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REALISTIC BELIEF REVISION

Greg Restall and John Slaney

Abstract In this paper we consider the implications for belief revision of

weakening the logic under which belief sets are taken to be closed. A

widely held view is that the usual belief revision functions are highly

classical, especially in being driven by consistency. We show that, on the

contrary, the standard representation theorems still hold for paraconsistent

belief revision. Then we give conditions under which consistency is

preserved by revisions, and we show that this modelling allows for the

gradual revision of inconsistency.



1 Realistic Logics

Belief Revision is a rich and diverse �eld. The unit of study is most often

a belief set | a set K of sentences (propositions, whatever) closed under

a consequence relation. In G�ardenfors' canonical text [6], and in nearly

all other studies of belief revision, the notion of consequence is taken to

be superclassical. Consequence at least includes classical propositional con-

sequence. This is a theoretical simpli�cation. No-one believes that belief

is closed under that sort of consequence. If it were, we would believe all

tautologies, and furthermore, we would only have inconsistent beliefs when

believing everything. There is something to be said for abandoning the as-

sumption that belief sets are closed under classical consequence, for a more

restricted notion of logical closure. One way to do this is to abandon the

notion of closure altogether, and to merely work with belief bases. But this

is going too far, because it is useful to close beliefs under some kind of con-

sequence. If you believe A and you believe B, then you (at least implicitly)

believe their conjunction, A^B. You may retract your belief in A^B once

it becomes explicit, but you still have the belief until you make the contrac-

tion. Similarly, if you believe A, you at least implicitly believe the (inclusive)

disjunction A_B of A with any other proposition B. This disjunction may

not occur to you, but in a good sense it still counts as one of your beliefs. A

similar case can be made that you believe A if and only if you believe ��A,

that belief in �(A _ B) amounts to belief in �A ^ �B, and that belief in

�(A^B) amounts to belief in �A_�B.1 But you cannot make the case as

strongly that belief in A ^ �A entails belief in B for any B whatsoever, or

that any belief entails belief in A_�A for any A whatsoever. So, we need a

notion of logical consequence which will enable us to keep the `sensible' in-

ferences without their harmful cousins. Thankfully, the notion of �rst degree

entailment, �rst formulated by Smiley around 1960, given a paraconsistent

interpretation by Dunn [4], and then recommended for use in this context

by Belnap [2] and Slaney [9] among many others, meets our needs. It is a

simple modi�cation of classical consequence in which formulae take as truth

values subsets of fT; Fg, instead of simply either of T or F alone. So, in our

language L built up from atomic formuale in a set Atoms, with connectives

among ^, _ and �, formulae can be both true and false, or neither true nor

false. To be precise, a valuation is a map V : Atoms! P(fT; Fg), extended

to the whole language L as follows:

� T 2 V(A ^B) i� T 2 V(A) and T 2 V(B).

� F 2 V(A^ B) i� F 2 V(A) or F 2 V(B).

1We acknowledge that constructivists will not be happy with all of these inferential

moves, and looking at what one can do without these kinds of negation postulates is

worthwhile. However, we must leave it for another time.
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� T 2 V(A _B) i� T 2 V(A) or T 2 V(B).

� F 2 V(A_ B) i� F 2 V(A) and F 2 V(B).

� T 2 V(�A) i� F 2 V(A).

� F 2 V(�A) i� T 2 V(A).

It is useful to have propositional constants which denote the `false only'

truth value fFg and the `true only' value fTg.

� V(?) = fFg, and V(>) = fTg.

Once we have our notion of a valuation, we can de�ne �rst degree entailment.

A formula A is a consequence of a set X of formulas just when any valuation

V making every element ofX (at least) true, also makesA (at least) true. We

write this as X ` A, or A 2 Cn(X), where Cn(X) is the set of all formulae

entailed by X . Note that we have all of the usual properties of conjunction

and disjunction (including distribution: A^(B_C) ` (A^B)_(A^C)) and

the de Morgan laws all hold as entailments. As well, we have A a ` ��A.2

However, we do not have A ^ �A ` B (an evaluation could make A both

true and false without making B true) and neither do we have B ` A_�A

(no matter what B is, A could be assigned fg, and so A_�A can fail). Note

too that theorems (formuale A such that > ` A) in our vocabulary must

contain either > or ?.3

Of course, �rst degree entailment is by no means the complete story.

