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A standard approach to reduce the complexity of very large networks is to group together sets of nodes into clusters according to
some criterion which reflects certain structural properties of the network. Beyond the well-known modularity measures defining
communities, there are criteria based on the existence of similar or identical connection patterns of a node or sets of nodes to
the remainder of the network. A key notion in this context is that of structurally equivalent or twin nodes, displaying exactly the
same connection pattern to the remainder of the network. Our first goal is to extend this idea to subgraphs of arbitrary order of a
given network, by means of the notions of T-twin and F-twin subgraphs. This research, which leads to graph-theoretic results of
independent interest, is motivated by the need to provide a systematic approach to the analysis of core-semiperiphery-periphery
(CSP) structures, a notion which is widely used in network theory but that somehow lacks a formal treatment in the literature.
The goal is to provide an analytical framework accommodating and extending the idea that the unique (ideal) core-periphery (CP)
structure is a 2-partitioned𝐾2, a fact which is here understood to rely on the true and false twin notions for vertices already known
in network theory. We provide a formal definition of such CSP structures in terms of core eccentricities and periphery degrees,
with semiperiphery vertices acting as intermediaries between both.The T-twin and F-twin notions then make it possible to reduce
the large number of resulting structures, paving the way for the decomposition and enumeration of CSP structures. We compute
explicitly the resulting CSP structures up to order six. We illustrate the scope of our results by analyzing a subnetwork of the well-
known network of metal manufactures trade arising from 1994 world trade statistics.

1. Introduction

The notion of a core-periphery (CP) structure can be traced
back at least to some research on economic and commercial
networks developed in the late 1970s and early 1980s [1–3],
largely emanating from the influential work of Wallerstein
on world systems analysis [4]. These ideas were revisited
and addressed in a more formal framework by Borgatti and
Everett in [5]. For these authors, the two key ideas in the
definition of a core-periphery structure in a network context
are those of a dense, cohesive core of heavily interconnected
nodes and a sparse periphery of nodes, essentially lacking any
connections among them; by contrast, the connection pattern
between the core and the periphery admits several definitions
and, actually, the core-periphery connection densities differ
from some models to others. In idealized models, core
nodes are fully connected among them, periphery nodes are
isolated (within the periphery subnetwork), whereas the core

and the periphery may either be fully connected or totally
disconnected. Since then, a great deal of research has been
directed to the detection of such core-periphery structures in
real networks,measuring howwell they approximate the ideal
ones, and to the development of analytical and computational
tools to classify nodes in such networks (cf. [6–12] and
references therein). Other approaches to the definition of a
core-periphery structure can be found in [13–15].

Even though the idea of a core-semiperiphery-periphery
(CSP) structure can be also found in the aforementioned
sociological works (cf. [3, 4]) and despite the fact that this
concept has been widely used since then (see e.g., [8, 11, 16,
17]), the network literature seems to lack a formal definition
and a systematic classification of these CSP structures. In
the aforementioned paper by Borgatti and Everett [5], these
authors indicate that there are many reasonable options
to define a CSP structure and, further, discrete partitions
with more than three classes. The difficulty does not seem
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to rely on providing a formal definition but on classifying
the resulting “reasonable options,” quoting these authors;
more precisely, there is a need for a notion of similar
or equivalent subgraphs making it possible to somehow
reduce the number of different CSP structures.When dealing
with core-periphery structures, there is a well-known sub-
graph similarity notion which makes this reduction feasible,
namely, that of structural equivalence defining so-called twin
nodes (broadly, two vertices are twins if they have the same
neighbors; a distinction is made between true twins and false
twins depending onwhether both vertices are adjacent or not;
details are given in Section 2). Essentially, under structural
equivalence, 𝐾2 will be the unique core-periphery structure:
details are provided later, but the reader can think for the
moment, for example, of the star 𝑆𝑛 as a network with a
unique core (the central node) to whom 𝑛 − 1 peripheric
nodes are attached; all 𝑛 − 1 leaves have the same set
of neighbors, namely, the central node, and are therefore
structurally equivalent (more precisely, they will be false
twins); then, after identifying all leaves in light of this twin
notion for vertices, the quotient graph amounts to𝐾2.

But in the network literature there is no equivalence
notion for “similar” higher order subgraphs, which would
pave the way to a systematic reduction of (eventually defined)
CSP structures. As explained in detail in Section 2 (see,
specifically, Section 2.3), the goal of this paper is to fill this
gap by introducing a mathematical framework allowing for
a systematic classification of CSP networks and other parti-
tioned structures. The key idea is to introduce the concept of
twin subgraphs, a notionwhich extends to arbitrary order that
of twin (structurally equivalent) vertices. This mathematical
framework will be developed in Sections 3 and 4, which
address graph-theoretic problems of independent interest
(i.e., problems which go beyond the eventual application of
these notions to the classification of CSP structures). These
sections introduce and elaborate on the idea of F-twin and
T-twin subgraphs, which in a sense are dual to each other
and generalize several knownproperties of false twin and true
twin vertices; for example, distinct connected components of
F-twin pairs will be proved to be disjoint and nonadjacent,
whereas disjoint T-twin pairs will be fully connected to
each other. With this background, the classification of CSP
networks will then be tackled in Section 5. In Section 6
we present the lines along which these structures can be
identified in real cases by analyzing a subnetwork of the
network of manufactures of metal arising from 1994 world
trade statistics. These data are available and analyzed in [16],
in the spirit of the aforementioned seminal work [4], and
nowadays define a widely used benchmark for the positional
analyses of networks. Finally, Section 7 compiles some lines
for future research.

2. Background on Graphs, Twins,
and Core-Periphery Networks

2.1. Graph-Theoretic Notions. We refer the reader to [18–21]
for excellent introductions to graph theory. Throughout the
paper we will work with undirected graphs G = (𝑉, 𝐸)
without parallel edges or self-loops, so that edges can be

thought of as pairs of distinct vertices (also termed nodes).
Given a graph G, its vertex and edge sets will be written as
𝑉(G) and 𝐸(G), respectively, or simply as 𝑉 and 𝐸 if there is
no possible ambiguity. We will only work with finite graphs;
that is, the order (number of vertices) will be finite in all cases.
With notational abuse, we will often write V ∈ G to mean
V ∈ 𝑉(G) and𝑉0 ⊆ G for𝑉0 ⊆ 𝑉(G). Analogously, we will say
that two graphs are disjoint when their vertex sets are disjoint
(note that the latter implies that the edge sets are disjoint as
well).

A path of length 𝑘 ≥ 0 is a graph with 𝑘 + 1 distinct
vertices V0, V1, . . . , V𝑘 and edges 𝑒1, . . . , 𝑒𝑘 with 𝑒𝑖 joining V𝑖−1
and V𝑖. Since we are not allowing parallel edges, a path is
uniquely defined by its vertex set. We say that V0 and V𝑘 are
linked by such a path. When 𝑘 ≥ 1, sometimes the vertex
set will be implicitly assumed to inherit the order defined
by the indices and we will then speak of a path from V0 to
V𝑘. The distance, 𝑑, between a pair of distinct vertices in the
same connected component of a given graph is the length of
a shortest path linking them. The eccentricity of a vertex in a
connected graph is the maximum distance to other vertices.
The distance between two disjoint subgraphs𝐻1 and𝐻2 lying
in the same connected component of a given graph is defined
as min{𝑑(𝑢, V), 𝑢 ∈ 𝐻1, V ∈ 𝐻2}. We say that two disjoint
subgraphs𝐻1 and𝐻2 are not adjacent if there is no adjacent
pair (𝑢, V)with 𝑢 ∈ 𝐻1 and V ∈ 𝐻2; if both subgraphs lie in the
same connected component ofG, this is equivalent to saying
that 𝑑(𝐻1, 𝐻2) ≥ 2.

We will denote by N(𝑢) the set of neighbors of a given
vertex 𝑢 (namely, the set of vertices adjacent to 𝑢), and write
N[𝑢] = N(𝑢) ∪ {𝑢}. The degree of a vertex 𝑢 is the number
of elements inN(𝑢). We will call a vertex of degree one a leaf
(note that this term is often reserved to cases in which the
whole graph is acyclic, i.e., a disjoint union of trees) and will
say that it is attached to its unique adjacent vertex.

The null graph defined by 𝑉 = 0 will be denoted by 𝐾0;
𝐾𝑛 with 𝑛 ≥ 1 stands for the complete graph on 𝑛 vertices.
The complement of a graph G = (𝑉, 𝐸) of order 𝑛 (namely,
(𝑉, 𝐸(𝐾𝑛) − 𝐸)) will be written asG, and 𝐸𝑛 will stand for the
empty graph 𝐾𝑛 on 𝑛 ≥ 1 vertices. Cycles, paths, and stars on
𝑛 vertices will be written as 𝐶𝑛, 𝑃𝑛, and 𝑆𝑛, respectively, with
𝑛 ≥ 3 for cycles. As usual, the union and intersection ofG𝑖 =
(𝑉𝑖, 𝐸𝑖) (𝑖 = 1, 2) are the graphs (𝑉1 ∪ 𝑉2, 𝐸1 ∪ 𝐸2) and (𝑉1 ∩
𝑉2, 𝐸1 ∩ 𝐸2), respectively.The joinG1+G2 of two graphs with
disjoint vertex sets 𝑉(G1) and 𝑉(G2) is the graph obtained
after enlarging G1 ∪ G2 with all possible edges joining the
vertices of G1 to those of G2 (sometimes we express the
latter by saying that G1 and G2 are fully connected to one
another).

A partitioned graph is simply a graph whose vertex set
is split into (pairwise disjoint) classes. A 𝑘-partitioned graph
is a partitioned graph with 𝑘 nonempty partition classes.
Obviously, a partitioned graphdefines an equivalence relation
in the set of vertices. The quotient graph (often called a
supergraph) of a partitioned graph is defined as a graph
whose vertex set is the quotient set (i.e., vertices in the
quotient graph correspond to the partition classes in the
original graph), with two distinct vertices in the quotient
being adjacent if and only if the original graph has at least one
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edge which joins vertices belonging to the corresponding pair
of classes.

An isomorphism of two graphs G1 and G2 is a bijection
𝜑 : 𝑉1 → 𝑉2 (with 𝑉𝑖 = 𝑉(G𝑖)) which preserves adjacencies,
that is, any given pair of vertices 𝑢 and V inG1 are adjacent if
and only if𝜑(𝑢) and𝜑(V) are adjacent inG2. An isomorphism
of partitioned graphs is a graph isomorphismwhich keeps the
classes invariant.

