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Abstract: This note explains an error in Restall’s ‘Simplified Semantics for Relevant
Logics (and some of their rivals)’ [2] concerning the modelling conditions for the axioms
of assertion A ! ((A ! B) ! B) (there called c6) and permutation (A ! (B !

C)) ! (B ! (A ! C)) (there called c7). We show that the modelling conditions
for assertion and permutation proposed in ‘Simplified Semantics’ overgenerate. In fact,
they overgenerate so badly that the proposed semantics for the relevant logic R validate
the rule of disjunctive syllogism. The semantics provides for no models of R in which
the “base point” is inconsistent.

This problem is not restricted to ‘Simplified Semantics.’ The techniques of that paper
are used in Graham Priest’s textbook An Introduction to Non-Classical Logic [1], which
is in wide circulation: it is important to find a solution. In this article, we explain
this result, diagnose the mistake in ‘Simplified Semantics’ and propose two different
corrections.
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the problem.§1

The models for relevant logics considered in Restall’s ‘Simplified Semantics for
Relevant Logics (and some of their rivals)’ [2] take the form hW,g, R, �, vi where
W is a set containing the element g, and R is a ternary relation on W, such
that Rgxy if and only if x = y. (This condition is the distinctive feature of the
simplified semantics.) � is a function from W to W. Finally, v assigns to each
atomic formula a truth value at each point.

The relation R is used for the interpretation of the conditional ‘!’. vx(A !

B) = 1 iff for each y, z where Rxyz, if vy(A) = 1 then vz(B) = 1. The designated
point g, with its special condition on R (where Rgxy iff x = y) ensures that for
each model, vg(A ! B) iff A entails B in the model — if every A-point is a

�Thanks to Graham Priest for conversations on this topic. This research is supported by the
Australian Research Council, through grant dp0556827. { See http://consequently.org/
writing/permutation for the latest version of the paper, to post comments and to read com-
ments left by others.
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B-point. The � operator is used to model negation: vx(¬A) = 1 iff vx�(A) = 0.
In this way, vx(A) and vx�(A) may take the same value when x and x� differ.

These models suffice for the basic relevant logic B. To model stronger logics, you
need conditions on the accessibility relation R.

The conditions proposed in ‘Simplified Semantics’ of interest to us are as follows:

d5 If Rabc then for some x 2 W, Rabx and Rxbc. (This makes (A ! (A !

B)) ! (A! B) true at g.)

d6 If Rabc then Rbac. (This makes A! ((A! B) ! B) true at g.)

d7 If Rabx and Rxcd then for some y 2 W, Racy and Rybd. (This makes
(A! (B! C)) ! (B! (A! C)) true at g.)

d20 If Rabc then Rac�b�. (This makes (A! B) ! (¬B! ¬A) true at g.)

Each of these conditions is wanted when it comes to modelling the relevant logic
R, since each of the formulas made valid hold in that logic. However, there is a
problem with the conditions as stated.

The basic property of g — that Rgxy if and only if x = y — gives us Rgg�g�.
By d5, we have some x where Rgg�x and Rxg�g�. From Rgg�x it follows that
x = g�. This tells us that Rg�g�g�. By d20 we have Rg�gg, and by d6 we have
Rgg�g, which gives g� = g.

This is a problem, since if g� = g then the base point g is consistent. This means
that we leave out important models for the logic R. R is, by nature, paracon-
sistent. It allows for inconsistent but non-trivial theories. These models do not
reflect that, as the argument from A,¬A to B is not relevantly valid. The com-
pleteness proof of ‘Simplified Semantics’ [2] claimed that for any invalid argu-
ment we have some model where the premises are true and conclusion untrue.
So, the result stated there is incorrect.

We have seen the problem with d5, d6 and d20. The problem also occurs with
d5, d7 and d20, since d7 entails d6. Suppose Rbcd. It follows that Rgbb and
Rbcd, so we may apply d7, to infer that there’s a y where Rgcy and Rybd. Rgcy
tells us that c = y, and so, we have Rcbd. So, we have moved from Rbcd to
Rcbd, which gives us d6.

