s theory to one in which x : p can be
determined by whether or not Dx, Tx and Fx.
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fact [bradwardine’s collapse] Granted the material Bradwardine axiom, it
follows that the non-declarative objects (the x such that ¬Dx) say nothing, the
false declarative objects say everything and the true declarative objects say all
and only what is the case.

Proof: The proof turns on the behaviour of the material conditional. We have

q ⊃ (x : p ⊃ x : q)

since q entails p ⊃ q. It follows from this that if q is the case, then if x says
anything (if x is declarative) then x says q. All declarative objects say everything
that is the case. On the other hand, we have

¬p ⊃ (x : p ⊃ x : q)

In other words, if there is some p that x says, that is not the case, then x says
that q too. But q is arbitrary. In other words, if x is false, then x says everything.

All that remains are the non-declarative objects, but by definition, these are
those that say nothing at all. It follows that in the presence of the material
Bradwardine’s axiom, the falsehoods say everything, the truths say all and only
what is the case, and the non-declaratives say nothing. What is said collapses
into this tripartite division.

There are two options to consider in retaining Bradwardine’s axiom without col-
lapse. The first is to move to a kind of relevant implication. This is Read’s pre-
ferred option, and it has the virtue of explicitly allowing for what Bradwardine
draws to our attention: both necessary and contingent consequences. Relevant
implication may be contingent without being material or extensional. However,
in this paper the relevant approach is not the path that I will take, since rele-
vant model theory (especially the model theory for quantified relevant logic), is
rather subtle [3, 4], and the question of a natural semantics for relevant logics
with propositional quantification is a completely open question.

Instead, we shall steer a simpler course, and ignore contingent consequences
to concentrate on necessary ones. For the rest of this paper, I shall consider the
consequences of what I shall call the modal Bradwardine axiom

�(p ⊃ q) ⊃ �(x : p ⊃ x : q)

if p entails q, then x : p entails x : q. This axiom has the virtue of allowing for
a straightforward model theory. Models for necessity are well-understood, and
if we take the appropriate logic of necessity to be s5 — as we shall — then they
are extremely simple. A model is simply a collection of points, which we shall
call ‘worlds.’ Sentences will either hold or not at each world, and then �A holds
at a world if and only if A holds at every world in the model.

With this understanding of models for necessity — the simplest understand-
ing I can imagine — then the modal Bradwardine axiom takes on another colour.
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The antecedent �(p ⊃ q) simply tells us that all the worlds at which p holds are
worlds at which q holds. The consequent �(x : p ⊃ x : q) tells us that at any
world at which x : p then x : q too. This is automatically satisfied if we think
of ‘x : ’ as a normal modal operator. If all of the p worlds are q worlds, then if
from the point of view of my world, I check the x-alternative worlds (those in
the accessibility relation appropriate for ‘x : ’) and find that they are p-worlds, it
follows immediately that they are all q-worlds too. So reading ‘x : ’ as a modal
operator will supply us with the modal Bradwardine axiom. This idea will be
developed in the next section.

However, before stepping straight into the modal model theory, we should
check that the immediate consequences of taking ‘x : ’ to be a normal modal
operator are not unpalatable. The first property of a normal modal operator
(closure under entailment — if p entails q then x : p entails x : q) is, as we
have seen, a reading of Bradwardine’s axiom, and so it is welcome. The next
characteristic principle is commuting with conjunctions:

(x : p) ∧ (x : q) ⊃ x : (p∧ q)

This is not a consequence of the Bradwardine axiom on its own. It is a different
principle.6 However, this principle seems not implausible in its own right. If x
says that p and it says that q, it is certainly not stretching things to take it that
x has said that p ∧ q. It seems that taking ‘x says that’ to be a normal modal
operator is not doing an injustice to the concept. Now let us see what can be
done to model it.

2 modal models

As we have already indicated, models for normal modal logics can be given by
way of Kripke frames. In our case, we have a quantified modal logic, in which
some of the objects in question are declarative. In this paper we will make as
many simplifying decisions as possible, consistent with the goal to construct
interesting models. In this case, it means taking frames for our modal logic to
be constructed in the following way:

definition [bradwardine frames] A Bradwardine frame is a structure of the
form 〈W,O,D, {Rd : d ∈ D}〉 where

» A non-empty set W of worlds

» A non-empty set O of objects

» A subset D of O of declarative objects

» A relation Rd ⊆W ×W for each d ∈ D
6It is not difficult to construct a neighbourhood frame for a non-normal logic satisfying the

Bradwardine axiom but not this conjunction principle.
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The simplifying assumption here is that whether or not an object is declarative
is an all or nothing matter. Declarative objects do their declarative work in ev-
ery world, rather than in some worlds and not others. This feature simplifies
presentation, as we an define the accessibility relation for each declarative object
to be a relation on the entire frame.

