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Abstract: 1 present an account of truth values for classical logic, intuition-
istic logic, and the modal logic s5, in which truth values are not a funda-
mental category from which the logic is defined, but rather, an idealisation
of more fundamental logical features in the proof theory for each system.
The result is not a new set of semantic structures, but a new understanding
of how the existing semantic structures may be understood in terms of a
more fundamental notion of logical consequence.

My concern in this paper is threefold: (1) to examine the different structures
of truth values appropriate to different accounts of logical consequence — in
particular, classical logic, intuitionistic logic, and modal logic; (2) to examine the
role of truth functionality — or its absence — in each of these different logical
systems; and finally, (3) to examine one way we can give an account of properties
of truth values from a standpoint where we do not take them as given but rather,
in which we define them from more basic notions.

1 MOTIVATION

In this paper, the perspective is inferentialist. 1 will take the notions of logical
consequence to be given in a system of proof — to make matters concrete, we
will use sequent systems. The approach is inferentialist because we take the
core notions of our logical theory to not be defined in terms of truth values or
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truth preservation, but by some other means, involving inference[f| Given this
starting point, we will define a notion of truth appropriate to each account of
logical consequence, and examine its behaviour. The result will not be a new or
surprising theory of truth values: the resulting algebraic structures will be quite
familiar. The novelty, such as it is, is to be found in the way these structures are
obtained, the new perspective on completeness proofs that is thereby provided,
and the manner in which the formal results explained here may be used at the
service of inferentialist theories of semantics.

Everyone — whether inferentialist or not — can agree that logic and truth
are intimately connected. Logical consequence and the structure of truth values
go hand in hand. There are two aspects to this connection. First, there is the
notion of truth as the point of logical consequence. Of course, one way to define
logical consequence by way of preservation of truth: the valid arguments are
those whose conclusions are true whenever the premises are true. This way
lies truth tables, model theory, many-valued algebras, semantic structures, etc.
However, not all logic is model theory, and as we have seen, not all accounts of
consequence are truth-first. If we don’t define validity in terms of truth but by
means of proof, this does not sever the connection between validity and truth.
It still may remain that one important feature of valid arguments is that they
preserve truth. Any argument with true premises and an untrue conclusion is
not valid. This is to be accounted for by all, not just by those who use truth
preservation to define validity.

The second connection between truth and logic is given in the structure of
truth values. In many presentations of logical consequence we determine the
truth or otherwise of a statement in terms of the truth values of its constituent
parts. To define validity in terms of truth values we need to know not only what
value our premises or conclusions receive under some interpretation, and per-
haps more importantly, we also need to know whether this value counts as true.
In other words, we want some account of which of the many values we use in
a compositional account of the interpretations of our statements actually counts
as being true. For traditional truth tables, the connection is simple: there are
two truth values, true and false, and to be true is to receive the value true.
In other logics with more than two truth values (for the purposes of semantic
composition), the connection between being true and taking a particular truth
value may be more complicated | For this second connection between the struc-

*There are many ways one can be an inferentialist [21 3} @} [7} [0} O} T} [£5} [£7]. Inferentialists
propose an approach to semantics (1) where notions of proof (of valid inference) play a crucial and
central role and (2) where this notion of proof and validity is can be explicated without deferring
to the notion of truth, or truth preservation, but apart from this common ground, inferentialists
have litte in common.

2For example, any three-valued logic in which two values are designated—such as Priest’s
‘Logic of Paradox’ LP [13} 7], there are two different truth values which count as being ‘true.’
Coming out as true according to an interpretation does not mean taking some particular semantic
value. Rather, there are two different semantic values corresponding to being true. One way to
be true is to be true ‘only’ (to be true, but for the negation of this statement to not also be true)
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ture of truth values and proof, the right story to tell if we start with proof is not
so clear, for although it is clear that there is a connection between validity and
truth, it is less clear, and not so obviously fundamental to the notion of truth
values that validity can be understood in terms of some compositional account
of truth values. Can such a story be told? Given the success of compositional
theories of truth values, inferentialists would also do well to have something to
say about truth values and compositionality.

2 CLASSICAL SEQUENTS

The first case study is the simplest: classical propositional logic. In the formu-
lation T will use here, sequents take the form X + Y where X and Y are finite
sets of formulasP] We write ‘X, A’ as a shorthand for the set union of X and the
singleton of A, as usual. The sequent calculus defines the notion of a derivation
which is a tree of sequents, each of whose leaves is an axiom [Id]

X, AFA,Y [Id

and each of whose transitions from leaves to root is one of the following rules.
A structural rule of [Cut]

XFAY XAFY
XFY

[Cuf]

or a connective rule, introducing the major connective of a formula as a premise
or conclusion to the sequent. For example, we have:

X,AFY X,BFY XFAY XFB,Y

—— [ALy]] —— [AL;] [AR]
X,AABFY X,AABFY XFAAB,Y

X,AFY X BFRY XFAY XFAY
[VL] ——— [VRi] ———— [VR;]
X,AVBFY XFAVB)Y XFAVB)Y

XFA,Y X,AFY

o[l o [7R]

X,7AFY XE—-A)Y
Derivations in this sequent calculus characterise classical propositional logic. A
fundamental theorem concerning the sequent calculus is that any derivation of
a sequent making use of the Cut rule can be systematically transformed into
a derivation of the same conclusion in which no instance of Cut is used. The
resulting derivation has the subformula property: the only formulas occuring
in the derivation are subformulas of formulas occuring in its conclusion.

or to be both true and false (to be true and for the negation of the statement true too).