This problem, unfortunately, is not restricted to ‘Simplified Semantics.’ The
techniques of that paper also appear in Graham Priest’s textbook An Introduc-
tion to Non-Classical Logic [1], so it is important to diagnose the problem and
to find a solution.

the diagnosis.§2

The mistake in the paper is not difficult to isolate. As we indicated above, the
completeness proof breaks down.
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The “proof” constructs a canonical model for refuting an invalid argument from
Σ to A. You expand Σ into a set Π of sentences that is prime (B ∨ C 2 Π iff
B 2 Π or C 2 Π) and a Π-theory (not only is Π closed under entailment, but
also Π-entailment, so whenever B ! C 2 Π, if B 2 Π then C 2 Π) which does
not contain A. Then the model consists of the collection of all prime Π-theories,
together with a special point Π. This special point will be the base point in the
model. For the relation R, we specify RΠΓ∆ iff Γ = ∆ for each Γ, ∆ 2 W, and
otherwise, RΣΓ∆ iff whenever B ! C 2 Σ and B 2 Γ , we also have C 2 ∆, for
each prime Π-theory Σ, Γ and ∆. In general, in the canonical model the theory
Σ makes true just the formulas in Σ. The special point Π makes true exactly the
same formulas as the point Π. Π and Π differ only with regard to the relation R.

Given a logic extending the basic relevant logic B, the canonical models for B
provide counterexamples to invalid arguments. So far, so good. The mistake
in the completeness “proof” occurs elsewhere. In ‘Simplified Semantics’ Restall
noted that we needed to do extra work to ensure that in the canonical model
we can verify d6 and and d7, even when the logic validates the corresponding
axioms. The difficulty arises when we permute a base point Π away from the
first position in R. We have RΠΣΣ but—as the definition of R stands—we do not
have RΣΠΣ. Π enters into R-relations only in the first position except for the
case RΠΠΠ.1 In ‘Simplified Semantics’ Restall proposed a re-definition of the
behaviour of R to take account of this fact.

Unfortunately, Restall did not check that R, so redefined, would also satisfy other
frame conditions (such as d5 or d20) in the presence of their corresponding ax-
ioms. The redefinition that Restall proposed does not work. The modified canon-
ical models do not satisfy each of the frame conditions required for modelling
the relevant logic R.

the first option: one special point.§3

Looking at the failed completeness proof, it seems that there are two options for
repair. The first might be to correct the modification: show that some redef-
inition of the accessibility relation R allows us to define a model in which the
modelling conditions are satisfied. The second might be to modify the frame
conditions in the list d5–d20. The result of the first section shows that the first
option cannot work. The problem is not merely with the completeness construc-
tion, but with the model conditions themselves. Any model satisfying d5, d6
and d20 has a consistent base point. No fancy footwork with a canoncial model
construction lets us escape this fact.

So, we must modify at least one of the frame conditions. Given the diagnosis,

1This choice is not essential to the construction. We could take, for example, RΣΠ∆ if and only
if RΣΠ∆, but then the problem would obtain in reverse. Under the condition c6, we have RΣΠ∆
whenever Σ � ∆ (see Case 2b earlier), so choose some Σ � ∆. We have RΣΠ∆, and then RΣΠ∆
and by d6, RΠΣ∆ when Σ 6= ∆, contradicting our condition for the base point.
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the conditions that permute points from the first place in R into another place in
the relation are suspect. In our list of conditions, d6 and d7 are suspect.

In the canonical model construction, RΠΣΣ is true, but RΣΠΣ is false. So d6
is false in the canonical model. We must find a condition true in the canonical
model which is strong enough to ensure that in any model in which it holds, the
axiom c6 (that is, A! ((A! B) ! B)) is true at g.

To validate c6 at g, it suffices to show that for each a 2 W, whenever A is true
at a, so is (A ! B) ! B. To check (A ! B) ! B at a, suppose that Rabc
and A ! B is true at b. We need to verify that B is true at c. Now, we have
A at a, A ! B and b and we want B at c. The most straightforward route
is to have Rbac, that is, to use condition d6. How can we get the same effect
without applying d6? In the canonical model we may have RΠΣΣ but not RΣΠΣ.
However, we do have RΣΠΣ, as the ‘surrogate’ base point Π enters into normal
R relations. Π and Π are in a special relationship. Anything true at Π is true at
Π, and vice versa. In general, we could validate c6 if we could argue that when
Rabc, and A is true at a, A ! B is true at b, then there is an a 0 where Rba 0c,
and where A is also true at a 0. For then, we could still conclude that B is true at
c. But how are a and a 0 related? How can we ensure that the A true at a is also
true at a 0?