Given a Bradwardine frame, we can interpret sentences in our language in
the usual way. Sentences hold or fail in each world, so the extension [[A]] of a
sentence is the set of worlds in which it holds. Similarly, for an n-place predicate,
its extension is an n-ary relation on the set O of objects, possibly varying from
world to world.

definition [bradwardine models] An evaluation on a Bradwardine frame is
provided by giving an extension to every relation in the language, and a deno-
tation for every name. The variables in the language will be interpreted with
the aid of an assignment α of values to variables. The value α assigns to an ob-
jectual variable such as x is an object [[x]]α in O. The value that α assigns to a
propositional variable such as p is a set [[p]]α of worlds.

Given such an assignment of values to atomic expressions, we can assign
values to complex expressions, relative to the choice of a world and the choice of
an assignment of values to variables.

» M, α,w 
 Rt1 · · · tn iff the n-tuple 〈[[t1]]α, . . . , [[tn]]α〉 is in the extension [[R]] at
world w.

» M, α,w 
 p iff w is in [[p]]α.

» M, α,w 
 ¬A iff M, α,w 6
 A.

» M, α,w 
 A∧ B iff M, α,w 
 A and M, α,w 
 A.

» M, α,w 
 (∀x)A iff M, α ′, w 
 A for every x-variant α ′ of α.

» M, α,w 
 (∀p)A iff M, α ′, w 
 A for every p-variant α ′ of α.

» M, α,w 
 �A iff M, α, v 
 A for every world v.

These clauses are completely standard. They model constant domain quantified
s5 with a universal accessibility relation, and with propositional quantification
ranging over every subset of worlds. (We will call this logic qs5∀p.) The inno-
vation is in the treatment of ‘says that’.

» M, α,w 
 t : A iff [[t]]α ∈ D and for each v wherewR[[t]]αv, we have M, α, v 
 A.

If [[t]] is a declarative object, then ‘t :’ functions as a normal modal operator, using
the accessibility relation R[[t]]. If on the other hand, [[t]] is not declarative, then
t : A is always false.

This completes our definition of Bradwardine models.
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lemma [truth & falsity in bradwardine models] In any Bradwardine model
we have

» M, α,w 
 Dt iff [[t]]α ∈ D.

» M, α,w 
 Tt iff [[t]]α ∈ D and wR[[t]]w.

» M, α,w 
 Ft iff [[t]]α ∈ D and it is not the case that wR[[t]]w.

In other words, to check for truth and falsity of an object at a world, we need
check only whether or not the accessibility relation for that object is reflexive at
the world.

Proof: The fact for Dt is immediate. The only way for any statement of the
form t : A to be true atw is for [[t]] to be inD, by the satisfaction clause for t : A.
Now consider whether or not Ft, given that t is declarative. The construction
utilises the set {w} of worlds other than w. This is true at every world other
than w. If R[[t]] is not reflexive at w, then if [[p]] is {w}, then at w, t : p holds.
However, we also have ¬p at w, so at w, Ft. On the other hand, if R[[t]] is
reflexive at w, then the modal operator ‘t :’ satisfies the characteristic condition
for reflexivity: t : p ⊃ p for every p. In other words, we have Tt.

lemma [bradwardine models are appropriately named] The Bradwardine ax-
iom holds in every Bradwardine model.

Proof: It is immediate, given the definition of � as truth in all worlds. If all p
worlds are q worlds then if all R[[x]]-alternatives of w are p worlds (if x : p holds
at w) then they are also q worlds (x : q holds at w too). But w is arbitrary, so in
every world, if x : p then x : q, and so, we have �(p ⊃ q) ⊃ �(x : p ⊃ x : q) as
desired.

example [a model with a liar] Given this definition, we can use models to illu-
minate a number of issues. A simple model is one in which we have two worlds
a and b, a single declarative object λ for which Rλ relates a to b and vice versa,
but at neither a nor b is the relation Rλ reflexive. For simplicity, we shall sup-
pose that our language has a name λ which denotes the object λ. (No confusion
should arise, since it will be clear when the name is being used in the formal lan-
guage as a part of a sentence being modelled, and when it is used in our language
to pick out the declarative object in the domain.)