3For many purposes it is more useful to consider sequents to be composed of multisets or
sequences of formulas. Here, explicit attention to structural rules such as conraction will be
distracting, so we consider sequents as pairs of sets.
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Notice that there are no truth values mentioned in the account of logical
consequence supplied in the sequent calculus. This is a matter of no import if the
calculus is understood merely as a way to enumerate the valid sequents of the
logic. If, on the other hand, the calculus is understood as playing a semantic role,
then perhaps this points to a semantics for the classical propositional connectives
in which truth does not explain. As I mentioned in the previous section, there
are many ways to be an inferentialist, and it is not my point to deliniate all of
those ways here. However, it will be worth sketching just a little of my own
approach, as it motivates some of the definitions and results in what follows.

In the paper ‘Multiple Conclusions’ [15], I argued that we can see the sequent
calculus as supplying a normative constraint on acts of assertion and denial: a
derivation of a sequent X I Y can be seen as making explicit the manner in which
joint assertion of each member of X together with the denial of each member of
Y is, in a precise sense, out of bounds. The manner in which a valid sequent
X kY tells us that the joint assertion of each member of X and denial of each
member of Y is not simply a matter of saying that things are not (or cannot)
be as described. Rather, the failure in such a conversational position, in which
each member of X is asserted and each member of Y is denied, is of the same
kind as the simplest failure of them all, the joint assertion and denial of the
one statement. The fundamental normative force holds between assertion and
denial. We take a denial of p to stand against an assertion of p, and vice versaft|
This clash is recorded in the [Id] rule: X, A F A,Y. That is, a position in which
A is asserted (possibly together with other assertions, X) and denied A (possibly
together with other denials, Y) is out of bounds.

The rule [Id] tells us that assertion and denial are incompatible, and [Cut]
tells us the converse: it gives us conditions on when there is no such clash in
assertion or denial. Reading the [Cut] rule from bottom to top, it tells us that
if it is not out of bounds to assert X and deny Y, then at least one of adding the
assertion of A or the denial of A to that position is also not out of boundsf| One
way to understand this is to think of the aim of assertion and denial like this:
the point of the denial that A is to constrain future assertions of A. To deny that
A is to make any future assertion that A require a withdrawal of that denial.
In the same way, the point of assertion is to rule out future denials. To assert
that A is to make any future denial of A require a withdrawal of that assertion.
Therefore, if a position in which X is asserted and Y is denied is coherent — if it
involves no clash — and if the addition of the assertion that A would add a clash,
then A’s assertion is implicitly ruled out already in that very position. It would
not add a clash, then, to make ruling out of A explicit. In other words, adding a

4There are many things one could say about the aim of assertion, and of denial. We need not
commit to any one of a number of different perspectives here, except to say that we presume an
account of the norms of assertion and denial for which there is such a clash, between the assertion
of A and the denial of A.

5Note: the order in which assertions are made or their repetition, makes no difference to
coherence. This fact is implicit in our choice of sets as the components of sequents.
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denial of A to the assertions X and the denials Y would then be coherent.

The connective rules of the sequent calculus can then be thought of as showing
how clashes among assertions or denials of complex expressions (conjunctions,
disjunctions, negations, etc.) arise out of clashes concerning their constituent
parts. For example, the [AR] rule tells us that if there is a clash in denying A
(together with asserting X and denying Y) and there is a clash in denying B
(together with asserting X and denying Y), then there is also a clash between
denying A A B, asserting X and denying Y. We can think of the rules for the
connectives as giving instructions on how to treat assertions and denials — at
least with regard to whether or not these assertions and denials are out of bounds
or not.

The result then — if this story can be made out more fully — is an account
of what we are to do with assertions and denials in the vocabulary of classical
propositional logic. Some positions involving assertions and denials are per-
missible, and others are ruled out by means of these rules. The derivaton of
—(p A q) F —pV —q tells us that any position in which we assert —=(p A q) and
deny —p V —q is incoherent. If I were to assert —(p /\ q) and I wished to take
up a position on —p V —q, the only possible position on that is to assert it, as it
is undeniable. This story says nothing about truth or falsity, or a structure of
truth values. It is an inferentialist understanding of the meaning of this logical
vocabulary.

Our target in this paper is to give an account of truth values starting from
an inferentialist position like this. The goal is not to give some non-standard
account of truth values, but to see if starting from this position gives us any
new light on the existing theories of truth values already familiar to us.

So, consider the behaviour of truth values in traditional model theoretic se-
mantics. There, we do not assign a truth value to a statement tout court. Rather,
any assignment of a truth value to a statement is relative to an assignment of
values to atomic expressions. A model theory does not tell us the truth value of
the statement p A —(q V r) — it merely tells us its truth value relative to the
choices of truth value for p, q and r. Does a similar phenomenon arise out of
the sequent calculus? Can we find anything like truth values or items to which
we can assign truth values, in the sequent calculus?

Consider a sequent X + Y. If it is valid, there seems to be no reason to
think of the members of X as true or as false. (Remember, we are taking a valid
sequent X Y to tell us that the assertion of X together with the denial of Y
is ruled out.) While there may be some reason to think of a sequent A I B as
recording an argument from the truth of A to the truth of B, this is still only
of the form of a conditional. If I am already inclined to think of B as false, the
argument from A to B may well lead me to consider A to be false too. A sequent
A F B no more leads us to consider A true than it does to consider B false.
The situation is symmetric between truth and falsity. On the other hand, given
an invalid sequent, X I/ Y, matters are different. An invalid sequent practically
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begs for an interpretation in terms of truth and falsity, where X and Y are treated
differently, and not symmetrically. If X I/ Y, we are naturally lead to call to mind
a possibility in which each member of X is true and each member of Y is false.
After all, understanding sequents inferentially, if X I/ Y, asserting each member
of X and denying each member of Y is not ruled out. Here, the members of X
are treated positively and the members of Y are treated negatively. This is our
way in to the connection between sequents and truth.

