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Subintuitionistic Logics
GREG RESTALL

Abstract Weakening the conditions on the Kripke semantics for propositional
intuitionistic logic (J) unearths a family of logics below J. This paper provides a
characterization of eleven such logics, using Kripke semantics, proof theory, and
algebraic models. Questions about modelling quantificationin theselogicsare also
discussed.

1 Introduction  Once the Kripke semantics for normal modal logics were intro-
duced, awhole family of modal logics other than the Lewis systems S1 to S5 were
discovered. These logics were obtained by changing the semantics in natural ways.
The same can be said of the Kripke-style semanticsfor relevant logics: awholerange
of logicsother than the standard systemsR, E and T were unearthed once asemantics
was given (cf. Priest and Sylvan [6], Restall [7], and Routley et al. [8]). Inasimilar
way, weakening the structural rules of the Gentzen formulation of classical logic
givesrise to other ‘substructura’ logics such aslinear logic (asin Girard [4]). This
process of ‘strategic weakening' is becoming popular today, with the discovery of
applications of these logicsto areas such aslinguistics and the theory of computation
(cf. van Benthem [1]).

Until now no-one has (to my knowledge) examined what the process of weak-
ening does to the Kripke-style semantics of intuitionistic logic. This paper remedies
the deficiency, introducing the family of subintuitionistic logics.

These systems have some appealing features. Unlike other substructural logics
such aslinear logic (which lack distribution of extensional disjunction over conjunc-
tion) they have a very natural Kripke-style worlds semantics. Also, the difficulties
with regard to modelling quantification in these systems may be able to shed some
light on the difficulties in naturally modelling quantification in relevant logics, as it
must be admitted that the semantics currently available for quantified relevant logics
are rather barogue (cf. Fine [3]). But most importantly, delving in the undergrowth
of logics such as intuitionistic logic gives us a ‘feel” for how such systems are put
together, and what job is being done by each aspect of the modelling conditions in
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the semantics. There is no better way to see how something works than to take it
apart and put it back together. Solet’s seewhat islurking beneath Heyting's beautiful
system.

2 Thesemantics Takeapropositional language with a countable number of propo-
sitional variables, and the connectives

f A v D

of which the first is nullary (that is, a propositional constant) and the rest, binary.
Formulas are defined inductively in the usual manner—we use parentheses to disam-
biguate bindings, and we |eave them out whenever the context is clear. Conjunction
and disjunction bind more strongly than implication, so p A q D r v sisshort for
(pPAQ) D (rvs). Weuse A, B as metavariables ranging over formulas, and ~A is
definedas A D f.

The models of propositional intuitionistic logic that we will consider are quadru-
ples (g, W, R, I}, where g, called the base world, is a particular element of the set
W of worlds. R is areflexive and transitive binary relation on W representing ac-
cessibility. The base world can be taken to be omniscient, in that it accesses every
world—so gRw for each w € W. Each world forces the truth of formulas, and
this relation is indicated by I+ (so, w I Aisread as ‘w forces A’). The forcing
relation satisfies a few conditions: a world forces a conjunction whenever it forces
its conjuncts, it forces a disunction whenever it forces at least one digunct, and it
forces a conditional just in case at any world accessible from it, if the antecedent is
forced there, so is the consequent. The constant f is never forced anywhere. Also,
forcing is hereditary, in that if w IF A and wRv, then v I A too. The theorems of
intuitionistic logic arethe formulasthat areforced by g inany model. Thevalid rules
are those that are preserved at g in any model.

It must be pointed out that this is not the standard way to present the Kripke
semantics for intuitionistic logics. (For the origina presentation, see Kripke [5]).
Most often, no world is picked out as abase world, and validity may be characterized
as truth-preservation at al worlds in all models. However, restricting our class of
models to those that have base worlds, and defining validity in this way results in
no loss of generality. (Given any model at all, we can cut it down to the submodel
which contains only a particular world w, and al of the worlds it accesses, without
any changein thetruths of formulas at worlds.) The reason we consider models with
an omniscient world is that it is important in the semantics of the systems below
intuitionistic logic.

On a standard interpretation of this semantics, aworld is a state of information,
and state y is accessible from state x just in case y is an extension of X, so y will
not reject any information that x accepts. This view motivates the conditions on the
semantics—but it is clearly not the only possible view. Suppose that accessibility is
related to time, and that we may reject some of our information as time progresses.
Then if state y is accessible from state x just when y islater than x in our process of
information gathering, thereisno need for y to confirm all that x confirms. Heredity
could be rejected on thisinterpretation. In thiscontext, A > (B O A) will not come
out asalogical truth.