With this very small model, we can see that Tλ is false at both a and b,
since Rλ is not reflexive at either world. So, it follows that since ¬Tλ is true
everywhere, λ : ¬Tλ holds both at a and at b. In this model, λ is a liar sentence
at both world a and at world b. However, it does not follow that λ : Tλ anywhere.
λ : Tλ fails at a (and at b) since, the world a Rλ-accesses the world b, and at b,
Tλ fails. Similarly, b Rλ-accesses a, and at a, Tλ fails. So, λ : ¬Tλ — it says of
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itself that it is not true, but it is not the case that λ : Tλ. It does not say of itself
that it is true.

Returning to our question asked earlier concerning liar sentences: Since Tλ
is false in this model (at each world) it follows that λmust say something that is
not the case. But what? Here, the answer is curious. At world a, λ : p where p
is a proposition true at b, but not at a. The proposition p is not the case at a, yet
it is at b. So at a, λ says something that is not the case: p. However, the matter
is different at b: at b, p holds. However, at b, λ no longer says that p. At b,
Rλ-accesses a, and not b, so at b, λ says that ¬p, and at b, this is something that
is not the case. So in both worlds, there is something that λ says that is not the
case. In one world it is p, and in the other it is ¬p. In neither world does λ : Tλ.
We can break the argument to the conclusion that the insolubilia allowing what
an object says to vary from world to world.

As we have seen, Bradwardine models have enough structure to interpret “says
that” in such a way as to satisfy the Bradwardine axiom. At the very least, can
use them as a tool for finding counterexamples to certain claims, such as the
claim that λ : Tλ follows from λ : ¬Tλ under the Bradwardine axiom. We also
have enough resources to see that the Bradwardine axiom alone does not tell us
a great deal about what is true.

definition [extreme models] A model in which no object is declarative is said
to be reticent. A model in which there are declarative objects, but the relations
Rd for each such object is empty, is said to be verbose.

In every reticent model, there are no truths and no falsehoods. Nothing says a
word, since nothing is declarative. At the other extreme, in the verbose model,
there are declaratives, but every declarative says everything.

Extreme models do not tell us much interesting about truth. To begin to
rule them out, we must specify what more is required in order to make a model
interesting. Reflecting on Tarski’s biconditionals governing truth, we have a
connection between a sentence used (the A) and mentioned (the claim that A
is true). In our models, we posit no such connection between the sentences
we use (in the language qs5∀p augmented with ‘:’) and the objects of which
we predicate truth and falsity — we have made no assumptions concerning the
declarative objects. This is a fair general position to take: there is no requirement
in providing a theory of truth for some domain that the language in which the
theory is couched must also be among the objects of study of the theory. As a
general account of truth, we should make as few assumptions as possible, if we
wish the theory to apply as generally as possible.

However, if we are to compare Bradwardine’s account of truth with accounts
inspired by Tarski, we should at least consider it. So, for now, consider what
happens if we add a device for quotation. For every sentence A in the language,
we now supply a term pAq, a quotation name for the sentenceA itself. Since the
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sentences in our language do not vary in truth from context to context (though
they do vary from world to world) it results in no problems to consider either
sentence types or canonical tokens of each sentence A in our language: for dif-
ferent tokenings of A do not vary in truth value in any given world.7

So, given that we include quotation names for terms in our language, what
can we say concerning what these sentences say? There are many options, but
a straightforward condition is that according to our theory, the sentences say
what we take them to say when we are developing our theory. In other words
the transparency axiom holds.

definition [transparency] The transparency axiom is this: pAq : A.

The sentence pAq says that A holds. From the perspective of inside the theory,
the sentence A says what we take it to say outside the theory.

A straightforward consequence of transparency is T-elimination.

fact [T-elimination] If pAq : A then TpAq ⊃ A.

Proof: If TpAq then (∀p)(pAq : p ⊃ p). Substitute A for p. We have pAq : A, so
A follows. In other words, TpAq ⊃ A.