So, instead of taking truth values or ‘possibilities” as fundamental, let us
start with the invalid sequents themselves, as they already play a role in our
interpretation of the sequent calculus. Where X I/ Y, we will call the pair [X: Y]
a position.

DEFINITION [POSITION]: Given a collection of sentences, with a consequence re-
lation F satisfying the rules of the classical sequent calculus, a pair [X : Y] of sets
of sentences is a position when X I/ Y.

A position takes its name from the interpretation in terms of assertions and
denials. If [X : Y] is a position, it is a ‘place’ that you could find yourself in a
discourse, without going out of bounds. The definition of a position takes care
to relativise this to the choice of consequence relation. What matters for us is
that we have at least the rules of the classical sequent calculus. Of course, there
may be more. We may care to define other vocabulary inferentially as well[]
Nothing here takes a stand on this.

Now, given a position [X : Y] some statements are explicitly asserted (those in X)
and others are explicitly denied (those in Y). We will think of the members of
X as left relative to that position, and the members of Y are right relative to the
position. (Nothing much hangs on the words we use here: we could call them
true and false respectively, if you prefer, but I would like to keep these words
for later, when we have examined more closely the some of what the notions of
truth and falsity do, and whether these properties do those things.)

However, being ‘left’ or ‘right” in a position is only partly a matter of what
is explicitly marked in that sequent. It is also a matter of consequence. Consider
the position [p V q,r : —p] what should we say about p? We cannot place it in
the right of this position, at the cost of creating a valid sequent. If it is to go
anywhere, it must go in the left of the sequent. The same goes for p A r. So, let
us expand the definition in the natural way:

DEFINITION [LEFT AND RIGHT, IN A POSITION]: The LEFT cOMPONENT of the posi-
tion [X : Y] is X. The ricHT cOMPONENT is Y. These are the formulas explicitly
on the left and in the right, respectively. We say that A is To THE LEFT OF [X : Y]
if and only if X - A, Y. A is To THE RIGHT OF [X : Y] if and only if X, A - Y.

%To take it that Ra, Ga |- is to take it that the joint assertion of Ra and Ga is out of bounds, for
example. A structuralist analysis of colour terms might take it that ‘is red all over’” and ‘is green
all over’ satisfy this sort of constraint.
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The formulas to the left of a position are those which cannot be added to its right
component at the cost of incoherence. They are implicitly in the left component,
but not necessarily explicitly in that component. The formulas to the right of
a position are those which cannot be added to its left component at the cost of
incoherence. If a formula A is already in the left component of a position, then
it is already to the left of that position, since X - A, Y is an [Id] sequent if A € X.
Similarly, if A is in the right component of a position, it is to the right of that
position. Being to the left and being to the right are mutually exclusive:

FACT 1: No statement is both to the left and to the right of the one position.

Proof: Suppose A is both to the left of [X : Y] and to its right. Then we have
X A,Y (by the definition of ‘to the left of’) and X, A F Y (by the definition of
‘to the right of’), and hence by [Cut], we would X F Y. But then, [X : Y] would
not be a position, contrary to our assumption. u

On the other hand, being to the left and to the right are not mutually exhaustive.
Formulas can be neither to the left nor the right of the one position. For example,
1 is neither to the left nor the right of [p : ], since [p,r: gl and [p : g, r] are both
positions in their own right.

Here is how these notions interact with the logical connectives.

FACT 2: For any position P (i) AAB is to the left of P iff A and B are both to the
left of P. (ii) AV B is to the right of P iff A and B are both to the right of P. (iii)
—A is to the left of P iff A is to the right of P. (iv) —A is to the right of P iff A is
to the left of P.

Proof: For (i) X+ AAB,Yiff X+ A,Yand X I B, Y (left-to-right by AAB F A,
A A B I B, which come from [AL], and [Cut]; right-to-left by [AR]). The other
results are similarly straightforward. .

These biconditionals show that being-to-the-left-of plays a lot of the role played
by truth, and being-to-the-right-of plays a lot of the role played by falsity. A
conjunction is to the left of P iff both conjuncts are to the left of P. A negation
is to the right of P iff the thing negated is to the left of P, etc. However, not all
of these roles are played by these properties. It is not the case, in general, that
A A B is to the right of P iff either A or B are to the right of P. For example,
p A q is to the right of [ : p A g] (explicitly so) but neither p nor g are to the
right of this position, since p I/ pAqand q If p/g. Positions are not, in general,
a faithful replacement for two-valued evaluations, since they do not determine
the location (left or right) of each statement.

However, this incompleteness of positions is not an irreparable flaw. If a position
is incomplete concerning a statement, it can be extended into a position which
determines the location of that statement.
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DEFINITION [EXTENSION OF POSITIONS]: [X : Y’] extends [X : Y] if every formula
in X is in X/, and every formula in Yis in Y’.

In fact, we have a slightly more general result.

FACT 3: For any position [X : Y] and formula A, if A is not to the left of [X : Y],
then [X : A,Y] is a position. (It is an extension of [X : Y], to which A is to the
right.) Similarly if A is not to the right of [X : Y], then [X,A : Y] is a position.
(It is an extension of [X : Y] to which A is to the left.)

Proof: Since [X : Y] is a position X I# Y. If A is not to the left of [X : Y], then
by definition, X I/ A, Y. It follows that [X : A,Y] is a position. The other case is
dual. [ ]

So, if we have a position that does not decide on A (it is neither to the left nor
the right), the position may be extended in either direction: one, which finds A
to the left, and the other which finds A to the right. The limit of such a process
of adding formulas would be something that decides every statement. Positions
are finite, but the limit of adding formulas to the left of right is no longer a
position, properly so called, but the limit of a process of extension.