Another possibility isto reject thereflexivity of accessibility. Reflexivity ensures
that states of information are closed under modus ponens. In contexts of vagueness
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we may want this to happen. A state of information might inform us that 10000
grains of sand makes a heap, and that if n grains of sand make aheap, so don — 1.
One way of dealing with vague predicates is to treat this state of information as
away of “stretching the truth” (Slaney [9]), and that the state of information that
includes the fact that 9 999 grains of sand makes a heap, or the fact that if n grains of
sand make a heap so do n — 2, stretch the truth further. Treating worlds as ways of
stretching the truth, we wouldn’t want them to be closed under modus ponens—for
each application of modus ponens might involve stretching the truth a little more,
as our example illustrates. Under this interpretation, the clauses for the connectives
till make sense—in particular, a degree of stretch will validate a conditional just
in case we stretch the truth more to accommodate the antecedent, the consequent is
also accommodated. So, on this interpretation of worlds, we have reason to reject
reflexivity.

Rejecting the requirement that f never be forced at any world was introduced
by Johannson in his minimal logic [2]. Thereisno reason to reiterate the reasons for
this here.

It is also possible to reject the transitivity of accessibility. It is not easy to see
any interpretation of accessibility that would motivate the rejection of this postul ate,
but asremoving it does not make any of our proofs any more difficult, it isinstructive
to see what happenswhen it is absent. We leave the task of finding ausefor thisto a
later occasion.

This leaves R bereft of conditions, except for the omniscience of g. This con-
dition is vital for principles such as prefixing: A> B (C > A) D (C D B). If
we remove this requirement, we lose such principles. If g does not access itself, we
even lose modus ponens. It would be interesting to see exactly what isleft behind in
these cases, but the methods used in this paper will not suffice to prove compl eteness
of the resulting semantics. We will have to make do with the restriction we have on
R, leaving it to another time and other methods to see what these really basic logics
arelike.

Intherest of thissection wewill introduce the system which isgiven by dropping
each of the conditionson accessibility, and then in the next we seewhat happenswhen
the conditions are added one at atime.

Definition 2.1 A basic subintuitionistic model is aquadruple (g, W, R, I-), where
g, caled the base world, is aparticular element of the set W of worlds. Risabinary
relation on W, called accessibility. The base world is omniscient, so gRw for each
w € W. Each world forces the truth of formulas, and this relation isindicated by IF-.
The relation satisfies the following conditions.

wli- AAB ifandonlyif xIFAandw - B
wli-AvB ifandonlyif xI-Aorwl-B
wl- AD> B ifandonlyif foreachvwherewRuv,ifvi- Athenv - B

The constant f isleft arbitrary. A model forces A just when its base world forces A.
A set ¥ of formulasissaid to give A just when each model that forces every element
of ¥ asoforces A. Thisiswritten ¥ = A. If X isempty, then thisiswritten = A.

To get afedl for the kinds of formulas forced at the base world, it is good to
validate the following results.
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Lemma 2.2 Inany mode (g, W, R, I), for each w € W and each formula A,
wliFADA.

Theorem 2.3 We have the following:

EADA EAABVC)D(AAB)V(AAC)

EAABDA EAD(BDB)

EAABDB EMADBAADCDADBAC

EADAvVB EADOAMBDOC)D(AVBDOO)

EBDODAVB EADBABDIC)DADC)

A,BE=EAAB (ADB)VE, COD)VEE(BDC)D(ADD))VE

ALADBEB AVC, (ADB)vCEBVC
ADB,CoDEMBD>C)D(ADD)

Proof: Proving these results is a trivial exercise of validating rules. Lemma 2.2 is
useful for= A> (B> B). Toshowtha ADB,CoODEB>C)> (ADD)
you need to use the omniscience of g.

Thechoiceof theoremsand valid rulesin Theorem 2.3isnot compl etely arbitrary.
They provide a Hilbert-style axiomatization for the logic of basic subintuitionistic
models—which we will call SJ.

Definition 2.4 SJ isthelogic given by the following axioms and rules

FADA FAABVC)D((AAB)V(AAC)
FAABDA FAD(MBDB)

FAABDB FADB)AADC)D(ADBACQ)
FADAVB FADCOABDOICDAVBDOO)
FBO>DAVB FADBABDOC)DADC)

A, BHFAAB (ADB)VE,COD)VEFR((BD>C)D(ADD)VE
A,ADBF-FB AvVvC, (ADB)vCkFBVC
ADB,CODFMB>C)D(ADD)

Theorem 2.3 showsthat the basi ¢ subintuitionistic model s are sound with respect
toSJ. Thatis, if ¥ - A, then X = A. Completenessis not much more difficult—we
will show that if X # A, then thereis a particular model that forces each element of
¥, but doesn’t force A. Thismodel will be a canonical model, which has particular
sets of formulas as worlds.

