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S I M P L I F I E D  S E M A N T I C S  F O R  R E L E V A N T  L O G I C S  

( A N D  S O M E  O F  T H E I R  R I V A L S )  

ABSTRACT.  This paper continues the work of Priest and Sylvan in Simplified Seman- 
tics for Basic Relevant Logics, a paper on the simplified semantics of  relevant logics, 
such as B + and B. We show that the simplified semantics can also be used for a large 
number  of  extensions of  the positive base logic B + , and then add the dualising '* '  
operator to model negation. This semantics is then used to give conservative extension 
results for Boolean negation. 

1. D E F I N I T I O N S  

The ternary relational semantics for basic relevant logics were greatly 

simplified by Priest and Sylvan in their recent paper Simplified Seman- 
tics for Basic Relevant Logics (hereafter 'SS'). But the story wasn't 
completed by that paper - the systems B + , BD, BM and B were 
each shown to have a simple semantics of some form or other, but 
the question of systems extending these was left unanswered. It was 
also undecided whether B had a simple four-valued semantics. The 
question of  extensions of B was thought to be relatively simple, and 
by and large it is, but some of  the completeness proofs are harder 

than one might expect. However, it is my pleasure to announce that a 
simplified semantics is obtainable for a large range of  extensions of 
the basic relevant logic B, including the standard logics such as R, 
and T together with their contraction-free counterparts RW and TW. 
A notable omission is E, which escapes the simplified modelling. 

1.1. The System B + 

The first set of results deal with B + , a positive relevant propositional 
logic. To establish our terms, B + is expressed in a language 5f, which 
has the connectives A, v and ~ ,  parentheses ( and ), and a stock of  
propositional variables p, q . . . .  Formulae are defined recursively in 
the usual manner, and the standard scope conventions are in force; A 
and v bind more strongly than ~ .  For  example, p A q ~ r is short 
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for (p /x q) ~ r. We will use ~, fl . . . .  to range over arbi t rary 
formulae.  

The system B + can then be defined in terms o f  the following 

axioms and rules: 

A1 ~ ~ ~, 

A2 ~ ~ v fl, fl ~ v fl, 

A4 ~ /x ( f l v  7) ~ ( ~  A fl) v 7, 

A5 (~ -~ /~)  ^ (~ ~ ~) ~ (~ - ~ / ~  A y), 

A6 (~ ~ 7 )  /x ( f l -~  y ) - ~  (~ v f l - ~ y ) .  

I f  (~1 - - - ~n)/fl is a rule, its disjunctive form is the rule (7 v ~1 

�9 �9 �9 7 v ~ ) / (y  v fl). The rules for B + are the following, along with 

their disjunctive forms: 

~ - ~  fl R1 /~ , 

~,f l  R 2 - -  
~ A f l '  

R3 (/~ --, 7) - ,  (~ --, ,~)' 

It  is to be noted that  the simplified semantics given can only model  

disjunctive systems�9 That  is, systems such that  the disjunctive form of  

every t ruth  preserving rule is t ruth preserving�9 No t  every logic satisfies 

this criterion - a notable candidate is E, for the disjunctive form o f  

its characteristic rule, f rom c~ to (e ~ fl) ~ fl, fails to be t ruth 

preserving�9 The reason for this is that  c~ v ~ e is a theorem of  E, but 

~ v ((~ ~ fl) ~ fl) is a non- theorem.  (See Brady 's  Natural Deduc- 
tion Systems for  some Quantified Relevant Logics for an introduct ion 

to the not ion  o f  a disjunctive system.) 
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1.2. Seman t i c s  f o r  B + 

The main construction in SS is the semantics given for B + . Their 
semantics is a simplified version of the original ternary relational 

semantics for relevant logics. The important  definitions concerning the 

structure are collected here. 
An in terpretat ion for the language is a 4-tuple (g,  W, R, I ) ,  where 

W is a set of  worlds, g ~ W is the base world, R is a ternary relation 
on W, and I assigns to each pair (w, p) of  worlds and propositional 

parameters  a truth value, I (w ,  p)  e {0, 1 }. Truth values at worlds are 

then assigned to formulae inductively as follows: 

| 1 = I ( w ,  ~ /x /3) ~ 1 = I (w ,  ~) and 1 = I (w , /3 ) ,  

* 1 = I ( w ,  c~ v /3) "*~ 1 = I ( w ,  ~) or 1 = I ( w ,  /3), 

| 1 = I (g ,  ~ --* /3) <* for all x e W(1 = I ( x ,  ~) 

] = Z(x,  3) ) ,  

and f o r x  vag,  

| 1 = I ( x ,  c~ --* /3) .**. for all y ,  z e W ( R x y z  

(1 = I ( y ,  o 0 ~ 1 = I ( z ,  /3))). 

Then semantic consequence is defined in terms of truth preservation 

at g, the base world. In other words, 

0 ~ a ~:~ for all interpretations ( g ,  W, R, I )  

(1 = I (g ,  [1) for all/3 e | ~ 1 = I (g ,  ~)). 

The soundness and completeness result for B + can then be con- 

cisely stated as follows. 

T H E O R E M  1. I f  O ~ {c~} is a set  o f  sentences ,  then 

O ~- ~ ~ ,  O ~ c~, 

where F- is the provabi l i t y  relat ion o f  B + .1 

In this paper  we will make a cosmetic alteration to the above defini- 
tion of an interpretation: It  is easily seen that the truth conditions for 
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' ~ '  can be made univocal if we define R to satisfy R g x y  ~ x = y. 

From now, we will use the following definition of  an interpretation. 

D E F I N I T I O N .  An interpretation for the language is a 4-tuple 

(g, W, R, I ) ,  where W is a set of  worlds, g e W is the base world, R 

is a ternary relation on W satisfying R g x y  ~ x = y, and I assigns to 

each pair (w, p) of  worlds and propositional parameters a truth value, 

I(w,  p) ~ {0, 1}. Truth values at worlds are then assigned to formulae 

inductively as follows: 

�9 1 = I(w,  ~ A fl) r162 1 = I(w, ~) and 1 = I(w, fl), 

�9 1 = I(w,c~ v f l ) ~  1 -= I ( w , ~ ) o r  1 --- I(w,  fi), 

�9 1 = I ( x , ~ f l ) ~ f o r a l l y ,  z ~  W ( R x y z  

(1 = I ( y ,  a) ~ l = I(z,  fl))). 

Then semantic consequence is defined in terms of truth preservation 

at g, the base world. In other words, 

| ~ a ,~  for all interpretations (g, W, R, I )  

(1 = I(g, fl) for all fi ~ | ~ 1 = (g, ~)). 

It  is clear how one can translate between the two notions of  an 

interpretation. The reason we use this altered definition is in the 
phrasing of conditions on R which give extensions of  the logic B + . It 

is much less tedious to write 'Rabc ~ Rbac' than it is to write 'Rabc 

=~ Rbac for a # g and Rbgb for each b', but these are equivalent 

definitions under each variety of  interpretation. 

2. SOUNDNESS 

T H E O R E M  2. For each row n in the list below, the logic B + with the 

axiom (or rule) Cn added is sound with respect to the class o f B  + inter- 

pretations (g,  W, R, I )  where R satisfies condition Dn. 

c l  ~ ~ ( ~ - - ~ ) - ~ / ~  

c 2  (~ -- , /~) /, (/~ --, ~) --, (~ --, ~) 
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C3 (~ ~ ~)  

c 4  (~ ~ p) -~ 

C5 (~ ~ (~ -~ 

C6  ~ ~ ((~ -~ 

c 7  (~ ~ (p 

c 8  (~ -~ (/~ 

c 9  (~ -~ ~) -~ 

( (~  ~ ~) -~ (~ -~ 7)) 

((7 ~ . )  -~ (7 - ,  ~))  

~)) ~ (p  ~ (~ -~ ~,)) 

~)) -~ ((~ - ,  P) ~ ( .  ~ 7)) 

((~ ~ (~ ~ ~)) -~ (~ -~ ~)) 

C10 (~ -~ /~) ~ / ~ ,  and its disjunctive forms 

D I  Raaa 

D2 Rabc ~ R2a(ab)c 

D3 R2abcd ~ R2b(ac)d 

D4 R2abcd ~ R2a(bc)d 

D5 Rabc ~ R2 abbc 

D6 Rabc ~ Rbac 

D7 R z abcd ~ R 2 acbd 

D8 R 2 abcd ~ R 3 ac(bc)d 

D9 R2 abcd ~ R3 bc(ac)d 

D10 Raga 

Where we have defined." 

R2abcd = (~x)(Rabx /x Rxcd) ,  

R2a(bc)d = (3x)(Rbcx /x Raxd) ,  

R3 ab(ed)e = (~x)(R2 abxe /x Rcdx).  

Proof. To prove soundness in each case, we take an arbitrary B + 
interpretation (g, W, R, I )  and assume that the relation R satisfies 
condition Dn. Then it suffices to demonstrate that the value of a 
formula of  the form of Cn must always be 1 at g. (Or that the cor- 

responding rule is always truth preserving at g.) The soundness results 

are simple and mechanical. 
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For  those who like a quick proof,  it suffices to note that  any B + 

interpretat ion (g,  W, R, I )  is also an old-style interpretat ion - with 

the proviso that  Rgxy  ~ x = y. Hence, we can shamelessly appro-  

priate the soundness proofs  f rom Relevant Logics and Their Rivals 

(hereafter RLR) ,  pp. 304-305. 

Or, we can work the proofs  independently.  We give two examples 

to show how it is done. 