We need to consider extensions to deal with conditionals, together with

quanti�ers, and other deductive machinery. There are indications of how

we would like see things developed [8, 9] but here we rest content with

the ^;_;�;>;? fragment of the logic. This is a well-worn resting place,

because the logic of �rst-degree entailment has a proud place in contexts

of knowledge representation. It appears in Barwise and Perry's situation

semantics [1]. Our valuations correspond neatly to their abstract situations.

For them, a situation is a piece of the world which decides (either for or

against) some issues, but not necessarily all of them. Abstract situations

(used to represent belief states) may also have contradictory information

about some issues, re
ecting self-contradictory beliefs.

There are also connections with the burgeoning literature on partial

logic.4 According to this research community, partial evaluations are useful

for representing knowledge states. A partial evaluation is just a partial func-

tion from atoms to fT; Fg instead of a total function, and it is extended to

(partially) map formulae to fT; Fg in the usual way. But this is no di�erent

2This is shorthand for fAg ` ��A and f��Ag ` A.
3To verify this, suppose that A doesn't contain > or ?. Let V be an evaluation which

sets every atom fg. Then A must also be evaluated as fg, so it is not a theorem.
4For introductory works, consult [3] and [7].
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to �rst degree entailment, if we restrict our evaluations to those in which

atomic formulae are consistent. We have a traditional partial evaluation

(instead of V(A) = fg, we say that V(A) is unde�ned). Even granting that

knowledge brooks no contradiction (after all, what is known is true) the

same cannot be said for belief. So, once we allow that beliefs can be incon-

sistent, we have a simple generalisation of the machinery of partial logic to

�rst degree entailment.

So, �rst degree entailment sits happily in the �eld of knowledge and belief

representation. In what follows we will be using this account of entailment

to de�ne belief sets, and we will show how the standard representations of

belief revision fare in this new wider context, and that the new account

of belief sets enable us to do things with belief sets that were heretofore

impossible.5

2 Realistic Contraction and Revision

From now on we assume that we have at hand a notion Cn of conse-

quence which at least includes �rst degree entailment. Given that notion

of consequence, we de�ne a belief set to be a set K of formulae such that

K = Cn(K). Note that any belief set includes >, and any other formula A

where > ` A, but that belief sets need not include A _ �A, and they can

include B^�B without including ?. The only belief set which includes ? is

the trivial belief set K
?
, which is the set of all propositions in our language.

The simplest operation on belief sets is that of adding another propo-

sition, and closing under logical consequence. We de�ne K+

A , the result of

adding A to K to be Cn(K [ fAg).

The contraction and revision operations are more interesting. We will

start with contraction, the operation of removing a proposition A from a

belief set. G�ardenfors' eight original postulates for a contraction of a belief

set K are as follows.

(K�1) K�

A is closed.

(K�2) K�

A � K.

(K�3) If A 62 K then K�

A = K.

(K�4) If > 6` A then A 62 K�

A .

(K�5) If A 2 K then K � (K�

A )
+

A.

(K�6) If A a ` B then K�

A = K�

B .

5Fuhrmann [5] seems to be the only instance in the rather large belief revision literature

in which the proposal to allow non-trivial inconsistent belief sets is taken seriously and

developed a little way. He does not consider the obvious dual problem of belief sets

including all logical theorems.
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(K�7) K�

A \K
�

B � K�

A^B.

(K�8) If A 62 K�

A^B then K�

A^B � K�

A .

The most problematic of these eight requirements is the condition (K�5)

of recovery. The idea behind recovery is that by removing A from K you

only make a minimal change to K, So minimal that by adding A to the

result, and closing under consequence you get all of K back. This postulate

has been widely criticised, because many intuitive operations of contraction

simply do not validate it. This concurs with our approach, because the

representations considered in the next section will not validate recovery.

For our purposes, a `contraction operator' will be a function K� satis�ying

the conditions K�f1; 2; 3; 4; 6; 7; 8g.

