Cantor's illusion

Richard L. Hudson

Abstract

This analysis shows Cantor's diagonal definition in his 1891 paper was not compatible with his horizontal enumeration of the infinite set M . The diagonal sequence was a counterfeit which he used to produce an apparent exclusion of a single sequence to prove the cardinality of M is greater than the cardinality of the set of integers N .

keywords: Cantor, diagonal, infinite

1. the argument

Translation from Cantor's 1891 paper [1]:
Namely, let m and n be two different characters, and consider a set [Inbegriff] M of elements

$$
E=\left(x_{1}, x_{2}, \ldots, x_{v}, \ldots\right)
$$

which depend on infinitely many coordinates $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{v}, \ldots$, and where each of the coordinates is either m or w. Let M be the totality [Gesamtheit] of all elements E. To the elements of M belong e.g. the following three:

$$
\begin{aligned}
& E^{I}=(m, m, m, m, \ldots), \\
& E^{I I}=(w, w, w, w, \ldots), \\
& E^{I I I}=(m, w, m, w, \ldots) .
\end{aligned}
$$

I maintain now that such a manifold [Mannigfaltigkeit] M does not have the power of the series $1,2,3, \ldots, v, \ldots$.

This follows from the following proposition:
"If $\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots, \mathrm{E}_{\mathrm{v}}, \ldots$ is any simply infinite [einfach unendliche] series of elements of the manifold M, then there always exists an element E_{0} of M, which cannot be connected with any element E_{r}."
For proof, let there be
$\mathrm{E}_{1}=\left(\mathrm{a}_{1.1}, \mathrm{a}_{1.2}, \ldots, \mathrm{a}_{1, v}, \ldots\right)$
$\mathrm{E}_{2}=\left(\mathrm{a}_{2.1}, \mathrm{a}_{2.2}, \ldots, \mathrm{a}_{2, v}, \ldots\right)$
$\mathrm{E}_{\mathrm{u}}=\left(\mathrm{a}_{\mathrm{u} .1}, \mathrm{a}_{\mathrm{u} .2}, \ldots, \mathrm{a}_{\mathrm{u}, \mathrm{y}}, \ldots\right)$
where the characters $\mathrm{a}_{\mathrm{u}, \mathrm{v}}$ are either m or w. Then there is a series $\mathrm{b}_{1}, \mathrm{~b}_{2}, \ldots \mathrm{~b}_{\mathrm{v}}, \ldots$, defined so that b_{v} is also equal to m or w but is different from $\mathrm{a}_{\mathrm{v}, \mathrm{v}}$.
Thus, if $\mathrm{a}_{\mathrm{v}, \mathrm{v}}=\mathrm{m}$, then $\mathrm{b}_{\mathrm{v}}=\mathrm{w}$.
Then consider the element

$$
\mathrm{E}_{0}=\left(\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}, \ldots\right)
$$

of M, then one sees straight away, that the equation

$$
\mathrm{E}_{0}=\mathrm{E}_{\mathrm{u}}
$$

cannot be satisfied by any positive integer u, otherwise for that u and for all values of v.

$$
b_{v}=a_{u, v}
$$

and so we would in particular have

$$
b_{u}=a_{u, u}
$$

which through the definition of b_{v} is impossible. From this proposition it follows immediately that the totality of all elements of M cannot be put into the sequence [Reihenform]: $\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots, \mathrm{E}_{\mathrm{v}}, \ldots$ otherwise we would have the contradiction, that a thing [Ding] E0 would be both an element of M, but also not an element of M. (end of translation)

2. Cantor's enumeration

The symbols $\{0,1\}$ will be substituted for $\{m, w\}$ for visual clarity.
Cantor defines an infinite set M consisting of elements En. Each En is an infinite one dimensional horizontal sequence composed of two symbols 0 and 1 . He does not specify a rule of formation for sequences, thus they are assumed to result from a random process such as a coin toss. There is one sequence per row, and all sequences are unique differing in one or more positions. He then assigns coordinates to the array of symbols using a two dimensional (u, v) grid.

fig. 1

2.1 orientation

Cantor then defines a diagonal sequence D (red) composed of symbols with coordinates (u, u). The negation of a sequence differs in all positions. Using D as a template, he interchanges all 0 's and 1 's to produce E_{0} as the negation of D or (not D). He declares, E_{0} as a horizontal sequence, cannot be in the enumeration since it will conflict with each coordinate (u, u).