The completeness proof will then proceed as follows: We ‘fill out’ the set ¥ to
formaset IT that will serve asour base world, and weform aclass of setsof sentences
to serve asthe other worlds. These sets must respect the modelling conditionsfor the
connectives. If aworld contains a conjunction, it must contain both conjuncts. If it
containsadisjunction, it must contain one of thedisjuncts. If B > CisinITand Bis
in some world, then C must be in that world too. This meansthat IT is closed under
modus ponens, but the other worlds need not be so closed, because accessibility isno
longer reflexive. Such sets of sentences are called prime IT-theories. The set of all
nonempty and nonfull (that is, not containing every formula) prime I1-theories will
count as our model. The accessibility relation is defined in the usual way—it relates
Y toAjustwhenforeachB D C € X, if B € A, then C € A too. The heart of the
completeness proof involves showing that the resulting collection of worlds actually
forms amaodel, in which the sentences forced by aworld are just the elements of the
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world. The only difficult parts are showing that we can construct a IT that contains
¥ yet excludes A, and that for each world ¥ and B O C ¢ X thereisaworld A
where B € A but C ¢ A. These results require the well-ordering of our language,
and the application of Zorn’s lemmato provide prime theories that do the job. The
rest of the proof is standard.

Definition 2.5

o If ITisaset of sentences, then I isthe set of membersof IT of theform A O B.

e If ITisaset of sentences, A IT and \/ IT are the closure of IT under conjunction
and digunction respectively.

e X Aifandonly if X UTI5 F A

e X isall-theory if and only if:
(i) ifA,BeXthenAABe I, (ie. A\ T = %),
(i) ifFp AD> Bthen(if Ae &, B € X).

e Yisprimeifandonly if if AvBe XthenAe X or B € X).

o W isthe set of all nonempty, nonfull prime IT-theories.

e Risdefined on sets of formulas as follows:

YRA ifandonly if (if AD B € X then (if Ae Athen B € A))

e X Aifandonlyif forsomeB,,...,Bhe A, X g B, Vv...V By

o - X D Aifandonlyif forsome A, ..., Ap € Z,andsomeB,, ..., B, € A,
Fn AAA...AAL DBy Vv...V By

e X isTI-deductively closed if and only if (if X - Athen A € X).

e (X, A) isall-partition if and only if X U A is the set of all formulas, and
Vo D A.

The worlds in our canonical models will be prime theories—we need results
about the provability relation in the Hilbert system to show that particular prime
theories exist.

Lemma26 IfA-BthenCvARFCVB
Proof: An easy induction on the length of the proof.
Corollary 2.7 IfA-CandBF C,then Av B+ C.

Proof: By thelemma, AvBFCvVvB,andaso,Cv BFCvVC. Butitissimple
toshowthat CvC+F C,s0 Av B C asrequired.

Now we need results concerning how to construct prime theories.
Lemma28 If (X, A)isall-partition, then X isa prime IT theory.

Proof: Take A, B € X. Thent/qg ¥ D A ensuresthat AAB & A,askqp AABD
AAB.So,AABe . TakeAe T andg AD B. Thent/g X D A ensuresthat
B& A ,s0B e X. So, T isall-theory.

Take Av B € X. Thent/p ¥ D A ensuresthat either Aor Bisnotin A, as
Fn Av B D> Av B. So, either Aor Bisin X. So, X isprime, giving us our result.

Lemma29 If X ¥ A, thenthereare ¥’ 2 X, A’ O A, where (X', A’) isa
partition, and X’ is deductively closed.
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Proof: Consider theset X = {{(Z,,Ay) : ¥ C Xy, A C Ayand X, F A} It
is nonempty, partially ordered by pairwise inclusion, and every chain has an upper
bound (its union). Therefore, it has amaximal element by Zorn’s lemma. Take one
tobe (X', A’). It remains to be shown that it is a partition. Supposeitisnot. Then
thereisaC whereC ¢ ¥’ and C ¢ A’, and as (X’, A’) is maximal, we must have
YU{C}+A'and X'+ A’ U{C}. Sothereare A;, A, e AT and B, B, € \/ A’
where
ALACHB; A, FBy,vC

We will show that A; A A, = B, v B, contrary to the fact that ¥’ ¥ A’, giving
our result. Itiseasy to show that A; A A, = (By v C) A A,. A distribution gives
AIANAEB,V(ALAC). BUA, ACH B, soLemma2.6givesB, vV (A, AC) -
B, Vv By, so transitivity gives A; A Ay, - B, Vv By, contradicting our assumption.