Given a contraction operatorK�, we can de�ne a revision operatorK� in

the usual way. To revise your belief setK byA, you �rst retract your original

belief that �A (if you have one) and then add A, closing under consequence.

So, you can de�ne K�

A to be (K�

�A)
+

A. This is the Levi Identity. Then we

would get a revision operator K� satisfying the following postulates.

(K�1) K�

A is closed.

(K�2) A 2 K�

A.

(K�3) K�

A � K+

A .

(K�4) If �A 62 K then K+

A � K�

A.

(K�5) K�

A = K
?
if and only if A ` ?

(K�6) If A a ` B then K�

A = K�

B.

(K�7) K�

A^B � (K�

A)
+

B.

(K�8) If �B 62 K�

A then (K�

A)
+

B � K�

A^B.

We leave the veri�cation of these postulates to the reader. The reasoning is

not any more di�cult than the classical case.

Traditionally, we can also de�ne contraction functions from revision func-

tions, by way of the Harper Identity: K�

A = K \ K�

�A. However, in our

non-classical environment, this de�nition does not always de�ne a contrac-

tion function, for the following reason. We need not have A 62 K�

A , because

A might be both in K, and in K�

�A. The new theory K�

�A may be incon-

sistent about A. This does seem odd, because we would not expect K�

�A to

be inconsistent about A, because we have asked it to revise with respect to

�A. It ought remove A and then add �A. However, it could well be that

adding �A might bring with it A. �A might entail its own negation (as it

would if it were of the form B ^�B). In that case, adding �A would bring

with it A, no matter how much we would like to avoid this. Classically, this
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means that �A ` ?, and hence, > ` A, so A 2 K�

A is no problem, since

you cannot contract away theorems. However, in our context we need not

have �A ` ?. In other words, A could entail its own negation without A

being trivialising. As a result, the Harper identity fails. This will become

important when we discuss Grove's system of spheres.

3 Representations

That is enough of what does not work in the nonclassical environment.

There is a lot of good news about what does work. In this section we will

see that each of the standard representation results, of epistemic entrench-

ment, transitively relational partial meet contraction, and Grove's systems

of spheres each generalise to our setting, and they do not commit us to the

counterintuitive recovery postulate.

3.1 Epistemic Entrenchment

First we can consider entrenchment. Here the guiding idea is that we rank

our beliefs according to some notion of `entrenchment'. The more deeply

held a belief, less likely we are to give it up. So, we assume we have at hand

a notion v of epistemic entrentchement. (We A v B to mean A is more

deeply entrenched than B, in contrast to G�ardenfors [6], and others, who

write it as B � A. We prefer this notation, because it makes it clear that

A is deeper than B.) We follow G�ardenfors in positing �ve postulates of

entrenchment.

(EE1) v is transitive.

(EE2) If A ` B then B v A.

(EE3) Either A ^B v A or A ^B v B. (As a corollary, it follows that v

is a total order.)

(EE4) If K 6= K
?
then B v A for all B if and only if A 62 K. (In other

words, all elements not in K are equally at the top of the entrenchment

order.)

(EE5) If A v B for all B then > ` A. (So, theorems alone are the most

deeply entrenched propositions.)

Note that the postulates are more plausible when interpreted in our context

than classically, for now the most deeply entrenched propositions are only >

and what it entails, instead of all of the theorems of classical logic, of arbi-

trary complexity. Similarly, the condition (EE2) only relates entrenchments

to entailments in our base logic, which can be a lot weaker than classical

logic. Better still, we have the following results.
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� If v is an entrenchment ordering, then de�ning

K�

A =

(
K \ fB : A _ B @ Ag if > 6` A

K otherwise

makes K� a contraction function. (Where we de�ne B @ A to mean

A 6v B). Given v, the resulting K� is said to be the contraction

function determined by v.

� Conversely, if K� satis�es each condition, then we can de�ne an

entrenchment ordering v by setting B v A if and only if either

A 62 K�

A^B or ` A ^ B. Given K�, the resulting v is said to be

the entrenchment ordering determined by K�.