We have one half of Tarski’s biconditional as a consequence of the definition of
truth. It follows that if we have insolubilia, among the sentences of our own
language, then the other half of Tarski’s biconditional fails for them, lest the
language fall into inconsistency.

Do we have insolubilia among the sentences of our language? Not as things
stand: it all depends on the expressive power of that language. We have said
nothing about the primitive non-logical symbols of the language, other than ‘:’
and �. If, for example, we have the language of arithmetic, and we postulate
properties of arithmetic sufficient to prove the diagonal lemma, then it follows
that there are sentences L such that, according to the background theory, L is
materially equivalent to ¬TpLq. In fact, the arithmetic part of the theory is not
only true but necessary, the diagonal lemma holds necessarily and we will have

�(L ≡ ¬TpLq)

Given transparency, we have pLq : L, and then the Bradwardine axiom tells us
that pLq : ¬TpLq. A fixed point for the context ¬Tx is a sentence of our language
that literally says of itself that it is not true. Since pLq : ¬TpLqwe have ¬TpLq in
the usual way, and hence, we prove L, since L is equivalent to ¬TpLq. However, it
does not follow that TpLq, since we have not shown that everything that L says
is true. So, in theories of arithmetic, we can find sentences which perforce must

7For many interesting utterances, of course, we will not be able to make this idealisation.
To incorporate them into this framework, we will need to incorporate more contextual features
into the points of evaluation. Here, we only have worlds and values for variables, to keep thing
straightforward, and to facilitate comparison with traditional theories of truth and the paradoxes.
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be counterexamples to T-introduction. A fixed point for ¬Tx, delivered by the
diagonal lemma, is a sentence for which T-introduction fails. In fact, the failure
of T-introduction for L is not without pain. For our theory not only proved that
¬TpLq, since L is provably equivalent (relative to the arithmetic theory, at least)
to ¬TpLq, we have proved L. Our theory proves a sentence (namely, L) that is,
by the lights of the theory itself, not true. This is not a happy feature of the
account, but it must be admitted that every account of the paradoxes must bite
some bullet, and for this formulation of Bradwardine’s theory, this is the bullet
that we must bite.

Do we have to bite any worse bullets? Is the theory consistent? It is con-
sistent in the weak sense, since in any verbose model with names pAq for each
sentence in the language, the transparency axiom holds: we have pAq : A since
in a verbose model, we have pAq : B for every sentence B. The underlying the-
ory is consistent, but only at the cost of trivialising ‘:’ and truth (in the verbose
model, everything declarative is false and nothing is true).

So, we want models that do better than this. We want models in which
transparency holds, and in which a good fragment of the language behaves com-
pletely classically and straightforwardly. Let’s start with transparency:

lemma [transparency in bradwardine models] pAq : A holds at a point w in
a Bradwardine model if and only if for each v, if wR[[pAq]]v then v 
 A.

It is not straightforward to check this condition in a model, as it is not a simple
condition on the accessibility relation, but rather, something linking the acces-
sibility relation for [[pAq]] to what holds at the points accessible from w.

However, for this to hold, we do not need there to be any points accessible
from w. The condition is automatically satisfied in the verbose Bradwardine
model, in which all accessibility relations Rd are empty. Here, all statements of
the form t : A are true (for declarative t), and hence pAq : A is true. The move to
Bradwardine models has done nothing to rule out the verbose model. We must
do more to ensure that some of our declarative objects manage to be true. We
have seen that T-introduction fails for insolubilia, but we have seen no reason
to suspect that in the pre-semantic language, without ‘:’, that T-introduction
should fail. In fact, relative to some sense of what it is for a sentence to be
‘grounded’, we would like the following condition to be true:

definition [grounded T-introduction] A ⊃ TpAq for grounded sentences A.

Our aim is to find a sense of groundedness for which grounded T-introduction
can hold, along with transparency. Then we will have recovered a significant
portion of Tarski’s theory, in the context of a very different theory.

The next lemma provides the conditions on which the transparency axiom
holds at a point on in a model.