2.2 issues

1. A copy of a geometric form inherits the properties of the original, thus E_{0} should also be a diagonal sequence. Neither D nor E_{0} are compatible with the horizontal enumeration.
2. There is an inconsistency in Cantor's sequence definition. The horizontal sequences were formed independently of each other, and entered randomly in the enumeration. D was formed using a specific rule of formation dependent on one element from each horizontal sequence and could only be a qualified sequence in a diagonal enumeration as in fig.2. If the enumeration consisted of diagonal sequences, there would be no interference of D and E_{0} since they are parallel. In the original enumeration all horizontal sequences were parallel and did not interact. At this point Cantor is comparing two different enumerations, a diagonal form with a horizontal form. Both forms cannot coexist in the same enumeration without interference.

fig. 3
Fig. 3 eliminates the clutter of a full enumeration to emphasize the relation of a diagonal and horizontal form. As shown the diagonal D could exist anywhere in the enumeration since duplicates cannot be detected with a single comparison such as coordinate (6, 6). If $u 6$ was replaced with E_{0} then a conflict would appear at coordinate (6,6), which can't be 0 and 1 simultaneously. Since the sequences are formed from two symbols, there are two subsets $M 0$ and $M 1$, one containing sequence S, the other containing its negation (not S). If D is a member of M 0 then by symmetry E_{0} is a member of M 1 , making both members of M .

3. refutation

For this purpose the symbols $\{0,1\}$ are substituted for $\{m, w\}$, for visual clarity. A sequence or string is represented as s .

fig. 4

Fig. 4 is a basic flow chart for forming any s in the process of generating a binary tree graph T, a model that represents the Cantor set M in terms of sets and subsets.

fig. 5

Any s must begin with 0 or 1 . The set M can be divided into two subsets M0 and M1. Each selection is independent of all others. and T contains copies of itself at every branch, thus the perpetual loop in fig.4. The following sample is an array of symbols using Cantor's coordinate system (\mathbf{v}, u) for column and row. Each s has no last v and the list has no last row.
01111...
10000...
00111...
11000...
00011...
:
$\mathrm{D}=00101 \ldots$
$\mathrm{E}_{0}=11010 \ldots$

fig. 6

Fig. 6 tracks the path of D with row numbers from the sample on the right. As a sequence, it is not a contiguous path in the tree, but jumps between subsets M0 and M1 which is not possible. A path must continuously progress in v remaining in its initial subset for its entire existence. Each element of D is already assigned to a horizontal s.

fig. 7
D is the counterfeit for the existing path $\mathrm{C}, 3 \mathrm{rd}$ from the top in column 4.
Fig. 7 has a mirror axis ma. Any s can be rotated 180° about ma to form its negation (not s). The beginning of C and E_{0} are shown in red. In the tree graph the spacing of branches was decreasing for the purpose of confining the illustration to a single page.

fig. 8

A more realistic perspective is shown in fig. 8 with an exponential growth rate of 2 v for both M0 and M1, with the (u,v) plane of each graph spaced apart in 3D space.

fig. 9
$\mathrm{C}=00101$.
$\mathrm{E}_{0}=11010$..
C determines which subsets are excluded in forming E_{0}.
Position 1 can't be 0 which excludes subset M0.
Position 2 can't be 0 which excludes subset M10.
Position 3 can't be 1 which excludes subset M111.
Since there is no last selection, the final subset containing E_{0} cannot be determined, but E_{0} is definitely in subset M1, since it is determined by position 1 .
conclusion

1. The diagonal D cannot be formed using the flow chart in fig.4.
2. The tree graph in fig. 7 shows C and E_{0} do not intersect, being members of different subsets. This contradicts Cantor's declaration of a missing E_{0} in section 2.1.
3. The set N cannot be exhausted, which is the source for u and v.
4. Cantor's contradiction, that a thing cannot be in two different locations simultaneously, is a logical truth. The question then becomes which location is correct. Since there is access to the beginning of a sequence, the first symbol determines which subset.
5. Cantor's argument uses misdirection in the form of the diagonal D. This paper shows E_{0} must be a member of T .
reference
[1] THE LOGIC MUSEUM Copyright © E.D.Buckner 2005