1. Assume that  R satisfies Raaa for  each a e W. Then, 

I(g, c~ /x (~ ~ fl) ~ fi) = 0 

if and only if there is a w where I(w, ~ /x (c~ --* fi)) = 1 and 

I(w,  fl) = 0. Then, I(w, c0 = 1 and I(w, a ~ fl) = 1, so Raaa 

gives I(w,  fl) = 1, cont rary  to our  assumption.  Thus C1 is true 

at g. 

10. Assume that  Raga for each a, and that  

[(g, ~ v 7) = 1, and I(g, ((~ ~ fi) -+ fl) v 7) = 0. 

Then we must  have a w where I(w, a ~ fl) = 1 and I(w, fl) = 

0, and that  I(g, 7) = 0. So, I(g, a) = 1, as I(g, c~ v 7) = 1. 

By assumpt ion Rwgw, and hence I(w, fl) = 1, cont rary  to our  

assumption.  Hence C10 is t ru th  preserving at g. 

3. R E S U L T S  C O N C E R N I N G  P R I M E  T H E O R I E S  

The completeness result for  B + relies on a s tandard model  construc- 

tion, where the worlds are prime theories. We will need certain defini- 

tions and facts about  prime theories to prove this result for logics 

extending B + . 
�9 I f  H is a set o f  S-sentences ,  I I~  is the set o f  all members  o f  H of  

the form e ~ ft. 

�9 Z is a H-theory ,~: 

1. ~X, fl e Z ~ O; A fi e ~., 

2. Fn a--* fl ~ ( a ~ Z  ~ fl 6E;). 
�9 Z is prime *~ (a v f i ~ Z  ~ Z o r f i e Z ) .  
�9 I f  X is any set o f  sets o f  formulae,  the ternary relation R on X is 

defined thus: 

R Z F A ~ ( 7  ~ 6 ~ Z  ~ ( 7 E F ~  cS~A)). 
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�9 s  ezX, w e h a v e E ~ - n ~  v . . .  v 6,. 

| ~-n2 ~ 3 ~ , ~ f o r s o m e a ~ , . . . , G ~ 2 ; a n d 6 ~  . . . . .  6 ~ A w e  

have ~-n at /~ . . .  A G ~ 61 v . . .  v ~,,. 
�9 2 is H-deductively closed ~ (2 F- n ~ ~ ~ ~ Y~). 
�9 Where L is the set o f  all 5~ (2 ,  A)  is a U-partition if 

and only if: 

1. 2 2 t o A  = L ,  

2. ~nE  ~ A. 
In all o f  the above definitions, if H is the emptyset, the prefix 'H- '  is 

omitted; so a ~ - t h e o r y  is simply a theory, and so on. The following 

results are proved in SS: 

L E M M A  3. | I f  (Z ,  A )  is a H-partition then 2 is a prime H-theory. 

�9 I f  ~n 2 --* A then there are 2 '  ~_ E and N ~_ A such that (2 ' ,  N )  is 

a H-partition. 

| I f  2 is a U-theory, and A is closed under disjunction, with Y~ c~ A = 

(ZJ, then there is a 2 '  ~ 2 such that 2 '  n A = (25 and Z '  is a prime 

H-theory. 

�9 I f  H is a prime H-theory, is U-deductively closed, and ~ --+/3 ~ U, 

then there is a prime H-theory, F, such that c~ ~ F and fi r F. 

�9 I f Z  is a prime H-theory with 7 --* g) r 2,  then there are prime H- 

theories, F and A such that RZFA,  y ~ F and (5 r A. 

Given some H-theory 2 with various properties, we are interested in 

finding a prime H-theory 2 '  ___ 2 that retains those properties, because 

our  canonical model structures requires the worlds to be prime. The 

following lemmas do this, and hence they are called priming lemmas. 

The content o f  these is contained in either SS or RLR,  but not in the 
form we need; we repeat them here for completeness' sake. 

L E M M A  4. IfY~, F and A are U-theories, such that RZFA and A is 

prime, then there is a prime F' ~_ F where RZF'A.  

Proof. We construct F '  by defining | = {~: (3//~ A)(c~ ~ / 3  ~ Z)}. 

| is closed under disjunction, for suppose cq, e2 ~ | Then there are 

/31,/32 r A such that  ~1 ~ Pl, c~2 ~ /32  ~ Z. As A is prime, fi~ v /~2 ~ A. 
It is easy to show that cq v e2 ~ / ~  v /32 s Y*, as 2 is a U-theory.  So 

we have el v 0~ 2 ~ | Moreover ,  F r~ | = ~ .  For,  suppose that  c~ ~ F 

n | Then there is some f l r  A where ~ ~ / 3  E Z, contradicting R2FA.  
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Thus, applying a par t  o f  Lemma 3 there is a prime H- theory  

F '  ~_ F where F '  c~ | = ~ .  To see that  R2;F'A, let ~ ~ fi ~ Z and 

~ F' .  Then c~ ~ 0 ,  so we have fl ~ A. �9 

L E M M A  5. I f  Z, F and A are H-theories, such that R E F A  and A is 

prime, then there is a prime 2;' ~_ 2; where R E T A .  

Proof. This time let | = {c~:(3fi, 7) where t-ri e ---, (fl ~ 7), fi s F 

and 7 r A}. | is closed under  disjunction, for if el, e2 E 0 ,  then for 

s o m e  ill, f12 ff F and 71, 72 • A, ~-1~ ~1 --~ (ill --~ 71) and F- n 0~ 2 --~ 

(f12 -~ 72). Hence fll A fi2 ~ F (as F is a H-theory)  and 71 v 72 r A 
(as A is prime). It is s t raightforward to show that  then ~-n cq v e2 

(ill /~ f12 ~ 71 v 72), because we have ~-n cq v ~2 ~ ((ill ~ 71) v 
(f12 ~ 72)). So we have cq v e2 ~ | 

2; c~ | = ~ .  Fo r  if 5̀ s 2;2 c~ | then there are f l e  F and 7 ~ A 

where ~-n ,5 ~ (fi --, 7). Then as 5̀ E Z, and as 2 is a H- theory  we 

have fl -* 7 E Z, contradict ing RZFA.  
Lemma 3 then gives a prime 2;' ~_ 2;, disjoint f rom | R Z ' F A  

obtains, as if fl -~ 7 e 2;, fl ~ 7 ~ | so for all fl' and 7' where 

t-n (fl -~ 7) ~ (fl' -~ 7'), if fl' ~ F, then 7' E A. But F-I~ (fi ~ 7) -* 
(fl -* 7), so we have our  result. 

L E M M A  6. I f  Z, F and A are H-theories, such that R2;FA and A is 

prime, then there are prime Z" ~ 2; and 2;' ~_ F where R E ' F ' A .  

Proof. Apply  both  o f  the lemmas above. 

L E M M A  7. I f  2;, F and A are H-theories, such that RZFA and 6 q~ A, 

then there are prime H-theories 2;' and N such that F ~_ F', 5̀ q~ N, and 

A ~ _ N .  
Proof. First construct  N.  Take | to be the closure o f  {`5} under  

disjunction. As ~-n 5̀ v . . . v `5 ~ 6 and A is a H-theory,  A ~ | = 
~ .  By a par t  o f  Lemma 3, there is a prime H- theory  N ~_ A where 

N c~ | = ~ ,  and it follows that  R2;FN, and that  6 r N.  

To construct  F ' ,  take | to  be {~ : ~fi q~ N where c~ ~ fl E Z}. | is 
closed under  disjunction and F c~ 02 = ~ .  (See SS for a proof,  or  

take it as an exercise.) L e m m a  3 shows that  there is a prime H- theory  
F '  __p_ F where F '  ~ 02 = ~ .  To show that  R2;F'A',  take c~ --+ /3 ~ Z 

and c~ ~ F ' .  Then c~ r 02 ,  and hence fl ~ N.  �9 
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The completeness of  the simplified semantics for B + is then demon- 

strated in the following way. Given a set of  formulae | w {c~}, such 

that | ~ e, we construct an interpretation in which | holds at the base 

world, but c~ doesn't.  Firstly, note that there is a prime theory II  such 

that H ~_ | but e ~ II,  by Lemma 3. The worlds of  the interpret- 

ation are the H-theories, g is H itself and R is as defined above, except 
that RIIFA if and only if F = A. 2 Then we determine L be assigning 

I(Z, p) = 1 ~* p ~ Z for each propositional variable p and H-theory 

2. It  can then be proved that 1(2;, fi) = 1 ~=~ fl ~ Z for each formula 

fi, so we have that | holds at U, the base world, and c~ does not. 

4. COMPLETENESS 

To show completeness for the extensions, it is usual to show that any 

canonical model of  the logic in question satisfies the conditions corre- 

sponding to the logic. So for C1, we show that any canonical model 

formed from the logic B + + C1 satisfies the condition Raaa for each 

a. The completeness result then follows immediately as described in 

the last section. 

Unfortunately for us, the results of  this form appear to break down 

when we extend the logic too far beyond B + . A simple example is 

given by the logic B + + C5. It  is not at all clear that the canonical 
interpretation of this logic satisfies the condition Rabc =~ R2abbc. The 

reason is as follows: Suppose that Z, F and A are prime H-theories 
such that Rs  We wish to find a prime H-theory f~ such that 

RZFf~ and Rf2FA. The general approach is to let f~ be the smallest 
set satisfying the first condition - it will turn out to be a U-theory, 

and a priming lemma gives us a corresponding prime theory f~' - 

and then we demonstrate that f2 satisfies the second condition. (And a 

priming lemma ensures that f~' will also. The details are given when 

we get to the proof. They are sketched here to motivate what follows.) 