DEFINITION [LIMIT POSITIONS]: Given a language £, a LIMIT POSITION is a pair
[X : Y] of sets of sentences such that (a) whenever X C X and Y C Y are finite
sets of formulas, [X : Y] is a position; and (b) XU Y = £.

Limit positions indicate a ‘way one could go on.” No conversation determines a
single limit position, for any position could be extended in more than one way,
but a limit position indicates ways a single position can be extended.

FACT 4: Any position [X : Y] is extended by some limit position [X : Y].

Proof: Consider the tree of all positions, ordered by extension. Given the posi-
tion [X : Y] in that tree, take a maximal branch [X; : Y;] (for each 1 € 1) in the
tree from [X : Y], and consider the pair [X : Y] = [J; Xi : U; Yil. This is an limit
position, for (a) whenever X’ C [J; Xi and Y’ C J, Vi, there is some index j
where X’ C Xj and Y’ C Y;, and since [X; : Y;] is a position, [X’ : Y] is too; and
(b) since for every [X; : Y;i] in this branch, either [X;, A : Yi] or [X; : A,Y;] is also
a position, any branch totally avoiding the formula A is not maximal, so every
maximal branch contains every formulaJ/] .

Given that a limit position [X : Y], is a partition of £, every formula is explicitly
in the left set X or the right set Y. It follows that the properties of being left or
right of an limit position act a great deal like truth and falsity.

7For this argument to work, of course, we must appeal to the well ordering of £& to apply
Zorn's lemma. We have assumed nothing else about £. In particular, we have not assumed that
the language is well-founded.
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FACT 5: For any limit position P (i) A A B is to the left of P iff A and B are both
to the left of P; (') A/AB is to the right of P iff either A or B is to the right of B.
(ii) AV B is to the right of P iff A and B are both to the right of P. (ii’) AV B is
to the left of P iff either A or B is to the left of P. (iii) —A is to the left of P iff A
is to the right of P. (iv) —A is to the right of P iff A is to the left of P, and (v) A
is to the left of P iff A is not to the right of P.

Proof: We have already proved parts (i), (ii), (iii) and (iv) of this lemma for
positions. To be to the left of an limit position P is to be to the left of some finite
position extended by P, and to be to the right of P is to be the right of some finite
position extended by P, so these parts of the lemma apply to the limit position
P too. To prove the remaining parts, (i’) and (ii") and (v), we start with (v).

Since P is a partition of £, it follows that if A is not to the left of P, it is to
the right. Conversely, if A is to the right of P, it cannot be to the left of P, since
[A : A] is not a position.

Now, for (i) suppose A A B is to the right of P = [X : Y]. If neither A nor B
are to the right of P, it would follow by (v) that they would be to the left of P. If
that were the case, we would have A, B € X and A A B € Y, but that cannot be,
since A, B = AAB. For (ii’) the reasoning is completely dual, using AVB I A, B.
If AV B is to the left of P, we cannot have both A and B to the right of P, so by
(v) it follows that either A or B is to the left of P. .

It follows that limit positions act just like two-valued boolean evaluations. Limit
positions partition the formulas of £ into those to the left and those to the right,
and this partition satisfies the boolean evaluation conditions for the connectives.
In fact, it is straightforward to see that any boolean evaluation on £ (a function
from £ to true and false satisfying the boolean evaluation conditions for the
connectives) determines an limit position [X : Y] by setting X to be all those
formulas receiving the value true and Y to be those receiving the value false.
Limit positions are nothing more and nothing less than boolean evaluations un-
der another guise.

Guise may matter, of course: we did not start off with a theory of true and
false, but with an understanding of sequents in terms of norms governing po-
sitions in which things are asserted and denied. Given this starting point, we
have defined a notion of ‘truth’, relative to an idealised position in a discourse:
idealised to the extent of taking up every possible statement as asserted or de-
nied. Relative to a position like this everything is either asserted (to the left) or
denied (to the right), and its location on this divide respects the boolean eval-
uation conditions for the connectives. The picture is of a kind of binary truth
value in which we have distinctive answers to the following three characteristic
features of truth and truth value.

TRUTH AND VALIDITY Why is truth preserved in valid arguments? Here the an-
swer is straightforward. If we have A + B, then at any position [X : Y] in
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which A is to the left, B must be too. Otherwise [X : Y] would be incoher-
ent.

TRUTH VALUE AND COMPOSITIONALITY Why is the truth value of a complex sen-
tence a function of the truth values of its components? (At least for com-
plexes made out of propositional connectives.) The fact we need is Fact
5, and the explanation is its proof. Since limit positions are maximally
inclusive—since every sentence is either on the left or the right—the se-
quent rules for the connectives ground their truth functionality. For ex-
ample, since AV B I A, B, if AV B in the left of [X : Y], then one of A and
B must be in the left, since they cannot both be in the right. The inference
rules for the connectives, together with the maximality of limit positions,
ground truth functionality.

TRUTH AND ASSERTION Finally, what is the normative connection (if any) be-
tween truth and assertion? To be true, with respect to an limit position,
is to be asserted in that position. However, limit positions are never the
kind of thing we attain in a discourse. Given a position [X : Y] extended
by a limit position [X : Y], then we can at least conclude that if A is true in
[X : Y] then A is not false in [X : Y]. So, if A is true in [X : Y], any position
in which A is denied cannot be extended by [X : Y].

Conversely, if A is asserted in position [X : Y], then A is true in any limit
position extending [X : Y]. In this way, assertion the assertion of A literally
does aim at the truth of A—at least, it is true in any position at the limit
extending our starting point.