Fortunately, the solution is at hand. In Section 5 of ‘Simplified Semantics’ Re-
stall discusses the inclusion relation among worlds. This is a reflexive, transitive
relation 6 on W satisfying this condition:

a 6 b)


Rbcd) Racd if a 6= g

Rbcd) c 6 d if a = g

b� 6 a
�

always

Given that truth-at-a-point is preserved along inclusion for atomic formulas (if
a 6 b and va(p) = 1 then vb(p) = 1) then it is preserved for all formulas in the
language, by an easy inductive argument. We can use 6 to relate b and b 0 from
the previous discussion.

In the canonical model, the inclusion relation is the subset relation between
prime Π-theories, and for the special point Π, we fix Π 6 Γ if and only if Π 6 Γ

and Σ 6 Π if and only if Σ 6 Π. So Π and Π are indistinguishable as far as
6 is concerned. It is straightforward to verify that 6 so defined is an inclusion
relation.

Replace d6 by the following clause:

d6 0 If Rabc then for some a 0 > a, Rba 0c

We have seen that any model in which d6 0 is satisfied makes A! ((A! B) !

B) true at g.
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We must verify that our canonical model satisfies d6 0 when the logic validates
A ! ((A ! B) ! B), in order to patch the completeness proof. This is a
straightforward argument with two cases. Suppose we have RΣΓ∆. We wish to
find a Σ 0 > Σ such that RΓΣ 0∆. Case 1: Σ 6= Π. In this case Γ, ∆ 6= Π too (as Π
only appears in the second or third place of an R-fact if also appears in the first
place) and we may choose Σ 0 = Σ, and the standard argument to the effect that
RΓΣ∆ works.2 Case 2: Σ = Π. In this case the R-fact is RΠΓΓ . There are two
subases. Case 2a: Γ = Π. Permuting RΠΠΠ we have nothing to prove. Case 2b:
Γ 6= Π. Now we do not have RΓΠΓ , but we do have RΓΠΓ (since if A ! B 2 Γ

and A 2 Π we can deduce that (A! B) ! B 2 Π (since A! ((A! B) ! B) is
valid), and since Γ is closed under Π-entailment, we have B 2 Γ , as desired) and
Π 6 Π. So we have verified d6 0 in the canonical model.

The clause d7 faces the same problems. Even though it does not look like there
is any permutation from first place into second place (as there is in d6), setting
a = g or x = g may have this effect. We modify the clause as follows, to find
something that both validates (A! (B! C)) ! (B! (A! C)) and is satisfied
in the canonical model.

d7 0 If Rabx and Rxcd then for some y, and some b 0 > b, Racy and Ryb 0d.

This clause validates (A ! (B ! C)) ! (B ! (A ! C)) is can be checked by
the usual argument. Suppose A! (B! C) is true at a, to verify B! (A! C).
For this, suppose that Rabx and B is true at b. Is A! C true at x? Suppose that
Rxcd, andA is true at c. We wantC true at d. By our condition, we have a y 2W
and a b 0 > b where Racy and Ryb 0d. We have A true at c and A! (B! C) at
a gives B! C at y. Since b 0 > b we have B true at b 0 and Ryb 0d gives C true at
d as desired.

Clause d7 0 is satisfied in the canonical model, as can be checked in a number of
cases. Case 1: a = Π. We have RΠbb (x = b) and Rbcd. We wish to show that
RΠcy and Ryb 0d for some y and some b 0 > b. RΠcy forces y = c, so we need
Rcb 0d for some b 0 > b, given the condition that Rbcd. Case 1a: b = Π, c = Π.
Here, we have d = Π and choose b 0 = Π and we are done. Case 1b: b = Π,
c 6= Π. Then we have RΠcc (c = d), and we choose b 0 = Π, since we have RcΠc
by the standard argument (this is the first point in the argument where we need
to choose a value for b 0 distinct than b).