For the �rst result, retracting A from K is given by taking away those Bs

where A v A _ B. That is, the Bs are not as deeply entrenched in K as A

is. Conversely, we take B to be as deeply entrenched as A if either A and B

are both theorems, or when you contract A ^B from K, you take A out of

the result. Clearly, A could not be more deeply entrenched than B in this

context, for then you would have removed B from K and kept A.

As before, the proofs of these results are no di�erent to the classical

proofs, so we leave them to the reader.

It is illuminating to consider the fate of the recovery postulate, given

this account of contraction. Classically, we can reason as follows. Suppose

B 62 K�

A , but B 2 K. We wish to show thatB 2 (K�

A )
+

A. If we have B 62 K�

A

and B 2 K, then we must have A _ B 6@ A. In the classical context, we

have B 2 (K�

A )
+

A only when A � B 2 K�

A . That is, �A_B 2 K�

A . But this

happens when �A _ B 2 K (and that's taken care of, since B 2 K) and

A_ (�A_B) @ A. But this is immediate, because, in the classical context,

A _ (�A _ B) is equivalent to >, and > @ A, because A is less deeply

entrenched than the theorems, since it was successfully retracted from K.

This line of reasoning is very sensitive to the choice of logic to be used.

Firstly, we need A � B 2 K�

A to give B 2 (K�

A )
+

A . In other words, we need

A;A � B ` B, or equivalently, A;�A_B ` B. Once we admit inconsistent

states, this is not plausible, because a state could be inconsistent about A,

without B following. So, if inconsistency is possible, the deduction stops

here. If partiality is possible, the deduction breaks down as well. In that

case, we cannot say that A _ (�A _ B) is equivalent to >, because the

excluded middle A _ �A might fail, for lack of information about A. In

either case, the deduction from an entrenchment ordering to the recovery

postulate fails.

It is worth pausing for a moment to consider what happens in the pres-

ence of a stronger conditional operator, like the ! of a relevant logic, or of

the logic BN [9]. In this case we cannot make the move from B 2 K to

A ! B 2 K, because in neither calculus do you have B ` A ! B. Neither
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will you have A _ (A ! B) as a theorem, so the consequence of recovery

need not follow, even in the presence of a stronger conditional.

It is also helpful to consider what contraction operators can look like.

Here is a particularly simple example. Take K = Cnfp; qg, and de�ne v as

follows. A v B i� either > ` A, or A 2 K and B 62 K. This is the coarsest

entrenchment ordering, which takes theorems to be most deeply entrenched,

other elements of K next, and non-elements of K last. It is simple to check

that it is an entrenchment ordering. Consider K�

p . It is K\fB : p_B @ pg.

But here, p _ B @ p if and only if > ` p _ B, and this obtains only when

> ` B. As a result K�

p = Cnf>g, and (K�

p )
+
p = Cnfpg 6= K. Our

entrenchment ordering can take p and q to be of equal entrenchment, so

that if one goes, so does the other | without leaving behind anything that

would connect the two. As a result, the recovery postulate fails in general.

On the other hand, given a conditional (A � B will do if we are avoiding

inconsistency, otherwise we need a more verterbrate conditional) we can

leave behind a `connection' of the form p! q, so any future addition of p will

bring with it q. Given a non-classical notion of logical closure, we can keep

the association between entrenchment of propositions and revision, without

the untoward consequence of the recovery postulate. The recovery postulate

dictates that the `connections' must always be there. In our context we have

the freedom to postulate connections between propositions or not, as the

evidence warrants.

3.2 Partial Meet Contractions

Another popular representation of contraction functions is in terms of `par-

tial meets'. In the classical context, we de�ne K?A to be the class of all

maximal belief sets which are subsets of K and which do not contain A.

Let K? =
S
AK?A collect all of these maximal belief sets together. A

`maxichoice' contraction function takes K�

A to be a member of K?A. But

the resulting belief set is, in general, `too big'. So, we can try taking K�

A to

be
T

(K?A), the intersection (meet) of an appropriately chosen collection

of elements of K?A. So, we take some favoured elements of K?A, and

let K�

A be what is contained in all of them. The result will be a contrac-

tion function which satis�es conditions (K�1) to (K�6), assuming that the

underlying logic is at least classical. In our context, it is trivial to show

that the contraction function will satisfy each of these postulates apart from

recovery, (K�5).