Given these three qualities concerning truth and truth value, it seems fair to
consider the properties of being to the left and to the right of an limit position as
analyses of truth and falsity, at least to the same extent that truth and falsity in a
boolean interpretation deserve that name. (They are idealisations, but different
idealisations than the more commonly understood ones.) Why are there two
truth values? It is because there are two places a statement can be in a limit
position: asserted (to the left, true) or denied (to the right, false).

Notice we have said nothing about truth simpliciter. This is intentional: we
say no more about the simple plain truth than a theory of boolean evaluations
says about truth. We have defined a notion of truth, relative to a limit position.
We have no way, using these resources at least, of singling out a particular limit
position as the one that represents all and only the truths, any more than we
have a way to single out a particular boolean evaluation as representing what
is really true. This is not to concede that more cannot be said on this point.
However, this seems to be a point on which different inferentialists could tell
the story in different ways. For now, it will be more profitable to extend our
view and to look at sequent systems other than classical propositional logic.
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3 INTUITIONISTIC SEQUENTS

Intuitionistic logic has a natural sequent system which differs from the system
for classical logic at a purely structural level. Instead of working with sequents
of the form X I Y, sequents take the form X - A (or X ) in which the right
hand side is either a single formula or is absent entirely| The structrual rules
are as follows:

XFA X,AFC

XA FA [ [Cut]
XEC

The other rules are changed only by the restriction on formulas in the right

hand side.

X,Al C X,BF C XFA XFB
————— AL ———————= [AL] ———— [NR]
X,AABFC X,AABF C XFAAB
X,AFC X,BFC XF A XFB

[VL] —— [VRy] ——— [VR;]
X,AVBF C XFAVB X+-AVB
XFA B,YFC X,AFB XFA X, A k-
[DL] —— [2R] [FL] [7R]
X,ADB,YFC XFADB X, —A X F—A

The only other difference is separate rules for disjunction and the conditional,
as the they are no longer definable in terms of — and A.

We can define positions just as we did before, taking care to attend to the new
structure of sequents. So, instead of taking a position to be simply an invalid
sequent (in which either only one or no formulas at all take the right hand side),
we may consider a generalisation where we allow for multiple formulas on the
right hand side, for there is no problem with denying more than one sentence,
even if we make do with sequents with no more than one consequent formula.

DEFINITION [INTUITIONIST POSITIONS]: Given a language and a consequence re-
lation satisfying the rules of the intuitionistic sequent calculus, an intuitionist
position is a pair [X : Y] of finite sets X and Y where X I/ A for any A € Y (where
if Y is empty, we demand X I/ too). A formula A is said to be to the left of [X:Y]
if X+ A; and A is to the right of [X : Y] iff X, A I B for some B € Y (or X, A |, if
Y is empty).

A position, therefore, is a pair of sets formulas (those asserted and those denided),
where by the lights of the logic we can never validly deduce any formula denied
from the assertions. This much is unchanged from the classical case, but the
difference in the underlying logic is significant.

For example, now [——p : p] is a position, since by the lights of the intuition-
istic sequent calculus, =p I/ p. It follows from this that the properties of being

8In these rules the schematic formula C can also stand in for an empty consequent.
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to-the-left-of and being to-the-right-of these positions interact differently with
negation. In this position, =p is to the left and p is to the right, so somewhere,
the general classical condition for negation (—A is to the left of P iff A is to the
right of P; and —A is to the right of P iff A is to the left of P) must break down. It
is not too difficult to see where. We also have [ : p,—p] as a perfectly acceptable
position. Here both p and —p are to the right of the position. On the other hand,
[p,—p : ]is not a position; we cannot in general have a formula and its negation
both to the left of the one position.

Distinctive behaviour is not restricted to negation: [p V ¢ : p, q] is a position
too, since p V q I/ p and p V q I/ g. It follows that we can have positions where
pV q is to the left and both p and g are to the right. The evaluation conditions
satisfied by positions are reduced in number:

FACT 6: For any position P (i) AAB is to the left of P iff A and B are both to the
left of P. (ii) If AV B is to the right of P then A and B are both to the right of P.
(iii) If ~A is to the left of P then A is to the right of P. (iv) If A is to the left of
P then —A is to the right of P. (v) If A D B is to the left of P and A is to the left
of P then B is to the right of P; and if A D B is to the right of P then B is to the
right of P.

Proof: As before, for (i) X+ A AB,Y iff X A Y and X - B, Y (left-to-right by
AABHF A, AAB + B, which come from [AL], and [Cut]; right-to-left by [AR]).
For (ii) if X, AV B t C then X, A - C (using A - AV B and [Cut]) and similarly,
X, B C. For (iii) if X - —A then we have X, A - (using A, —A F and [Cut]). For
(iv) if X - A then by [~L] have X,—~A . For (v) If X+ A D Band X A then by
[Cut] on A D B, A F B we have X - B. Similarly, if X, A D B - C then by [Cut]
onBF+ A D> Bwehave X,BF C. "

So, we have some of the same evaluation conditions for left and right as in the
classical case, but not all of them. However, despite the restriction on structural
rules in sequents, positions are completeable in just the same way they are in
the classical sequent calculus.

racT 7: If [X: Y] is a position, then so is either [X: A, Y] or [X, A : Y].

Proof: Consider what would be the case were neither [X : A,Y] nor [X;A : Y]
positions. Were [X : A,Y] not to be a position, we would have either X - A or
X F B, for some B € Y. In the second case, this would mean that [X : Y] were not
a position, but we have assumed that it is. So the only case remaining is the first
case, X = A. Were [X, A : Y] is not to be a position, we would have X, A + C for
some C € Y, and by the following instance of [Cut]

XFA X,AFC
XFC

we would conclude that [X : Y] is not a position, which we have ruled out by
assumption. So, if [X : Y] is a position, then so is either [X: A Y] or [X,A:Y]. =

[Cut]
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Therefore, it makes sense to consider LIMIT POSITIONS, as before.