2.2. Twins. Different analytical and computational issues
arise in connection with the existence and the distribution of
isomorphic copies of certain subgraphs of a given graph: see,
for example, [21–25] and references therein. From a different
perspective, some attention has been focused on vertices
which share the same connection pattern within a graph.
Such vertices receive (at least) two different names in the
literature, namely, twins and structurally equivalent vertices, as
detailed in the sequel. Two (distinct) vertices 𝑢 and V are false
twins (resp., true twins) ifN(𝑢) =N(V) (resp.,N[𝑢] =N[V])
[26–29]. The exclusion of self-loops yields 𝑢 ∉N(𝑢) and this
implies that false twins are not adjacent. In the dual case, true
twins are necessarily adjacent to each other: for these reasons,
true and false twins are also called adjacent and nonadjacent
twins (see, e.g., [26, 29, 30]). True twins correspond to 1-
twins in the terminology of [31, 32]. By contrast, in the social
network analysis literature twin vertices 𝑢 and V are said
to be (weakly) structurally equivalent: this means that the
transposition 𝑡𝑢,V of 𝑢 and V yields an automorphism of the
graph (cf. [33, 34]), a conditionwhich is easily seen equivalent
to 𝑢 and V being (false or true) twins in the sense indicated
above.

The F-twin and T-twin notions that will be introduced in
Sections 3 and 4 for arbitrary subgraphs somehow combine
the two ideas at the beginning of the paragraph above.
Twin subgraphs will be isomorphic copies of each other
and, additionally, they will share the connection pattern to
the remainder of the graph; in other words, our approach
will define a structural equivalence notion for (isomorphic)
subgraphs which extends the one already defined for single
vertices. Consistently, twin subgraphs will retain, mutatis
mutandis, certain properties already known for twin vertices,
such as the aforementioned adjacency properties (which will
hold for disjoint twin subgraphs; cf. Corollaries 6 and 17),
the duality between F-twins and T-twins in the sense that
a pair of twins of one type defines a pair of the other on
the complement graph (Theorem 18), or the fact that twins
will have the same distance multisets to the vertex set of
the graph (cf. Proposition 8). In particular, twin subgraphs
will define homometric sets (Corollary 9; cf. [35–37]). Both
notionswill induce a classification in the family of isomorphic
copies of each induced subgraph, extending the way in which
false and true twin concepts classify the vertices of a graph.
These, together with other related results, will be extensively
discussed in Sections 3 and 4.

2.3. Core-Periphery Networks. Consider one of the “ideal-
ized” core-periphery (CP) networks mentioned in Section 1,
namely, the one defined by a 2-partitioned graph with the
following two classes of vertices:

(i) Core vertices, which are fully connected to each other
and also to the vertices in the second class (defined
below)

(ii) Periphery vertices, totally disconnected from each
other (and fully connected to the core, in light of the
first requirement above).

As indicated in the Introduction, other core-periphery
connection patterns are possible, although the one above is
often used as a starting point in different analytical and com-
putational approaches to this topic (see, e.g., [5, 16]). These
core-periphery networks are simply 2-partitioned graphs of
the form𝐾𝑝 + 𝐸𝑟 (find notations in Section 2.1; when using a
2-partitioned structure in𝐾𝑝+𝐸𝑟, we assume throughout the
document andwithout furthermention that the two partition
classes are the vertex sets of 𝐾𝑝 and 𝐸𝑟). Cases with a unique
core vertex amount to the star 𝑆𝑛 = 𝐾1,𝑛−1 = 𝐾1 + 𝐸𝑛−1. In
the simplest setting (𝑛 = 2) we get a 2-partitioned 𝑆2 = 𝐾2 =
𝐾1+𝐾1, with a single core and a single periphery vertex; note
that 𝐸1 = 𝐾1, and we prefer to use the latter notation for the
singleton graph.

Aiming at later developments lets us note that, in a certain
sense, 𝐾2 is substantially different from all other joins 𝐾𝑝 +
𝐸𝑟. Actually, we may think of 𝐾2 = 𝐾1 + 𝐾1 as the quotient
graph of any other join of the form 𝐾𝑝 + 𝐸𝑟. But, in order to
extend these ideas to support the definition and classification
of more complex structures, we emphasize that the reduction
above comprises more than a quotient reduction. Indeed, all
core vertices (namely, those of 𝐾𝑝) are true twins as defined
in Section 2.2 above and, analogously, all periphery vertices
(the ones in 𝐸𝑟) are false twins. In this context, 𝐾2 arises
not only as the reduction of other joins, but also as the
unique twin-free network meeting the requirements (i) and
(ii) above. From this point of view we may think of 𝐾2 as
the unique core-periphery structure (we use the latter term
to make a distinction with the CP networks 𝐾𝑝 + 𝐸𝑟 above,
which are allowed to display twin vertices). To avoid any
misunderstanding, let us clarify that𝐾2 is twin-free only as a
2-partitioned graph; that is, we cannot consider both vertices
as (true) twins because they belong to different partition
classes; see the beginning of Section 5.

However, when scaling these ideas to define formally
core-semiperiphery-periphery (CSP) structures and eventu-
ally other structures with more partition classes, one finds
the problem that there is no appropriate analog of the twin
notions mentioned above for subgraphs with more than one
vertex. Since the intuitive idea behind the concept of a core is
that of a set of heavily connected vertices, the true twin notion
for single vertices may well apply to reduce the number of
admissible core subgraphs in these higher order structures;
by contrast, in the literature one finds no way to reduce
conveniently the semiperiphery-periphery subgraph.

To put it in the simplest possible setting, compare the
CP network 𝐾1 + 𝐸2 (Figure 1(a)), which amounts to a 2-
partitioned path 𝑃3 with one class (the core, painted black in
the figure) defined by the central node, with a 3-partitioned
path 𝑃5 in which the three classes are defined by the
central vertex (core), the two vertices with eccentricity three
(semiperiphery vertices, grey) and the two leaves (periphery
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(a) CP network K1+ E2 (b) A spider

Figure 1

(a) CP structure (b) CSP structure

Figure 2

vertices, white) (Figure 1(b)). We may think of the latter as
a (sometimes called) spider graph with a central vertex (the
core) and two legs, each one a 𝑃2 = 𝐾2 attached to the core by
a single articulation (the semiperiphery vertices).

As indicated above, in the CP case (𝐾1+𝐸2) the false twin
notion makes it possible to identify the two peripheries into
a single one, reducing the network to a 2-partitioned𝐾2 = 𝑃2
(cf. Figure 2(a)). But, how can we reduce the CSP case (the
spider) to a single𝑃3, which captures the essential connection
pattern? (Figure 2(b)). Note that both legs in Figure 1(b) have
exactly the same structure and, accordingly, we should find
a systematic way to perform such reduction. Note also that
neither the semiperiphery vertices nor the periphery ones in
Figure 1(b) are false twins, so that an eventual recourse to the
notion of twin vertices would fail for our present purpose.

Obviously, it would be easy to identify equal-length legs
in spider graphs; however, more complex structures are
possible: think, for example, of cases with more cores and/or
with other connection patterns within the semiperiphery
(actually, different CSP structures will arise in Sections 5 and
6). Additionally, the goal should be the development of a
broader mathematical framework allowing for an identifica-
tion of (say) structurally equivalent, higher order subgraphs
in greater generality. The idea is to formalize the notion
of isomorphic subgraphs or arbitrary order displaying, in a
sense to be made precise, the same connection patterns to
the remainder of the graph, generalizing the false twin and
true twin concepts for single vertices. The F-twin notion for
arbitrary subgraphs, together with the dual concept of T-twin
subgraphs, is aimed at filling this gap. After introducing and
discussing these ideas in Sections 3 and 4, we will be back to
CSP structures in Sections 5 and 6.

3. F-Twin Subgraphs

3.1. Definition and Elementary Properties
Definition 1. Let 𝐻1 and 𝐻2 be two induced subgraphs of a
graph G. Denote by 𝑉𝑖 the vertex set of 𝐻𝑖. 𝐻1 and 𝐻2 are
called F-twins if they are isomorphic via a map 𝜑 : 𝑉1 → 𝑉2
for which identities

N (𝑢) − 𝑉1 =N (𝜑 (𝑢)) − 𝑉2 (1)

hold for all 𝑢 ∈ 𝑉1.

We may also say that the set of vertices 𝑉1 and 𝑉2 are F-
twins, since the definition above requires 𝐻1 and 𝐻2 to be
the subgraphs induced by 𝑉1 and 𝑉2 and there is no possible
ambiguity. The reason for the requirement that F-twins are
induced subgraphs should become apparent in light of a
simple example, defined by the graph G = 𝑃3 ∪ 𝐾3. Let
𝐻1 be the 𝑃3-component of G and 𝐻2 any one of the three
subgraphs of 𝐾3 isomorphic to 𝑃3. Should F-twins not be
required to be induced subgraphs, 𝐻1 and 𝐻2 would be F-
twins, because identities (1) hold trivially since both sides are
empty for all vertices. However there exists an extra edge in
𝐾3 which makes the endvertices of𝐻2 adjacent inG without
the endvertices of 𝐻1 being so. Since the idea of the F-twin
notion is to capture identical adjacency patterns, we rule out
this type of situations by requiring𝐻1 and𝐻2 to be induced
subgraphs.

Note that any induced subgraph is trivially an F-twin of
itself; we will say that a given induced subgraph is a proper F-
twin if it has at least an F-twin different from itself (and both
of them will also be said to be proper F-twins of each other).
A trivial F-twin is an induced subgraph that has no F-twin
but itself.

In particular, the notion above for two single distinct
vertices 𝑢 and V amounts to requiring that they are false twins
in the sense thatN(𝑢) =N(V), as defined in Section 2.2. Just
note that 𝑢 ∉ N(𝑢) and V ∉ N(V), so that (1) holds in this
case if and only ifN(𝑢) =N(V).

Proposition 2. Two induced subgraphs𝐻1 and𝐻2 are F-twins
if and only if their connected components can be matched as
pairs of F-twins.

