GREG RESTALL

SIMPLIFIED SEMANTICS FOR RELEVANT LOGICS
(AND SOME OF THEIR RIVALS)

ABSTRACT. This paper continues the work of Priest and Sylvan in Simplified Seman-
tics for Basic Relevant Logics, & paper on the simplified semantics of relevant logics,
such as B* and B. We show that the simplified semantics can also be used for a large
number of extensions of the positive base logic B, and then add the dualising ‘*’
operator to model negation. This semantics is then used to give conservative extension
results for Boolean negation.

1. DEFINITIONS

The ternary relational semantics for basic relevant logics were greatly
simplified by Priest and Sylvan in their recent paper Simpiified Seman-
tics for Basic Relevant Logics {(hereafter ‘SS°). But the story wasn’t
completed by that paper — the systems B*, BD, BM and B were
each shown to have a simple semantics of some form or other, but
the question of systems extending these was left unanswered. It was
also undecided whether B had a simple four-valued semantics. The
question of extensions of B was thought to be relatively simple, and
by and large it is, but some of the completeness proofs are harder
than one might expect. However, it is my pleasure to announce that a
simplified semantics is obtainable for a large range of extensions of
the basic relevant logic B, including the standard logics such as R,
and T together with their contraction-free counterparts RW and TW.
A notable omission is E, which escapes the simplified modelling.

1.1. The System B*

The first set of results deal with B™, a positive relevant propositional
logic. To establish our terms, B* is expressed in a language %, which
has the connectives A, v and —, parentheses ( and ), and a stock of
propositional variables p, ¢, . . . Formulae are defined recursively in

the usual manner, and the standard scope conventions are in force; A
and v bind more strongly than —. For example, p A g — r is short
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for (p A g) - r. We will use «, f, . . . to range over arbitrary
formulae.

The system B* can then be defined in terms of the following
axioms and rules:

Al o > a,
A2a—>av B foavp,
ABanBowanfop
AdonBvy-o@ap vy,

AS (@ =B A@—y) = (@B Ay,
A6 0 - ) A B>V f-y)

If (o . . . &,)/B is a rule, its disjunctive form is the rule (y v «
...7 v a,)/(y v B). The rules for B* are the following, along with
their disjunctive forms:

O nd

B 2
o, p
a A B’

R2

o— B,y
B9 -@—>0

It is to be noted that the simplified semantics given can only model
disjunctive systems. That is, systems such that the disjunctive form of
every truth preserving rule is truth preserving. Not every logic satisfies
this criterion — a notable candidate is E, for the disjunctive form of
its characteristic rule, from « to (¢ — ) — f, fails to be truth '
preserving. The reason for this is that & v —a is a theorem of E, but
= v {((a = B) - B) is a non-theorem. (See Brady’s Natural Deduc-
tion Systems for some Quantified Relevant Logics for an introduction
to the notion of a disjunctive system.)
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1.2. Semantics for B*

The main construction in SS is the semantics given for B*. Their
semantics is a simplified version of the original ternary relational
semantics for relevant logics. The important definitions concerning the
structure are collected here. _

An interpretation for the language is a 4-tuple (g, W, R, I), where
W is a set of worlds, g € W is the base world, R is a ternary relation
on W, and [ assigns to each pair (w, p) of worlds and propositional
parameters a truth value, I(w, p) € {0, 1}. Truth values at worlds are
then assigned to formulae inductively as follows:

ol =JIw,a A fel=1Iwa)andl = I(w, ),
el =Iwav fHlel=Iwaorl =Iwf),
ol =J(g, a—pPeforallxe Wl = I(x, x) =
I(x, B)),

._
li

and for x # g,
ol =J(x,a—> fy<forall y, ze W(Rxyz =
(I =1(y, ) =1 =1z, p))).

Then semantic consequence is defined in terms of truth preservation
at g, the base world. In other words,

® k o < for all interpretations { g, W, R, I'>
(I=Ig Pforall fe® =1 = I{g, o).

The soundness and completeness result for B* can then be con-
cisely stated as follows.

THEOREM 1. If ©® U {u} is a set of sentences, then
Ora<=0Faq,
where - is the provability relation of BT !

In this paper we will make a cosmetic alteration to the above defini-
tion of an interpretation. It is easily seen that the truth conditions for
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‘=’ can be made univocal if we define R to satisfy Rgxy < x = y.
From now, we will use the following definition of an interpretation.

DEFINITION. An interpretation for the language is a 4-tuple

{g, W, R, I), where W is a set of worlds, g € W is the base world, R
is a ternary relation on W satisfying Rgxy <> x = y, and I assigns to
each pair (w, p) of worlds and propositional parameters a truth value,
I(w, p) € {0, 1}. Truth values at worlds are then assigned to formulae
inductively as follows:

ol =Jw,anpf=l=Iwao)and 1 = I(w, p),

°
Il

Iw,0 v fye=1=1I1Iw,ax)or 1 = I(w, f),
ol =I(x,a— pf)<forall y,ze W(Rxyz =
(I =1y, 0) = 1= Iz p)).

Then semantic consequence is defined in terms of truth preservation
at g, the base world. In other words,

® F a < for all interpretations {g, W, R, I)
(1 =IKg pforal fe® =1 = (g, ).

It is clear how one can translate between the two notions of an
interpretation. The reason we use this altered definition is in the
phrasing of conditions on R which give extensions of the logic B*. It
is much less tedious to write ‘Rabc = Rbac’ than it is to write ‘Rabc
= Rbac for a # g and Rbgb for each b’, but these are equivalent
definitions under each variety of interpretation.

2. SOUNDNESS

THEOREM 2. For each row n in the list below, the logic BT with the
axiom (or rule) Cn added is sound with respect to the class of B” inter-
pretations {g, W, R, Iy where R satisfies condition Dn.

Cl an(x—>p—p
C2 @->pPHArB->7)->@>7)
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C3
C4
Cs
Co
7
C8
C9

C10

Di
D2
D3
D4
D5
Dé
D7
D38
D9
D10

(@=>p >8> - (—9)
@=>p->0—-09->0~—-8

(@ - (@@= p)->(@-p

A ()
@>B-=>M->F->@>)
@=>B =) > x>0 ->(@->7)
@=>p->(=>F->7)->@@-=>7)

, and its disjunctive forms

o
@— BB
Raaa
Rabe = R*a(ab)c
Rabed = R*b(ac)d
R’abed = R*a(bc)d
Rabc = R*abbc
Rabe = Rbac
R?abed = R*acbd
Rlabed = R*ac(be)d
R’abcd = R*bc(ac)d
Raga

Where we have defined:
R*abed = (3x)(Rabx A Rxcd),
Rra(be)d = (Ax)(Rbex A Raxd),
R}ab(cd)e = 3x)(R*abxe A Rcdx).

Proof. To prove soundness in each case, we take an arbitrary B*
interpretation (g, W, R, I> and assume that the relation R satisfies
condition Dx. Then it suffices to demonstrate that the value of a
formula of the form of Cn must always be 1 at g. (Or that the cor-

responding rule is always truth preserving at g.) The soundness results
are simple and mechanical.
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For those who like a quick proof, it suffices to note that any BT
interpretation {g, W, R, I') is also an old-style interpretation — with
the proviso that Rgxy < x = y. Hence, we can shamelessly appro-
priate the soundness proofs from Relevant Logics and Their Rivals
(hereafter RLR), pp. 304-305.