This proof  goes through, except for the case when fl  turns out to be 
H. In that case Rf)FA if and only if F = A, and this does not seem 
to follow from what we have assumed. I t  is at this step that many of  
the completeness arguments fail. 

So instead of using the original canonical interpretation, we will use 
another, in which the standard arguments work. We note that the 
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difficulty with the standard argument arises when a H-theory (say f2) 
constructed to satisfy Rf~FA, turns out to be H itself. What would 
solve the problem is some other R-theory which has exactly the same 
truths as H, but which has 'orthodox'  R-relations with other H- 
theories. In other words, we wish to have a H-theory H ~, which satis- 
fies RH'FA if and only if ~ ~ /~ ~ H'  =~ (c~ ~ F ~ j~ ~ A), instead of 
the more restrictive condition of  F = A. Then this world will take the 
place of  H, whenever we need it in the first place of an R-relation. 
This is only by way of motivation, and does not constitute a proof. 
We will formally explicate this model structure, and prove the com- 
pleteness theorems with it: 

DEFINITION.  Given that II is a prime H-theory of a logic L extend- 

ing B + , an almost-canonical interpretation for L is a 4-tuple ( ( H ,  1), 

W, R, I ) ,  where 
�9 W = {(E, 0): 2; is a prime H-theory} w {(H, 1)}, 
�9 R is defined on W 3 to satisfy: 

-R(HH, 1)xy if and only i f x  = y, 
- R ( Z ,  0 ) ( F ,  i ) ( A , j )  if and only if for each c~ and fl, 

~ f i e  22 ~ ( c ~ F  ~ f l e A ) ,  for i , j  e {0, 1}, 
�9 I ( (E ,  i ) ,  e) = 1 if and only i f e  e Z, for i ~ {0, 1}. 

In a moment, we will demonstrate that this actually is an interpret- 
ation (by showing that I satisfies the inductive properties needed 
for an interpretation), but first, we will simplify our notation. It is 
clear that the almost-canonical interpretation is simply the canonical 

interpretation with another world with the same truths as the base 
world, but entering into different R-relations (when it appears in the 
first place of R). Other than that it is identical, so we will ignore the 
ordered-pair notation, and simply write H for what was (H,  1), 
the base world; H'  for (II ,  0),  its double; and for each other 
world (E, 0), we will simply use 2;. Further, instead of writing 
I ( (Z ,  i ) ,  c 0 = 1, we simply write c~ ~ 2. In this way, we cut down on 
notation, and the parallel with the canonical interpretation is made 
clear. In fact, you can ignore the whole business with ordered-pairs, 
and simply imagine W to be the set of all prime R-theories, each of  
which is painted blue, and a single set with the same elements as H, 
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which is painted red. The  red one is the base world,  and has R 

defined on it in its own peculiar way, and the blue ones have R 

defined on them as normal .  Howeve r  you think of  it, seeing it in use 

will (hopefully) make  it clear. The  first p r o o f  demons t ra tes  that  it is 

actually an interpretat ion.  

T H E O R E M  8. The almost-canonical interpretation is worthy of its 
name; that is, it is an interpretation. 

Proof. Define I by requir ing that: 

I (E,  p) = 1 if and  only i f p  ~ E, 

for p a propos i t iona l  parameter ,  

and that  it satisfy the usual inductive definitions of  an interpretat ion.  

We simply need to show that  I (Z ,  a) = 1 if and only if a e Z for  

every fo rmula  c~. We do this by induct ion on the complexi ty  o f  the 

formulae.  

�9 I t  works  by st ipulat ion on the base case. 

�9 I ( Z , ~  A 3 )  = 1 

if  and  only if I (Z ,  c 0 = 1 and I (Z ,  fl) = 1 (by the inductive 
definition of  I ) ,  

if and  only if e ~ E and f l ~  s (by the inductive hypothesis) ,  
if and  only if e /x fi 6 Z (as I2 is a H- theory) .  

�9 I ( X , a  v fl)  = 1 

if  and ony if I(X, a) = 1 or  I (E,  fl) = I (by the inductive 
definition o f  I ) ,  

if  and only if ~ e X or fi 6 Z (by the inductive hypothesis) ,  

if and only if c~ v fl E E (as s is a prime H-theory) .  
�9 I ( X ,  ~ -+/3) = 1 

if  and only if for  each F, A where R12FA (I (F ,  c 0 = 1 

I ( A , / ~ )  = 1),  

if  and only if for  each F, A where R Z F A  (e ~ F => f l e  zX). 

We desire to show tha t  this last condi t ion obtains  if  and  only if e 

f l e  12. We take this in two cases - firstly when 1i2 is the base world.  
Then,  I ( H ,  c~ -~ fi) = 1 

if and only if for  each F, (c~ e F ~ f i e  F), 
if  and only if c~ ~ f l e  H,  as F is a H- theory ,  and by the four th  
par t  o f  L e m m a  3. 
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If  E is not the base world, then R Z F A  if and only if R 'ZFA,  where R '  

is the relation on H-theories defined univocally as R ' Z F A  if and only 

i f (V~-~  / 3 e Z ) ( ~ e F  ~ / 3 e A ) .  
Then we have: I(E,  ~ ~ 3) = 1, 
if and only if for each F, A where RY~FA, (c~ e F ~ fl s A), 

if and only if c~ ~ /3 e 57, by the definition o f  R, and by the fifth 

part  o f  Lemma 3. 
So for any world Z, I(Y~, a ~ /3) = 1 if and only if c~ ~ / 3  e 57. This 

completes the inductive proof.  • 

We now have enough results to prove completeness. 

T H E O R E M  9. For each row n in the list given in Theorem 2, the logic 

B + with the axiom (or rule) Cn added is complete with respect to the 

class o f  B + interpretations (g, W, R, I )  where R satisfies condition Dn. 

Proof. We will demonstrate  these individually, showing that the 
canonical model of  any logic satisfying B + and axiom (or rule) Cn 

must  satisfy restriction Dn. 
1. We wish to show that RE57Z for each prime H-theory  57, under 

the assumption of  C1. Consider c~ ~ fi • 22, and e e E. Thus 

c~ A (~ ~ fl) ~ 57, and ~-n c~ /x (~ ~ fl) ~ fl gives fl • 57, and so, 
if Z ¢ H, REE57. I f  Z = H, the result follows immediately. 

2. We wish to show that for all prime N-theories Y~, F and A where 

RY~FA, there is a prime H-theory  O '  where R57FO' and R220'A.  

Let O = {/3:(3c0(c~ ~ / 3  e Z) A (~ • F)}. O is a H-theory  be- 

cause: 

• /31,/32 • O means that there are el, c~2 • F where cq ~ /31 ,  

~2 --)" /32 • E .  SO, 0~ I A ~2 • F and (cq - ,  /31) /x (c~ 2 -~ /3:) • 22. 

B u t  t h i s  gives a 1 A 0~ 2 --* /31 A /32 • y ' '  (Because ~-n cq /x 

c~ 2 -* cq, so I-n (cq -~ /31) ~ (cq /x c~2 --* /31) by R3 and ~-n 

(/31 --* /31)- Similarly, we have ~-n (~, - '  /31) -* (cq /~ c~2 -~ 

/31), so AS gives us bn (cq -* /31) /x (e2 -+ /32) -* (cq /x c~ 2 -~ 

31 /x /32).) This ensures that/31 /x /32 • ®- 
• I f  F- n c ~ - ~ / 3 a n d ~ • o , t h e r e i s a y • F w h e r e y - - * ~ Z ,  

and because we have ~-n (7 -* c0 --* (7 - '  /3) by prefixing, we 
then have y -~ /3 • 22. This gives/3 e 0 ' ,  as desired. 

N o w  R Z F ®  is true by definition (even if Z = H, in which case 

F = A = 0 ,  and we have our  result immediately). To show that  
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RYOA,  i f e  ~ f i ~ Z a n d e ~ O ,  t h e r e i s a y ~ F w h e r e ~ '  

~ 2,  so (y ~ c0 A (e ~ fl) S 5:. C2 ensures that  ~ ~ fl e Z, and 

hence f l e  A as RZFA.  

By Lemma 4, there is a prime O '  __ O where R Z O ' A ,  and 

R22FO' is ensured by O / ___ O. I f  as sets O '  = H, then we select 

it can be either H or  I I '  for this case - in other  cases the choice 

is important .  Whatever  we take O '  to be, we have our  result. 

Before we go on to the next case, we would  do well to note some 

features o f  this one. O, as we defined it, is the smallest set satisfy- 

ing R]EFO, and for tunately for us, it is a R- theory .  We will use 

this construct ion often, and we will not  rewrite the p r o o f  that  the 
set so formed is a R- theory .  

3. Assume that  C3 holds, and consider arbi t rary prime H-theories 2,  

O, F, A and ~, where R Z F E  and REOA.  We wish to find a 

prime R- theory  ~" where R Z O ~ '  and RFf~'zX. To this end, let 

f~ = {fl: (3~)(e -~ f l e  Z) A (e S O)}; this is a H-theory as before. 
RZOf~ is immediate (even when Z = II ,  in which case F ~" 

and O = fl, yielding the result). To show that  RFf~A, let ~ --* 

f l e  F and c~ e f~. Then there is a 7 e F where 7 ~ c~ s Z and 

y s O, and as ~-n (Y --' ~) ~ ((c~ -~ fi) ~ (7 -~ fl)), we have 

(~ --, fi) ~ (y ~ fl) e 2 .  R22FE then ensures that  y - ,  fi ~ E, and 

R E O A  then gives fl ~ A. This means that  RFf~A, if F r H. In 

this case a pr iming lemma then ensures the existence o f  a prime 

~)' __ f~ where R F ~ ' A  and RZOf~' ,  and hence our  result. Again,  

if as sets ,Q' = II ,  then it is un impor tan t  whether we take f~' to 

be H or  H' .  (For  other  cases, if it is unimpor tant ,  we will fail to 
ment ion that  fact.) 