So (¥, A’) isapartition. To show that X’ is deductively closed, suppose that
Y FAIfA¢ X, wehave A e A'. Thus ¥ + A’, contrary to our assumption.
Thus A e ¥'.

Corollary 2.10 If X t/ AthenthereisaIl 2 X suchthat A ¢ IT, IT € Wy, and
IT is IT-deductively closed.

Proof: X I {A}, so by the previous lemma, thereare ¥’ 2 X and A’ O {A} where
A, (Y, A isapartition, and X’ is deductively closed. Set IT = X/, As
(T1, A’y is a partition, TT isaprimetheory, andas A € A’, A ¢ 1. ASTI - A
entailsIT - A, the deductive closure of IT ensures the IT-deductive closure of 1. To
show that TT is a IT-theory, assumethat - A D B and A € T1. Clearly, TT - B, so
B € I1. IT isnonempty asit contains each theorem and nonfull asit doesn’t include
A

Lemma2l1l If/g X D Athereare¥’ O X and A’ D A suchthat (X', A’) isa
[T-partition.

Proof: Take the proof of Lemma 2.9, and replace all things of the form X t/ Y with
o X D Y. Thisisthe proof.

Lemma212 IfX e Wpand AD B ¢ X, thenthereisal’ € W where X RT,
AeTandB ¢T.

Proof: Consider thesetsT'y = {C: AD C e X} and Ay, = {B}. It iseasy to show
thatif C D D e XandC € I'y then D ¢ Ay. Asin the proof of Lemma 2.9 we
constructaset X = {{I'y, Ay) : T C Ty, Ay S AyandifCODeXandC el
then D ¢ A,}. X isnonempty, as it contains (I'y, Ay), it is partially ordered by
inclusion, and chains are bounded by their pairwise union. Zorn's lemma gives us
amaxima element. Cal it (I', A). It must be a partition, for if C € I" v A, then
wemust have C’ e ''and D’ € A suchthat C D D’ € X (otherwise we could put
C into I" and get a bigger pair) and C' > C € X (otherwise we could put C into
A). But thisgivesC’ D D’ € X by conjunctive syllogism, which would mean that
(', A) & X, contrary to our construction.

Now X RI" by the condition on being a member of X. (I, A) isa IT-partition,
forif Fp ' O A, by the conjunctive closure of T", and the digunctive closure of A,
wemusthaveC e Tand D € A suchthattg C D D. ThismeansthatC D D € X.
So, ' e W, AeTl',B ¢TI and ZRI" aswe desired.
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Lemma 2.13 If IT € W then (IT, W, R, IF) (where A - A if and only if
A € A) isa basic subintuitionistic model.

Proof: TakeA e Wh. IfAD B eIl thenkg AD B,soif Ae€ AthenB ¢ A.
ThusTIRA. Itissufficient then, to show that I satisfies the conditions for forcing.
Clearly, A IFp AA Bifandonly if A l-p Aand A Ik B. And since A is prime,
Albg AvBifandonlyif Albkp Aor Alkg B. IfAlbFp AD Band A e T,
where AR, then B € T" by the definition of R. Conversely, if A I¥n A D B, then
thereisal’ € Wy where ART, Ae I"'and B ¢ I', by Lemma 2.12 (note that " is
nonempty and nonfull, by construction). Thus - satisfies the conditions required,
and our structure isamodel.

Now we have enough to show that X = A, giventhat X t/ A.
Theorem 214 If X I A, then X [~ A

Proof. By Corollary 2.10, thereis a prime IT-theory IT 2 X suchthat A ¢ I1. The
structure (IT, Wy, R, IFrp) isabasic subintuitionistic model, and IT I/ A, as A & T1.
So, ¥ A

3 Extensions Now that we have the basics, we can add the other conditionsto gen-
erate logics between our basic subintuitionistic logic and intuitionistic logic. These
are Transitivity, Reflexivity, Heredity (also called Weakening) and Absurdity. It isa
simple exercise to find candidate formulas that characterize the added conditions on
R and I-. My choiceis:

Name Code Condition Characteristic Formula
Transitivity b Fordluv,weW, (ADB)D>D({(BD>C)D>(ADQ))
if uRv then
if vRw then uRw.
Reflexivity w FordlveW,vRu. AA(ADB)DB
Heredity k If Aisapropositiona AD(BDA
(Weakening) parameter or f,

if v,w e W, and vRw
thenif v IF Athenw IF A
Absurdity a FordlveW,vliff. fOA

Table 1

Before we provide soundness and completeness for the additions, we need a
result about the condition of heredity.