But how can we ensure that there are enough arcs in the accessibility relation
for pAq to ensure that T-introduction holds for A?
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The crucial idea is this: suppose we are constructing our model bit-by-bit.
We have been provided with a qs5∀p model. Our job is to define the relations
R[[pAq]] in such a way as to verify transparency and grounded T-introduction. If
A is a sentence not containing ‘:’, then its status at a world w in the model is
completely independent of the behaviour of the relations R[[pAq]] for the seman-
tic conditions for A do not involve those relations.8 If we already know that A
holds at w, then there is no bar to us adding an arc vR[[pAq]]w to w from the
world v. From the point of view of v, this does not threaten pAq : A, since the
worldw now R[[pAq]]-accessible from v is a world at which A holds. On the other
hand, if A is free of ‘:’, then we know its status at every world, independently
of what we do with the relations R[[pBq]], so its status is fixed at every world.
So, add the arcs vR[[pAq]]w to w if and only if A holds at v. Now consider the
claim A ⊃ TpAq. Can it ever fail? Only if we have a point at which A holds and
TpAq does not. But TpAq fails at a point w only when wR[[pAq]]w fails. But by
hypothesis, if A holds at a point, we added all arcs to that point, including the
arc to w from w. So, A ⊃ TpAq holds at every world.

This construction worked for A only because we assumed that the status of
A at w did not depend on the features of any of the accessibility relations at w
or elsewhere. This is the feature we wish from grounded sentences. Consider
the case of an ungrounded sentence, such as L, for which it is true at w that
pLq : ¬TpLq. L holds at w if we do not have wR[[pLq]]w. We cannot reason as we
did before, and say that since L holds at w, we can now add the arc wR[[pLq]]w,
and keep the transparency axiom, since adding this arc has changed the status of
L at w itself. Now, L fails at w, since TpLq is true at w, and pLq : ¬TpLq. This
is an ungrounded sentence: it is not settled. Its status at a world depends on
further choices for arcs in the accessibility relation.

This is the kernel of the idea behind the limit construction. We start with a
blank slate in which the relations R[[pAq]] are empty. We add arcs for each R[[pAq]]

when we know that the target world has settled on A. Then repeat. Stop when
you’re done. Now to the details.

3 the limit construction

Our starting point is a particular qs5∀p model M, with a denotation in the do-
main of M for each term pAq or a name in the language. It could be an ex-
tensional, classical model for arithmetic. Having more than one world is not

8It is crucial here that we understand propositional quantification not by substituting new
formulas in the place of propositional variables, but by allowing the denotation of the variable
to be given by a set of worlds. If we verified (∀p)(· · ·p · · ·) by checking every formula (· · ·B · · ·),
then not only would this process not terminate, but we would be forced to evaluate formulas
involving ‘:’. Here, we simply check (· · ·p · · ·) for each possible value of p, and a value of p is
a set of points in the model, which can be checked independently of the status of the relations
R[[pAq]]. We do know, however, that we have checked the status of the formula (· · ·B · · ·) where B
is a formula involving ‘:’ that B is true at some set of worlds, and we have checked this set in our
evaluation. We just did not check it under that description.
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essential to the construction. Our task is to define the R[[A]] for each A in order
to satisfy

transparency: wR[[A]]v only when A is true at v.

grounded T-intro: For grounded A, if A holds at w, then wR[[A]]w.

As we have seen, transparency is satisfied when R[[A]] is empty. We will start
with empty accessibility relations, add links in the accessibility graphs conserva-
tively, in the manner we have described.

definition [the initial bradwardine model for M] Given a qs5∀p model M,
with a denotation in the domain of M for each term pAq or a name in the lan-
guage, the initial Bradwardine model for M is the Bradwardine model whose
declarative sentences are the collection objects in O identical to [[pAq]] for some
sentence A, and whose relations R[[pAq]] are empty. This is Br0(M)

We will not stay at level zero for long.

definition [development] A development of a model N is any model N ′ in
which the relations R[[pAq]] are replaced by R ′[[pAq]] ⊇ R[[pAq]].

definition [settled sentences] A is said to be settled at w in N if and only if
(N, α,w 
 A iff N ′, α,w 
 A) for each development N ′ of N.9

fact [the original language is settled] Each sentence in the base language
— each sentence in the language not containing ‘:’ — is settled everywhere
in M.

definition [safety] An arc wR[[pAq]]v is safe in N iff N ′, α, v 
 A in every de-
velopment N ′. An entire model N is safe iff it every arc in N is safe.