If, on the other  hand  F = H, set f~' = A. Then RE |  as ~ ~ fl 

2 a n d ~ O g i v e s ( f l ~ f l )  ~ ( ~ f l ) ~ E ,  b y C 3 .  A s f i  ~ f l e  
F and R E F E ,  we have a ~ fi s ~ This, a long with R E O A  and 

a e | gives fi ~ A = ~ ' ,  as we desired. 

4. Assume that C4 holds, and that  Z, O, F, A and E are prime 

H-theories such that  R ~ F E  and REOA.  Set f~ to be {fl : (3c 0 

(a ~ fl ~ F) A (e ~ O)}, and then it is clear that  RFOf~. 
(Even in the case where F = H, in which case f~ = 0 ,  and we 

have our  result.), To show that  RZY~A, consider c~ ~ fl ~ 22 

and a ~ g~; there must  be a y ~ | where ~, ~ e ~ F. So as 
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F-n(e ~ fl) ~ ((7 ~ e) ~ (7 ~ fl)), we have (7 ~ e )  ~ (y ~ fl) 
�9 Z. R Z F E  then gives (y ~ fl) �9 E, and  R E O A  with 7 �9 O gives 

fl �9 A, as we wished, f~ is a H- theory ,  and  can be p r imed  by a 
pr iming lemma,  in the usual manner .  

5. Assume that  C5 holds, and let Z, F and A be arb i t ra ry  H-theor ies  

where RZFA.  Let f~ = {fl:(3c0(c~ ~ fl �9 Z) A (~ �9 F)}, so RZFf~ 
is immediate .  (Except  if  Z = H,  in which case A = F, and we 

simply set ~ = F as well. It  follows that  Rf~FA, as R F F F ,  

because C1 is a consequence o f  C5. This gives the result in this 

case.) To  show that  Rf~FA let ct -~ fl ~ f~ and e ~ F, so there is a 

7 ~ F w h e r e 7  ~ ( ~ f l ) ~ Z .  Thus,  c~ A 7 ~ F ,  a n d ~  /x 7 
fl s t2, as the following der ivat ion shows. 

~-ii 0~ A 7 --~ 0~ 

t -n~ A 7 ~ 7, 

~n (~ ~ / ~ )  ~ (~ ^ 7 -~/~), 

~n (7 ~ (~ -~/~)) ~ (7 -~ (~ ,~ 7 ~ / ~ ) ) ,  

~-~ (~ -~ (~ ,~ 7 -~/~)) ~ (~ ^ 7 -~ 
(~ A 7 ~ /~ ) ) ,  

~ (~ ~ (~ ~ / ~ ) )  ~ (~ ^ 7 ~ (~ ,~ ~ ~ /~ ) ) ,  

by A3, 

by A3, 

by suffixing, 

by prefixing, 

by suffixing, 

by transitivity. 

This  ensures tha t  a A 7 ~ (a /~ 7 --* fl) �9 Z, and C5 gives ~ A 7 
f l e  Z. So R Z F A  gives fi �9 A as desired. The  usual appl icat ion 

of  the pr iming l e m m a  gives a pr ime H- theo ry  ~ '  with the desired 

propert ies ,  except if  ~ '  = H as sets, and  it is taken to be H. In 
that  case, R f l ' F A  is not  assured,  for  it is not  clear that  F = A. 

However ,  if  this is the case, we can take ~ '  to be H '  and all is 
well. 

6. Assume that  C6 holds. We will work  in the almost-canonical  model  
o f  H-theor ies  as usual,  but  it will have a different relat ion R'  defined 
as follows: R ' Z F A  if and only if for  each ~ ~ f i e  Z, if c~ �9 F 
then fl �9 A for  Z, F ~ H. Otherwise,  R ' H F A  and R ' F H A  if and  
only if F = A. We need to show that  in this model  o f  H-theor ies  
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that  1 = I (Z ,  ~:) if  and  only if c~ ~ 2,  and that  it satisfies R'2FA 
R'FZA. The latter par t  is simpler. 

I f  either o f  Z or F is I I ,  then the condi t ion is satisfied by fiat. I f  2; 

and F are bo th  not  l-I, then let e ~ 1~ e F, e ~ 2 and R'ZFA. C6 
gives (e --, /~) ~ /~ s 2,  and R / Z F A  then gives/~ ~ A, and so we 

have R'FZA, as desired. 

To  show that  the model  s tructure satisfies 1 = I (Z,  c 0 if  and only 

if e ~ 2 ,  we need only consider the case where e is 7 ~ 5, and 

where I2 is not  II .  The  rest o f  the p r o o f  is unal tered f rom the 

a lmost -canonica l  structure.  We need to show that  1 s I(12, 7 ~ 5) 

if  and  only if 7 ~ 5 e 12. F r o m  right to left, it is enough to note  

that  7 ~ 5 ~ 12 ensures that  for  all pr ime H-theor ies  F and A 

where RI2FA, if 7 e F, then 5 ~ A, by the definition of  R. As 

R12FA ~ R'Y~FA, we have that  all pr ime H-theor ies  F and A 

where R~2FA, if  7 e F, then 5 ~ A. 

And  in the other  direction, if 1 ~ I (Z ,  7 ~ 5), then VF, A where 
R'2FA, if 7 ~ F then c5 ~ A. I f  7 ~ 5 ~ I2, then by L e m m a  3 there 

are pr ime H-theor ies  F and  A where R2FA, 7 ~ F and ~ ~ A. In 

this case, R'ZFA unless F = I I  (the case where we 've  been muck-  

ing abou t  with R') .  In this case, if  R2IIA, and e E 12, then ~n 

((e ~ e) -* e) gives (e ~ e) ~ ~ ~ Y~, which with R121-IA and 

c~ ~ c~ e H gives e ~ A. So 2 _~ A, which means  that  5 q~ 22, and 

as R'12II12, we have our  result, that  not  all H- theor ies  F and A 

where R'12FA satisfy 7 s F ~ ~ ~ A. Con t rapos ing  gives us the 
desired result. 

7. C7 is a s t ronger  version of  C6, so we need R '  in this case too. 

Assume that  C7 holds, and let 12, F, A, | and  E be H-theor ies  
such tha t  R'12FA and R ' A O E .  Define ~ = {/~:(3c0(~ ~ /~ ~ 2) A 
(c~ S 0)};  this satisfies RZ |  by definition. 

I f  12 = l-I, then | = fl  and all is well. I f  | = 19i, then f~ = 2;, 

as is/~ e 2,  then (/~ ~ / ~ )  - . / ~  e 12 too,  by C7 (Derive C6 f rom 

C7, and this is enough.) ,  so as /?  ~ / ~  ~ II ,  12 _ f~. Conversely,  if  
/~ ~ f~, then/~ e 12, as Z is a H- theory .  So, we have R ' 1 2 0 ~  in any 
case. 

L e t ~  ~ / ~ f ~ a n d c ~ F ,  s o t h e r e i s a T ~ O w h e r e 7  ~ ( ~ / ~ )  

12. This gives e ~ (7 ~ /~) s 12 by C7, and  hence 7 ~ fl s A as 
R12FA. This, with R A |  and  ~ ~ | gives/~ e E, and hence 
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Rf~FE, as desired. We want  R'f~FE. I f  f~ = FI as sets, then take 

f~ = H' ,  and so R'f~FE. I f  F = H, then E = A, and as R'AOE, 
we have R ' E O E ,  and we are safe to take E for  FL In  this case 

R'EOE, as E _ f~, and R ' E F E  as F = 1-I. 

A priming lemma gives a prime H- theory  f~', with the desired 

properties. 

8. Let  s  O, F, A and E, be arbi t rary prime H-theories such that  

R E O F  and RFAE.  Let W = {fl:(3~)(~ ~ fl ~ |  A (~ ~ A)} and 

�9 = {fl: (3e)(e ~ fl e Z) /x (c~ ~ A)}. Then it is immediate that  

R| and REAO. (Even when | = H, for in that  case W = A, 

and i f Z  = 1 1 , 0  = A). 

It  remains for us to see that  ROWE. To see this, let ~ --, fl ~ �9 

(so there is a 7 ~ A where 7 ~ (~ ~ fl) e E) and c~ ~ W (so there 

i s a S e A w h e r e 3  ~ e e l g ) . W e t h e n s e e t h a t 7  a 5 c A ,  7 A 6 

(c~ ~ fl) ~ E (by prefixing), and 7 A 5 ~ e e | (also by pre- 

fixing). But C8 gives (3 A 7 ~ C0 ~ (3 A 7 ~ fl) ~ Z, and so 

R E O F  ensures that  5 A 7 --* f l e  F. This, in turn gives f l e  E, as 

RFAE.  The result follows f rom an applicat ion L e m m a  6 to W 

and O. 
I f  O '  = f I  as sets, then take O'  to be H ' ,  and the result that  

RO'W'E is then preserved. 