Or, we can work the proofs independently. We give two examples
to show how it is done.

1. Assume that R satisfies Raaa for cach a € W. Then,

Hg,aon (> B —-p =0
if and only if there is a w where I(w, « A (@ —» f)) = 1 and
I(w, B) = 0. Then, I(w, @) = 1 and I(w, « —» ) = 1, so Raaa
gives I(w, f) = 1, contrary to our assumption. Thus C1 is true
at g.
10. Assume that Raga for each a, and that

I(g, 0 v y) =1, and I(g, (x = f) = f) v y) = 0.
Then we must have a w where I(w, o« - ) = 1 and I{w, ) =
0, and that I(g, y) = 0. So, I(g, ®) = l,as I(g,a v y) = 1.
By assumption Rwgw, and hence I(w, ) = 1, contrary to our
assumption. Hence C10 is truth preserving at g.

3. RESULTS CONCERNING PRIME THEORIES

The completeness result for B relies on a standard model construc-
tion, where the worlds are prime theories. We will need certain defini-
tions and facts about prime theories to prove this result for logics
extending B*.
o If ITis a set of &-sentences, I1_, is the set of all members of IT of
the form o« — f.
e Ztpa<=Xull, o
o X is a [I-theory <
l.a,feZ=a A feZ,
2.bpa > f=>(@eX=feX)
e Xisprime< (o v fecZ=>acZorfel).
e If X is any set of sets of formulae, the ternary relation R on X is
defined thus:
RETA <= (y > deX=(yel = deA)).
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e g A<= forsomed,...,5,eA,wehave L Fpd, v ... Vv 4,
e lpX > A< forsomeos,...,0,eZand d,,...,d,€ A we
have bpo, A ... A G, >0 V ...V I,

e X is [1-deductively closed < (Xt o = o € X).
e Where L is the set of all ¥-sentences, (X, A) is a [I-partition if
and only if:
.LSUA =1,
2. g T - A
In all of the above definitions, if TI is the emptyset, the prefix ‘I1- is
omitted; so a ¢J-theory is simply a theory, and so on. The following
results are proved in SS:

LEMMA 3. e If <Z, A is a HU-partition then L is a prime T-theory.

o If ;% — A then there are ¥ 2 L and N = A such that (&', N> is
a I-partition.

e If X is a II-theory, and A is closed under disjunction, with £ n A =
O, then there is a X' 2 X such that X' nn A = (J and ¥’ is a prime
I1-theory.

e If I1 is a prime U-theory, is Tl-deductively closed, and o — J ¢ 11,
then there is a prime II-theory, U, such that o € T and p ¢ T.

o [f X is a prime T-theory with y — & ¢ X, then there are prime I1-
theories, I' and A such that RETA,ye I" and 6 ¢ A.

Given some [I-theory £ with various properties, we are interested in
finding a prime Il-theory X’ = Z that retains those properties, because
our canonical model structures requires the worlds to be prime. The
following lemmas do this, and hence they are called priming lemmas.
The content of these is contained in either SS or RLR, but not in the
form we need; we repeat them here for completeness’ sake.

LEMMA 4. If Z, T and A are Tl-theories, such that RET'A and A is
prime, then there is a prime 1" 2 " where RZI”A.

Proof. We construct I by defining ©® = {a:(3f ¢ Az — § € Z)}.
@ 1s closed under disjunction, for suppose «;, o, € ®. Then there are
B, B, ¢ Asuch that o, — 5, 0, > B, € X. As Ais prime, f§; v f, ¢ A.
It is easy to show that oy v o, — 8, v B, € X, as X is a [I-theory. So
we have o, v o, € @. Moreover, I’ n ® = ¢. For, suppose that x € T
N ©. Then there is some f§ ¢ A where « — f§ € £, contradicting RETA.
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Thus, applying a part of Lemma 3 there is a prime Il-theory
I" 2 T'where " n ® = ¢J. To see that REI"A, let o — B € X and
o« €I’ Then o ¢ ®, so we have f§ € A. [ ]

LEMMA 5. If £, T and A are I1-theories, such that RETA and A is
prime, then there is a prime L' 2 X where RE'TA.

Proof. This time let ® = {«:(3p, y) where by a - (8 - ), feT
and y ¢ A}. @ is closed under disjunction, for if ,, «, € @, then for
some By, BreTand y,, 1, ¢ A, Fproy —» (B, = 7,) and b a, —

(B - v,). Hence B, A B, eI (as I'is a Il-theory) and y, v 7, ¢ A
(as A is prime). It is straightforward to show that then tg ¢, v a, —
By A B, = v, Vv 9,), because we have Fp oy v a, = (B, = v,) Vv
B, = v,)). So we have a; v o, € O.

2nO® = Forifde Z n O, then thereare fe [ and y ¢ A
where b; 6 —» (f — 7). Then as § € £, and as X is a Il-theory we
have § — y € £, contradicting RET'A.

Lemma 3 then gives a prime £ 2 X, disjoint from @. RZTA
obtains, asif f > ye X, f —» 7 ¢ O, so for all " and y” where
tn(B > 9) = (B —>7),if frel, theny e A. But by (f — 7) -

(8 — 7), so we have our result. [ |

LEMMA 6. If Z, T and A are II-theories, such that RET'A and A is
prime, then there are prime L' 2 L and X' 2 T" where RZ'T’A.
Proof. Apply both of the lemmas above. [ ]

LEMMA 7. If Z, T and A are I1-theories, such that RET'A and § ¢ A,
then there are prime Tl-theories X' and A such that T 2 I, 6 ¢ A, and
A=A

Proof. First construct A'. Take ©, to be the closure of {6} under
disjunction. As Fy 6 v ... v d —» 4 and A is a II-theory, A n O, =
. By a part of Lemma 3, there is a prime TI-theory A = A where
AN n ©, = ¢, and it follows that RETA’, and that § ¢ A",

To construct I, take @, to be {x:3B ¢ A’ where « —> f € X}. O, is
closed under disjunction and I' n @, = . (See SS for a proof, or
take it as an exercise.) Lemma 3 shows that there is a prime II-theory
I" 2 T where I” n ©, = . To show that RETA, take o - fe X
and « € . Then o ¢ ®,, and hence f € A'. |
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The completeness of the simplified semantics for B* is then demon-
strated in the following way. Given a set of formulae ® U {«}, such
that ® ¥ a, we construct an interpretation in which ® holds at the base
world, but a doesn’t. Firstly, note that there is a prime theory II such
that [T 2 @, but « ¢ I, by Lemma 3. The worlds of the interpret-
ation are the [I-theories, g is IT itself and R is as defined above, except
that RIITA if and only if I' = A.” Then we determine I, be assigning
I(Z, p) = 1 < p e X for each propositional variable p and II-theory
Z. It can then be proved that I(Z, f) = 1 <« f§ € X for each formula
B, so we have that @ holds at IT, the base world, and « does not.

4. COMPLETENESS

To show completeness for the extensions, it is usual to show that any
canonical model of the logic in question satisfies the conditions corre-
sponding to the logic. So for Cl1, we show that any canonical model
formed from the logic B* + C1 satisfies the condition Raaa for each
a. The completeness result then follows immediately as described in
the last section.