Proof. Assume first that 𝐻1 and 𝐻2 are F-twins, and let
𝜑 denote the isomorphism arising in Definition 1. Then 𝜑
induces 𝑘 isomorphisms 𝜑1, . . . , 𝜑𝑘 between the connected
components of 𝐻1 and 𝐻2; denote these connected compo-
nents by𝐻𝑖,𝑗, with 𝑖 ∈ {1, 2}, 𝑗 ∈ {1, . . . , 𝑘}, and let accordingly
𝑉𝑖,𝑗 be the vertex set of 𝐻𝑖,𝑗, so that 𝜑𝑗 : 𝑉1,𝑗 → 𝑉2,𝑗. Then
obviously

𝑉𝑖 =
𝑘

⋃
𝑗=1

𝑉𝑖,𝑗 (2)

and, provided that a vertex 𝑢 (resp., 𝜑(𝑢)) belongs to 𝑉1,𝑗
(resp., to 𝑉2,𝑗), it is also clear that N(𝑢) ∩ 𝑉1 ⊆ 𝑉1,𝑗, which
implies thatN(𝑢)∩𝑉1,𝑘 = 0 if 𝑘 ̸= 𝑗 (resp.,N(𝜑(𝑢))∩𝑉2 ⊆ 𝑉2,𝑗
and thenN(𝜑(𝑢)) ∩ 𝑉2,𝑘 = 0 if 𝑘 ̸= 𝑗). This yields

N (𝑢) − 𝑉1,𝑗 =N (𝑢) − 𝑉1 =N (𝜑 (𝑢)) − 𝑉2
=N (𝜑𝑗 (𝑢)) − 𝑉2,𝑗

(3)

so that𝐻1,𝑗 and𝐻2,𝑗 are indeed F-twins.
The converse result proceeds in exactly the same manner

and details are left to the reader.

The result above is nontrivial only when 𝐻1 and 𝐻2 are
not connected. In this setting, even if 𝐻1 and 𝐻2 are proper
F-twins some of their components might be trivial F-twins.



Complexity 5

Proposition 3. If𝐻1 and𝐻2 are proper F-twins, the intersec-
tion𝑉1∩𝑉2, if nonempty, induces a set of connected components
of both𝐻1 and𝐻2.

Proof. Assume that 𝑤 ∈ 𝑉1 ∩ 𝑉2, and let 𝐾1 and 𝐾2 be the
connected components of 𝐻1 and 𝐻2 which accommodate
𝑤. Assume that 𝐾1 ̸= 𝐾2 and, w.l.o.g., suppose that there
is a vertex in 𝐾2 not belonging to 𝐾1. The set 𝑉(𝐾2) can
be described as the disjoint union of 𝑉(𝐾1) ∩ 𝑉(𝐾2) and
𝑉(𝐾2) − 𝑉(𝐾1) and, since 𝐾2 is connected, there must exist
two adjacent vertices 𝑢 and V with 𝑢 ∈ 𝑉(𝐾1) ∩ 𝑉(𝐾2) and
V ∈ 𝑉(𝐾2) − 𝑉(𝐾1). The fact that V ∉ 𝑉(𝐾1) implies that
V ∉ 𝑉1 = 𝑉(𝐻1); indeed, should it belong to 𝑉1, since it is
adjacent to 𝑢 ∈ 𝑉(𝐾1) ⊆ 𝑉1, it would necessarily belong to
the same connected component of 𝑢, that is, to 𝐾1, but we
know that V ∉ 𝑉(𝐾1). This implies that V ∈N(𝑢) − 𝑉1 and, in
light of (1), it must happen that

V ∈N (𝜑 (𝑢)) − 𝑉2, (4)

whoever 𝜑(𝑢) is. But this is impossible because V ∈ 𝑉(𝐾2) ⊆
𝑉2 implies that V ∉ N(𝜑(𝑢)) − 𝑉2. Hence 𝐾1 = 𝐾2 and since
𝑉(𝐾1) ⊆ 𝑉1 and 𝑉(𝐾2) ⊆ 𝑉2 we conclude that the whole
connected components 𝐾1 = 𝐾2 are in the intersection𝐻1 ∩
𝐻2 as we aimed to show.

In particular, Proposition 3 implies that distinct con-
nected F-twins are actually disjoint.

Corollary 4. If𝐻1 and𝐻2 are connected proper F-twins then
𝑉1 ∩ 𝑉2 = 0.

3.2. Distance-Related Properties. We know from Proposi-
tion 3 that nonempty intersections of F-twins necessarily span
connected components of both. On the other hand, when
two F-twin subgraphs are disjoint one can easily show that
they cannot be adjacent (just derive from (1) the identities
N(𝑢) ∩ 𝑉2 = 0 for all 𝑢 ∈ 𝑉1). A stronger statement actually
holds.

Proposition 5. If 𝐻1 and 𝐻2 are disjoint F-twins in a given
graph G, then their connected components can be arranged as
F-twin pairs (𝐻1,𝑗, 𝐻2,𝑗) in a way such that, for every 𝑗,

(i) either𝐻1,𝑗 and𝐻2,𝑗 are connected components ofG or
(ii) both 𝐻1,𝑗 and 𝐻2,𝑗 belong to the same connected

component ofG and 𝑑(𝐻1,𝑗, 𝐻2,𝑗) = 2.

Proof. Take a connected component 𝐻1,𝑗 of 𝐻1 and assume
that there exists a vertex V ∉ 𝑉1 = 𝑉(𝐻1) adjacent to
some 𝑢 ∈ 𝑉1,𝑗 = 𝑉(𝐻1,𝑗). In light of (1), it follows that
V ∈ N(𝜑(𝑢)) − 𝑉2, with 𝑉2 = 𝑉(𝐻2); this implies that
V ∉ 𝑉2 (a property that will be used later) and also that (𝑢, V,
𝜑(𝑢)) is a path. Let 𝐻2,𝑗 be the connected component of 𝐻2
accommodating 𝜑(𝑢): then 𝐻1,𝑗 and 𝐻2,𝑗 are isomorphic via
𝜑; moreover, they are in the same connected component of
G and, additionally, 𝑑(𝐻1,𝑗, 𝐻2,𝑗) ≤ 2. The aforementioned
property that any vertex V ∉ 𝑉1 adjacent to 𝑢 ∈ 𝐻1,𝑗 cannot
belong to 𝑉2 = 𝑉(𝐻2) shows that, actually, 𝑑(𝐻1,𝑗, 𝐻2,𝑗) = 2.

The same reasoning applies to all connected components
of𝐻1. Those for which there is no adjacent vertex away from
𝑉(𝐻1) are by definition connected components ofG. Exactly
the same reasoning applies to the connected components of
𝐻2 and this completes the proof.

Note also that for components 𝐻1,𝑗, 𝐻2,𝑘 of 𝐻1 and 𝐻2
which do not define an F-twin pair and which are contained
in the same connected component of G it holds as well that
𝑑(𝐻1,𝑗, 𝐻2,𝑘) ≥ 2 since they cannot be adjacent to each other.

Corollary 6 follows directly from Proposition 5. Implicit
in its first claim is the fact that connected, proper F-
twins which are not connected component themselves must
lie in the same connected component of G. The second
claim emphasizes that our notion extends the nonadjacency
property of false twin vertices mentioned in Section 2.2.

Corollary 6. If 𝐻1 and 𝐻2 are connected proper F-twins in a
given graphG, then either they are connected components ofG
or 𝑑(𝐻1, 𝐻2) = 2. In either case, connected proper F-twins are
not adjacent to each other.

Another distance-related property of proper F-twins is
that they are homometric; this means that the distance
multisets of both are the same [35–37]. The distance multiset
of an order-𝑘 subgraph 𝐻 of a connected graph G is the
multiset of ( 𝑘2 ) distances (inG) between vertices of𝐻.

Lemma 7. Assume that 𝐻1 and 𝐻2 are disjoint F-twin
subgraphs of a graph G. Let (𝑢0, . . . , 𝑢𝑘) be a vertex sequence
defining a path (of length 𝑘) inG. Then (V0, . . . , V𝑘), with

V𝑖 =
{{{{
{{{{
{

𝜑 (𝑢𝑖) if 𝑢𝑖 ∈ 𝑉 (𝐻1)
𝜑−1 (𝑢𝑖) if 𝑢𝑖 ∈ 𝑉 (𝐻2)
𝑢𝑖 if 𝑢𝑖 ∉ 𝑉 (𝐻1) ∪ 𝑉 (𝐻2) ,

(5)

also defines a length-𝑘 path.

Proof. The fact that all vertices V𝑖 are distinct is a direct
consequence of the construction: indeed, note that 𝜑 maps
𝑉1 = 𝑉(𝐻1) onto 𝑉2 = 𝑉(𝐻2) and, conversely, 𝜑−1 maps 𝑉2
onto 𝑉1. Since 𝑉1, 𝑉2, and 𝑉 − (𝑉1 ∪ 𝑉2) (with 𝑉 = 𝑉(G)) are
pairwise disjoint sets, then the claim follows easily from the
facts that 𝜑, 𝜑−1, and the identity are bijections and that the
vertices 𝑢𝑖 are all distinct.

The other fact that needs to be proved is that the pairs
{V𝑖−1, V𝑖} are adjacent. Since we know that disjoint F-twins
are not adjacent (cf. Proposition 5 and Corollary 6) and the
isomorphisms 𝜑 and 𝜑−1 preserve adjacencies, we only need
to check that V𝑖−1 and V𝑖 are adjacent when one of them
(say V𝑖−1) belongs to one of the twins (e.g., to 𝐻2, for later
notational simplicity) and V𝑖 is not in 𝐻1 ∪ 𝐻2. This means
that V𝑖−1 = 𝜑(𝑢𝑖−1) with 𝑢𝑖−1 ∈ 𝑉1 and that V𝑖 = 𝑢𝑖 ∉ 𝑉1 ∪ 𝑉2.
Now use the fact that 𝑢𝑖 ∈ N(𝑢𝑖−1) because the vertices
𝑢𝑖 define a path. Additionally, since 𝑢𝑖 ∉ 𝑉1, from (1) we
conclude that 𝑢𝑖 ∈ N(𝜑(𝑢𝑖−1)) − 𝑉2. The identities V𝑖 = 𝑢𝑖,
V𝑖−1 = 𝜑(𝑢𝑖−1), show that V𝑖 ∈ N(V𝑖−1), as we aimed to
prove.
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Proposition 8. Assume that 𝐻1 and 𝐻2 are disjoint F-twin
subgraphs of a connected graph G, and let 𝑢 ∈ 𝑉(𝐻1). Then,
for any other vertex 𝑢̃ inG the following assertions hold:

(a) If 𝑢̃ ∈ 𝑉(𝐻1), then 𝑑(𝑢, 𝑢̃) = 𝑑(𝜑(𝑢), 𝜑(𝑢̃)).
(b) If 𝑢̃ ∈ 𝑉(𝐻2), then 𝑑(𝑢, 𝑢̃) = 𝑑(𝜑(𝑢), 𝜑−1(𝑢̃)).
(c) If 𝑢̃ ∉ 𝑉(𝐻1) ∪ 𝑉(𝐻2), then 𝑑(𝑢, 𝑢̃) = 𝑑(𝜑(𝑢), 𝑢̃).