9. Assume C9, and let E, F, A, | and E be arbi t rary R-theories 

such that  R E F E  and REA|  Let  �9 = {/~ : (3e)(c~ ~ f i e  F) ^ 

(e e A)} and W = {fi:(qe)(c~ --+ f l e  E) A (C~ e A)}, so REAW 
and R F A O  are immediate.  (If  Z = H, W = A, and if F = 17[, 
�9 = a . )  

We have only to demonst ra te  that  ROW| (as priming lemmas 

give us the rest o f  the result). To  show this, let ~ -~ ]~ E �9 (so 

there i s a y e A w h e r e 7  ~ (~ ~ fi) E F ) a n d ~ E W ( s o t h e r e i s a  
5 ~ A where 5 -* ~ ~ E). This ensures that  7 A 6 ~ A, and that, 

by prefixing, 7 A 5 ~ ( ~ - } f i ) ~ F a n d 7  A 5 ~ ~ E .  C g t h e n  
gives (7 A 5 ~ (~ ~ fl)) ~ (7 A 5 --~ fl) E E, and R E F E  gives 
~/ A 5 ~ fl ~ E, and R E A |  gives fl ~ |  as we set out  to show. 

L e m m a  6 then completes the proof.  
Again,  if O'  = H as sets, then set ~ '  -- I I ' ,  and the result that  

RO'W'| is preserved. 
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10. Assume that C10 holds, and let Z be a prime 1-I-theory. We 

wish to show that R Z I I Z ,  so let c~ ~ fi ~ Z and ~ ~ 1-I. By ClO, 

(c~ ---, fl) ~ fl c II ,  and R I I E Z  gives fl E I2 as we desired. 
This completes the list, and our equivalences have been shown. [] 

5. AN ORDERING ON WORLDS 

In RLR,  more axioms are listed, along with their corresponding res- 

triction on the relation R. As an example,/3 -* (c~ -~ /~) is shown to 

'correspond to '  the condition Rabc  ~ a ~ c. The relation ~ on 

worlds needs some explanation, as we have not introduced it in this 

paper. Simply put, a ~< b if and only if Rgab,  where g is the base 

world. (Or in the case of  more than one base world, a <~ b ~* R x a b  

for some base world x.) In the original semantics, this has the pleas- 

ing property of  ensuring that if e is true in a, then e is true in b. Its 
corresponding condition in the canonical model structure is represent- 

ed by the relation of containment, that is, Z ~< A ~ E _ A. Unfor-  

tunately, in the simplified semantics such a connection does not exist, 

for we have Rgab  if and only if a = b, so the definition of ~< collap- 

ses into equality. It  might be thought that the occurrences of E in 

modelling conditions could be replaced by = ,  but this fails in general. 

For  example, the class of  simplified interpretations satisfying Rabc  

a = c is certainly sound with respect to the axiom r  (~ ~ /~) ,  but 

completeness fails. 'We would need to show that in the almost-canoni- 
cal model, RZFA ~ 57 = A, which, when Z = 17[, ensures that 

I I  = A for each H-theory A, and thus there is only one world. The 

condition on R is too strict, and we need to find another way to 
model the relation ~<. 

The way to proceed seems to be as follows. We can define a ~< as a 

primitive binary relation on worlds, with conditions that are relatively 

simple to check practically. Then we can show that this relation has 

the desired properties (namely that  a <~ b =* (I(a,  ~) = 1 =~ I(b,  ~) 

= 1) for each formula e), and define an ex tended  interpretation to be 
an interpretation with such an additional binary relation. Then the 

extra modelling results hold for extended interpretations. This is what 
we shall do. 
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Given an in te rpre ta t ion  (g ,  W, R, I ) ,  a b inary  re la t ion ~< on W 

satisfying 

f (I(a, p) = 1 ~ I(b, p) = 1) 
for every p ropos i t iona l  var iable  p 

a <~ b =~ ~ Rbcd => Racd if  a :~ g 

Rbcd ~ c <<, d i f a  = g 

is said to be a containment re la t ion on (g ,  W, R, I ) .  We  can then 

prove the fol lowing result.  

T H E O R E M  10. Given a containment relation <~ on (g,  W, R, I ) ,  

a <~ b ~ (I(a, ~) = 1 ~ I(b, ct) = 1) for  every formula ~. 

Proof. We will prove  this by induct ion  on the complexi ty  o f  for- 

mulae.  The result holds  (for all wor lds  a and  b where a ~< b) for 

p ropos i t iona l  variables,  and  the induct ive cases for  /x and v are 

immediate .  N o w  assume that  the result  holds  for ~ and fl, tha t  a ~< b, 

and  I(a, ~ --* fl) = 1. 
I f  a # g then we have that  for  all c and  d where Racd, I(c, ~) = 1 

=~ I(d, fl) = 1, and  as Rbcd ~ Racd, we have that  for  all c and  d 

where Rbcd, I(c, ~) = 1 ~ I(d, fl) = 1, and  hence I(b, ~ ~ fl) = 1. 

I f  a = g, then for each c, I(c, ~) = 1 =~ I(c, fl) = 1. We wish to 

show that  I(b, ~ ~ fl) = 1. We have by the condi t ion  on <~ that  

Rbcd ~ c <<, d, so for each c and d where Rbcd, if  I(c, a) = 1 then 

I(c, fl) = 1 (as I(g, a ~ fl) = 1), which gives I(d, fl) = 1 (as Rbcd 
gives c ~< d).  Hence I(b, a ~ fl) = 1. This  completes  the proof .  • 

We  can now use this re la t ion to prove  soundness  o f  fur ther  extensions 

o f  B + . These are ca ta logued  in the fol lowing theorem.  

T H E O R E M  11. For each row n in the list below, the logic B + with the 

axiom (or rule) Cn added is sound with respect to the class o f  extended 

B + interpretations (g,  W, R, L <<- ) where R satisfies Dn. 

C l l  ~ - ,  (/~ ~ / ~ )  
I 

o 2 / ~  --, (~ --,/~) 

C13 c ( ~  (fl ~ (~ ~ cO) 
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C14 ~ ~ (fl ~ ~ A /3) 

C16 (o~ ~ /3) v (/3 ~ ~z) 

C17 o~ ~ (o~ ~ ~z) 

C 1 8  

D l l  

D 1 2  

D 1 3  

D 1 4  

D 1 5  

(~ ^ /3 ~ ~,) ~ ((~ ~ ~) v (/3 ~ ~,)) 

R a b c  ~ b <~ e 

R a b e  ~ a <~ c 

<~d  

499 

R 2 a b c d  ~ a 

R a b c  ~ a <~ c and b <~ c 

R2 abcd  ~ f o r  some  x 

b <. x , c  <~ x a n d R a x d  

D16 a <<. b or b <~ a 

D17 R a b c  ~ a <~ c or b <~ c 

D18 R a b c  and Rade  ~ f o r  some  x 

b <~ x,  d <~ x and ( R a x c  or R a x e )  

P r o o f  We proceed exactly as in the previous collection o f  sound- 

ness results, except for using the fact that  a ~< b gives I (a ,  ~) = 1 

I (b ,  ~) = 1 for any formula  ~. 

11. Assume that  R satisfies R a b c  ~ b <~ c for each a, b, c E W. 

Then, 

I ( g ,  ~ ~ (/3 ~ / 3 ) )  = 0 

if and only if there is a w (perhaps g itself) where I (w ,  ~) = 1 

and I ( w , / 3  ~ fi) = 0. So, there are x, y where R w x y ,  I ( x , / 3 )  = 1 

and I (y , / 3 )  = 0. However  by assumption,  x ~ y, which is 

impossible. So C l l  holds at g. 

12. Assume that R satisfies R a b c  ~ a <~ c. Then, 

I ( g ,  /3 --, (~ ~ /3)) = o 

if and only if there is a w (perhaps g - we will take this as read 

f rom now on) where I ( w , / 3 )  = 1 and I (w ,  c~ ~ / 3 )  = 0. So, there 
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are x, y (again ,  p e rh ap s  g) where  R w x y  (so, if  w = g, this m e a n s  

t ha t  x = y) ,  I ( x ,  c 0 = 1 a n d  I ( y ,  fl) = 0. H o w e v e r  by  a s s u m p -  

t ion ,  w ~< y, wh ich  is imposs ib le .  So C12 holds  a t  g. 

13. A s s u m e  tha t  R 2 abcd  => a <~ d. T h e n ,  

I (g ,  c~ ~ (fl --. (7 --* ~))) = 0 

if  a n d  o n l y  if  there  is a w where  I (w ,  c0 = 1 a n d  I (w ,  ~ 

(7 ~ ~)) = 0, wh ich  ensures  tha t  there  are  x, y where  R w x y ,  

I ( x , / ~ )  = 1 a n d  I ( y ,  7 --' ~) = 0. This  t hen  gives us  z a n d  t 

where  R y z t ,  I ( z ,  ~) = 1 a n d  I ( t ,  c~) = 0. Howeve r ,  R 2 w x z t  gives 

w ~< t, wh ich  m e a n s  tha t  I ( t ,  e) = 1, c o n t r a d i c t i n g  this  result .  

H e n c e  C13 holds .  

14. C14 is a n  i m m e d i a t e  co ro l l a ry  o f  C l l  a n d  C12, so s o u n d n e s s  fol- 

lows f r o m  the resul ts  for  those  ax ioms.  