Unfortunately for us, the results of this form appear to break down
when we extend the logic too far beyond B*. A simple example is
given by the logic B* + C5. It is not at all clear that the canonical
interpretation of this logic satisfies the condition Rabc = R*abbe. The
reason is as follows: Suppose that £, T and A are prime II-theories
such that RET'A. We wish to find a prime II-theory Q such that
RZI'Q and RQI'A. The general approach is to let Q be the smallest
set satisfying the first condition — it will turn out to be a II-theory,
and a priming lemma gives us a corresponding prime theory ' —
and then we demonstrate that Q satisfies the second condition. (And a
priming lemma ensures that Q’ will also. The details are given when
we get to the proof. They are sketched here to motivate what follows.)
This proof goes through, except for the case when  turns out to be
IT. In that case RQI'A if and only if I' = A, and this does not seem
to follow from what we have assumed. It is at this step that many of
the completeness arguments fail.

So instead of using the original canonical interpretation, we will use
another, in which the standard arguments work. We note that the
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difficulty with the standard argument arises when a II-theory (say Q)
constructed to satisfy RQI'A, turns out to be IT itself. What would
solve the problem is some other I1-theory which has exactly the same
truths as I1, but which has ‘orthodox’ R-relations with other Il-
theories. In other words, we wish to have a Il-theory IT’, which satis-
fies RIITAifand onlyifx - feII' = (x e ' = f € A), instead of
the more restrictive condition of I' = A. Then this world will take the
place of IT, whenever we need it in the first place of an R-relation.
This is only by way of motivation, and does not constitute a proof.
We will formally explicate this model structure, and prove the com-
pleteness theorems with it:

DEFINITION. Given that IT is a prime IT-theory of a logic L extend-
ing BT, an almost-canonical interpretation for L is a 4-tuple {<II, 1},
W, R, I>, where
o W = {(Z,0): T is a prime [I-theory} U {<II, 1)},
e R is defined on W? to satisfy:
— R, xy if and only if x = y,
—~R{E, 00T, i YA, j> if and only if for each « and S,
«—>pfel=(@el = peA),forije{0,1},
o I({Z,i>, «) = 1if and only if « € Z, for j € {0, 1}.

In a moment, we will demonstrate that this actually is an interpret-
ation (by showing that 7 satisfies the inductive properties needed

for an interpretation), but first, we will simplify our notation. It is
clear that the almost-canonical interpretation is simply the canonical
interpretation with another world with the same truths as the base
world, but entering into different R-relations (when it appears in the
first place of R). Other than that it is identical, so we will ignore the
ordered-pair notation, and simply write IT for what was <II, 1),

the base world; IT” for <II, 0), its double; and for each other

world <(Z, 0), we will simply use Z. Further, instead of writing
IKZ, i>, a) = 1, we simply write « € . In this way, we cut down on
notation, and the parallel with the canonical interpretation is made
clear. In fact, you can ignore the whole business with ordered-pairs,
and simply imagine W to be the set of all prime Il-theories, each of
which is painted blue, and a single set with the same elements as II,
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which is painted red. The red one is the base world, and has R
defined on it in its own peculiar way, and the blue ones have R
defined on them as normal. However you think of it, seeing it in use
will (hopefully) make it clear. The first proof demonstrates that it is
actually an interpretation.

THEOREM 8. The almost-canonical interpretation is worthy of its
name; that is, it is an interpretation.
Proof. Define I by requiring that:

I, p) = lifandonlyif pe Z,
for p a propositional parameter,

and that it satisfy the usual inductive definitions of an interpretation.
We simply need to show that I(Z, ) = 1if and only if 2 € Z for
every formula «. We do this by induction on the complexity of the
formulae.
o It works by stipulation on the base case.
o [(Z,00 A B) =1
ifand only if I(Z, &) = 1 and I(Z, f) = 1 (by the inductive
definition of I),
if and only if « € £ and § € £ (by the inductive hypothesis),
ifand only if & A f§ € X (as X is a II-theory).
e I, a v f)=1
if and ony if I(Z, ®) = 1 or I(Z, f) = 1 (by the inductive
definition of 1),
if and only if « € £ or § € X (by the inductive hypothesis),
ifand only if o v B € X (as Z is a prime II-theory).
e /X, 0> f) =1
if and only if for each I', A where RETA (I(T', 2) = 1 =
IA, B) = 1),
if and only if for each I', A where RETA (¢ e T = B e A).
We desire to show that this last condition obtains if and only if & —
f € . We take this in two cases — firstly when X is the base world.
Then, I(II, &« —» f) =1
ifand only if foreach T, (s e T’ = B e 1),
if and only if « — f €I, as " is a I1-theory, and by the fourth
part of Lemma 3.
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If = is not the base world, then RXTA if and only if R'EXI'A, where R’
is the relation on Il-theories defined univocally as R'XT’A if and only
if(Va - feX)ael = el

Then we have: I(Z, 2 —» f) = 1,

if and only if for each I', A where RETA, (xe I’ = f € A),

if and only if « — f € Z, by the definition of R, and by the fifth

part of Lemma 3.

So for any world Z, I(Z, « —» ) = 1 if and only if « —» f € Z. This
completes the inductive proof. [ ]

We now have enough resuits to prove completeness.

THEOREM 9. For each row n in the list given in Theorem 2, the logic
B with the axiom (or rule) Cn added is complete with respect to the
class of BY interpretations {g, W, R, I ) where R satisfies condition Dn.
Proof. We will demonstrate these individually, showing that the
canonical model of any logic satisfying B and axiom (or rule) Cn
must satisfy restriction Dn.
1. We wish to show that REZX for each prime Il-theory X, under
the assumption of C1. Consider « — € Z, and o € Z. Thus
2 A - pPeZandbga A (@ > f) - Bgives feZ, and so,
if T # II, REXZ. If © = I, the result follows immediately.
2. We wish to show that for all prime IT-theories £, I' and A where
RXETA, there is a prime I1-theory ®" where RE['@” and RZ®'A.
Let @ = {f:(F)(x - feX) A (xeD)}. ®is a II-theory be-
cause:

e f3,, B, € ® means that there are o, o, € I' where o, — f,,

o = BeZ . So, 0 Aayeland (o » B) A (o > fa) e Z.
But this gives a; A o, — B, A B, € Z. (Because Fpg a; A

a = &, 80 Fp (& = B) = (4 A o, — B) by R3and Fy

(B, = B)). Similarly, we have by (o, = ) = (o) A @ =
B1), so AS gives us b (o = B1) A (a0 = fy) = (04 A o =
B A B,).) This ensures that f; A f,€ O.

o Iftqbo > fand e O, thereisaye I wherey - a e X,
and because we have F; (y = o) —» (y —» ) by prefixing, we
then have y — B € . This gives f € @', as desired.

Now RZII'® is true by definition (even if ¥ = IT, in which case
I' = A = 0, and we have our result immediately). To show that
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REOA,ifa —» feXand o € O, thereis a y e I' where y —
e, 80y > a) A {o— B)e X C2ensures thaty —» f e X, and
hence f € A as RET'A.

By Lemma 4, there is a prime @ 2 ® where REQ’A, and
REIT® is ensured by @ = . If as sets ® = II, then we select
it can be either I or IT” for this case — in other cases the choice
is important. Whatever we take &’ to be, we have our result.
Before we go on to the next case, we would do well to note some
features of this one. ®, as we defined it, is the smallest set satisfy-
ing REI'O, and fortunately for us, it is a I1-theory. We will use
this construction often, and we will not rewrite the proof that the
set so formed is a [1-theory.