DEFINITION [LIMIT POSITIONS]: As before, [X : Y] is a LiMIT POSITION in a language
£ iff (a) for any finite X C X and Y C Y, [X: Y] is a position; and (b) X UY = £.

And just as in the classical case, we have the following fact:
FACT 8: Any position [X: Y] is extended by some limit position [X : Y].

Proof: As before, consider the tree of all positions ordered by extension. Any
maximal branch [X; : Yi], (i € I) through the tree defines a limit position. In this
case, we use Fact 7 to show that any truly maximal branch does not leave out
any formula in £. .

When is —A in the left of some limit position [X : Y]? For this, we would need
X F —A for some finite X C X. It follows that X, A I, and hence, that A is to the
right not only of [X : Y], but also of any other [X’ : Y'] where X C X’, no matter
what we find in Y. Call such positions [X' : Y'] strengthenings of [X : Y].

DEFINITION: A position [X’ : Y] is a STRENGTHENING of [X : Y] if X C X’. Simi-
larly, a limit position [X’ : Y’] is a STRENGTHENING of [X : Y] if X C X'

So, extensions are strengthenings, but strengthenings need not be extensions.
In strengthenings of positions, more may be asserted but less may be denied.

FACT 9: —A is to the left of an limit position P iff A is to the right of every
strengthening of P.

Proof: If —A is to the left of [X : Y], it follows that X - —A for some X C X.
Therefore, for any extension [X' : Y'] of [X : Y], since X F —A and X C X' too,
we have X, A - and A is to the right of [X/ : Y’].

Conversely, if —A is not to the left of [X : Y], it follows that —A is to the right
of [X : Y], i.e. ~A € Y. For each X C X we must have X, A I/, lest X - —A and
[X : Y] not be a position. Therefore, [X,A : ] is a position and can be extended
to an limit position [X' : Y’], a strengthening of [X : Y] to which A is not to the
right. .

Extensions not only feature in the behaviour of negation at limit positions, but
also with disjunction and conditionals.

FACT 10: AV B is to the left of [X : Y] iff each strengthening of [X : Y] has some
further strengthening at which either A or B is to the left.
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Proof: If AV B is to the left of [X : Y], since this is a limit position, we have
AV B € X, and hence, AV B € X’ for any strengthening [X’ : Y'l. Take
some such strengthening [X’ : Y’]. We must have either X', A I/ or X', B I/ for
otherwise, we would have X', AV B I~ and hence X’ + by [Cut]. So, either there
is an extension [X” : Y] where A is to the left, or B is to the left.

Conversely, if AV B is not to the left of [X : Y], it is a member of Y, since
[X : Y] is a limit position. We want some strengthening of [X : Y] with no
extension where to which either A or B is to the left. One way to do this is to
find a strengthening of [X : Y] where both A and B are to the right. Consider
[X : A,B]. For no X ¢ X do we have X A nor do we have X F B. If we had
either X - A or X B for any X C X, we would have X - AV B, and thus,
AV B would be to the left of [X : Y]. So, [X : A, B] is a position, and it has some
extension [X’ : Y'] where A,B € Y’, and which is a strengthening of [X : Y] and
which itself has no strengthening with either A or B to the left, since A and B
are already in the right. .

FACT 11: A D B is to the left of a limit position [X : Y] iff for each strengthening
of [X : Y] to which A is to the left, so is B.

Proof: If A D B is to the left of [X : Y], then A D B € X, and hence, for
any strengthening (X’ : Y'] where A € X’ we have A D B € X’ too, and by
ADB,AFB,B e X’too (since [X’:Y'] is itself a limit position).

Conversely, if A D B is to the right of [X : Y] we have no X C X where
X,A F B, lest we have X = A D B and [X : Y] is not a limit position. So, [X, A : B]
is a position and it is extended by a limit position [X’ : Y] to which A is to the
left and B is not. So, this is an extension of [X : Y] to which A is to the left and
B isn't. "

However, conjunction behaves just as it does in the classical case.

FACT 12: A A B is to the left of a limit position P iff A and B are to the left of P.

Proof: The proof is exactly the same as the classical case. .

Let’s summarise the conditions for left and right, dropping the ruse of calling
these ‘left’ and ‘right” for ‘true’ and ‘untrue.” We have the following conditions
on truth at limit sequents.

e A ABis true at P iff A and B are both true at P.

e AV Bis true at P iff each strengthening of P has a further strengthening
at which either A or B is true.

e A D Bis true at P iff at every strengthening of P, if A is true, so is P.

e —A is true at P iff at every strengthening of P, A is not true.
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The result, of course, is that limit positions, partially ordered by strengthening,
form a model of intuitionistic logic. This is a Beth semantics for intuitionistic
logic [5 /6] [8]. The natural application of our technique to the standard sequent
system of intuitionistic logic gives us a known model theory for the logic.

However, there is another model theory for intuitionist logic, somewhat
simpler than Beth semantics. The Kripke semantics for intuitionist logic also
evaluates formulas for truth at a family of points, partially ordered by exten-
sion. However, the truth condition for disjunction is simpler: In a Kripke model,
a disjunction is true at a point iff a disjunct is true at that point.

It turns out that intuitionist logic has more than one sequent system. It has
a sequent system in which sequents have the form X - Y where we allow more
than one formula in consequent position. The structural rules of [Id] and [Cut]
are kept from classical logic

XFAY XAFY
XA EFAVY [1d) [Cut]
XY

and the rules for conjunction and disjunction are the same:

X,AFY X,BFY XFAY XFB,Y
————— [ALi] ————— [AL]] [AR]
X,AABFY X,AABFY XFAAB,Y
X,AFY X,BFY XFA,Y XFAY
[VL] ————— [VRi] —————— [VR;]
X,AVBFY XFAVB,Y XFAVB,Y

The right rules for the conditional and negation, however, are resricted.