Proof. The results follow in a straightforward manner from
Lemma 7 since the set of paths from 𝑢 to 𝑢̃ are in a one-
to-one, length-preserving correspondence to the ones that
link 𝜑(𝑢) to 𝜑(𝑢̃), 𝜑−1(𝑢̃), or 𝑢̃, depending on the case.
The distance identities follow as an immediate consequence
simply because the distance between two vertices is the
minimum length of the paths linking those vertices.

Another way to state item (a) of Proposition 8 is the
following.

Corollary 9. Disjoint F-twin subgraphs of a connected graph
G are homometric.

Note also that (c) extends a known property of false twin
vertices (cf. [28, Proposition 1.1]).

3.3. On the Classification of F-Twin Subgraphs. The F-twin
notion classifies the set of isomorphic copies of any induced
subgraph of a given graph, as shown below.

Theorem 10. Let 𝐻 be an induced subgraph of G and denote
by H the set of induced subgraphs of G which are isomorphic
to 𝐻. Then the F-twin relation stated in Definition 1 is an
equivalence relation inH.

Proof. TheF-twin relation is obviously reflexive since wemay
set 𝜑 as the identity when 𝐻1 = 𝐻2 in Definition 1. The fact
that it is also symmetric is also easily checked, just using the
inverse 𝜑−1 of the isomorphism 𝜑. Transitivity is also rather
straightforward. Let us assume that (𝐻1, 𝐻2) and (𝐻2, 𝐻3)
are pairs of F-twins and denote by 𝜑 and 𝜓 the isomorphisms
between 𝐻1 and 𝐻2 and between 𝐻2 and 𝐻3, respectively.
One can check that the isomorphism 𝜁 = 𝜓 ∘ 𝜑 yields

N (𝑢) − 𝑉1 =N (𝜁 (𝑢)) − 𝑉3 (6)

for all 𝑢 ∈ 𝑉1: indeed, this is an immediate consequence of (1)
and the corresponding identity for the isomorphism 𝜓; that
is,N(V) − 𝑉2 =N(𝜓(V)) − 𝑉3 for all V ∈ 𝑉2. The identities (6)
are obtained just by setting V = 𝜑(𝑢).

Since all these classifications of induced subgraphs even-
tually act on the same underlying object (the graph itself), it is
natural to wonder about possible interrelations between such
classifications of different subgraph families. In the forth-
coming subsections we provide some initial results in this
direction; we explore, in particular, whether F-twin vertices
may belong to larger connected F-twin structures and also
provide some remarks about the F-twin classification of the
family (to be denoted asH2) of subgraphs isomorphic to𝐾2.
With terminological abuse we will refer to this problem as the

classification of F-twin edges (namely, we deliberately identify
an edge 𝑒 with the 𝐾2-graph induced by its endvertices
𝑢, V, the latter being in fact the graph ({𝑢, V}, {𝑒})): with this
cautionary remark inmind the reader can think ofH2 simply
as the set of edges.

3.3.1. F-Twin Vertices within Larger F-Twin Structures. As-
sume that a given graph has a class of three or more F-twin
vertices. We know that they are pairwise nonadjacent and,
by definition, that they share a common set of neighbors. It
then follows that any two proper subsets of this class with the
same number of elements (which induce two empty graphs
with the same number of vertices) are themselves F-twins,
since any isomorphism matching the vertices of these two
empty graphs preserves the relations involved in (1).Theother
way round, we may think of this as an example in which two
proper F-twin subgraphs contain two proper F-twin vertices
(more precisely, in a way such that each vertex lies on one of
the larger twins), consistently with Proposition 2. As shown
below, this cannot happen, however, if such an F-twin vertex
is adjacent to at least another vertex in the larger twin; this
essentially means that the inclusion of pairs of F-twin vertices
into pairs of larger F-twin structures is specific to singletons
of these larger subgraphs.

Proposition 11. Assume that 𝑢 and 𝜑(𝑢) are proper F-twin
vertices. If 𝑢 is properly contained in a connected proper F-twin
𝐻, then the F-twin vertex 𝜑(𝑢) also belongs to𝐻.

Proof. Let V be a vertex in 𝐻 adjacent to 𝑢; such a vertex
is guaranteed to exist because 𝑢 is assumed to be properly
contained in the connected subgraph𝐻. The F-twin vertices
𝑢 and 𝜑(𝑢) are known to verify the relationN(𝑢) =N(𝜑(𝑢)),
and V ∈N(𝑢) then yields V ∈N(𝜑(𝑢)); for later use we recast
this relation as 𝜑(𝑢) ∈N(V).

Let us suppose that 𝜑(𝑢) ∉ 𝑉(𝐻) and denote by 𝜓 the
isomorphism mapping𝐻 to its F-twin 𝜓(𝐻). For this F-twin
relation, the identities (1) yield in particular for V ∈ 𝐻

N (V) − 𝑉 (𝐻) =N (𝜓 (V)) − 𝜓 (𝑉 (𝐻)) . (7)
Now, if 𝜑(𝑢) ∉ 𝑉(𝐻) and given the fact that 𝜑(𝑢) ∈ N(V) as
shown above, we obtain 𝜑(𝑢) ∈N(𝜓(V)); as before, we recast
this as 𝜓(V) ∈ N(𝜑(𝑢)). But using again N(𝑢) = N(𝜑(𝑢))
we would get 𝜓(V) ∈ N(𝑢) and this is in contradiction with
Corollary 6 because 𝑢 ∈ 𝐻 and 𝜓(V) ∈ 𝜓(𝐻), meaning
that the connected F-twin structures 𝐻 and 𝜓(𝐻) would be
adjacent to each other. This implies that necessarily 𝜑(𝑢) ∈
𝑉(𝐻) and the claim is proved.

Corollary 12 follows from the case in which the proper
F-twin 𝐻 in Proposition 11 is isomorphic to 𝐾2. In this case
there is no way in which𝐻may accommodate two distinct F-
twin vertices, since they would obviously be adjacent to each
other and this would contradict Corollary 6.

Corollary 12. Vertices and edges admitting proper F-twins
define mutually disjoint vertex sets.

We finish this section with a pretty obvious but useful
remark following Corollary 12.
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Corollary 13. Graphs of order ≤ 5 cannot display simultane-
ously proper F-twin vertices and proper F-twin edges.

3.3.2. Nontrivial Vertex Set Intersections between Classes of F-
Twin Edges. Obviously, in any graph the classification of F-
twin vertices yields pairwise disjoint vertex classes. Things
may get more involved when studying the interrelation
between different F-twin classes of subgraphs not isomorphic
to a single vertex. For instance, a 6-cycle (cf. the proof of
Proposition 14) accommodates three pairs of F-twin edges
with nonempty vertex intersections among classes. In a
way, such a 6-cycle is the essential structure to signal this
phenomenon.We recall thatH2 denotes the set of subgraphs
ofG isomorphic to 𝐾2.

Proposition 14. Assume that two elements of H2 within a
graph G belong to different proper F-twin classes and have a
common vertex. Then G contains the cycle 𝐶6 as an induced
subgraph.

Proof. Let 𝐻1 and 𝐽1 be two subgraphs in H2 (namely,
isomorphic to𝐾2) which belong to different nontrivial F-twin
classes, and denote by𝐻2 and 𝐽2 two proper F-twins of𝐻1 and
𝐽1, respectively (with the corresponding isomorphisms to be
denoted by𝜑 and𝜓). Assume that V belongs to both𝐻1 and 𝐽1,
and let 𝑢 and𝑤 be the other vertex of𝐻1 and 𝐽1, respectively.
We claim that 𝜑(𝑢) = 𝜓(𝑤) and that the subgraph induced by
{𝑢, V, 𝑤, 𝜑(V), 𝜑(𝑢), 𝜓(V)} is a 6-cycle.

To show this, write the F-twin identity for V ∈ 𝐻1 as
N (V) − 𝑉 (𝐻1) =N (𝜑 (V)) − 𝑉 (𝐻2) . (8)

Since 𝑤 ∈N(V) and 𝑤 ∉ 𝑉(𝐻1), we derive
𝑤 ∈N (𝜑 (V)) . (9)

For later use, notice that this implies that 𝜑(V) ∉ 𝑉(𝐽2) (i.e.,
𝜓(V) ̸= 𝜑(V) ̸= 𝜓(𝑤)), since otherwise there would be two
adjacent vertices in 𝐽1 and 𝐽2 (namely, 𝑤 and 𝜑(V)), against
Corollary 6.

Note that V also belongs to 𝐽1 and therefore, analogously,
N(V) − 𝑉(𝐽1) = N(𝜓(V)) − 𝑉(𝐽2) and, proceeding as above
(use 𝑢 ∈N(V) − 𝑉(𝐽1)), we get

𝑢 ∈N (𝜓 (V)) , (10)

and also 𝜓(V) ∉ 𝑉(𝐻2), that is, 𝜓(V) ̸= 𝜑(𝑢) (we already knew
that 𝜓(V) ̸= 𝜑(V)).

Now, restate (9) as 𝜑(V) ∈ N(𝑤) and, from the fact that
𝜑(V) ∉ 𝑉(𝐽1) (to check this just note that V ̸= 𝜑(V) ̸= 𝑤, the
latter being clear in the light of (9)) and the F-twin identity
for 𝑤 ∈ 𝑉(𝐽1),

N (𝑤) − 𝑉 (𝐽1) =N (𝜓 (𝑤)) − 𝑉 (𝐽2) , (11)

deriving 𝜑(V) ∈N(𝜓(𝑤)) or, equivalently,
𝜓 (𝑤) ∈N (𝜑 (V)) . (12)

We show in the sequel that, indeed, it is 𝜓(𝑤) = 𝜑(𝑢).
Suppose that 𝜓(𝑤) ̸= 𝜑(𝑢); as shown above we have 𝜓(𝑤) ̸=

𝜑(V) and both conditions together would mean 𝜓(𝑤) ∉
𝑉(𝐻2). Equations (8) and (12) would then yield𝜓(𝑤) ∈N(V).
But then V ∈ 𝑉(𝐽1) and 𝜓(𝑤) ∈ 𝑉(𝐽2) would be adjacent
to each other. We conclude that necessarily 𝜓(𝑤) = 𝜑(𝑢), as
claimed.