. Assume that C3 holds, and consider arbitrary prime Il-theories X,
0, T, A and Z, where RXI'E and REOA. We wish to find a
prime I1-theory Q" where REOQ and RI'Q’A. To this end, let

Q = {f:3)(a — feX) A (xe ®)}; this is a [I-theory as before.
R>©Q) is immediate (even when ¥ = II, in which case I' = &,
and @ = Q, yielding the result). To show that RT'QA, let o —
pel and a € Q. Then thereis ay e I’ where y - a € £ and
ye®,and as Fp (y » a) > (@ = f) = (y» = ), we have

(@ > B) = (y = P) € . REI'E then ensures that y — f € E, and
REOA then gives f§ € A. This means that RTOA, if I" # I1. In
this case a priming lemma then ensures the existence of a prime
Q' 2 Q where RTQ'A and REO, and hence our result. Again,
if as sets Q" = I, then it is unimportant whether we take Q' to
be IT or IT". (For other cases, if it is unimportant, we will fail to
mention that fact.)

If, on the other hand I' = II, set Q' = A. Then REOA, as o — B
eEandae@gives(ﬁeﬁ)~>(oc—>ﬁ)e£,byC3.As,B-—>,{)’e
I and RET'E, we have « — f € E. This, along with RE®A and
o€ @ gives fe A = , as we desired.

. Assume that C4 holds, and that X, ®, I', A and = are prime
I1-theories such that RET'E and REGA. Set Q to be {B:(3Fw)

(@ > BeTl) A (xe ®)}, and then it is clear that RTOQ.

(Even in the case where I' = II, in which case Q = @, and we
have our result.) To show that REQA, consider - — peX
and o € €; there must be a y € ® where y — ¢ e I. So as
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bn(x— f) » (v = o) = (7 > ), we have (y = @) - (7 > f)
€ X. RET'E then gives (y = f) € E, and REOA with y € © gives
B € A, as we wished. Q is a Il-theory, and can be primed by a
priming lemma, in the usual manner.

5. Assume that C5 holds, and let , I and A be arbitrary II-theories
where RZT'A. Let Q = {f:(Fo)(a@ —» fe ) A (x e )}, so RETQ
is immediate. (Except if £ = II, in which case A = T, and we
simply set Q = I' as well. It follows that RQI'A, as RITT,
because Cl1 is a consequence of C5. This gives the result in this
case.) To show that RQI'A let « — B e Q and « € T, so there is a
yeI wherey - (0« » f)e Z. Thus,a A yeT,anda A 7 —

f € X, as the following derivation shows.

bpo Ay > g by A3,
Fmoe Ay =9, by A3,

bn{e = B) = (@ Ay = ), by suffixing,
tn(y 2> @=> )= @ > @ny-> B, by prefixing,

Fn(p = @Ary=>8)->@Ay—
(@ ny—B), by suffixing,

Fa 2 (@—> ) > (@Any—>(Ay—>f), by transitivity.

This ensures that « A y = (@ A 7 — f) e Z, and C5 gives « A y
— p e Z. So RZT'A gives § € A as desired. The usual application
of the priming lemma gives a prime I1-theory Q" with the desired
properties, except if Q' = IT as sets, and it is taken to be I1. In
that case, RQ'T'A is not assured, for it is not clear that I' = A.
However, if this is the case, we can take Q' to be I1” and all is
well.

6. Assume that C6 holds. We will work in the almost-canonical model
of IT-theories as usual, but it will have a different relation R’ defined
as follows: R’ET'A if and only if foreacha —» fe Z,ifae T
then § € A for Z, T" # I1I. Otherwise, R'TIT'A and R'TTIA if and
only if I' = A. We need to show that in this model of II-theories
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that 1 = I(Z, a) if and only if & € Z, and that it satisfies R'ZT'A
= R'T'ZA. The latter part is simpler.

If either of £ or T is I, then the condition is satisfied by fiat. If Z
and I are both not I, then let « = f eI, x € £ and R'ZTA. Cé
gives (x — B) — p e X, and R'ZI'A then gives f§ € A, and so we
have R'T'ZA, as desired.

To show that the model structure satisfies | = I(Z, «) if and only
if « € Z, we need only consider the case where « is y — 6, and
where X is not I1. The rest of the proof is unaltered from the
almost-canonical structure. We need to show that 1 e I(Z, y — §)
if and only if y — 6 € Z. From right to left, it is enough to note
that y — J € T ensures that for all prime I1-theories I and A
where RETA, if y e I, then 6 € A, by the definition of R. As
RETA = R’ZT'A, we have that all prime II-theories I" and A
where R'EZTA, if y e T, then 6 € A.

And in the other direction, if 1 € I(Z, y — &), then VI, A where
RETA ifyelthend e A. If y — 0 ¢ £, then by Lemma 3 there
are prime II-theories I' and A where REI'A, ye I and 6 ¢ A. In
this case, R"XTI'A unless I' = IT (the case where we’ve been muck-
ing about with R’). In this case, if REIIA, and « € Z, then g «
- (0 — o) - «) gives (¢ = o) —» o € X, which with RETIA and
o = aell gives x € A. So £ & A, which means that § ¢ Z, and
as R'ZIIZ, we have our result, that not all II-theories I" and A
where R'ZT'A satisfy y e I' = § € A. Contraposing gives us the
desired result.

. C7 is a stronger version of €6, so we need R’ in this case too.
Assume that C7 holds, and let Z, T, A, ® and E be Il-theories
such that R'ZT'A and R'A®E. Define Q@ = {f:(@Go)(a - S ) A
(o € @)}; this satisfies RZOQ by definition.

IfX =TI, then ® = Qand all is well. If ® = I, then Q = X,
asis f € Z, then (f — f) — B € X too, by C7 (Derive C6 from
C7, and this is enough.), so as § — feIl, £ < Q. Conversely, if
B e, then f e X, as X is a IT-theory. So, we have R'£0GQ in any
case.

Leta - feQand x eI, so thereisa y € ©® where y - (¢ — f)
€ X. This gives « —» (y > f) € £ by C7, and hence y - f € A as
RXTA. This, with RA®GE and y ¢ © gives § € E, and hence
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RQI'E, as desired. We want R'QI'E. If Q = IT as sets, then take
Q =1l and so RQI'ZE. fT" = II, then £ = A, and as R'AQE,
we have R'EDE, and we are safe to take = for Q. In this case
RYOE asE 2 Q,and REIE as ' = IL.

A priming lemma gives a prime II-theory Q’, with the desired
properties.

8. Let Z, ©, ', A and E be arbitrary prime [I-theories such that
RXOT and RTAE. Let ¥ = {f:(Fa)(« —» f e ®) A (x € A)} and
® = {f:Fa)(ox > f €X) A (2 €A)}. Then it is immediate that
ROAY and READ. (Even when © = TII, for in that case ¥ = A,
and if £ = II, ® = A).

It remains for us to see that ROWE. To see this, let « - f e @
(so thereis a y € A where y —» (¢ —» p) € ) and o € ¥ (so there
isadeAwhered > 0 ®) Wethenseethaty A e A,y A S
— (o — B) € Z (by prefixing), and y A § - a € © (also by pre-
fixing). But C8 gives (6 A y > &) - (6 A y = B) € Z, and so
RXOT ensures that § A y — f e I'. This, in turn gives § € 5, as
RTAE. The result follows from an application Lemma 6 to ¥
and .