Case 2: x = Π. Here, since RabPi we must have a = b = Π. Given Rxcd, i.e.,
RΠcd, we have c = d also. Therefore, to find a b 0 > b and a y where Racy and
Ryb 0d, we need b 0 > Π and y where RΠcy and Ryb 0c. For RΠcy we need c = y.
For Ryb 0c we need, then Rcb 0c. For this, if c 6= Π we may choose b 0 = Π > Π

for the usual argument for RzΠz succeeds (this is the first point in the argument
where we need to choose a value for b 0 distinct than b). If c = Π, then we may

2If A ! B 2 Γ then if A 2 Σ by the validity of A ! ((A ! B) ! B) in the logic we have
(A! B)! B 2 Σ and RΣΓ∆ gives us B 2 ∆.
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choose b 0 = b = Π, since RΠΠΠ.

Case 3: a, x 6= Π. In this case b, c, d 6= Π, we may choose b = b 0 and c = c 0 and
the standard construction works.

To interpret negation in the canonical model with a single extre point we need
one small extra patch. To validate A ! ¬¬A it suffices to enforce a 6 a��. To
validate ¬¬A! A, it suffices to enforce a�� 6 a. To validate the equivalence of
A and ¬¬A it has been traditional to impose the (natural) condition a = a��. In
our case, this will not be satisfied in the canonical model if we interpret � in the
simplest fashion.

� Σ� = {A : ¬A 62 Σ} for each prime Π-theory, Σ.

� Π� = Π�.

(So, according to �, Π and Π are indistinguishable. Again, it is only R that can
distinguish Π and Π.) In this case, in the presence of A $ ¬¬A, we have Π 6=

Π�� = Π. To model the A $ ¬¬A in this semantics, it suffices to admit that
a 6 a�� and a�� 6 a, without requiring identity in the case of the base point.

There is no doubt that admitting a 6 a�� and a�� 6 a without enforcing a =

a�� is not attractive. The alternative is to allow an extra extra point to stand as
the ‘star’ of Π. This approach has different complications: we need to define the
behaviour of this new point in R and see that all of the conditions are satisfied for
your target logics. There are many target logics and many conditions to check.
This approach is the topic for the next section.

the second option: two special points.§4

So, a second simplified semantics for logics stronger than B can be read off a
different canonical model construction, in which points are prime Π-theories,
with the addition of two special points, Π (which has the same members as Π)
andΠ (which has the same members asΠ�).3 To define R in this canonical model,
we now need three clauses, for prime Π-theories, for Π, and for Π.

� RΣΓ∆ iff whenever A! B 2 Σ and A 2 Γ then B 2 ∆.

� RΠΓ∆ iff Γ = ∆.

� RΠΓ∆ iff whenever A ! B 2 Π (that is, when A ! B 2 Π�) and A 2 Γ

then B 2 ∆.

To define the function � on this structure, we have for prime Π-theories Σ� =

{A : ¬A 62 Σ} as before; and we setΠ� = Π andΠ� = Π. For the inclusion relation

3As before, this means that officially Π and Π are not sets. Exactly how they are to be dis-
tinguished from the prime Π-theories is unimportant. We will abuse notation to consider the
‘members’ of Π, which are no more and no less than the members of Π�.
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6, Π acts in just the same way as Π� (just as Π and Π are indistinguishable by
6). The rest of the definition of the canonical model is kept from before.

In this structure, then, x = x�� holds universally, if A is equivalent to ¬¬A in
the underlying logic.

Now we must consider the axioms c6 and c7 to see how corresponding condi-
tions fare in this new canonical model. Recall the modified frame conditions.

d6 0 If Rabc then for some a 0 > a, Rba 0c

d7 0 If Rabx and Rxcd then for some y, and some b 0 > b, Racy and Ryb 0d.

In the presence of c6: A ! ((A ! B) ! B), d6 0 holds in the new canonical
model. The reasoning from before applies, with the addition of a new case,
Case 3: Σ = Π. In this case, if RΠΓ∆, then RΠ�Γ∆ and we have RΓΠ�∆ and
Π� > Π, so the condition is satisfied.

For c7, the condition remains sound for identical reasons.

For completeness, we may follow the reasoning of §3 � 11 must be modified
slightly, in to deal with the different behaviour of R on the extra points. The
argument for completeness goes as follows: Suppose RΣΓ∆ and R∆ΘΞ; we want
Ω and Γ 0 � Γ such that RΣΘΩ and RΩΓ 0Ξ.