The fact that 𝑢, V, 𝑤, 𝜑(V), 𝜑(𝑢) = 𝜓(𝑤), 𝜓(V) yield a 6-
cycle follows from the adjacency relations defined by 𝐻1, 𝐽1,
(9), 𝐻2, 𝐽2, and (10), respectively. It only remains to show
that this cycle is actually induced by these vertices, namely,
that there are no additional adjacencies among them. Apart
from the six edges defining the aforementioned cycle, there
are other nine possible links between the six vertices listed
above; seven of these are ruled out by Corollary 6 (namely,
those connecting 𝑢, V with 𝜑(𝑢), 𝜑(V), since both pairs define
the F-twins 𝐻1, 𝐻2, resp., and V, 𝑤 with 𝜓(V), 𝜓(𝑤), which
define 𝐽1 and 𝐽2; note that𝜑(𝑢) = 𝜓(𝑤) and therefore the pairs
{V, 𝜑(𝑢)} and {V, 𝜓(𝑤)} are the same).The two remaining pairs
are {𝑢, 𝑤} and {𝜑(V), 𝜓(V)}; consider the first one and note that
𝑢 ∉ 𝑉(𝐽1), so that the assumption 𝑢 ∈N(𝑤)would imply that
𝑢 ∈ N(𝜓(𝑤)) in light of (11), but this is impossible because
𝑢 ∈ 𝑉(𝐻1) and 𝜓(𝑤) = 𝜑(𝑢) ∈ 𝑉(𝐻2) cannot be adjacent to
each other. The fact that 𝜑(V) cannot be adjacent to 𝜓(V) can
be checked in the same terms, and the proof is complete.

We close this section by saying that the classification of
F-twin structures (beyond F-twin vertices) possibly defines
other mathematical problems of interest. This is a topic for
future study.

4. T-Twins

We present in this section the dual concept of T-twin
subgraphs, which extends the notion of true twin vertices
discussed in Section 2.2. This section will be briefer than the
previous one; we just aim at providing a complete framework
extending to arbitrary subgraphs the idea behind false and
true twin vertices. We will also show (Theorem 18) that in a
precise sense the notions supporting F-twins and T-twins are
dual to each other, again extending a known property of false
and true twin vertices [28, 34].

Definition 15. Let 𝐻1 and 𝐻2 be two induced subgraphs of a
graphG and denote by 𝑉𝑖 the vertex set of𝐻𝑖.𝐻1 and𝐻2 are
called T-twins if they are isomorphic via a map 𝜑 : 𝑉1 → 𝑉2
for which the identities

N (𝑢) ∪ 𝑉1 =N (𝜑 (𝑢)) ∪ 𝑉2 (13)

hold for all 𝑢 ∈ 𝑉1.

Again this extends the notion of true twin vertices
introduced in Section 2.2, which are defined by the identities
N[𝑢] = N[V]; that is,N(𝑢) ∪ {𝑢} = N(V) ∪ {V}, consistently
with (13).

As in the F-twin case, we use the term proper T-twins for
distinct T-twins.

Proposition 16. Let𝐻1 and𝐻2 be T-twins.Then𝑉1∩𝑉2,𝑉1−
𝑉2, and 𝑉2 − 𝑉1 are fully connected to each other.
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Proof. From (13) it is clear that all vertices in 𝑉2 − 𝑉1 belong
to N(𝑢) for all 𝑢 ∈ 𝑉1, and this means that 𝑉2 − 𝑉1 is fully
connected to𝑉1 (in particular, to𝑉1−𝑉2). Analogously,𝑉1−𝑉2
is fully connected to 𝑉2. Using both properties together we
conclude that the intersection 𝑉1 ∩ 𝑉2 is fully connected to
both 𝑉1 − 𝑉2 and 𝑉2 − 𝑉1 and the claim is proved.

Corollary 17. If 𝐻1 and 𝐻2 are disjoint T-twins, then 𝑉1 is
fully connected to 𝑉2.

The following result gives a precise meaning to the claim
that the F-twin and T-twin notions are dual to each other.

Theorem 18. Two induced subgraphs 𝐻1 and 𝐻2 of a given
graph G are T-twins (resp., F-twins) if and only if 𝐻1 and 𝐻2
are F-twins (resp., T-twins) inG.

Proof. The reader can check in advance that if 𝐻 is an
induced subgraph of G, then 𝐻 is an induced subgraph of
G. Assume now that𝐻1 and𝐻2 are T-twins, and let 𝜑 be the
isomorphism arising in Definition 15; one can see that 𝜑 is
also an isomorphism between the complements 𝐻1 and 𝐻2.
Denoting by N(𝑢) the neighborhood of 𝑢 in G, we need to
show that the identities

N (𝑢) − 𝑉1 =N (𝜑 (𝑢)) − 𝑉2 (14)

hold in G for all 𝑢 in 𝑉1 = 𝑉(𝐻1) = 𝑉(𝐻1). We use the fact
that

N (𝑢) = 𝑉 (G) − (N (𝑢) ∪ {𝑢}) ,

N (𝜑 (𝑢)) = 𝑉 (G) − (N (𝜑 (𝑢)) ∪ {𝜑 (𝑢)})
(15)

by definition of the complement. These relations yield

N (𝑢) − 𝑉1 = 𝑉 (G) − (N (𝑢) ∪ {𝑢} ∪ 𝑉1)

= 𝑉 (G) − (N (𝑢) ∪ 𝑉1)
(16)

(where we have used 𝑢 ∈ 𝑉1) and, analogously,

N (𝜑 (𝑢)) − 𝑉2 = 𝑉 (G) − (N (𝜑 (𝑢)) ∪ {𝜑 (𝑢)} ∪ 𝑉2)

= 𝑉 (G) − (N (𝜑 (𝑢)) ∪ 𝑉2) .
(17)

The relations depicted in (14) then follow from (16) and (17)
because𝐻1 and𝐻2 are T-twins, whichmeans thatN(𝑢)∪𝑉1 =
N(𝜑(𝑢)) ∪ 𝑉2.

Both the case in which 𝐻1 and 𝐻2 are F-twins and the
converse results proceed in the same manner and details are
left to the reader.

At first sight, a reader might be slightly surprised with
Theorem 18 since T-twins may have nonempty intersections
in the vertex sets and (connected proper) F-twins seemingly
not, as stated in Corollary 4. But note that the latter holds as
a consequence of Proposition 3 for connected F-twins: now
assume that 𝑉1 ∩ 𝑉2 ̸= 0 for (even possibly connected) T-
twins𝐻1 and𝐻2. From Proposition 16 it follows that 𝑉1 ∩ 𝑉2

is fully connected to both 𝑉1 − 𝑉2 and 𝑉2 − 𝑉1, so that, in
the complementary (F-twin) subgraphs 𝐻1 and 𝐻2, 𝑉1 ∩ 𝑉2
is isolated from both 𝑉1 − 𝑉2 and 𝑉2 − 𝑉1. This means that
𝑉1 ∩ 𝑉2 induces a set of connected components of both 𝐻1
and𝐻2 and there is no contradiction with Proposition 3.

Finally, we mention that the T-twin relation also induces
a classification in the families H of isomorphic copies of
induced subgraphs𝐻. Details are entirely analogous to those
inTheorem 10 and are left to the reader.

5. Core-Semiperiphery-Periphery Structures

We take now a look back at Section 2.3; specifically, we
provide here a definition of core-semiperiphery-periphery
(CSP) structures extending the ideas presented there and
reducing the number of structures via the exclusion of
twin substructures, according to the notions introduced in
Sections 3 and 4. We will work in this section with 3-
partitioned graphs (cf. Section 2.1) and we make the remark
that the F-twin and T-twin notions introduced in Definitions
1 and 15 apply also in this context just by assuming that
the isomorphism 𝜑 is now an isomorphism of partitioned
graphs, namely, that it leaves the classes invariant (it maps
core vertices into core vertices, etc.).

5.1. AParameterizedDefinition of Core-Semiperiphery-Periph-
ery Structures. We first note that the condition depicted in
item (i) in Section 2.3, defining core vertices, may be recast
as the requirement that all of them have eccentricity one.
This approach is intimately related to the closeness centrality
notion, widely used in network theory [34, 38]. This idea has
been previously used in the definition of core vertices within
core-periphery structures [10, 11] and paves the way for the
definition presented below.

Definition 19. A core-semiperiphery-periphery structure is a
3-partitioned connected graph with the following (nonempt-
y) vertex classes:

(i) Core vertices, with eccentricity not greater than two
(ii) Semiperiphery vertices, adjacent (at least) to a pair of

nonadjacent vertices from the other two classes
(iii) Periphery vertices, with degree one.

Moreover, the graph is required not to have proper T-
twin core vertices or proper F-twin semiperiphery-periphery
subgraphs.

Here, semiperiphery vertices are simply required to act
as intermediaries between (at least) a core and a periphery,
whereas for the latter we impose a minimal connection to
the rest of the network, in a way which implies in particular
that periphery vertices are isolated from each other (cf. item
(ii) in Section 2.3). Note that the requirements depicted for
each class may be satisfied by vertices from other classes:
for example, a core may have degree one or connect a
pair of (nonadjacent) semiperiphery and periphery vertices,
whereas a semiperiphery or a periphery vertex might well



Complexity 9

have eccentricity not greater than two. It is pretty clear,
however, that the requirements in items (ii) and (iii) are
mutually exclusive.

It is worth emphasizing that this approach admits further
extensions; on the one hand we may consider the maximum
core eccentricity (mce) and maximum periphery degree
(mpd) as parameters which in our present framework are
fixed to the values two and one in (i) and (iii), respectively.
Allowing these parameters to take on higher values may
well lead to other structures of interest. Additionally, in a
setting with mce ≥ 3 we might also define structures with
more than three (ranked) classes, by distinguishing several
semiperiphery layers defined by vertices which are adjacent
to vertex pairs coming from a higher-rank and a lower-
rank class (examples of networks with four classes can be
found in [16, 17]). These ideas define tentative lines for future
research.

The twin-free conditions stated at the end ofDefinition 19,
supported on the ideas discussed in Sections 3 and 4, are the
key element to reduce the seemingly large number of CSP
structures. As already indicated in the Introduction and in
Section 2.3, the core should be thought as a set of heavily
interconnected vertices, amounting to a fully connected set
in idealized cases; for this reason the true twin notion for
vertices is enough to reduce the eventual number of core
subgraphs within core-semiperiphery-periphery structures.
On the other hand, the F-twin concept for the semiperiphery-
periphery subgraph arises as a natural extension of the false
twin notion for periphery vertices discussed in Section 2.3,
allowing one to reduce the number of semiperiphery-
periphery subgraphs as well. Note also that the nonadjacency
property stated in Corollary 6 captures the fact that twin
semiperiphery-periphery substructures to be reduced should
be somehow independent, being related only through the
core vertices; in other words, if two (or more) semiperiphery
vertices are adjacent then it is natural to consider them as part
of the same substructure.