To get the seventh and eighth postulates, we need to do a little more

work. We need to assume that the choice function 
 is not totally arbitrary,

but rather, given by a global preference relation on K?. Given a relation

relation � on K?, we can de�ne K�

A to be the intersection of all of the most

preferred elements of K?A (if there are any) and K otherwise. In other

words, we take K�

A to be
T
fK0 : K0 2 K?A and K00 � K0 for all K00 2
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K?Ag if > 6` A, and K otherwise. It is simple to show that the operation

K�, so de�ned satis�es (K�7). If we take � to be a transitive relation, we

also have (K�8). All this is standard, and the usual proofs go through in

our context as well.

However, given the absence of recovery, and given the fact that theories

need not contain all instances of excluded middle, not every contraction

function appears in this way. Consider our simple example where K =

Cnfp; qg. There is a contraction function for which K�

p = Cnf>g. Consider

K?p. Every element of K?p contains p _ �p, simply because if a theory

doesn't, it is not amaximal subtheory ofK not entailing p. For we can easily

extend it by making p false. So, every partial meet contraction function

de�ned in this way gives us p_�p 2 K�

p . But not every contraction function

need be like this. We may be completely ignorant about p upon retracting

it from K.

There is a simple �x to this problem, by allowing K?A to include all

belief sets weaker than K which do not entail A. The resulting partial

meet contraction function de�ned in the same way will satis�y each of our

postulates, and furthermore, given a contraction function K�, we may de�ne

a rank ordering onK?, as follows. SetK00 � K0 if and only ifK00 = K0 = K,

or K00 2 K?A for some A 2 K, K0 2 K?A and K�

A � K0 for some A 2 K

and �nally, for all A, if K0; K00 2 K?A and K�

A � K00 then K�

A � K0 too.

It is not di�cult to show that this gives a rank ordering on belief sets

which generates the original contraction function. The checking is tedious,

and we leave the details to interested readers.

3.3 Spheres

Finally, we will sketch the way that Grove's system of spheres can be adapted

to our setting. We assume acquaintance with the classical context.Recall

that in the traditional setting, a belief set K is represented by the set [K] of

possible worlds at which it is true. Contractions, are generated by a `system

of spheres', a series of sets of possible worlds, each containing those before

it in the series, starting with [K], and which taken together cover every

possible world. These sets give a measure of closeness to [K]. A world w1 is

closer than w2 to [K] when it is in some set S in the series which does not

contain w2. Then, to �nd K
�

A , consider the set S of closest worlds to [K] at

which �A is true. K�

A is then the set of all propositions true at all worlds

in [K] [ S. So, K�

A will not make A true,6 as �A is true in the worlds in

S. Similarly K�

A � K, as every `K-world' is in the set [K] [ S. It is not

di�cult to show that this construction gives us a contraction function.7

6Unless A is true in all worlds, and so, S is empty.
7There are some �ne points we are stepping over lightly here. It takes some work to

ensure that there is a closest set of worlds, as the de�nition requires.
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The same kind of construction works with weaker logics too. However,

we need make two important changes. The �rst is the de�nition of `worlds'.

Instead of complete consistent sets of propositions, we must take worlds to

be prime theories. That is, we consider those sets P of propositions, closed

under Cn, such that if A _ B 2 P , then A 2 P or B 2 P . These corre-

spond to our valuations V . For any valuation V , the set of all propositions

made (at least) true by V consists of a prime theory. These `worlds' allow

inconsistencies and incompleteness.

Another change is required before we have a contraction function from

a system of spheres on the set of prime theories. The classical de�nition

requires us to �nd K�

A by adding to [K] the closest worlds at which �A is

true. But this is no good in our context, for two reasons. Firstly, it could

be that the closest worlds at which �A is true also feature A. As a result,

K�

A as de�ned could still contain A. Another problem is the fact that if A

is in K, then so is A _ �A. Similarly, A _ �A is true at the worlds closest

to K at which �A is true. So, A _ �A 2 K�

A as we have de�ned it. This

is not in general true for contraction functions as we have de�ned them, so,

this de�nition is not as broad as it could be. Note that these problems are

just like those that beset the Harper identity, which we saw earlier.