If @ = I as sets, then take @ to be IT’, and the result that
RO'Y¥'E is then preserved.

9. Assume €9, and let £, I', A, ® and = be arbitrary II-theories
such that RETE and REA®. Let @ = {f:(Fa)(x —» fe1) A
(xeA)}and ¥ = {f:(Fa)(x = feZ) A (xeA)}, so REAY
and RCA® are immediate. (If X = II, ¥ = A, and if T" = II,

D =A)

We have only to demonstrate that ROWO (as priming lemmas
give us the rest of the result). To show this, let o — Bed(so
thereisay € A where y — (¢« —» ) e I') and a € W (so there is a
5 € A where 8 — o € X). This ensures that y A J € A, and that,
by prefixing, y A 6 > (¢ = fleTandy A 6 » ae X C9 then
gives(y A > (@~ ) > A d— p)eX and RZIT'E gives
y A 8 = BeE, and REAO gives € ©, as we set out to show.
Lemma 6 then completes the proof.

Again, if ® = II as sets, then set @ = 11, and the result that
RO'P’'O is preserved.
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10. Assume that C10 holds, and let X be a prime IT-theory. We
wish to show that REIIZ, so let « — f € X and « € I1. By C10,
{a > B) — p eIl, and RIIZZ gives ff € Z as we desired.

This completes the list, and our equivalences have been shown. [ ]

5. AN ORDERING ON WORLDS

In RLR, more axioms are listed, along with their corresponding res-
triction on the relation R. As an example, § — (o — f) is shown to
‘correspond to’ the condition Rabc = a < c¢. The relation < on
worlds needs some explanation, as we have not introduced it in this
paper. Simply put, a < b if and only if Rgab, where g is the base
world. (Or in the case of more than one base world, a < b <« Rxab
for some base world x.) In the original semantics, this has the pleas-
ing property of ensuring that if « is true in a, then o is true in b. Its
corresponding condition in the canonical model structure is represent-
ed by the relation of containment, thatis, Z € A = X < A. Unfor-
tunately, in the simplified semantics such a connection does not exist,
for we have Rgab if and only if a = b, so the definition of < collap-
ses into equality. It might be thought that the occurrences of < in
modelling conditions could be replaced by =, but this fails in general.
For example, the class of simplified interpretations satisfying Rabc =
a = c is certainly sound with respect to the axiom 8 — (a — §), but
completeness fails. We would need to show that in the almost-canoni-
cal model, RZI'A = ¥ = A, which, when Z = II, ensures that

IT = A for each II-theory A, and thus there is only one world. The
condition on R is too strict, and we need to find another way to
model the relation <.

The way to proceed seems to be as follows. We can define a < as a
primitive binary relation on worlds, with conditions that are relatively
simple to check practically. Then we can show that this relation has
the desired properties (namely that a < b = (I{(a, o) = | = I(b, )
= 1) for each formula ), and define an extended interpretation to be
an interpretation with such an additional binary relation. Then the
extra modelling results hold for extended interpretations. This is what
we shall do.
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Given an interpretation (g, W, R, I}, a binary relation < on W
satisfying

((a,p) = 1= 1(b,p) = 1)

for every propositional variable p
Rbed = Racd ifa #¢g
Rbed=c<d ifa=g

a< b=

is said to be a containment relation on {g, W, R, I >. We can then
prove the following result.

THEOREM 10. Given a containment relation < on g, W, R, I,
a< b= (U o) =1=Ib o) = 1) for every formula a.

Proof. We will prove this by induction on the complexity of for-
mulae. The result holds (for all worlds @ and » where a < b) for
propositional variables, and the inductive cases for A and v are
immediate. Now assume that the result holds for « and f, that a < b,
and I{a, « —» ) = 1.

If a # g then we have that for all ¢ and d where Racd, I(c, @) = 1
= I(d, p) = 1, and as Rbcd = Racd, we have that for all ¢ and d
where Rbed, I(c,x) = 1 = I(d, ) = 1, and hence I(h, « — ) = 1.

If a = g, then foreach ¢, I(c, ®) = 1 = I(c, ) = 1. We wish to
show that I(h, « — ) = 1. We have by the condition on < that
Rbed = ¢ < d, so for each ¢ and d where Rbcd, if I(c, ®) = 1 then
I(c, p) = 1 (as I{g, « > ) = 1), which gives I(d, f) = 1 (as Rbcd
gives ¢ < d). Hence I(h, o — ) = 1. This completes the proof. W

We can now use this relation to prove soundness of further extensions
of B*. These are catalogued in the following theorem.

THEOREM 11. For each row n in the list below, the logic B* with the
axiom (or rule) Cn added is sound with respect to the class of extended
B* interpretations {g, W, R, I, <) where R satisfies Dn.

' Clt o —» (B > B)
C12 f - (a0 — )
CBa->B->@-a)



11. Assume that R satisfies Rabc = b < cforeach a, b, c e W.

12.
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Cda—-> (B —-anp

CS @A p-2p)->@>(8->7)

C16 (0 —» p) v (f = )

Cl17 « - (0 — o)

CB (@A fop->(@=>y) v (EB->)
D11 Rabc = b < ¢

D12 Rabc = a < ¢

D13 Rlabed = a < d

D14 Rabc = a < cand b < ¢

D15 R’abed = for some x
b < x,c < x and Raxd

DIt a<<borb<a
D17 Rabc = a < corb < ¢

D18 Rabc and Rade = for some x
b < x,d € x and (Raxc or Raxe)

499

Proof. We proceed exactly as in the previous collection of sound-
ness results, except for using the fact that @ < b gives I{q, ) = 1 =
1(b, ) = 1 for any formula «.

Then,

if and only if there is a w (perhaps g itself) where I(w, «) = 1

g > (B~ p) =0

and I(w, B - f) = 0. So, there are x, y where Rwxy, I(x, f) = 1
and I(y, f) = 0. However by assumption, x < y, which is
impossible. So C11 holds at g.

Assume that R satisfies Rabc = a < c¢. Then,

(g, f>(@—>p) =0

if and only if there is a w (perhaps g — we will take this as read
from now on) where I(w, ) = 1 and I(w, & — B) = 0. So, there
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13.

14.

15.

16.

17.
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are x, y (again, perhaps g) where Rwxy (so, if w = g, this means
that x = y), I(x, «) = 1 and I(y, ) = 0. However by assump-
tion, w < y, which is impossible. So C12 holds at g.

Assume that R*abced = a < d. Then,

Ig,a > (B> —->0)=0

if and only if there is a w where I(w, @) = 1 and I(w, f —

(y = «)) = 0, which ensures that there are x, y where Rwxy,
I(x, ) = 1land I(y,y —» o) = 0. This then gives us z and ¢
where Ryzt, I(z, y) = 1 and I(¢t, «) = 0. However, R>wxzt gives
w < ¢, which means that /(z, ) = 1, contradicting this result.
Hence C13 holds.

C14 is an immediate corollary of C11 and C12, so soundness fol-
lows from the results for those axioms.