15. A s s u m e  tha t  R 2abcd ~ for  some  x, b ~< x, c ~< x a n d  R a x d .  

T h e n ,  

I (g ,  (c~ /x fl --. 7) --* (c~ ~ (fl ~ 7))) = 0 

ensures  tha t  there  is a w where  I (w ,  e /~ /~ ~ 7) = 1 a n d  I (w ,  

(/3 ---> 7)) = 0. Th i s  gives us  x, y where  R w x y ,  I ( x ,  ~) = 1 a n d  

I ( y , / ~  ~ 7) = 0, which  in  t u r n  m e a n s  tha t  there  are z, t where  

R y z t ,  I ( z , /~ )  = 1 a n d  I ( t ,  7) = 0. Because  o f  this we have  tha t  

R 2 w x z t  a n d  hence  there  is a v where  x ~< v, z ~< v a n d  R w v t .  

Hence ,  I ( v ,  ~) = I ( v , /~ )  = 1, a n d  as R w v t ,  I ( t ,  7) = 1, con-  

t r ad i c t i ng  w h a t  we have  seen. So, C15 holds .  

16. A s s u m e  tha t  for  each  a a n d  b e i ther  a ~< b or  b ~< a. T h e n  

I (g ,  (o~ ~ fl) v (fl --+ o:)) = 0 

ensures  tha t  I (g ,  ~ ~ / 3 )  = 0 a n d  I (g , /3  --* e) = 0, g iv ing  us  w 

a n d  w'  where  I (w ,  ~) = I (w ' ,  /3) = 1 a n d  I (w ' ,  ~) = I (w ,  ~) = O. 

But  this con t r ad i c t s  w ~< w' or  w' ~< w, hence  ou r  result .  

17. A s s u m e  tha t  R a b c  ~ a <<. c or  b ~< c. T h e n  

[(g,  c~ --. (o~ --* ~)) = 0 

ensures  tha t  for  some  w, I (w ,  ~) = 1 a n d  I (w ,  ~ ~ ~) = O. 

H e n c e  there  are  x, y where  R w x y ,  I ( x ,  c0 = 1 a n d  I ( y ,  ~) = 0. 

Bu t  by  hypothes i s ,  e i ther  w -N< y or  x ~< y, c o n t r a d i c t i n g  w h a t  we 

have  j u s t  seen a n d  g iv ing  us  o u r  result .  



SIMPLIFIED SEMANTICS FOR RELEVANT LOGICS 501 

18. Assume that  Rabc and Rab'c' => for some x, b ~< x, b' ~< x and 

Raxc or Raxc'. Then 

I (g ,  (~ A ~ --, 7) --, ((c~ ~ 7) v (/~ ~ 7))) = 0 

means that  for some w, I(w, ~ /x ~ --, y) = 1 and I(w, (~ -~ y) 

v (/~ --* 7)) = 0. So, there are x, y and x' ,  y '  where Rwxy, I(x,  ~) 
= 1, I ( y ,  y) = 0 and Rwx'y' ,  I(x' , /?) = 1 and I ( y ' ,  y) = 0. By 

hypothesis, there is a z where x, x '  <~ z, so I(z, e /x /~) = l, and 

either Rwzy or Rwzy'. But these ensure that  either I ( y ,  7) = 1 or  

I ( y ' ,  Y) = 1, bo th  contradict ing what  we have seen. This ensures 

that  C18 holds. [ ]  

For  the completeness p r o o f  we need a conta inment  relation in the 

canonical  models. Thankful ly  the obvious  candidate  works. 

T H E O R E M  12. In the canonical model, and in the almost canonical 
model, ~_ is a containment relation. 

Proof. That  2; c: F ~ (p  e E ~ p ~ F) is immediate. I f  Z _ F and 

E # H then RFAO0 ~ R Z A ~  by the definition o f  R, and if RFAq), 

and H _ F, then each formula  ~ --> ~ ~ F, and hence A ___ q~. [ ]  

One further result we need is that  for certain extensions of  B + , we can 

do wi thout  the empty and full H-theories,  and still have an interpret- 

ation. (The collection o f  all formulae is the full H-theory.)  These two 

rather excessive theories are appropria te ly  called degenerate theories, 

and this result is called a non-degeneracy theorem. 

T H E O R E M  13. Provided that :~ ---, ~ e Y~ for each formula ~ and each 
non-empty prime H-theory 5:, then the canonical (or almost-canonical) 

interpretation, which is limited to non-degenerate prime H-theories is an 
interpretation of  B + . 

Proof. To show that  this structure is an interpretation, it is suf- 

ficient to show that  the assignment I(Y,, ~) = 1 iff ~ e E satisfies the 

inductive characterisat ion o f  an interpretation. Because the structure 

is a reduction of  the earlier structure, inductive cases are exactly the 

same, except for showing that  when c~ ~ .B r E (for non-degenerate  

E), there are non-degenerate  prime F and A where RZFA,  ~ e F and 
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/~ r A. To this end, define F '  = {7: ~-n ~ ~ 7} and A' = {6:(37) 

( 7 ~ F ' & 7  ~ c ~ Z ) } . W e w i l l s h o w t h a t c t ~ F ' n A ' a n d f l C F ' u  
N, so that  these theories are non-degenerate.  

First note  that  ~n ~ --' ft. Fo r  otherwise we have ~-n (~ ~ ~ ) - o  

(~ -o fi) by prefixing, and ct ~ a e Z gives c~ ~ fl E Z, which we know 

does not  obtain.  So it follows that  fi r F ' .  That  ~ ~ c~ E Z and c~ e F '  

gives c~ ~ N,  as we desired. Not ing  that  f l r  A' completes the first part  

o f  the result - F '  and N are non-degenerate.  

We only need to find non-degenerate  prime F and A to complete 

the theorem. This is done by appling Lemma 7 - we need just  show 

that  the F and A so obtained are non-degenerate.  As F '  __c F, F is 

non-empty.  To see that  e q~ F, note that  in the p r o o f  F is disjoint with 

~2, and as ~ --+ a s 2,  ~ e 1~2, giving e r F. The result o f  the lemma 

ensures that  fl ~ A and that  A' _~ A, so A is also non-degenerate.  

I f  2 = 11, then A' = F ' ,  and as not ing that  R 2 A A  (where A was 

constructed by Lemma 7), c~ e A and fl ~ A is sufficient to complete 

the proof.  

We now give some example condit ions which enable us to use non-  

degenerate models.  

T H E O R E M  14. Conditions C l l ,  C12 and C13 ensure that c~ ~ ~ E Z 

for each non-empty prime H-theory Z. 
Proof. C l l  is obvious. Fo r  C12, note that  F- n (c~ --* c~) ~ (/~ 

(c~ --+ c0) is an instance o f  C12, and hence ~-nfl --* (~ ~ c0- For  CI3,  

note that  F-n(~ -o ~) ~ ((~ --. c0 -~ (/? ~ (~ -o ~))) is an instance o f  

C13, and hence F-n/~ -o (c~ ~ ~). 

This gives us enough machinery  to prove completeness for the rest 

o f  the positive extensions o f  B + . They are o f  the same form as the 

other  completeness proofs,  except that  they use the fact that  __c is a 

containment  relation in the canonical model and in the almost canoni- 

cal model.  

T H E O R E M  15. For each row n in the list given in Theorem 11, the 
logic B + with the axiom (or rule) Cn added is complete with respeet 
to the class of  extended B + interpretations @, W, R, I, <~ ) where R 

satisfies condition Dn. 
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Proof. We take these individually as before, using the almost  can- 

onical model:  

11. Assume that  C l l  holds. We can use the non-degenerate  model,  

by Theorem 13. Assume also that  E, F, A are non-degenerate  H- 

theories satisfying RZFA.  We wish to show that  F c_ A. This is 

immediate for  the case E = H, and otherwise, note that  for some 

c~, c~ ~ E, and hence fl ~ fi e Z for each fl,/3 E F gives/3 ~ A, as 

we desired. 

12. Assume that  C12 holds. To see that  we can use the non-  

degenerate model,  note that  ~-n(7 --' ?) ~ (6 ~ (7 ~ ?0), as this is 

an instance o f  C12, and so ~-n6 ~ (7 ~ Y). Assume also that  

RZFA.  Take some e e F and some/3 e E, then C12 gives 

---, fl ~ Z and hence fi ~ A. This means that  E _~ A as desired. 

The result holds, even if E = H. 

13. Assume C13. We can use the non-degenerate  model,  as ~-n(7 ~ Y) 

((0 --, 0) -~ (6 ~ (7 ~ 7))) is an instance o f  C13, so we have 

F-n5 ~ (7 -~ 7). Then take R Z F A  and RA|  Take ~ ~ E, fl E F 

and ? e O. C13 ensures tha t /3  --* (7 --* e) E Z, and hence c~ ~ E, 

as desired (even if Z = H). 

14. This is a combina t ion  o f  C l l  and C12. 

15. Assume C15, and that  R E F A  and RAOE.  We wish to find a 

prime K- theory  q)' where R Z ~ ' E  and both  F, O ___ O'. To this 

end, set@ = { ~ : ( 3 y ~ F ,  f i ~ |  F- Hy /x 6 ~c~} w F w O .  I t i s  

clear that  F, | _~ q~, and to show that  q) is a H-theory,  note that  

if F and O are both  non-empty,  then ~ = {c~: (3 7 e F, 6 e O) ,~ri 

? /x 6 ~ ~}, and this is clearly a H-theory,  as F, O are both  

H-theories,  and is transitive (in that  if  F- n c~ ~ fl and ~-ri fl --' ? 

then F-r~ e --, 7). So if both  O and F are non-empty,  q5 is a H- 

theory. Otherwise (if one o f  O and F are empty),  �9 is the union 

o f  O and F, which is then also a H-theory.  