Lemma 3.1 If heredity holds for propositional parameters and f, then heredity
holds for all formulas, provided that R istransitive.

Proof. The proof is an induction on the complexity of formulas. Heredity holds for
propositional parametersand f. Suppose it holds for formulas less complex than A.
If Aisof theform B A C, thenif vRwandv IF BAC,wehavev IF Bandv I C.
By heredity, w I Band w I+ C. Thusw I+ B A C, giving ustheresult. The case for
disjunction issimilar.

If Aisof theform B D C, thenif yRw and v IF B O C, we have for each u
where vRu, if u I B then u I C. By the transitivity of R, if wRuU’ then vRU’ so
u IF Bgivesu' I C. So,y I B > C too.
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Given this restriction on the application of heredity, we have 12 logics between
SJ and J. For obviousreasons, wewill call these the subintuitionisticlogics. To name
them we use the codes for each of the extensions. So the logic formed by adding
transitivity, heredity and absurdity to SJ is called bka. In adiagram, the logics and

their inclusions are
e bwka =J

e bwa e bka e bwk

e wa e ba e bw e bk
ea ow ob
¢S]

Theorem 3.2 The class of subintuitionistic models satisfying any of the above
conditions is sound and complete for the subintuitionistic logic with the addition of
the corresponding characteristic formula (assuming for heredity that we also have
transitivity).

Proof: For soundness, we show that the addition of a condition to the semantics
validates the corresponding characteristic formula. For completeness, we show that
adding a characteristic formulato a logic ensures that the corresponding condition
holdsin the canonical models.

Trangtivity: First show soundness. Assume that R is transitive. To show that
gF(ADB)D((BD>C) > (ADC)),assumethat w I- A D B, in order to show
thaa w I-F (B> C) > (ADC). IfwRv,andv IF B O C, we wish to show that
vIF AD C. TakezwherevRz and z I A. Then as transitivity gives w Rz, we have
zZI- B. ThisgiveszI- CasvRzand v I B O C. Thisgives usthe result.

For completeness, assumethat- (A > B) D (B> C) D (AD C)). Wewish
to show that in our canonical structure, Ristransitive. Supposethat ¥ RA and ART.
Toshowthat TRA,take AD Be X,and AeT'. AsAisnonempty B D> B € A,
andas- (AD>D B) D> (B> B) > (AD>B)),wehave (B> B) D (AD B) € %.
YRA givesAD B e A,and ARI", with A € T" gives B € T too.

Reflexivity: Assumethat Risreflexive. Toshowthatg IF AA (A D B) D B, assume
that w IF AA (A D B). AswRw, we seethat w I B, aswe desired. So we have
soundness.

For completeness, assumethat - AA (A D B) D B. Toshow that Risreflexive
in the canonical structure, supposethat A D B € I and A € I'. We then have
AA(AD B) eT,gving B € ' asrequired.

Heredity: For soundness, assume that R is hereditary (and transitive). To show that
gl A> (B> A), assumethat w I A. Takeav where wRv, and v I B. By the
previouslemmav I- A. So, w I B D A, and we have soundness.

For completeness, assumethat = A O (B D A). To show that Ity is hereditary
in the canonical structure, assumethat A € I' and 'RA. As A isnonempty, thereis
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aB e A. TheassumptiongivesB D AeT',andso A € A, asdesired.

Absurdity: For soundness, assumethat f isforcednowhere. Toshowthatg I+ f O A,
assumethat w I- f. Thisdoesn't happen, so (vacuously) w I- A.

For completeness, assume that = f > A. The canonica structure features
nonempty, nontrivial prime IT-theories. Takeonetobe . If f € T then A € T for
any A. Thisdoesn't happen, so f ¢ X.

Theorem 3.3 Each of the 12 subintuitionistic propositional logics are distinct.

Proof. Four splitting models are required. We first split the pairs (bwka, bwk),
(bwa, bw), (bka, bk), (wa, w), (ba, b) and (a, SJ). A model that does this has one
world g, suchthat g I f, and g I A. R isthe identity relation. In this model
gl f o A, fasfying the axiom a. However, it is a model of bwk. So, the first
logics of each of our pairs are shown to be strictly stronger than their counterparts
that lack a.

Secondly, we split (bwka, bwa), (bka, ba), (bwk, bw) and (bk, b) by giving a
model of bwa that refutes k. For this we need two worlds g and v. Take R to be
a universal relation on the two elements, and set g I A and v |- B, but no other
atomic forcing relations. Clearly this models bwa. However, g I¥ B O A, and so
glf AD (B D A). Eachlogic that hask is strictly stronger than its counterpart that
lacksit.