XFAY BXFY X,AFB
[DL] —— D
X,ADBFY XFADB

R]

XEFAY X,AE

- [l
X,7AERY XEF—-A

Here, sequents allow for multiple statements in the consequent, but the right
rules for negation and the conditional are restricted to cases where the conse-
quent is a singleton. In this case, we can define positions and limit positions
in exactly the same manner as in classical logic or the standard semantics for
intuitionist logic, except the change in sequents makes a significant difference.

For example, now we can prove p V q  p, g, there is no limit position at
which p V q is true and p and q are not. It follows that a disjunction is now true
at a limit position if and only if either disjunct is true at a limit sequence. The
other proofs remain unchanged from before, and we are able to show that limit
positions in this sequent system have the following properties:

[~R]

e A ABis true at P iff A and B are both true at P.
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e AV B is true at P iff either A or B is true at P.
e A D Bis true at P iff at every strengthening of P, if A is true, so is P.
e —A is true at P iff at every strengthening of P, A is not true.

The result is a Kripke model for intuitionist logic. In fact, the limit positions
from this sequent system are all limit positions from the first Gentzen sequent
system for intuitionist logic, so this model is a submodel of the Beth model for
intuitionist logic. We have two different classes of positions at which statements
are either true or false, depending on how liberal we are with the treatment of
denials. Is [p V q : p, q] a position? On the liberal line, with Gentzen sequents
and Beth models, it is, as neither p nor q follow from p V q. On the more
strict line, with multiple conclusion sequents and Kripke models, it is not, as
p together with g cover all of the options, given the assumption of p V ¢q. To
argue that one or other analysis is more suited to some purpose would take us
too far afield here. Instead, I will consider how either of these approaches give a
perspective on the role of truth and truth value.

TRUTH AND VALIDITY Why is truth preserved in valid arguments? Here the an-
swer is the same as in the classical case. If we have A F B, then at any
position in which A is to the left, B must be too. Otherwise the position
would be incoherent. So truth at limit position (of either kind) is pre-
served in intuitionistically valid arguments. Furthermore, if we have any
argument from premises X to a conclusion A which is invalid, then we
have some position, with respect to which X is true and A is false (that is
[X : A]). We may extend this position to an ideal position in the usual way.

TRUTH VALUE AND COMPOSITIONALITY In what way do the truth values of true
and false play a role in a compositional ‘semantics’ for formulas consid-
ered intuitionistically? Does the truth value of a formula depend just on
the truth value of its components? This happens less in our new context
than was the case with classical logic. Both [p : =p] and [ : p,—p] are po-
sitions, so we may have p true and —p false (relative to a limit position
extending [p : —p]) and we may also have p and —p both false (relative
to a limit position extending [ : p, —p]).

In other words, the location of a complex formula in a limit position does
not determine its subformulas’ locations in that sequent, at least not in
many cases. (It does, in the case of conjunction, in the same way as in
classical logic). However, the position is determined in a more attenuated
sense: the location of a statement in a limit position is a function of the
location of its subformulas in other positions. A statement and its nega-
tion can both fail to be true (be false, to the right of a position). However,
if —p is to the right of a position, it follows that the assumption of p is not
inconsistent with what is asserted in that position, and hence, that some

Greg Restall, restallOunimelb.edu. au MAY 1, 2009 version 0.995


http://consequently.org/writing/tvpt
mailto:restall@unimelb.edu.au

http://consequently.org/writing/tvpt 17

strengthening of that position has p to the left. Here, the more limited
rules for the negation (or dually, the more liberal account of what counts
as a coherent position) are why we alow for this shift in positions.

TRUTH AND ASSERTION What is the normative connection (if any) between truth
and assertion? Here, the connection is as straightforward as in the case of
classical logic. To be true, with respect to an limit position, is to be asserted
in that position. Now, truth is more fine-grained because there are more
limit positions from which truth may be evaluated, but as before, if A is
asserted in a position [X : Y], then relative to any limit position [X’ : Y]
extending [X : Y], the formula A is true.

4 MODAL HYPERSEQUENTS

[ will end this exploration of the connection betwen truth, truth values and se-
quent systems with a speculative look at a possible extension of these results to a
hypersequent calculus for the modal logic s5 [16] P| The sequent system governs
hypersequents: multisets of sequents, here written as sequents separated by a
vertical bar. (The schematic variable A is used to range over hypersequents. In
other words, X - Y | A is a hypersequent, one sequent of which is X Y, and
the others of which are in A.)

XEFAY | A XAFY | A
X,AFAY | A [ [Cuf]
XEY | A

XFAY | A X,AFY | A
————[1] ———— [R]
X,~AFY | A XF-AY | A

X,A,BFY | A XFAY|A XFBY]|A
[AL] [AR]
X,AABFY | A X,AABFY |A|A
XFY | X, AFY | A FA | XFY | A
[EL] [OR]
X,O0AFY | X'FY' | A XFOA,Y | A

We can interpret a sequent as constraining a varigated family of assertions and
denials: assertions and denials separated into different contexts or zones of a
discourse. For example, suppose I assert that p, deny that q and then consider
a hypothetical possibility in which q and in which r fails. This is a stratified
position [p : q] | [q: 7]. The denial of g at one point does not conflict with the
assertion of g elsewhere, because they are separated into different ‘zones’.

9The idea of a hypersequent presentation of modal logic is not new. It dates back at least
to Avron’s work in the 1990s [i]. This presentation, however, is relatively recent. As far as I
know, onlymy work and Poggiolesi’s tree sequents [z} [16] admit of an interpretation in terms of
assertion and denial stratified into zones as [ am considering here.
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Here is a derivation in the hypersequent system. The starting hypersequent
is an instance of [Id], a multiset of sequents, one of which contains a formula in
antecedent and in consegent position.