To show that  R Z O = ,  let ~ ~ /3 ~ Z and ~ ~ @. By definition, 

there are y ~ F and 3 ~ O where ~-r~ 7 /x ~ ~ ~. Hence, ~-r~(~ 

fl) ~ (y /x 6 ~ fl) and so y /x fi ~ / 3  e Z, which by C15 gives Y 
(c~ ~ / 3 )  s Z. R Z F A  and R A O E  then give us f l e  E as desired. 

The case for E = H is given below. 

A priming lemma then completes the p r o o f  except for the case 

where Z = H. In that case, instead o f  using q~, we simply need to 
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show tha t  F, O _~ E. Note  tha t  I2 = H gives F = A, and hence 

we have R F O E .  F o r  this it is sufficient to note  that  as kl~ (~ A fl 

- - ' c 0 ~ ( c ~  ( f l ~ ) ) a n d k n ( ~  A f l ~ f l ) ~ ( c ~ - - ~ ( f l ~ f l ) ) ,  
C15 gives bo th  C l l  and  C12, which in turn  ensures that  R F O E  

gives F, O ___ E by our  results f rom before. 

16. Assume C16 and take H-theor ies  2 and F where Z ~ F. Hence  

there is some fl where  fl e 12 and f l r  F. Given  e ~ F, it is suf- 

ficient to show tha t  c~ ~ Z. As ~ --* f i r  H (since ~ ~ F and f l r  F), 

and  (e ~ fl) v (fl --* e) s I I  we mus t  have fl ~ e e I I ,  which 
with f l e  Z gives us our  result. 

17. Assume C17, and tha t  R Z F A .  We wish to show that  either Z ___ 
A or F _ A. To  show tha t  this obtains,  take c~ e 22 where e r z~ 

a n d f l ~ F w h e r e f l C A ,  t h e n e  v f l C A ,  b u t e  v f le12 ,  F. C17 
gives c~ v fl ~ e v fl ~ 22, and R E F A  gives us c~ v f l e  A. Hence  
our  result. 

18, Assume C18, and  tha t  R Z F A  and R12F'A'. We wish to find a 

pr ime H- theo ry  ~ ;  where F, F '  _c ~ ' ,  and either R12~'A or 

R Z ~ ' A ' .  The  p r o o f  in R L R  recommends  that  to this end we 

define a set q) = {~:(37 e F, y'  e F ' )  k n 7 A 7' ~ ~} and show 
that  either RZ~zX or  RY.eDN. To do this you  take e --* fl s 22 and 

s q). Then  k n 7 /~ 7' ~ c~ for  some 7, 7' in F, F '  respectively. So 

as kn(e  --* fl) -~ (7 a 7' ~ fl) we see that  7 A 7' -~ fl S 12, and 
hence (y ~ fl) v (y' -~ fl) e E, giving either 7 --* fl or  7' ~ fl in 
Z. R Z F A  and R Z F ' N  then gives either fl ~ A or fl ~ N. And  the 
text leaves us there. The  astute will note that  this is not enough to 

give us the result, as for  a range of  values fl, there 
is noth ing  to ensure that  they land in the same place. Some 

might  end up in ZX, and some in A'. All we have shown is tha t  
R Z O ' ( A  w A'). For tunate ly ,  all is not  lost, as C18 gives C16, as 

A fl) v ( f l - ~  ~ A f l ) w h i c h  easily yields k n ( ~ - ~  fl) v ( f l - ~  
~), as we wished.) So, by the p r o o f  for  C16, it follows that  either 
A' _ A, or  zX ___ A', so A u A' is one o f  them, giving the result. 
Fo r  those who prefer  a smoo the r  proof ,  a b a n d o n  all thoughts  o f  
@, and  take the larger of  F and F '  as our  required pr ime I I -  
theory.  The  result follows immediately.  �9 
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In RLR, there are a few more extensions that are considered - such 

as e v (c~ --, fl) - these seem to require the non-degenerate model 
structure to push through the completeness proofs, but it seems that 
Theorem 14 cannot be proved for these extensions, despite what is 
said in RLR. On p. 314 non-degeneracy is assumed for this axiom, 
but on p. 317, it is only shown to work for axioms like our C l l .  3 

Despite this setback, it is possible to extend the structure of  an inter- 
pretation yet again, by adding an explicit empty world e, satisfying 
certain obvious conditions. Then a phrase like a r e is used in a 
modelling condition whenever it is needed that a be non-empty. The 

details of  this approach can be found on p. 380 of  RLR, and the 
interested reader is referred there. We will extend the semantics to 
deal with a more pressing need, and that is to add negation. 

6. A D D I N G  N E G A T I O N  

The addition of negation to the story complicates things somewhat. 
In SS it is shown that there are (at least) two different ways of  

expanding the simplified semantics to deal with negation. In this sec- 
tion we will show that the semantics using the Routley '*' operation 
can model common negation extensions of B. In SS, a four-valued 

interpretation was also used to model negation, and that can also be 
done for extensions of B. However, that opens up a whole range of  

other issues, which will be covered in a forthcoming paper. Here we 
will deal solely with the '*' modelling of  negation. 

6.1. The Systems BM and B, with '*' 

One logic extending B + by adding negation is BM, which is obtained 
from B + by adding the rule: 

R4 ~ - ~ f l  

along with the De Morgan laws 

A7 -~(c~ v /~) ~ - n c ~  A ~ / ~ ,  

A8 ~ ( ~  A p) ~ c ~  v ~ p .  
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In SS it is shown that if we extend interpretations to contain a func- 

tion *: W ~ W, and define the truth conditions for negation as: 

1 = I(w, -7~)  r 1 # I(w*, ~) 

the logic BM is sound with respect to these conditions. To show com- 

pleteness, define * on the set of  prime H-theories by: 

~:* = {~ : -1~  r ~:}. 

This is shown to send prime H-theories to prime H-theories, and to 

give the desired results. The details of  the completeness proof  are not 

difficult, and the interested reader is referred to SS for the details. 

The system B can be obtained from BM by adding the axiom: 

A 9  ~ ~--~ - q - - q  ~ .  

(Or alternatively, add to B + ~ ~ ~ ~ and the rule from ~ ~ -7/~ to 

/~ ~ --7 ~.) To obtain semantics for B we simply require that * satisfy 

w** = w in each interpretation. Soundness and completeness is simple 

to show. The only other construction we need to consider is the con- 

tainment relation ~< on worlds. It  no longer follows that containment 

relations as they stand satisfy the condition a <<. b ~ (I(a, ~) = 1 

I(b, ~) = 1), for another  condition must be added to deal with nega- 

tion. This is dealt with in the following theorem. 

T H E O R E M  16. Let  <g, W, R,  I, *> be an interpretation, and <~ a 

binary relation on W satisfying: 

I (I(a, p) = 1 ~ I(b, p) = 1) 

for every propositional variable p 

a <~ b ~  ~ R b c d ~ R a c d  i f a  # g 

Rbcd ~ c <. d i f a  = g 

b* ~< a* 

Then a <<. b ~ (I(a, ~) = 1 ~ I(b, ~) = 1) for  every formula a. 

Any  relation satisfying these conditions is said to be a containment 

relation. 
Proof. We add a clause for -1 to the induction on the complexity 

of  formulae. I f  a ~< b and the result holds for c~, then if I(a, -7 c~) = 1 
it follows that I(a*, ~) = 01 and as b* ~< a* it must be that I(b*, ~) 
= 0 and hence that I(b, --7 ~) = 1 as desired. [] 
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6.2. Extensions of B 

The extens ion results in the previus  sect ions ca r ry  over  to the logic B 

with no modif ica t ion .  W h a t  we are in teres ted in is the poss ib i l i ty  o f  

ex tending  B with  ax ioms  or  rules tha t  use negat ions .  This  can be 

done,  as the fol lowing theorem shows. 

T H E O R E M  17. For each row n in the list below, the logic B with the 
axiom Cn added is sound and complete with respect to the class of B 
interpretations <g, W, R, I, *) where R satisfies condition Dn, and for 
the last axiom, the interpretations are assumed to be extended with a 

containment relation <.. 

C19 (0~ ~ c  0 ~ - 7 c ~  

C20 ( g - ~ f l ) - ~  ( f l - ~ c 0  

C21 g v -7 c~ 

D19 Raa*a for a # g, and g* <~ g 

D20 Rabc ~ Rac*b* 

D21 g* <~ g 

Proof. These are p roved  in exact ly  the same way  as the o ther  

extensions.  

19. Assume  tha t  Raa*a and tha t  

I(g, (a ~ ~ )  ~--7c 0 = O. 

Hence  there mus t  be a w where I(w, a ~ ~ ~) = 1 and  tha t  

I(w, -7 c 0 = 0, so I(w*, a) = 1. I f  w # g, Rww*w then gives 

I(w, -7 a) = 1, con t rad ic t ing  wha t  we have seen. I f  w = g, g* ~< g 

gives I(g, a) = 1, and  hence I(g, -7 a) = 1, con t rad ic t ing  wha t  we 

have seen. So C19 mus t  hold.  