Thirdly, to split (bwka, bka), (bwk, bk), (bwa, ba), (bw, b), (wa, a) and (w,
SJ) consider the model of bka that has two worlds g and v, such that gRg and gRuv,
but v doesn't access anywhere. Setg IF A, v IF A, g If Band v If B. We have
viF AAN(AD B),soglf AA (A D B) O B. Logicswith w are strictly stronger
than their counterparts without it.

Finally, tosplit (bwa, wa), (bw, w), (ba, a) and (b, SJ) wetakeamode of bwa
with four worlds, g, vy, ve, v3. The accessibility relation relates g to everything, v,
toitself, v, and not vs, v toitself and vy, and v, toitself. If wehave v, I- A, vy If B
andvy I C,thenvs FB D C,vs If AD Candus If AD B. Wecanadd v, If A,
aswedon’t need to keep k. Thisgivesv, IF AD B,and v, I¥ (B D C) D (AD C).
Atlast thisleavesuswith g If (AD B) D ((B > C) D (A D C)), which was what
we needed to show that logics with b outstrip those without it.

4 Propositional structures The Kripke semantics provides one way of examining
our logics. Another isgiven by the algebraic semantics—or propositional structures.
These structures stand to our logics as boolean algebras stand to classical logic
and Heyting algebras stand to intuitionistic logic. In other words, they model our
logics, and provide a compact al gebraic representation of propositions, which can be
considered to be certain kinds of equivalence classes of sentences.

To assist us the formulation of the propositional structures, it is helpful to intro-
duce a new connective into the language, inspired by its usefulness in the study of
relevant logics. It iscaled ‘fusion’, written as‘o’, and it functions as the residual of
the conditional. In other words, it satisfies

A>D(B>C) A AoBDC

In J fusion collapses into conjunction, but they are distinct in most weaker logics.
For the proof-theoretic fusion to match the fusion we can model in our semantics, we
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will need an extra bookkeeping axiom:
(AocB)AC D AoC

The reason for this is the modelling condition for fusion. For A o B to satisfy the
residuation condition, it must be modelled as follows:

w |- Ao Bif and only if for some v wherevRw v IF Aand w IF B

And it is easy to see that this verifies the bookkeeping axiom. To prove soundness
and completeness, it is sufficient to note the following result.

Lemmad4.l If X € Wthen Ao B € X if and only if thereisa A € W where
ARY, Aec Aand B e X.

Proof: Firstly, suppose Ao B € . Then A D> (B D B) givesk Ao B O B,
andso B € X. Asafirst approximationto A, take Ay = {C : - A D C}. Toprime
up Ao define®, = {C > D : C € &, D € X}. Thenit is easy to verify that
A, is aIl-theory. To show that I/m Ay D ©g, assume without loss of generality
that (C; D D)V (C, DDy e \/@0 whereC,,C, € ¥ and D, D, g%, and that
Fo AD(C; D D)) Vv (Cy, D Dy). Itfollowsthat-q A D (C; ACy, D Dy v Dy),
andsotp Ao (C;ACy) DDy vDy. NowAoB e X andC, AC, € &, soour
bookkeeping axiom gives Ao (C; AC,) € X,50D; v D, € ¥ too. But X isprime,
and D, D, ¢ X, acontradiction.

Thus, by LemmaZ2.11 thereisall-partition (A, ®) where A D Ayand® D ©,.
So, A isaprime I1-theory, containing A, and ARX, forif C € ¥, and D ¢ X, then
C>De®,andsoC > D ¢ A. Thisgives usthe required prime IT-theory.

Conversely, if ARZ, Ae AandB € . Then A > (B D Ao B) gives
B> AoBe A,and ARX ensuresthat Ao B € X, aswe desired.

As well as the new connective, it is helpful to introduce a new propositional
constant t that satisfies
toA-d- A

To model t it suffices to ensure that v I- t just in case v forces at least as much as
g does. To do thisin the presence of k issimple—v I+t for every v. Thisis sound
and completefor thet-rule. Soundnessissimple, and completeness follows from the
factthat -t > (ADt) gives ADt, (- t iseasy to show) and hencet isin each
[1-theory.

For logics without K, it is a little more messy, but not significantly so. We
need to model containment of worlds with a new binary relation C. It must be
reflexive and trangitive relation, and forcing must be hereditary with respect to it.
This is given by requiring the hereditary condition for atomic propositions and f,
and making C satisfy the condition: u C v = (vRw = uRw), which givesheredity
for conditionals across C. The subset relation in a.canonical model isamodel for C,
as can be easily checked.