Assume that R?abed = for some x, b € x, ¢ € x and Raxd.
Then,

Ig, @A f-op)>@>B->y)=0
ensures that there is a w where I(w, « A f > y) = 1 and I(w, o
— (8 — 7)) = 0. This gives us x, y where Rwxy, I(x, o) = 1 and
I(y, p — y) = 0, which in turn means that there are z, t where
Ryzt, I(z, B) = 1 and I(z, y) = 0. Because of this we have that
R*wxzt and hence there is a v where x < v, z < v and Rwor.
Hence, I(v, ) = I(v, ) = 1, and as Rwut, I(z, 7) = 1, con-
tradicting what we have seen. So, C15 holds.
Assume that for each a and b either a < b or b < a. Then

Ig, (@ =P v (—-m)=0
ensures that I(g, « » f) = 0 and I(g, § - o) = 0, givingus w
and w’ where I(w, o) = I(w’, f) = 1 and I(w', @) = I(w, f) = 0.
But this contradicts w < w” or w' < w, hence our result.
Assume that Rabc = a < cor b < c. Then

g, o - (e > a) =0

ensures that for some w, I(w, &) = | and I(w, a = ) = 0.
Hence there are x, y where Rwxy, I(x, o) = 1 and I(y, o) = 0.
But by hypothesis, either w < y or x < y, contradicting what we
have just seen and giving us our result.
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18. Assume that Rabc and Rab’¢’ = for some x, & < x, b < x and
Raxc or Raxc’. Then

Ig,an B>y Vv{B->9)=0

means that for some w, I(w, « A 8 - 7) = 1 and I(w, (@ — )

v (B — y)) = 0. So, there are x, y and x', y* where Rwxy, I{x, )
= 1,I(y,y) = 0and Rwx'y’, I(x’, f) = 1 and I(3’,y) = 0. By
hypothesis, there is a z where x, X" < z,s0 I(z, « A ) = 1, and
either Rwzy or Rwzy’. But these ensure that either 7(y, y) = 1 or
I(y’, y) = 1, both contradicting what we have seen. This ensures
that C18 holds. B

For the completeness proof we need a containment relation in the
canonical models. Thankfully the obvious candidate works.

THEOREM 12, In the canonical model, and in the aimost canonical
model, < is a containment relation.

Proof. ThatZ < T = (pe Z = peI')is immediate. If Z = T and
X # I then RTA® = RXAD by the definition of R, and if RTA®,
and IT = T, then each formula « — o € I, and hence A < @. - ]

One further result we need is that for certain extensions of B*, we can
do without the empty and full I1-theories, and still have an interpret-
ation. (The collection of a// formulae is the full T1I-theory.) These two
rather excessive theories are appropriately called degenerate theories,
and this result is called a non-degeneracy theorem.

THEOREM 13. Provided that « — o € Z for each formula « and each
non-empty prime Il-theory Z, then the canonical (or almost-canonical)
interpretation, which is limited to non-degenerate prime l-theories is an
interpretation of B*.

Proof. To show that this structure is an interpretation, it is suf-
ficient to show that the assignment I(Z, «) = 1 iff « € T satisfies the
inductive characterisation of an interpretation. Because the structure
is a reduction of the earlier structure, inductive cases are exactly the
same, except for showing that when « — f ¢ E (for non-degenerate
Z), there are non-degenerate prime I' and A where RZI'A, a € T and
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B ¢ A. To this end, define I'" = {y:tyo - y} and A’ = {5:(Fy)
(yeI"&y—>deX)}. Wewill showthata e I" " A and B¢ IT7 U
A, so that these theories are non-degenerate.

First note that ¥y « — f. For otherwise we have kg (o — o) —

(¢ — p) by prefixing, and o« —» a € T gives « —» S € X, which we know
does not obtain. So it follows that § ¢ I". That « - x ¢ Z and a € T
gives o € A, as we desired. Noting that f# ¢ A’ completes the first part
of the result — I'” and A" are non-degenerate.

We only need to find non-degenerate prime I' and A to complete
the theorem. This is done by appling Lemma 7 — we need just show
that the I" and A so obtained are non-degenerate. As IV < I', ' is
non-empty. To see that o ¢ I", note that in the proof I' is disjoint with
Q,,andaso - a € X, 0 € O,, giving o ¢ I'. The result of the lemma
ensures that § ¢ A and that A’ = A, so A is also non-degenerate.

If £ = II, then A’ = I, and as noting that REAA (where A was
constructed by Lemma 7), « € A and f ¢ A is sufficient to complete
the proof.

We now give some example conditions which enable us to use non-
degenerate models.

THEOREM 14. Conditions C11, C12 and C13 ensure that oo —> o« € %
for each non-empty prime Il-theory X.

Proof. C11 is obvious. For C12, note that by (¢« - o) — (f —
(o« — ®)) is an instance of C12, and hence +yf — (¢ - ). For C13,
note that Fp(x = a) = (¢ = o) = (f — (¢ — ®))) is an instance of
C13, and hence Fyf — (& = ).

This gives us enough machinery to prove completeness for the rest
of the positive extensions of B*. They are of the same form as the
other completeness proofs, except that they use the fact that < is a
containment relation in the canonical model and in the almost canoni-
cal model.

THEOREM 15. For each row n in the list given in Theorem 11, the
logic B with the axiom (or rule) Cn added is complete with respect
to the class of extended B™ interpretations {g, W, R, I, <) where R
satisfies condition Dn.
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Proof. We take these individually as before, using the almost can-
onical model:

11

12.

13.

14.

15.

Assume that C11 holds. We can use the non-degenerate model,
by Theorem 13. Assume also that Z, I', A are non-degenerate I1-
theories satisfying REI'A. We wish to show that I' < A. This is
immediate for the case X = II, and otherwise, note that for some
a,0e X, and hence f —» fe Z foreach f§, fe 1 gives f € A, as
we desired.

Assume that C12 holds. To see that we can use the non-
degenerate model, note that F(y — ¥) —» (8 — (y = y)), as this is
an instance of C12, and so td — (y — 7). Assume also that
RYT'A. Take some a € I' and some f§ € £, then C12 gives

o« — f e X and hence f§ € A. This means that ¥ = A as desired.
The result holds, even if & = II.

Assume C13. We can use the non-degenerate model, as Fr(y — 7)
- (0 - 8) - (0 - (y = y)))is an instance of C13, so we have
Fpé — (3 — y). Then take RZI'A and RA®E. Take a e £, feT
and y € ©. C13 ensures that § — (7 - «) € £, and hence « € =,
as desired (even if £ = II).

This is a combination of C11 and C12.

Assume C15, and that RXT'A and RAOE. We wish to find a
prime IT-theory @ where RE®'E and both I', ® = @’. To this
end,set ® = {o: (yel, 6@ gy A doajuluO Itis
clear that I', ® < &, and to show that @ is a II-theory, note that
if I' and © are both non-empty, then ® = {a: Iy eI, € ©) iy
y A 6 — a}, and this is clearly a II-theory, as ', @ are both
I1-theories, and is transitive (in that if by o0 > fand Fg f — v
then ki o — v). So if both ® and T are non-empty, @ is a I1-
theory. Otherwise (if one of ® and T are empty), @ is the union
of ® and I', which is then also a II-theory.

To show that RZ®E, let « — f € ¥ and a € ®. By definition,
there are y € I' and § € ©® where by A 6 — a. Hence, (o —
B)—= (y And— p)andsoy A & > f e Z, which by CI5 gives y
— (0 = B) e Z. RET'A and RA®E then give us f§ € Z as desired.
The case for £ = IT is given below.