Safe models do not only validate transparency, they make it easy to find de-
velopments of safe models which validate transparency — you need only check
transparency for new arcs, since if an arc is safe in a model N, it is also safe in
every development of N.

definition [the jump] Given a model N with relations R[[pAq]], define R ′[[pAq]] by
setting wR ′[[pAq]]v iff either wR[[pAq]]v or N, α, v 
 A and A is settled at v in N.

The development of N with accessibility relations R ′[[pAq]] is the said to be
the jump N ′ of N.

Notice that he jump opertion merely adds arcs to an accessibility relation. It
never deletes them. The result means that the relation is mononotone with
respect to the natural ordering on models induced by the subset order on each
accessibility relation.

9This may remind the reader of the notion of super-truth in supervaluational semantics.
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definition [successor bradwardine models] For each α, the successor Brad-
wardine model at stage α+ 1 is Brα+1(M) = Brα(M) ′.

fact [safety and jumps] If N is safe, then so is its jump N ′.

Proof: Every arc in N ′ comes either from N (in which case it is safe in N ′, as
any development of N ′ is a development of N, and it is safe in N), or it is safe in
N ′ by construction.

Now, for any model M, its initial Bradwardine model Br0(M) is safe, since each
Rd is empty. So, each finite jump Brn(M) is also safe. It remains only to extend
the process beyond an ω sequence.

definition [limits] Given a sequence Mλ (λ < κ) of safe models such that Mλ

is a development of Mε whenever λ > ε, then the limit model Mκ of the
construction is defined by setting R[[pAq]]κ =

⋃
λ<κ R[[pAq]]λ.

definition [the bradwardine hierarchy] For each ordinal α, we define the Brad-
wardine model Brα(M) as follows:

» Br0(M) is M with the addition of empty relations Rd for each declarative object.

» Brα+1(M) is the jump of Brα(M)

» Brλ(M), where λ is a limit ordinal, is the limit of the series Brα(M) for α < λ.

In each case, Brα(M) differs from Brβ(M) when α > β only by having Rαd ⊇ R
β
d .

In all other respects, the models are identical. As we go up the hierarchy, each
sentenceA says less and less at each world, for the number of R[[pAq]] alternatives
to each world increases. Up to a point.

fact [every bradwardine model is safe] Each Brα(M) is safe.

Proof: Br0(M) is safe by definition, and its jumps are safe, by the fact we proved
previously. The limit of a series of safe models is safe, since the limit model
contains no arcs not contained in a model in the series.

We are now a short step to our desired model.

definition [the fixed point] The fixed point Bradwardine model Br∗(M) is the
first model Brα(M) that is identical to its own jump.

fact [we have fixed points] For any model M, its fixed point Bradwardine model
Br∗(M) is defined.
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Proof: This is a standard result in limit constructions of this kind. If each jump
(and limit stage) is distinct, an new arc is added at each jump. However, given
an starting model, with at most κ worlds (for some cardinality κ), there are only
κ×κ 6 max(ℵ0, κ) possible choices to be made for adding arcs in the model. So,
by the time we reach a stage of cardinality greater than κ × κ, we have reached
our fixed point.

Now we may investigate the properties of the fixed point model.

lemma [transparency at the limit] In the limit model Br∗(M), pAq : A holds
at every point.

Proof: At each stage, we add an arc wR[[pAq]]v only when it is safe to do so. In
every development of the model we have A true at v. But this is all that is
required to ensure that pAq : A remains true in the model.

The more subtle matter is to ensure that T-introduction holds for a suitable class
of sentences.

fact [settledness in a sequence] Given a sequence Brα(M), a formula (possi-
bly containing free variables), we can keep track of when (if ever) that formula
is settled in the sequence, relative to an assignment of values to variables α in
the following way. A formula is said to be “settled at stage λ, relative to assign-
ment α” if and only if the status of A is fixed at each world Brα(M), relative to
the assignment α, over every development of that model. We have:

» If A is ‘:’-free, it is settled at stage 0, for each assignment α.

» DpAq is settled at stage 0, for each assignment α.

» Boolean combinations of sentences Ai settled at level λi, relative to assignment
α are settled at maxi λ, relative to that assignment.

» If A is settled at λ, given assignment α and B is settled at γ, given α, then
pAq : B is settled at max(α,β), relative to α.

» If A is settled at λd for the x-variant αd of α (which differs from α only by
assigning the variable x the value d), then (∀x)A is settled at sup{αd : d ∈ D},
relative to the assignment α.