Giventhis, our conditionfortisv = tiff g C v. Soundnessand completenessis
simple. For soundness notethat if g =t O Atheng =t givesg = A. Conversely,
if g = Athenforeachv Jg,v = Atoo. So, g =t D A. For completeness, note
thatt € X for each ¥ D II in a canonical model. Conversely, if t € X we need



126 GREG RESTALL

IT C X. Thet ruleshowsthat if A € ITthent D A € 1. Thisgives A € X as
desired.

Givenalogic L without fusionor t, thelogics L°, L and L°! are given by adding
fusion or t or both. We then have the following result:

Theorem 4.2 L°, L' and L°! are conservative extensions of L, for every subintu-
itionistic logic L.
Proof: Takeany ¥ and AwhereinL, X ¥ A. ThenthereisaKripke-style counter-

model. We have seen that thismodel can be equipped with o andt, without disturbing
the evaluation of A. Thisgives the result.

Thisgives usenough background to define the propositional structuresand prove
soundness and compl eteness for them.

Definition 4.3 A 6-tuple (P, <,0, F, -, =) is a subintuitionistic propositional
structure if and only if it satisfies the following conditions:
o (P, <) isadidtributive lattice. The meet and join of this lattice are written as
‘U and ‘N’ respectively.
e The binary operation - (called fusion) respects the lattice, in that b < c only if
a-b<a-c,andb-a < c-a. Equivaently, wehavea- (buc) = (a-b)uU(a-c).
e Theelement 0 isaleft identity for fusion: i.e. 0-a = a for each a.
e Theelementoisprime i.e.0 <avbonlyifether0o <aoro<h.
e Thebinary operation = isaright residual for fusion: i.e.a-b < cif and only
ifa<b=c.
e Fusionsatisfiesthreestructural rules; b-a <a,a-b <a-(a-b)and(a-b)nc <
a-c.
e Theeement F isan arbitrary member of P.

Examples of subintuitionistic propositional structures are easy to find—the two
element boolean algebrais an example, where fusion isidentified with lattice join, 0
isthe top element, and O is given in the usua fashion.

Definition 4.4 EachKripkemodel witht, (g, W, R, C, I-) providesaKripke propo-
sitiona structurein the following way: Take the elementsto be the subsets of W that
are upwardly closed under C. (Or if the model is hereditary, the R-closed subsets
of W.) This forms a distributive lattice under subsethood. The identity 0 is the set
{w:wl-t}. Thissetisprime, asitis{w : g C w}, (or under heredity, it is W), and
if {w:gC w} € AUB,theneitherg e Aorg e B, andas A and B are closed
under C, {w : g C w} isasubset of either Aor B. F istakentobe {w : w I+ f}.
The other operations are given as follows:

XY = {w : for somev wherevRw,v € Xandw € Y}
X =Y ={w:foreachvwherewRv,v € Xonlyifv e Y}
Rule chopping shows that thisis a propositional structure.
Formulas can be interpreted in propositional structures in the usual way:

Definition 4.5 Aninterpretationisamap ¢ from sentencesto elements of a propo-
sitiona structure (P, <, 0, F, -, =) satisfying the following inductive clauses:

(AN B)=¢(A) Ng(B) p(f)=F

p(AV B)=¢(A) Ugp(B) p(t)=0
©(AD B)=¢(A) = ¢(B) @(AoB)=¢(A) - 9(B)
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A sentence Aistrueunder ¢ if and only if 0 < p(A).

Lemma 4.6 The propositional subintuitionistic logic, = A if and only if A istrue
under each interpretation in each propositional structure. ¥ + A if and only if for
each propositional structure and interpretation that makes each element of X true,
Aisalsotrue.

Proof: One half isthe simple matter of showing that each axiom is true under each
interpretation, and that the rules preserve truth. That is a tedious exercise | eft to the
reader.

For the other half, take ¥ and A such that X t/ A. Then thereisaKripke model
(g, W, R, IF) inwhich g I B for each B € X, but g I A. The Kripke propositional
structure given by the model can be equipped with an evaluation as follows:

o(A)={w:wl- A}

Asaresult, wehave 0 < ¢(B) foreach B € X, but 0 £ ¢(A), asdesired.

Expanding the result to deal with extensions of the basic subintuitionistic logic
isno more difficult. Each extension of subintuitionistic logic is sound and complete
with respect to algebraic semantics with the addition of the corresponding condition:

Name Condition
Transitivity a-(b-c)=(@-b)-c
Reflexivity a<a-a

Heredity a-b<a
Absurdity F<a
Table 2

The proof of thisfact isleft to the eager reader.