Case 1: Σ = Π. Then Γ = ∆; set Ω = Θ. Then we have RΠΓΓ and RΓΘΞ; and
need RΠΘΘ and RΘΓ 0Ξ. The first is automatic by construction. (a) Γ = Θ = Π;
then Ξ = Π; set Γ 0 = Π; we need RΠΠΠ; and this is automatic by construc-
tion. (b) Θ = Π, Γ 6= Π; then we have RΓΠΞ; let Γ 0 = Ξ; then RΘΞΞ is auto-
matic from construction, and we need to see that Ξ � Γ : Suppose A 2 Γ ; from
` [A ! (B ! C)] ! [B ! (A ! C)] it follows that ` A ! [(A ! B) ! B]

and so that ` A ! [(A ! A) ! A]; so (A ! A) ! A 2 Γ ; but ` A ! A; so
A ! A 2 Π; so with RΓΠΞ, A 2 Ξ; so Ξ � Γ . (c) Otherwise set set Γ 0 = Γ ; sup-
poseA! B 2 Θ andA 2 Γ ; then since ` A! [(A! B) ! B, (A! B) ! B 2 Γ ;
so with RΓΘΞ, B 2 Ξ; so RΘΓΞ.

Case 2: ∆ = Π. Then Θ = Ξ; we have RΣΓΠ and RΠΘΘ; set Γ 0 = Γ . Then we
need Ω such that RΣΘΩ and RΩΓΘ. By the construction from SS2 there is Ω
such that RΣΘΩ; suppose A! B 2 Ω and A 2 Γ ; then by the construction there
is C 2 Θ and C ! (A ! B) 2 Σ; so with c7, A ! (C ! B) 2 Σ; so with RΣΓΠ,
C! B 2 Π; so B 2 Θ; so RΩΓΘ.

Case 3: Σ,∆ 6= Π. Set Γ 0 = Γ ; then by the previous construction, there is an Ω
such that RΣΘΩ; suppose A! B 2 Ω and A 2 Γ ; then by the construction there
is a C 2 Θ and C! (A! B) 2 Σ; so with c7, A! (C! B) 2 Σ; so with RΣΓ∆,
C! B 2 ∆; and with R∆ΘΞ, B 2 Ξ; so RΩΓΞ.
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This completes the difficult cases of the completeness proof for the second patched
simplified semantics. The clauses for negation are straightforward, and we may
pronounce the completeness proof finished. We have two different fixes for the
mistake in Restall’s ‘Simplified Semantics’.

inclusion elsewhere.§5

It is striking that this difficulty for the simplified semantics occurs at the very
place where the four-valued approach seems to run aground in Routley’s ‘The
American Plan Completed’ [3]. There, a reasonably natural four-valued seman-
tics for relevant implication meets difficulty with the verification of our condi-
tion d6 [3, page 154].

Routley’s project was to model negation by allowing four values in the eval-
uation — true-only, false-only, both-true-and-false and neither-true-nor-false,
and to have two ternary accessibility relations governing the conditional, one
for truth and the other governing falisty. Alas, once we impose a contraposi-
tion axiom such as (A ! B) ! (¬B ! ¬A), we require connections between
the two accessibility relations that seem to make it difficult to impose the re-
quired constraints on those relations when it comes to strong conditions such as
d6. Routley’s own favoured solution is to mimic the � operator directly in the
four-valued semantics (thereby undermining the distinctiveness of the Ameri-
can plan).

It seems to us that the approach here gives us hope that a different kind of
solution might be found. Once we admit four values in the semantics, then
there seems to be more than one possible inclusion relation worth modelling.
Not only the obvious relations 6 for preserving truth, and 6� for preserving
non-falsity (or, if you prefer, preserving falsity in the converse direction) but
also the relations 6� (where a 6� b whenever what is true at a is not false at b)
and 6] (where a 6] b whenever what is not false at a is true at b). Relations
like these are definable in the canonical model, and it seems to us that admitting
them will provide enough control over the the interaction between truth and
falsity to open up new modelling conditions for axioms such as c6. However, we
must leave working through these details for another place and time.
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