5.2. Decomposition of CSP Structures. Definition 19 allows
for an explicit description of core-semiperiphery-periphery
structures, as detailed below.

Theorem 20. Core-semiperiphery-periphery structures meet-
ing Definition 19 admit the decomposition described in the
sequel.

(1) The core subgraphC is a joinC0 +C1, where (i)C0 is
a complete graph 𝐾𝑛0 and (ii)C1 is any graph of order𝑛1 without T-twin vertices.

(2) The core-semiperiphery subgraph is a joinC+S, where
C has the form described above and S is any graph or
order 𝑛𝑠 without F-twin subgraphs.

(3) The periphery subgraph P is an empty graph of order
𝑛𝑝 = 𝑛0 +𝑛𝑠. Periphery vertices are leaves attached in a
one-to-one basis either to a vertex fromC0 or from S.

The orders 𝑛𝑐 = 𝑛0 + 𝑛1, 𝑛𝑠, and 𝑛𝑝 do not vanish, but either 𝑛0
or 𝑛1 may do.

Proof. Note in advance that the splitting of core vertices in
two groups C0 and C1 is defined from the fact that those
in C0 are connected to a periphery vertex, whereas those in
C1 are not, as stated in item 3. In this regard, it is obvious
that periphery vertices are only connected either to a core (in
C0) or to a semiperiphery vertex because of the degree one
condition stated in item (iii) of Definition 19; notice that a
single 𝐾2 consisting of two peripheries is ruled out by the
requirement that the graph has at least one core and one
semiperiphery vertex. Conversely, semiperiphery vertices are
necessarily connected to a single periphery (in addition to
cores and, possibly, other semiperipheries), since two ormore
peripheries eventually connected to the same semiperiphery
vertex would be false twins. For the same reason, a core vertex
in C0 is attached to one periphery (again, in addition to
connections to other cores and to semiperipheries). These
properties fully describe the structure of the periphery
subgraph P and will be used throughout the rest of the
proof.

Regarding the structure of the core subgraph, C0 is a
complete graph (maybe the null one 𝐾0) and, moreover,
it defines a join with (i.e., it is fully connected to) C1, if
nonempty, because of the eccentricity requirement for core
vertices. Indeed, suppose that there is a pair of nonadjacent
core vertices, at least one of which is adjacent to a periphery
(i.e., at least one of which is in C0): the distance of this
periphery vertex to the other core in that pair would be
at least three, against the assumption that the maximum
eccentricity of core vertices is two as stated in item (i) of
Definition 19.

The core and the semiperiphery are fully connected as
well. Again, assuming the contrary, the distance between such
a core and the periphery vertex adjacent to that semiperiph-
ery would be greater than two, against the aforementioned
eccentricity requirement.

It remains to show that the exclusion of twin struc-
tures in Definition 19 is equivalent to the absence of the
corresponding twin structures in the core or semiperiphery
subgraph, respectively, in the terms stated in this Theorem.
Regarding core vertices, note first thatC0 may never include
T-twins (meant in the full graph) since the peripheries
attached to these cores are adjacent only to one core and,
therefore, these peripheries necessarily make a difference in
the neighborhoods of the corresponding cores; for the same
reason, cores in C0 and in C1 may never be T-twins in the
full graph. Additionally, the absence of T-twins in C1 can be
equivalently checked in the full graph or in the core subgraph
because of the fact that cores in C1 are not adjacent to any
peripheries and, on the contrary, fully connected to both C0
and S; this means that the neighborhoods of two C1-cores
in the full graph differ if and only if these core vertices have
different neighbors withinC1.

Concerning the equivalence between F-twin structures,
let us first assume that two subgraphs 𝐻1 and 𝐻2 within
the semiperiphery-periphery subgraph are F-twins in the full
graph, and let 𝜑 denote the corresponding isomorphism, so
that (1) holds for all 𝑢 ∈ 𝑉1 = 𝑉(𝐻1). Let 𝜑𝑠 stand for
the restriction of this isomorphism to 𝐻1 ∩ S, and denote
𝑉1𝑠 = 𝑉1 ∩ 𝑉(S) and 𝑉2𝑠 = 𝑉2 ∩ 𝑉(S). From (1) we get
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(N (𝑢) − 𝑉1) ∩ 𝑉 (S) = (N (𝜑 (𝑢)) − 𝑉2) ∩ 𝑉 (S) , (18)

an identity that can be recast as

N𝑠 (𝑢) − 𝑉1𝑠 =N𝑠 (𝜑 (𝑢)) − 𝑉2𝑠 (19)

bymaking use of the property (𝐴−𝐵) ∩ 𝐶 = 𝐴 ∩ 𝐶−𝐵 ∩ 𝐶 for
arbitrary sets𝐴, 𝐵, and𝐶 (hereN𝑠(𝑢) denotesN(𝑢)∩𝑉(S)).
By noting that (19) holds for all 𝑢 ∈ 𝑉1𝑠 and that 𝜑(𝑢) = 𝜑𝑠(𝑢)
for vertices in 𝑉1𝑠, it follows that 𝐻1 ∩ S and 𝐻2 ∩ S are F-
twins as subgraphs ofS via the restricted isomorphism 𝜑𝑠, as
we aimed to show.

Conversely, let 𝐻1𝑠 and 𝐻2𝑠 be F-twin structures as
subgraphs of S, and denote by 𝜑𝑠 the corresponding iso-
morphism. Denote by 𝑉1𝑠 and 𝑉2𝑠 the vertex sets of 𝐻1𝑠
and 𝐻2𝑠, respectively. Let 𝐻1 (resp., 𝐻2) be the subgraph
induced in the full graph by the vertices of 𝑉1𝑠 (resp., 𝑉2𝑠)
and their adjacent peripheries, and write as 𝑉1 (resp., 𝑉2)
the vertex set of 𝐻1 (resp., 𝐻2). Now, for every 𝑢 ∈ 𝑉(S)
write as 𝑝(𝑢) the unique periphery vertex attached to 𝑢 in
the full graph and, conversely, for every 𝑢 ∈ P let 𝑠(𝑢)
be the unique semiperiphery vertex adjacent to 𝑢. With this
notation we extend the isomorphism 𝜑𝑠 to the whole of𝐻1 by
setting

𝜑 (𝑢) =
{
{
{

𝜑𝑠 (𝑢) if 𝑢 ∈ 𝐻1 ∩S

𝑝 (𝜑𝑠 (𝑠 (𝑢))) if 𝑢 ∈ 𝐻1 ∩P.
(20)

We claim that 𝜑 makes 𝐻1 and 𝐻2 F-twin subgraphs in the
full graph. First, note that by construction (19) is met for all
𝑢 ∈ 𝐻1 ∩ S, and then

(𝑉 (C) ∪N𝑠 (𝑢)) − 𝑉1𝑠 = (𝑉 (C) ∪N𝑠 (𝜑 (𝑢))) − 𝑉2𝑠 (21)

holds because 𝑉(C) ∩ 𝑉1𝑠 = 𝑉(C) ∩ 𝑉2𝑠 = 0; additionally,
since𝑉1−𝑉1𝑠 and𝑉2−𝑉2𝑠 are in the periphery, wemay rewrite
(21) as

(𝑉 (C) ∪N𝑠 (𝑢)) − 𝑉1 = (𝑉 (C) ∪N𝑠 (𝜑 (𝑢))) − 𝑉2. (22)

Moreover, using the fact that 𝑝(𝑢) ∈ 𝑉1, 𝑝(𝜑(𝑢)) ∈ 𝑉2, (22)
yields

(𝑉 (C) ∪N𝑠 (𝑢) ∪ {𝑝 (𝑢)}) − 𝑉1
= (𝑉 (C) ∪N𝑠 (𝜑 (𝑢)) ∪ {𝑝 (𝜑 (𝑢))}) − 𝑉2.

(23)

In light of the join structure proved above forC +S we have
N(𝑢) = 𝑉(C) ∪ N𝑠(𝑢) ∪ {𝑝(𝑢)} and N(𝜑(𝑢)) = 𝑉(C) ∪
N𝑠(𝜑(𝑢)) ∪ {𝑝(𝜑(𝑢))} for every 𝑢 ∈ 𝐻1 ∩ S, so that (23) is
equivalent to (1).

It remains to show that (1) also holds for 𝑢 ∈ 𝐻1 ∩P, but
this is a much simpler check. Indeed, we haveN(𝑢) = {𝑠(𝑢)}
and, by construction, 𝑠(𝑢) ∈ 𝑉1, so that the left-hand side of
(1) is N(𝑢) − 𝑉1 = 0. Analogously, 𝜑(𝑢) = 𝑝(𝜑𝑠(𝑠(𝑢))) and
therefore N(𝜑(𝑢)) = {𝜑𝑠(𝑠(𝑢))}; again, 𝜑𝑠(𝑠(𝑢)) ∈ 𝑉2 and
the right-hand side of (1) also verifies N(𝜑(𝑢)) − 𝑉2 = 0.
This means that (1) holds trivially if 𝑢 ∈ 𝐻1 ∩ P and this,
together with the remarks in the previous paragraph, shows

that 𝐻1 and 𝐻2 as constructed above are F-twins in the full
graph.

Note finally that, apart from the twin-free requirements
above, bothC1 andS admit any topology since no additional
restrictions emanate from Definition 19. This completes the
proof of Theorem 20.

5.3. Enumeration of CSP Structures. Theorem20 above essen-
tially reduces the enumeration problem for CSP structures to
a combination of a subgraphC1 within the core displaying no
true twin vertices and a semiperiphery subgraph S without
any kind of F-twins, with the eventual addition (join) of
a complete graph C0 with its corresponding peripheries
attached. In this problem one is faced with two different
subproblems of independent mathematical interest: enumer-
ating graphs without true twin vertices on the one hand
and graphs without F-twin subgraphs on the other. We let
𝑡𝑛 and 𝑠𝑛 be the numbers of graphs on 𝑛 vertices without
true twin vertices andwithout F-twin subgraphs, respectively.
It is worth mentioning that, in light of Theorem 18, these
two numbers coincide with those of graphs without false
twin vertices and graphs without T-twin subgraphs, although
we will not make use of this except for the obvious remark
that 𝑠𝑛 ≤ 𝑡𝑛. Related enumeration problems are finding the
numbers of graphs without any type of twin vertices (i.e.,
without either true or false twin vertices) and without either
T-twin or F-twin subgraphs.