A priming lemma then completes the proof except for the case
where % = II. In that case, instead of using @, we simply need to
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show that I', @ < E. Note that £ = II gives I' = A, and hence
we have RT'@E. For this it is sufficient to note that as F; (0 A S
o) @-> (@ ->a)and by (@ A f - - (@ (B - ),
C15 gives both C11 and C12, which in turn ensures that RT@E
gives I', ® < E by our results from before.

16. Assume C16 and take II-theories £ and I where £ ¢ I'. Hence
there is some f where f € X and f ¢ I'. Given « € T, it is suf-
ficient to show that x € . As ¢ —» S ¢ Il (since x e " and f ¢ I),
and (¢ = ) v (f — a) € IT we must have § — « e I1, which
with § € Z gives us our result.

17. Assume C17, and that RXT'A. We wish to show that either X <
AorI' € A. To show that this obtains, take & € X where o ¢ A
and f €T where B¢ A.thena v f¢A buta v fe X, T. C17
givesa v f - o v feZ and RETA givesus o v ff € A. Hence
our result.

18, Assume C18, and that RXT'A and REI”A’. We wish to find a
prime IT-theory @ where I', I < @', and either RE®’A or
RE®'A’. The proof in RLR recommends that to this end we
defineaset ® = {a:(Fyel,y el Fpy A ¥ — a} and show
that either RE®A or RE®A’. To do this you take « — f € X and
o€ ® Then Fpy A y — o for some y, y in I, T” respectively. So
asfp(a - ) > (y A 9 - f)wesecthaty A 7/ - e X, and
hence (y = f) v (' — p) € X, giving either y - fory — fin
2. RET'A and RZIA then gives cither f € A or f € A'. And the
text leaves us there. The astute will note that this is not enough to
give us the result, as for a range of values f, there
is nothing to ensure that they land in the same place. Some
might end up in A, and some in A". All we have shown is that
RZO(A U A). Fortunately, all is not lost, as C18 gives C16, as
Fr@a A Boanfyo(@oanf)yv (B—>anp),sobgla—
x A B) v (B> a A p) which easily yields Fg(x = ) v (B —
o), as we wished.) So, by the proof for C186, it follows that either
A = A or A = A,s0 A u A is one of them, giving the result.
For those who prefer a smoother proof, abandon all thoughts of
®, and take the larger of I' and I'” as our required prime IT-
theory. The result follows immediately. [ ]
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In RLR, there are a few more extensions that are considered — such
as o v (o — f) — these seem to require the non-degenerate model
structure to push through the completeness proofs, but it seems that
Theorem 14 cannot be proved for these extensions, despite what is
said in RLR. On p. 314 non-degeneracy is assumed for this axiom,
but on p. 317, it is only shown to work for axioms like our C11.°
Despite this setback, it is possible to extend the structure of an inter-
pretation yet again, by adding an explicit empty world e, satisfying
certain obvious conditions. Then a phrase like @ # e is used in a
modelling condition whenever it is needed that a be non-empty. The
details of this approach can be found on p. 380 of RLR, and the
interested reader is referred there. We will extend the semantics to
deal with a more pressing need, and that is to add negation.

6. ADDING NEGATION

The addition of negation to the story complicates things somewhat.
In SS it is shown that there are (at least) two different ways of
expanding the simplified semantics to deal with negation. In this sec-
tion we will show that the semantics using the Routley “*’ operation
can model common negation extensions of B. In SS, a four-valued
interpretation was also used to model negation, and that can also be
done for extensions of B. However, that opens up a whole range of
other issues, which will be covered in a forthcoming paper. Here we
will deal solely with the ‘* modelling of negation.

6.1. The Systems BM and B, with *’

One logic extending B* by adding negation is BM, which is obtained
from B* by adding the rule:

Re 22F
—f -

along with the De Morgan laws
AT 71w v f) o e A 1B,

A8 1@ A B) o e v B,



506 GREG RESTALL

In SS it is shown that if we extend interpretations to contain a func-
tion *: W — W, and define the truth conditions for negation as:

=Iw, 1) <=1 # I(w*, o)

the logic BM is sound with respect to these conditions. To show com-
pleteness, define * on the set of prime II-theories by:

¥ = {a:a ¢ X},

This is shown to send prime Il-theories to prime Il-theories, and to
give the desired results. The details of the completeness proof are not
difficult, and the interested reader is referred to SS for the details.

The system B can be obtained from BM by adding the axiom:

A9 o - 1o

(Or alternatively, add to B* —9—o — « and the rule from « — —1 8 to
f — —a.) To obtain semantics for B we simply require that * satisfy
w** = w in each interpretation. Soundness and completeness is simple
to show. The only other construction we need to consider is the con-
tainment relation < on worlds. It no longer follows that containment
relations as they stand satisfy the condition a < b = (I(a, ®) = 1 =
I(b, o) = 1), for another condition must be added to deal with nega-
tion. This is dealt with in the following theorem.

THEOREM 16. Let {g, W, R, I, *) be an interpretation, and < a
binary relation on W satisfying:

((a,p) =1=10b,p) = 1)
for every propositional variable p
a < b= < Rbcd = Racd ifa #g
Rbed=c<d ifa=g
b* < a*

Thena < b= (I{(a, ®) = 1 = I(b, «) = 1) for every formula a.
Any relation satisfying these conditions is said to be a containment
relation.

Proof. We add a clause for —1 to the induction on the complexity
of formulae. If 2 < b and the result holds for «, then if I(a¢, 71a) = |
it follows that I(a*, «) = 0, and as b* < a* it must be that 1(b*, «)
= 0 and hence that 7(h, T1a) = 1 as desired. [ |
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6.2. Extensions of B

The extension results in the previus sections carry over to the logic B
with no modification. What we are interested in is the possibility of
extending B with axioms or rules that use negations. This can be
done, as the following theorem shows.

THEOREM 7. For each row n in the list below, the logic B with the
axiom Cn added is sound and complete with respect to the class of B
interpretations {g, W, R, I, *> where R satisfies condition Dn, and for
the last axiom, the interpretations are assumed 1o be extended with a
containment relation <.

C19 (0 » 100) > 1

C20 (x > ) - (B~

C21 o v T

D19 Raa*a fora # g, and g* < g
D20 Rabc = Rac*b*

D21 g* < g

Proof. These are proved in exactly the same way as the other
extensions.
19. Assume that Raa*a and that

I(g, (o = 1) » ) = 0.

Hence there must be a w where I(w, » — o) = | and that
Iw,ma) = 0,s0 I(w* o) = 1. If w ¥ g, Rww*w then gives

I(w, &) = 1, contradicting what we have seen. If w = g, g* < ¢
gives I{g, o) = 1, and hence I(g, —1a) = 1, contradicting what we
have seen. So C19 must hold.

Now assume that C19 holds and that X is a prime II-theory, dis-
tinct from T1. We wish to show that REZ*Y soleta - fe X
and o € Z*. The thing to note is that if C19 holds, so must (¢ — f)
— {ma v B). To see this, consider the following derivation:

Fpoo A 718 > a, by A3,
tu B — e v B, by A2,
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20.