There is a simple �x for these problems, and that is to alter the de�nitions

as follows. De�ne K�

A by adding to [K] the closest worlds at which A fails.

Then if there is any world at all at which A fails (that is, if > 6` A) then

A 62 K�

A . And the closest worlds at which A fails could well also reject

A _ �A, so we have no requirement that these excluded middles remain.

As a result, we have a de�nition in terms of spheres of worlds which does

justice to the contraction postulates (as is easily checked).

4 Consistency and Inconsistency

We have seen that expanding our horizons by considering belief sets which

are not closed under classical consequence does not take away any of the

traditional representation results. Instead, it opens up new possibilities and

it eliminates some counterintuitive properties of the traditional accounts

of belief revision. In this �nal section we will consider how belief sets can

remain consistent, or gradually extract themselves from inconsistency, which

is much more like what we do in practice. This ful�ls Furhmann's desire

when he writes:

In the face of inconsistent theories we should want two things:

(a) localise inconsistencies | an inconsistent theory should not be ren-

dered totally corrupt just because some inconsistency has crept into

the theory; and
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(b) locally restore consistency | we should be able to resolve one inconsis-

tency at a time by contracting an inconsistent theory such that other

inconsistencies, which we cannot yet resolve, may be carried over into

the contracted theory. [5] pages 186 and 187

Desideratum (a) is satis�ed because the background logic is paraconsistent.

Our belief sets can contain inconsistencies without being trivial. In the rest

of the paper we shall consider desideratum (b). To show that we can keep

parts of a theory consistent while restoring consistency to the inconsistent

part, we will use the notion of a vocabulary. A vocabulary V is a set of

atoms in our language. The restriction K � V is the set of formulae in K

built up from atoms in V , > and ?. It is simple to show that if no atom

p in V is inconsistent in K (that is, p ^ �p 2 K) then K � V is consistent.

This is how we will keep track of a part of a belief set K being consistent

| it will have some vocabulary in which it is consistent. The inconsistency

is restricted to a di�erent `subject matter'. Now suppose K is inconsistent,

but that K � V is consistent, for some suitable vocabulary V . Then we

wish to revise K, to remove an inconsistency, keeping K � V consistent.

But this is simple. Consider contractions from the perspective of epistemic

entrenchment orderings. We say that an entrenchment ordering � keeps

V �xed if the �-deepest formulae are the theorems, and the elements of

Cn(K � V ) are deeper than any other formulae (other than theorems) in K.

Then, if A 2 K, but A 62 K � V , then K � V � K � V , as is simple to check.

This keeps the beliefs in the V -vocabulary untouched, while retracting the

inconsistencies.

It follows that we can contract away contradictions step by step, while

keeping our `safe' information immune from change. Note too that there is

no compulsion that K � V be consistent throughout this process. We could

have a some vocabulary such that beliefs in it are to be kept �xed during

a revision | this may include inconsistencies which are just too di�cult to

deal with at the current time. This too is allowed on our account of revision.

A simple example should su�ce to illustrate the process. Suppose we

have a theory like Cnfp; q; r^ �r; s^ �sg. Given an appropriate entrench-

ment ordering, we can contract on s^�s, say, perhaps keeping neither s nor

�s, nor s_�s, but keeping everything else, because we have kept the beliefs

in the vocabulary fp; q; rg more deeply entrenched (even r^�r, which may

be surprising | we may hold to r ^ �r more strongly than to s _ �s). As

a result, our belief set is now Cnfp; q; r ^ �rg. Then we can contract on

r^�r, keeping, say r, because it is more deeply entrenched than �r. During

this contraction we can keep the vocabulary fp; qg constant, so we end up

with Cnfp; q; rg, a consistent belief set.
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5 Conclusion

We have seen that �rst-degree entailment gives us the techniques to deal with

inconsistent belief sets without requiring that all inconsistency be dealt with

at once. This has not been at the expense of the formal representation results

of belief revision. The theory of belief revision which allows for inconsistency

has all of the formal beauty, and the intuitive grounding of the model theory

of the classical account of belief revision. The only things it lacks are the

oversimpli�cations and questionable consequences of the classical theory.

And that is not a bad thing at all.
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