The number of core-semiperiphery-periphery structures
can be computed in arbitrary order (≥3) in terms of the quan-
tities 𝑡𝑛 and 𝑠𝑛 defined above. We will do so by splitting the
computation in two parts. First we compute the number 𝑥𝑛 of
core-semiperiphery-periphery structures of order 𝑛 in which
all periphery vertices are adjacent to the semiperiphery: this
corresponds to the case 𝑛0 = 0 (orC0 = 𝐾0) in the notation of
Theorem 20. Later on we will add a number 𝑦𝑛 of structures
with 𝑛0 > 0 to get the total number 𝑧𝑛 = 𝑥𝑛 + 𝑦𝑛 of CSP
structures on 𝑛 vertices.

In order to compute 𝑥𝑛, by means of Theorem 20 the
number of joins C1 + S is easily seen to be given by all
combinations of 𝑡𝑛𝑐 core subgraphs on 𝑛𝑐 vertices without
true twins and 𝑠𝑛𝑠 semiperiphery subgraphs on 𝑛𝑠 vertices
without F-twin subgraphs. Using the fact that in this setting
𝑛𝑠 = 𝑛𝑝 and then 𝑛 = 𝑛𝑐 + 2𝑛𝑠, some easy computations
yield

𝑥𝑛 =

{{{{{{{{
{{{{{{{{
{

(𝑛−1)/2

∑
𝑘=1

𝑡2𝑘−1𝑠((𝑛+1)/2)−𝑘 if 𝑛 is odd

(𝑛−2)/2

∑
𝑘=1

𝑡2𝑘𝑠(𝑛/2)−𝑘 if 𝑛 is even,

(24)

for 𝑛 ≥ 3.
On the other hand, we can compute 𝑦𝑛 in a recursive

manner, just using the remark that all structures with 𝑛0 > 0
can be obtained from a lower order structure just joining
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Table 1: Number of graphs without (true) twin vertices.

Order (𝑛) #Graphs without (true) twin vertices (𝑡𝑛)
1 1
2 1
3 2
4 5
5 16
6 78

Table 2: Number of core-semiperiphery-periphery structures.

Order (𝑛) Number of CSP structures (𝑧𝑛)
3 1
4 2
5 4
6 9
7 24
8 96

(the core vertex of) a core-periphery pair to the cores and
semiperipheries of this lower order structure. This leads
to

𝑦𝑛 =
{
{
{

𝑧𝑛−2 if 𝑛 is odd

𝑧𝑛−2 + 𝑠(𝑛/2)−1 if 𝑛 is even,
(25)

again for 𝑛 ≥ 3. The additional term 𝑠(𝑛/2)−1 for even 𝑛
captures the structures with only one core which belongs to
C0. Note that we make recursive use of the total number
𝑧𝑛 = 𝑥𝑛 + 𝑦𝑛 of core-semiperiphery-periphery structures,
setting 𝑧1 = 𝑧2 = 0 for consistency.

Equations (24) and (25) together define recursively the
total number of core-semiperiphery-periphery structures on
𝑛 vertices, which (omitting details for the sake of brevity)
read, in terms of the numbers 𝑛 (total number of vertices)
and 𝑛𝑐 (number of core vertices), as

𝑧𝑛,𝑛𝑐 =

{{{{{{{{
{{{{{{{{
{

min{𝐸((𝑛𝑐−1)/2),(𝑛−𝑛𝑐−3)/2}

∑
𝑘=0

𝑡𝑛𝑐−2𝑘−1𝑠((𝑛−𝑛𝑐−1)/2)−𝑘 if 𝑛 − 𝑛𝑐 is odd

min{𝐸(𝑛𝑐/2),((𝑛−𝑛𝑐)/2)−1}

∑
𝑘=0

𝑡𝑛𝑐−2𝑘𝑠((𝑛−𝑛𝑐)/2)−𝑘 if 𝑛 − 𝑛𝑐 is even.

(26)

Finally, 𝑧𝑛 is the sum of the above values of 𝑧𝑛,𝑛𝑐 for 𝑛𝑐 =1 ⋅ ⋅ ⋅ 𝑛 − 2.
In the sequel we use the above derived formulas to com-

pute the number of core-semiperiphery-periphery structures
in low order (up to 𝑛 = 8), in terms of the previously
defined quantities 𝑡𝑛 and 𝑠𝑛. To the knowledge of the author,
the number 𝑡𝑛 of graphs without true twin vertices (or
without false twins vertices) is not known in general; however,
computationally this is a very simple task in low order and for
later use we depict the numbers 𝑡𝑛 up to 𝑛 = 6 in Table 1.

The computation of 𝑠𝑛 (i.e., the number of graphs on 𝑛 ver-
tices without any kind of F-twin subgraphs) is more involved
even from a computational point of view. Nevertheless, it is
very easy to check that the lowest order structure involving
F-twin subgraphs with order greater than one is𝐾2 ∪𝐾2; this
obviously implies that 𝑠𝑛 = 𝑡𝑛 for 𝑛 ≤ 3. Additionally, one
can easily see that only the subindices 𝑖 = 1, 2, 3 for 𝑠𝑖 are
involved in the computation of the number of CSP structures
up to order eight. Using these remarks, the numbers 𝑧𝑛 up to
𝑛 = 8 are given in Table 2.

5.4. CSP Structures in Low Order. The core-semiperiphery-
periphery structures in order up to 6 are displayed in Figures
3 and 4. Core, semiperiphery, and periphery vertices are
painted black, grey, and white, respectively.Worth comment-
ing are the facts that with 𝑛 = 3 one gets the expected
“elementary” CSP structure and that one of the two cases with
𝑛 = 4 arises from the addition of a periphery vertex connected

to a (say)C0 core vertex; a structure with two cores is already
displayed in order four. Note also that up to three and four
cores are displayed with 𝑛 = 5 and 𝑛 = 6.

6. CSP Structure within
the Asia-Africa-Oceania Subnetwork of
1994 Metal Manufactures Trade

The approach developed in previous sections provides a for-
mal definition and a criterion for the systematic classification
of core-semiperiphery-periphery structures in networks. In
order to identify such structures in real problems, we need
to develop additional results based on positional analyses
allowing one to assign systematically vertices to clusters and
to evaluate the extent to which the quotient network fits
a CSP structure. This task, in its broad generality, exceeds
the scope of the present paper and will be the object of
future research. However, we discuss below a roadmap for
this research by examining a given subnetwork of the network
of miscellaneous imports of metal manufactures between
80 countries in 1994. These data, coming from world trade
statistics, have been previously addressed in [16] along the
lines discussed in the original work of Wallerstein [4]. This
data set is freely available on the web (cf. [16]).

Since the results in this section have illustrative purposes
and in order to simplify the discussion we restrict the
attention to a subnetwork of the abovementioned network,
namely, the one defined by the countries from Asia, Africa,
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Figure 3: CSP structures up to order five.

Figure 4: CSP structures in order six.

and Oceania for which data are available in the original
dataset. Note that the large amount of exports of high-
technology products from East Asian countries makes this
analysis relevant, looking in particular for their relation
patterns with developing and least-developed countries from
Africa, Oceania, and other regions of Asia. In our model,
every edge in the network is weighted with the total amount
of trade between the two countries (i.e., we add imports and
exports). To reduce dimensionality we remove edges inwhich
this amount does not reach 10M (10 million) USD or links
involving countries whose total amount of trade does not
reach 25M USD; note that these quantities barely represent

a few parts per thousand of the total amount of trade in this
network which is over 8 billion USD. Exceptions are made
when such a removal renders the network disconnected: for
the involved countries we then retain the edge displaying
the highest amount of trade with any of their commercial
neighbors.This yields a connected networkwith 29 nodes and
69 edges (data are displayed on Table 3).

In order to examine the presence of CSP structures
in this network, as well as the eventual reduction of twin
substructures, we use two different criteria to cluster vertices.
The first one is very elementary and just uses a threshold in
the volume of trade between pairs of countries: we use this
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Table 3: Asia-Africa-Oceania metal manufactures trade in 1994
(from [16]).

Country #1 Country #2 Trade (thousands of USD)
China Hong Kong 1482824
Japan Thailand 894820
Japan Korea 880295
China Japan 630342
Malaysia Singapore 484350
Japan Malaysia 453463
Japan Singapore 380454
Hong Kong Japan 351919
Indonesia Japan 200451
China Korea 181392
Australia New Zealand 168680
Japan Philippines 138348
China Singapore 135616
Japan Australia 115283
Hong Kong Singapore 110574
Singapore Thailand 107720
China Australia 90620
Australia Indonesia 72387
Korea Hong Kong 65315
Australia Singapore 62392
Korea Thailand 56160
Korea Singapore 50098
Korea Australia 45517
China Thailand 44387
Australia Malaysia 43068
Korea Indonesia 41827
Indonesia Malaysia 40291
China Malaysia 39617
Singapore Indonesia 39206
Malaysia Thailand 37963
China Indonesia 32817
India Singapore 32130
Korea Malaysia 31255
Japan India 27655
Japan South Africa 24555
Hong Kong Malaysia 24159
Hong Kong Thailand 23642
Hong Kong Philippines 23396
China South Africa 23166
Singapore Philippines 21744
Hong Kong South Africa 21277
Australia India 20366
China Philippines 19865
Israel South Africa 19183
Korea South Africa 17826
Korea Philippines 17031
India Malaysia 15817
Japan New Zealand 15470
Korea Pakistan 15469
Thailand Australia 14377

Table 3: Continued.

Country #1 Country #2 Trade (thousands of USD)
China Egypt 14342
China Pakistan 13953
Hong Kong Australia 13644
China New Zealand 12810
Hong Kong Indonesia 12604
Singapore Sri Lanka 12253
China Algeria 11709
Australia Fiji 10589
Japan Pakistan 10388
China Kuwait 9232
China Jordan 8014
China Morocco 7077
South Africa Mauritius 6805
Algeria Tunisia 6283
China Bangladesh 5217
India Oman 4151
Thailand Seychelles 3179
South Africa Reunion 2566
Japan Madagascar 2042

basic approach to provide simple examples of CSP structures
and twin subgraphs. The second criterion is more elaborate:
in order to identify clusters we combine the amount of trade
between countries, as above, with a dissimilarity measure
capturing similar relation patterns. This will result in a
refinement of the CSP structures which arise under the first
clustering criterion. Details are given below.

As indicated above, let us first cluster the different coun-
tries using the connected components of the graph which
results from removing edges below a given trade threshold.
Let us for instance consider pairs of countries exchanging
at least 75M USD. This yields a main cluster defined by
11 countries, namely, China, Hong Kong, Japan, Thailand,
and Korea (to be referred to in the sequel as East Asian
countries), together with Malaysia, Singapore, Indonesia, the
Philippines (Southeast Asia), and Australia and New Zealand
(both countries being jointly referred to as Australasia). This
cluster comprises more than 7.7 billion USD trade, that is,
more than 95% of the total amount of trade in the network.
None of the remaining countries reaches the above threshold
with any neighbor, so that each one of the other clusters is
identified with a single country.