21.
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Fp e v B - (@ A —1p), by A8 and A9,
bn B — 71(e A 1f), by transitivity,
Fn(@ = f) > (@ A 718 >

- (e A 1)), by R3,
Fn((@ A 1f) > (@ A 1) »

= (@ A ), by C19,
Fn(@— f) - (@ A ), by transitivity,
b v —1p) = (e v B), by A8, A9,
Fn{e = B) = (a v B, by transitivity.

So we have e v fe X, and —a ¢ Z, giving f € X, as we
wanted.

To show that IT* < II, note that « v —1o is a theorem. Take « €
IT*,s0o e ¢ I1. But o v —1a € I, so o e IT as desired.

Assume that Rabc = Rac*b* and that

I(g, (@ > p) » (1 - 1)) = 0.
There must be a w where I(w, « —» ) = 1 and I{(w, 718 - —1%)
= 0, which in turn gives x, y where Rwxy, I(x, 71 8) = 1 and
I(y, o) = 0. We must have Rwy*x*, by assumption, and hence,
as I(y*, ) = 1 we must have I(x*, f) = 1. This gives I(x, 1)
= 0, which contradicts what we have seen. Thus C20 must hold.
Now assume that C20 holds and that X, I" and A are prime I1-
theories such that RETA. Leta — e X and o € A*, i.e, o ¢ A.
By C20 we must have m1ff » " € X, so we must have 1 ¢ T,
lest 1 € A. This then gives § € I'*, which ensures that REA*T™*.
(If £ = TI, the result is even easier to prove.)
Assume that g* < g and that

I(g, 0 v 10) = 0.

It follows that I(g, o) = I(g, —1a) = 0, and hence that I(g*, «)

= 1. This contradicts g* < g, so C21 holds.

Now assume that C21 holds. We want to show that IT* < II —
to this end, note that if ¢ e IT*, ¢ ITand so o v 1 e 11
ensures that o e IT as desired. [ |
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7. THE LOGICS WE HAVE COVERED

It is time to take stock and consider what logics have a semantics as
the result of these investigations. It is clear that we have covered B*,
BM and B, but with the addition of any logic that can be obtained by
adding various axioms amongst C1-21. We enumerate some of those
covered; the details are taken from RLR and other sources. (It must
be understood that these logics are all disjunctive systems.)

DW = B 4 (C20; this is the basic logic covered in Slaney’s ‘A
General Logic’. DJ = DW + C2, G = B + C21; G is the weakest
of the affixing systems that includes each of the classical tautclogies
as theorems. DK = G + {C2, C20}, DL = DK + C19, TW = B +
{C3 + C4 + C20}. C(or RW) = TW + C6, CK( or RWK) = C +
CI2, T=TW+ C5 + 19, R =T + C6 = C + C5, EW? = TW
+ C10, and E? = T + C10.

8. BOOLEAN NEGATION

As a formal construction, it is possible to add to these logics a ‘nega-
tion’ commonly called “Boolean Negation”, which we will write as
‘—’. It is characterised by the following axioms. (See Giambrone and
Meyer’s ‘Completeness and Conservative Extension Results for some
Boolean Relevant Logics’ for this characterisation.)

BAla—> (B -7y v — )
BA2 — (o> fB) v (—a v )
BA3 x A —~a—f

If a logic L is without Boolean negation, the logic resulting from
adding such a negation is called ‘CL’. Tt is well-known that Boolean
negation satisfies F — —x < o, Fa A —a > fandta— v —8,
and I will not prove that here. To model Boolean negation in the
simplified semantics, we add the obvious condition that:

I(w, —a) = 1l ifand only if I(w, o) = 0

It is trivial to show that the semantics for L with this extension is
sound and complete for CL, using well-known properties of Boolean
negation. However, this gives us a conservative extension result,
which is a corollary of the following lemma.
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LEMMA 18. Given any BM or B* interpretation, not using a contain-
ment relation, the structure given by adding the rule for Boolean nega-
tion” has exactly the same evaluation as the original on formulae that
do not contain ‘-

Proof. By inspection. The reason a containment relation is not per-
mitted is that the hereditariness condition on the relation fails in
general, given the presence of “*—’. {See Note 1.) B

THEOREM 19. If L is a logic which has a sound and complete simpli-
fied semantics, not using a containment relation, then CL is a conserva-
tive extension of L.

Proof. This is a simple corollary of the lemma. ]

It follows that CR, CC, CTW, CDJ and CDW are conservative exten-
sions of R, C, TW, DJ and DW respectively — and other less known
logics are also conservatively extended. The results for R, C and TW
were known, but those for DW and DJ are new.

Other logics such as CDL, CDK and CCK are not proved to con-
servatively extend DL, DK and CD — as their semantics use the
inclusion relation. For CK, there is a good reason why the extension
result cannot be proved.

THEOREM 20. CCK is not a conservative extension of CK.

Proof. Firstly, « v —a is not a theorem of CK. We will show that
it is a theorem of CCK. To do this, note that « v —a holds in CCK,
s0 it is enough to show that —a — 0.

In CK, it is simple to show that —« < (¢ — L) for some con-
tradiction L’. For example, "o «> (¢ — —1(a — o)) holds in CK, and
hence in CCK. Now we have & - (—a > &« A —o)and & A —o —
—(—o - —a), so we have & — (—o — T1(—o = —a)). But this gives
@ — —1 —a, which contraposed is —a — —a, as desired.

Whether or not DL and DK fail to be conservatively extended by
Boolean negation is another story, and it is one that will not be
answered here, but rather in a subsequent paper that deals with four-
valued semantics for these systems.*
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NOTES

' It should be noted that the provability relation ‘F’ used here is distinct from the +’
that appears in other sections of the relevant logic literature. In our case, @ F o iff
there is a proof of « that uses premises from among the elements of @. In ‘A General
Logic’ by Slaney, for example, ©  « iff there is a proof of f; A ... A f§, — o for
some f3; € ®. These notions are distinct. In the notion Slaney uses, it turns out that
© I o iff for every theory in which the elements of @ are true, so is «. In our notion,
the theories in question are restricted to those that are regular (or detached — meaning
that if « — B and « are in the theory, so is 8) and normal (containing all the theorems).
2 If Boolean negation is present, it can be used to show that RIITA if and only if
I = A (given that T is non-empty and A is not full). It is quite simple to do: Boolean
negation (written as ‘—’) satisfies F o« > f v —fand F o A —a — f. It follows that
for any non-empty, non-full IT-theories I', « v —a e, and a A —a ¢ T, so exactly
one of @ and —a are in I'. If RIITA, then it is clear that I < A (as II contains all
identities), and so, as I' is non-empty, it contains exactly one element of each {o, — o}
pair, for each a. So, A contains at least this element for each pair. However, it cannot
contain both, for any pair (being non-full), so A contains exactly the same elements of
each pair as does I'. Hence, I’ = A. The other direction of the biconditional is obvious,
given that I" and A are I1-theories.

The behaviour of Boolean negation is important, when we come to the last section,
where we show that Boolean negation conservatively extends a large class of logics.
* For completeness’ sake, the candidates given in RLR that seem to need non-
degeneracy, but for which the current results will not hold (and the proofs in RLR
do not seem to work) are & v (& — f), (@ = f) = (& = y) = (@ = f A y)) and
v BB — B
4 1 would like to thank Graham Priest and Richard Sylvan for the opportunity to
work on these extensions, and for helpful comments along the way, and the anonymous
referee, who rescued me from a number of errors, and gave suggestions pointing to the
Boolean negation results.
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