5 Quantification Providing an adequate modelling of quantification is an order of
magnitude more difficult than the propositional case. In fact, the only results | have
to report are of a negative nature. Be that as it may, we will add to our language the
universal and existential quantifiersV and 3, with a denumerable set {x, y, z. ..} of
variables, and aliberal supply of constants{a, b, c...}. Exactly what quantificational
axioms we ought to add is amoot point. To keep below J, we ought to add no more
than the following:

FVXAX) D A@ VYX(AD BX))F ADVxB(X)
where A does not contain X.
F A(@) D IxAX) VYx(AX) D B)F3IxAXx) > B
where B does not contain x.

However, picking this logic out with the semantics proves difficult.

If weusethe standard intuitionistic clause: that w IF VX A(X) just whenfor each v
where w Rv and each d inthedomain of v, v = A(d), the models without reflexivity
will no longer validate VXA(X) D A(a). Thisis quite drastic. Of course, as gRg,
we have universal instantiation in rule form, so it might be thought that we can live
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with that. But in fact, of our axioms and rules given above, only = A(@) D IxXA(X)
survives under thisinterpretation, and even plausi ble weakenings of therules, such as
YX(A D B(X)), AF VxB(x) (for x not freein A) fail under thisinterpretation. It is
not clear that enough principles hold so that anything like the normal quantificational
completeness proof can be made to work. So thisis an open problem.

A standard this worldly interpretation of the quantifiers, in which w I VX A(X)
just when for each d in the domain of w, w = A(d) (and the dual clause for the
existential quantifier) will validate Vx(F (X) v G(x)) D VxF(x) v 3xG(x), which
is not atheorem of J, and so, will not be atheorem of any properly subintuitionistic
quantificational logic.

Worsethanthat, the O clauses seem to wreak havoc with our rulesfor quantifiers,
unlessthedomainsarekept constant. Specifically, wehaveacountermodel toVx(A D
B(X)) = A D V¥xB(x), by taking two worlds, g and v, suchthat v IF Aand v I B(a),
sov I VXB(X) and g I¥ A D VYxB(x). Thisneed not giveg I- YX(A D B(x)) unless
aisinthe domain of g.

Therefore, the constant domain, this-worldly approach to quantification seems
to be the interesting one. However, proving completeness is not easy. Firstly, we
need to give aformal characterization of the semantics.

Definition 5.1 A quantified basic subintuitionistic model for a language L is a
structure (g, W, R, D, E, IF), where g, W, R are as before, Q is a reflexive and
transitiverelationon W, and D isadomain of quantification. E definestheextensions
of thepredicates—if Aisann-ary predicate, then E(A, ay, . . ., ay) istheset of worlds
inwhich A(ay, ..., a,) comesout astrue. Theforcing relation is extended to operate
on D-sentences. Forcing satisfies the requirements from the propositional semantics,
in addition to the following conditions:

wlk A(@,...,ay) ifandonlyif we E(Aa;,...,a))
w Ik IXAX) ifandonlyif w I~ A(d) for somed € D
wlFVYXA(X) ifandonlyif w - A(d)foreachd € D

Soundness for this semantics (with respect to the axioms and rules given above,
together with the confinement principle) is rather simple. Suppose g I VX(A D
B(x)), and show that g IF A D VxB(x). Takeav wherev I A and v If VXB(X).
Then thereisan a where v I B(a), whichmeans g I A O B(a), which contradicts
what we have seen. The other rule and the axioms are as easy to prove.

Completenessis not as easy. We need to show that there is a constant domain
counterexample to any invalid inference. Specifically, the method to use would be
this: Given an invalid inference ~ t/ A to refute, we beef ¥ up to IT, whichisa
prime I-theory of D-sentences for some domain D, which doesn’t contain A, and
is V- and 3-complete (this means, if B(a) € I1 for each a € D then VxB(x) € TI,
and if 3xB(x) € II, then B(a) € II for somea € D). This part is not difficult,
and the standard methods will work. What is more difficult is showing that the
collection of prime, V- and 3-complete I[T-theoriesin thisdomain gives usaquantified
subintuitionistic model inthe obviousway. Thedifficulty isshowingthatif B > C ¢
", thereisaV- and 3-complete I1-theories A suchthat 'RA, B e T'andC ¢ A. The
standard method involves adding more constants to ensure V- and 3-compl eteness.
No method for proving thisin such weak logics has cometo light (asfar as| cantell),
S0 compl eteness remains an open problem.*
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