N o w  assume tha t  C19 holds  and  tha t  Z is a p r ime  H- theory ,  dis- 

t inct  f rom II .  We  wish to show tha t  R Z E * E ,  so let  c~ ~ fl e Z 

and ~ e Z*. The thing to note  is that  if  C19 holds,  so mus t  (e ~ fi) 

(-7 e v fi). To  see this, cons ider  the fol lowing der ivat ion:  

F- n ~  A ~fl ~ ~, b y A 3 ,  

~-n fl --+ - 7  c~ v fl, by  A 2 ,  
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F n ~ c ~  v fl ~ ( c ~  /x -7f i ) ,  b y A 8 a n d A 9 ,  

~-n fl --+ -7 (~ A -7 fl), by  t ransi t ivi ty,  

-7 (~ /x -7 fl)), by R3, 

~ (a A -7 fl), by C19, 

~-n (~ ~ fl) ~ -7 (a A -7 fl), by  t ransi t ivi ty,  

~ - n T ( a  v - 7 f l )  ~ ( -7a  v fi), b y A 8 ,  A9, 

t- n (~ ~ fi) ~ ( 7  ~ v fl), by  t ransi t ivi ty.  

So we have - T e  v f l e E ,  a n d ~ e r  g i v i n g f l e Z ,  a s w e  

wanted .  

To show tha t  I-I* _ I I ,  no te  tha t  a v -7 e is a theorem.  Take  ~ e 

I-I*, so -7 e r H. But ~ v ~ ~ ~ H,  so c~ e H as desired.  

20. Assume  tha t  R a b c  ~ R a t * b *  and  tha t  

I (g ,  (~ ~ fl) ~ ( -7 f l  ~ 7 ~ ) )  = O. 

There  mus t  be a w where  I (w ,  , ~ fi) = 1 and I (w ,  ~ fl ~ -7 a) 

= 0, which in tu rn  gives x, y where R w x y ,  I ( x ,  ~ fl) = 1 and  

I ( y ,  -7 a) = 0. W e  mus t  have R w y * x * ,  by assumpt ion,  and  hence, 

as I ( y * ,  a) = 1 we mus t  have  I ( x* ,  fl) = 1. This  gives I ( x ,  -7 fi) 

= 0, which con t rad ic t s  wha t  we have seen. Thus  C20 mus t  hold.  

N o w  assume tha t  C20 holds  and  tha t  ~ ,  F and  A are  p r ime  H-  

theories  such tha t  R Z F A .  Let  ~ ~ fl e Z and  ~ ~ A*, i.e., 7 a ~ A. 

By C20 we mus t  have -7 fi ~ -7 a e E, so we mus t  have -7 fl ~ F,  

lest 7 a e A. This  then gives f l e  F*,  which ensures tha t  RZA*F*.  

( I f  ~ = l-I, the result  is even easier  to prove. )  

21. Assume  tha t  g* ~< g and  tha t  

I (g ,  a v -7~ )  = O. 

I t  fol lows tha t  I (g ,  ~) = I(g ,  -7 a) = 0, and  hence tha t  I (g* ,  a) 

= 1. This  con t rad ic t s  g* ~< g, so C21 holds .  

N o w  assume tha t  C21 holds.  W e  wan t  to show tha t  I-[* ~_ f I  - 

to this end,  no te  tha t  i f ~  ~ H*, - 7 ~  ~ H and  so a v - T a  ~ H 

ensures tha t  a ~ I I  as desired.  �9 
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7. THE LOGICS WE HAVE COVERED 

It is time to take stock and consider what logics have a semantics as 

the result of  these investigations. It  is clear that we have covered B +, 

BM and B, but with the addition of  any logic that can be obtained by 

adding various axioms amongst  C1-21. We enumerate some of  those 
covered; the details are taken f rom R L R  and other sources. (It must 

be understood that these logics are all disjunctive systems.) 
DW = B + C20; this is the basic logic covered in Slaney's 'A 

General Logic'. D J  = DW + C2, G = B + C21; G is the weakest 

of  the affixing systems that includes each of the classical tautologies 

as theorems. DK = G + {C2, C20}, DL = DK + C19, TW = B + 

{C3  + C 4  + C20} ,  C(  or R W )  = T W  + C6, CK( or R W K )  = C + 

C12, T = TW + C5 + 19, R = T + C6 = C + C5, EW d = TW 
+ C10, and E d = T + C10. 

8. BOOLEAN NEGATION 

AS a formal construction, it is possible to add to these logics a 'nega- 

tion' commonly called "Boolean Negat ion",  which we will write as 

' - ' .  I t  is characterised by the following axioms. (See Giambrone and 
Meyer 's  'Completeness and Conservative Extension Results for some 

Boolean Relevant Logics' for this characterisation.) 

BA1 c~ ~ (fl ~ 7 v --  7) 

B A 2  - ( ~ - ~  fl) v ( - ~  v fi) 

BA3 ~ A - ~ - ~ f l  

I f  a logic L is without Boolean negation, the logic resulting from 

adding such a negation is called 'CL' .  I t  is well-known that Boolean 

negation satisfies ~- - -c~ ~-~ c~, t- c~ /x - ~  ~ fl and ~- c~ ~ f l v  - f l ,  
and I will not prove that here. To model Boolean negation in the 
simplified semantics, we add the obvious condition that: 

I(w,  - e )  = 1 if and only if I(w,  ~) = 0 

It  is trivial to show that the semantics for L with this extension is 
sound and complete for CL, Using well-known properties of  Boolean 

negation. However, this gives us a conservative extension result, 
which is a corollary of  the following lemma. 
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L E M M A  18. Given any B M  or B + interpretation, not using a contain- 

ment relation, the structure given by adding the rule for Boolean nega- 
tion' has exactly the same evaluation as the original on formulae that 

do not contain ' - ' .  

Proof. By inspection. The reason a conta inment  relation is not  per- 

mitted is that  the hereditariness condi t ion on the relation fails in 

general, given the presence o f  ' - ' .  (See No te  1.) �9 

T H E O R E M  19. I f  L is a logic which has a sound and complete simpli- 

f ied semantics, not using a containment relation, then CL is a conserva- 

tive extension of  L. 
Proof. This is a simple corol lary o f  the lemma. �9 

It follows that  CR, CC, CTW,  C D J  and C D W  are conservative exten- 

sions o f  R, C, TW,  D J  and D W  respectively - and other less known  

logics are also conservatively extended. The results for R, C and T W  

were known,  but  those for  D W  and D J  are new. 

Other  logics such as CDL,  CDK and CCK are not  proved to con- 

servatively extend DL,  DK and CD - as their semantics use the 

inclusion relation. Fo r  CK, there is a good  reason why the extension 

result cannot  be proved. 

T H E O R E M  20. CCK is not a conservative extension of  CK. 

Proof. Firstly, c~ v -7 e is not  a theorem of  CK. We will show that  

it is a theorem of  CCK. To do this, note that  c~ v - c~ holds in CCK, 

so it is enough to show that  - c~ ~ ~ e. 

I n  CK, it is simple to show that  --7 e ~ (c~ ---, L)  for some con-  

tradict ion '_1_'. Fo r  example, ~ ~ ~ (e ~ -7 (c~ ~ e)) holds in CK, and 

hence i n C C K .  N o w w e h a v e e  ~ ( - e  ~ e A - e )  andc~ t, -c~--+ 
( -  c~ -~ - a), so we have e --* ( -  e -~ ~ ( -  c~ ~ - e)). But this gives 

~ ~ -c~, which cont raposed is - e  ~ -7 e, as desired. 

Whether  or  not  D L  and DK fail  to be conservatively extended by 

Boolean negat ion is another  story, and it is one that  will not  be 
answered here, but  rather  in a subsequent paper  that  deals with four- 

valued semantics for these systems. 4 
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N O T E S  

t It should be noted that the provability relation 'l-' used here is distinct from the ~t-' 
that appears in other sections of  the relevant logic literature. In our case, O ~- e iff 
there is a proof  of  e that  uses premises f rom among  the elements of  O. In 'A General 
Logic' by Slaney, for example, O F- c~ iff there is a proof  of  ]~1 A . . . /x ~, --+ c~ for 
some/~i ~ O. These notions are distinct. In the notion Slaney uses, it turns out  that  
O I- c~ iff for every theory in which the elements of  O are true, so is c~. In our notion, 
the theories in question are restricted to those that are regular (or detached - meaning 
that  if e --* /3 and c~ are in the theory, so is/~) and normal (containing all the theorems). 
2 If  Boolean negation is present, it can be used to show that  RFIFA if and only if 
F = A (given that F is non-empty and A is not  full). It is quite simple to do: Boolean 
negation (written as ' - ' )  satisfies I- c~ ~ /~ v - / ~  and ~- ~ A -c~ ~ / ? .  It follows that  
for any non-empty,  non-full H-theories F, c~ v -c~ E F, and c~ ^ -c~ r F, so exactly 
one of  c~ and - c~ are in F. If RYIFA, then it is clear that F _c A (as II contains all 
identities), and so, as F is non-empty,  it contains exactly one element of  each {c~, - co} 
pair, for each c~. So, A contains at least this element for each pair. However, it cannot  
contain both, for any pair (being non-full), so A contains exactly the same elements of  
each pair as does F. Hence, F = A. The other direction of the biconditional is obvious, 
given that F and A are 17I-theories. 

The behaviour of  Boolean negation is important ,  when we come to the last section, 
where we show that Boolean negation conservatively extends a large class of  logics. 
3 For completeness'  sake, the candidates given in R L R  that seem to need non- 
degeneracy, but  for which the current results will not  hold (and the proofs in R L R  
do not  seem to work) are c~ v (c~ ~ /~) ,  (c~ ~ /~) - -  ((c~ ~ y) --, (e --* ]~ A y)) and 

v ~ -~ ((~ -~/~) ~ ~). 
4 I would like to thank Graham Priest and Richard Sylvan for the opportunity to 
work on these extensions, and for helpful comments  along the way, and the anonymous  
referee, who rescued me from a number  of  errors, and gave suggestions pointing to the 
Boolean negation results. 
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