» If A is settled at λd for the p-variant αX of α (which differs from α only by
assigning the variable p the value X ⊆ W), then (∀p)A is settled at sup{αX :

X ⊆W}, relative to the assignment α.

» If A is settled at λ (relative to α), TpAq and FpAq are settled at λ+ 1 (relative to
α).
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Proof: Each case is quite straightforward. For the first case, the value of A is
fixed independently of the accessibility relations for ‘:’, so it is settled at stage
zero. So is whether or not something is declarative, since this is determined by
the set D, which is fixed at the outset.

If a collection of formulas is settled at some stage, so is any Boolean combi-
nation of that set. For quantifiers, it suffices to note that if we have a model in
which A is settled for each value the variable xmay take, then since the value of
(∀x)A depends merely the values that A can take as the denotation of x varies.
If each of these instances are fixed, then so is (∀x)A. The same holds for propo-
sitional quantification.

The case of truth is straightforward. Once A is settled at stage λ, then at
stage λ + 1 we add the appropriate arcs in R[[pAq]] to each A-world. No more
R[[pAq]] arcs are to be added, since A is settled. This settles the points at which
TpAq and FpAq are true, since this is evaluated merely by inspecting the arcs for
R[[pAq]].

With this at hand, we can prove the following corollary.

corollary [T-intro for grounded sentences] If A is settled at some stage λ,
then in Br∗(M), at all points, A ⊃ TpAq.

This provides us with a large class of formulas for which T-intro holds in a
model: those settled at some stage. If we take these to be the grounded sentences,
we have a large domain of formulas for which T-biconditionals hold.

4 discussion

There are many questions which we might consider for future examination.

1. What holds in each Br∗(M) above and beyond what follows from Brad-
wardine’s axiom, transparency and grounded T-introduction?

One example of a further condition that holds is (∀x)(Dx ⊃ x : Tx): which
we could call Buridan’s axiom — all declaratives declare their own truth.
This holds because if we add an arc for R[[x]] from w to v, then we also
added the arc from v to v. From w we only x-access worlds that take x to
be true.

2. This raises another question: Buridan’s axiom is controversial. (Bradwar-
dine did not take it as an axiomatic principle of truth.) Is it defensible on
some considerations? Are any of the extra claims that hold in our fixed-
point models defensible? Or should we look for model constructions that
refute questionable claims?

3. Further to the issue of what other principles hold in our models, we can
ask whether any further principles concerning truth and signification have
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independent merit, and of those that have merit, do they hold in fixed-
point models? We have seen that T-introduction cannot be added at the
point of paradox, but that T-introduction for grounded sentences can. We
have used the concept of groundedness in our meta-language. Can we
introduce this to the object language without paradox?

4. Other issues arise concerning the logic of fixed point models: is there an
axiomatisation of the logic of a fixed-point?

5. What would be the strength of theories in this logic?

6. How does the non-modal version of the construction relate to known the-
ories of truth?

7. What is the behaviour of other ungrounded sentences in the models?

8. What about other logics (ternary frames for relevant logics, etc.)?

9. Notice that we have a different accessibility relation for each declarative
object. In our case, declarative objects are sentences. Do sentences with
the same meaning (in some sense or other) have the same signification?
In our fixed point models it does not hold that any two sentences that are
true at the same set of worlds would have the same signification. Consider
the one world model and a liar sentence L where we have L ≡ ¬TpLq, and
hence pLq : ¬TpLq. In our model, the sentence L holds (at the only world),
since ¬TpLq. Take a tautology >. This is equivalent to L in our model: we
have L ≡ >. However, the accessibility relation for pLq differs from that
for p>q, since we have Tp>q and we have ¬TpLq. Equivalence of sentences
in our model (in the sense of having the same interpretation in the set of
worlds) does not suffice to force equivalence of the signification of those
sentences, and it cannot.

However, the fixed point construction is enough to ensure that if sentences
A and B have the same interpretation in each stage of the construction,
then the accessibility relation for pAq will equal that for pBq. Is there
a way of independently charactersing this kind of equivalence between
declarative objects?10

These are more than enough questions to keep us going for the next few years.
Hopefully the answers will help us relate the strength of theories of truth such
as Bradwardine’s with other logics that are better understood.
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