With this clustering, the quotient graph displays 3 coun-
tries (Algeria, South Africa, and India) which are adjacent to
the main cluster and to 5 countries with degree one (Tunisia
(Algeria), Israel, Mauritius, Reunion (South Africa), and
Oman (India), resp.). There are 10 countries with degree one
which are adjacent to the main cluster (Pakistan, Bangladesh,
Egypt, Jordan, Kuwait, Morocco, Madagascar, Seychelles,
Sri Lanka, and Fiji). This quotient network is displayed in
Figure 5(a); we explicitly label the vertices corresponding to
Algeria, South Africa, and India for better clarity.

This quotient graph admits a classification of all the clus-
ters either as a core, semiperiphery, or periphery, according
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Figure 5: Clustering with threshold 75M USD: (a) CSP network; (b) reduction of false twin vertices; (c) CSP structure.
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Figure 6: Clustering with threshold 125M USD: (a) CSP network; (b) reduction of false twin vertices; (c) CSP structure.

to the criteria given in Definition 19. The core is composed
of the East and Southeast Asian countries together with
Australia and New Zealand, whereas the semiperiphery is
composed of three countries (Algeria, South Africa, and
India), and the fifteen countries with degree one define the
periphery. Among the latter, the three ones adjacent to South
Africa are false twins (we use Israel as their representative)
and, analogously, the ten countries with degree one attached
to the core are false twins as well (with Pakistan as the
representative of this class). After identifying false twin
vertices, the resulting graph is displayed in Figure 5(b). In
turn, this figure clearly displays three subgraphs which are F-
twins, namely, the semiperiphery-periphery pairs defined by
Algeria and Tunisia, South Africa and Israel, and India and
Oman, respectively. After identifying these three subgraphs
(with the pair South Africa-Israel being chosen as the repre-
sentative of this relation pattern), the resulting CSP structure
is depicted in Figure 5(c) (it has four vertices and can be
also found in Figure 3). We emphasize that the F-twin notion
makes it possible to capture the elementary pattern displayed
by the three semiperiphery-periphery pairs mentioned
above.

Another pattern arises if we raise the threshold to cluster
countries say to 125M USD. Since now neither Australia nor
New Zealand trades such an amount with any Asian country,
but they do with each other, they turn to define a cluster
by themselves (Australasia in the sequel), independently of
the East and Southeast Asian countries which are still joined
together into a big cluster, trading more than 7 billion USD.
The latter still meets the requirement defining a core in
Definition 19, but the Australasian cluster does not, since
it does not satisfy the eccentricity-two criterion (e.g., its
distance to Israel is three). Australasia may by contrast be
classified as a semiperiphery: note that Fiji is now attached to
the Australasian cluster. The new quotient graph is displayed
in Figure 6(a). As before, we depict in Figures 6(b) and 6(c),
respectively, the network without false twin vertices and the
CSP structure which finally results from removing F-twin
structures (now only the Algeria-Tunisia and South Africa-
Israel pairs).

As indicated earlier, the clustering criterion above already
paves the way to illustrate some relation patterns; in a
deeper analysis, however, it displays a severe limitation.
Clustering countries according to their amount of trade
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Figure 7: Adding a dissimilarity measure: (a) CSP network; (b) reduction of false twin vertices; (c) CSP structure.

works well for (eventually defined) core clusters and also
for some semiperipheries. But it does not accommodate the
identification of semiperiphery countries which, not trading
a significant amount between themselves, display however a
similar (or even identical) connection pattern to the rest of
the network. To incorporate this, the criterion above should
be combined with a similarity (or dissimilarity) measure
identifying countries with similar relation patterns.

To illustrate this idea we first raise the trade threshold
above to 500M USD. This yields a smaller cluster defined by
the five East Asian countries (trading more than 4.6 billion
USD among themselves). Second, since we are dealing with
a weighted network we define a dissimilarity criterion as
follows: for each country we label each one of its incident
edges with the percentage of trade that it carries, computed
over the country’s total amount of trade. This percentage
is zero for absent edges, that is, for pairs of countries not
adjacent to each other. Denoting this percentage by𝑤𝑖𝑗 for the
edge connecting vertices 𝑖 and 𝑗, the dissimilaritymeasure for
countries 𝑖, 𝑗 is then defined as

𝛿𝑖𝑗 = ∑
𝑖 ̸=𝑘 ̸=𝑗

󵄨󵄨󵄨󵄨󵄨𝑤𝑖𝑘 − 𝑤𝑗𝑘
󵄨󵄨󵄨󵄨󵄨 . (27)

This means that two countries which have exactly the same
connection pattern to the rest of the network have a dissim-
ilarity measure close to zero (not exactly zero, in most cases,
because even if the connections are the same the percentages
will typically be different); on the contrary, if 𝑖 and 𝑗 are not
adjacent and do not have any neighbor in common then the
dissimilarity measure reaches the maximum value 𝛿𝑖𝑗 = 2.

Ignoring peripheries, we may now define new clusters
(i.e., besides themain one above) in terms of this dissimilarity
measure: for instance, we may join together a set of countries
into a single cluster if the dissimilarities of all pairs within
this set do not reach a threshold of 1.0. Two nontrivial
clusters arise this way: the four Southeast Asian countries are
joined into a single cluster (the six dissimilarities range from
0.33 (Malaysia-Singapore) to 0.95 (Singapore-Philippines);
the total internal trade in this cluster reaches 585MUSD) and

so doAustralia andNewZealand (with a dissimilarity of 0.59;
the trade among themselves is 168M USD). The remaining
countries remain isolated. Note that none of these countries
reach, in any connection, the threshold of peer-to-peer trade
of 500M USD defined above.

The quotient graphwhich results from this new clustering
is displayed in Figure 7(a); now Sri Lanka is not adjacent to
the core but to the Southeast Asian cluster, via Singapore. As
already depicted in this figure, the five East Asian countries
qualify again as a core, whereas the other clusters do not
because of the eccentricity criterion. The reductions of false
twin vertices and of F-twin pairs yielding a CSP structure can
be found in Figures 7(b)-7(c).

Finally, in order to further illustrate the eventual presence
of other F-twin substructures, let us ignore in Figure 7(c)
the edge connecting India and Australasia: among the three
semiperipheries at the bottom of this figure, this is clearly the
one carrying less trade (20,2M USD, whereas Southeast Asia
trades 47,9M with India and over 177M with Australasia).
The resulting network is depicted in Figure 8(a). Note that
now the Australasia-Fiji and India-Oman pairs become F-
twins; they are isomorphic, disjoint, and nonadjacent, and
the connection pattern to the remainder of the network is
the same (both Australasia and India are connected to the
core and to Southeast Asia). We can therefore reduce this
new relation pattern and the resulting structure is displayed in
Figure 8(b). Worth clarifying is that the Australasia-Fiji pair
now stands as the representative of this pattern, which is also
met by the India-Oman pair.

As indicated earlier in this section, the network here
analyzed is intended to illustrate the lines along which
the results presented in this paper can be applied to real
problems. Future study should provide a systematic analysis
of clustering criteria in this context; these criteria should
combine density and similarity measures. In a second step,
quality measures defining the extent to which the nodes
in the quotient (clustered) graph may be classified either
as cores, semiperipheries, or peripheries would indicate to
what degree the network fits a CSP structure. When a CSP
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Figure 8: (a) The removal of the Australasia-India edge yields a new pair of F-twin subgraphs; (b) resulting CSP structure.

structure is actually met, the twin notions here introduced
make it possible to reduce identical substructures, capturing
the relation patterns depicted in the network.

The example here considered suggests that the roadmap
above is a promising one. Note that the threshold parameters
within the aforementioned clustering criteria (involving,
e.g., the amount of trade or the degree of dissimilarity
between countries) have allowed for a progressive refine-
ment of the clusters, providing gradually more detailed
information about the network structure. Indeed, the (say)
giant core in Figure 5(b) yields two clusters in Figure 6(b),
namely, East/Southeast Asia and Australasia; in turn, the
East-Southeast Asian core is split into two in Figure 7(b).
Accordingly, the corresponding CSP structures in Figures
5(c), 6(c), and 7(c) (with four, eight, and ten nodes, respec-
tively) gradually display more detailed information about
the network structure. The network example here con-
sidered also shows how different twin structures may be
identified and reduced. These include not only twin ver-
tices but different semiperiphery-periphery patterns: com-
pare, for example, in Figure 8(a) the Algeria-Tunisia and
South Africa-Israel pairs, on the one hand, and India-Oman
and Australasia-Fiji, on the other. Naturally, more compli-
cated semiperiphery-periphery patterns would arise in larger
networks.

7. Concluding Remarks

Many problems related to twin subgraphs and to core-
semiperiphery-periphery structures remain open for future
study. We compile here some of them. First, the T-twin and
F-twin notions for subgraphs introduced in Sections 3 and
4 have for sure a connection to automorphic and orbital
equivalences, much as twin vertices arise in situations in
which a transposition yields a graph automorphism. Note in
this regard that, for vertices, the true and false twin notions
accommodate all possible cases of structurally equivalent
vertices, but for higher order subgraphs other twin notions

besides T-twins and F-twins might be considered (for this
reason we avoid using the “true” and “false” labels for our
T-twin and F-twin notions, since the former labels seem to
cover exhaustively all possible cases). The classification of
twin structures partially addressed in Section 3.3 also seems
to have several potential extensions, in particular, connected
to the interrelations between the classification of different
families of twin subgraphs.

Concerning the results considered in Section 5, it would
be interesting to examine systematically to what extent the
set of actors (countries, companies, etc.) in real social or
economic networks can be clustered in a way that matches
some of the structures displayed in Section 5.4 after a suitable
reduction of twin patterns: the example discussed in Section 6
suggests a plan for future research in this direction.Motivated
by the enumeration of CSP structures (cf. Section 5.3), several
enumeration problems arise in connection with the absence
of twin substructures in graphs: specifically, it would be of
interest to get a general enumeration formula for graphs
without true twin vertices (or equivalently, in light of The-
orem 18, for graphs without false twin vertices) and also for
graphs without any kind of T-twin (or, analogously, F-twin)
subgraphs. Closely related are the problems of enumerating
graphs without any kind of twin vertices, or without any kind
of twin subgraphs. It also seems to be worth studying other
(say, layered) structures emanating from greater parameter
values in Definition 19, that is, accommodating core eccen-
tricities greater than two and/or periphery degrees greater
than one. All these topics are in the scope of future research.
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