Flpkp
Opk | Fp
— |
Opk | FOp
F—Op | FOp
—Up + O-Op

(L]

[OR]

To develop a theory of truth values in the same vein as that for classical and
intuitionist logic, we need to choose what we take for positions. A natural choice,
generalising what we have seen before, is to take a position to be an invalid
hypersequent, and a limit position is a limit of filling extending a position. The
[Cut] rule allows for the filling in of each sequent in a position with formulas in
the left or in the right.

XFAY | A XAFY | A
XFY | A

[Cut]

So, we could define a limit position as a set of pairs of sets {[X; : Yi] | 1 € T}
where not only can we add no more formulas in any position in that set, but we
can also not add any more sequents. Why do this? It is a natural analogue of
the classical and intuitionist where we take the position to be the entire hyperse-
quent, and a limit is something to which nothing can be added. In other words,
we have the following definitions:

DEFINITION: A POSITION is a set of pairs of sets {[X; : Yi] | 1 € [} such that there
is no valid hypersequent A where every component sequent X Y in A there is
some 1 € I where X C X; and Y C Y;. In other words, no hypersequent covered
by that position is valid.

A position {[Xj : Y;] | j € J} ExTENDs another position {[X; : Yi] | i € I}
when for every i € I there is some j € ] where [Xj : Y;] extends [X; : Yi]. A LiMiT
POSITION (in language £) is a position which is extended by no position (in £).

Can any finite position may be extended to a limit position? Yes, for exactly the
same reason as before.

FACT 13: Any position is extended by some limit position.

Proof: A limit position (in £) is the limit of a maximal branch in the set of all
positions (in £) ordered by extension, just as before. But now, not only do we
extend positions by adding in formulas to the left or the right, but also by adding
in whole extra sequents. .
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Now for limit positions, each component is itself a limit sequent-position [X : Y],
and hence (since the classical rules for A and — apply), being in the left or right
of an individual component satisfies the classical two-valued conditions. Given
that limit positions can have more than one componen{™|there is no sense that
a limit position defines a categorical notion of truth or falsity. A limit position
defines truth or falsity only relative to each different component. In a position
extending {[p : ql,[q : 7]} for example, ¢ is true at one component (a component
extending [q : 1]) and false at another (a component extending [p : ql). A limit
position then defines a collection of locations at which statements in the modal
language are true and false. A single position, then, corresponds not to a point
in a model structure (as it did in the case of sequents for intuitionist logic and
Beth or Kripke models), but a position corresponds to a model structure. What
kind of structure? The following fact shows its properties.

FACT 14: For any limit position {[Xi : Yi] | 1 € I}, truth at a component satisfies
the following three conditions:

A ABis true at [X; : Yi] iff A and B are both true at [X; : Y.
—A is true at [Xi : Yil iff A is not true at [X; : Yil.
OA is true at [Xi : Yil iff Ais true at each [X; : Y;] where j € L

Proof: The first two conditions follow from the locally classical behaviour of the
sequent rules. The work occurs in the proof of the condition for OJ.

If DA is true at [X; : Yi] and A were not true at some component [X;j : Y;l,
then since [X; : Y;] is a limit sequent, we would have A € Y;. But A - | - Aisa
valid sequent (by [OL], from the axiom - | A+ A), so{[Xi : Yil, [Xj : Y;]} would
not be a position (since JA € X; and A € Yj), and a fortiori, {[Xi : Yi] | 1 € I}
would not be a position. But we have assumed it is, so whenever OA is true at
[Xi : Yil, Ais true at every component [X;j : Y;].

Conversely, we use [OR]. If JA is not true at [X; : Yi], we have OA € Y;.
We need to show that there is some component [X; : Y;] where A € Y;. For this,
we will show that {[X; : Yi] | 1€ L U{[ : Al}is a position. It must be a position,
for if it weren’t, there would be a provable hypersequent - A | X Y | A
(where X C Xj and Y C Y;, and A is extended by the other components [X; : Y;])
extended by {[X; : Yi] | i € JU{[ : Al}. If that were the case, then we could
conclude by [OR] that X + OA,Y | A, but this sequent is extended by our
original position {[X; : Yi] | i € I}, so it is not valid. As a result, {[X; : Yi] |
i€ [JU{[ : Al} is itself a position. It is extended by a maximal position, which
itself must be {[X; : Y;i] | 1 € I}, since {[X; : Yi] | 1 € [} is extended by no other
position. In other words, we must have A € Y; for some j € L .

1°But it need not. See the later result characterising limit positions. Each one-world Kripke
model for s5 determines a limit position with exactly one component.
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Each limit position defines a universal Kripke model for the modal logic s5. Our
techniques, applied to a hypersequent system, instead of a traditional sequent
system, has produced limit positions which are themselves entire models of the
modal logic, instead of points in a model structure.

In each logic under study, we have seen a standard model theory defined out of
the raw materials given by the proof theory, not in some ad hoc, case by case
manner, but in the same way in each logic. Truth can be defined relative to a limit
position, for positions place formulas in the left (asserted) or the right (denied)
and in the limit, every formula is so placed. So the family of limit positions
provides a fitting structure, not only for a model theory of each of our logics,
but also, perhaps, for further discussion of the significance of proof theory for
semantics.

It is to be hoped that these techniques shed light on the relationship between
proof theory and models for non-classical logics, and more importantly, the dif-
ferent interpretation of both sorts of theories. If these results go some way to
clarify these issues and to provoke further research into the interface between
proof theory and model theory—and in particular, structures inovling truth and
falsity—this paper will have done its job.
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