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Abstract. We study the problem of embedding Halpern and Moses’s modal logic of minimal
knowledge states into two families of modal formalism for nonmonotonic reasoning, McDermott
and Doyle’s nonmonotonic modal logics and ground nonmonotonic modal logics. First, we prove
that Halpern and Moses'’s logic can be embedded into all ground logics; moreover, the translation
employed allows for establishing a lower bouﬂiﬂg() for the problem of skeptical reasoning in all
ground logics. Then, we show a translation of Halpern and Moses’s logic into a significant subset
of McDermott and Doyle’s formalisms. Such a translation both indicates the ability of Halpern and
Moses’s logic of expressing minimal knowledge states in a more compact way than McDermott and
Doyle’s logics, and allows for a comparison of the epistemological properties of such nonmonotonic
modal formalisms.
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1. Introduction

Research in nonmonotonic modal logics has developed from its early years along
two different lines. On the one hand, several studies have proposed the defini-
tion of a nonmonotonic modal formalism by characterizing the epistemic states
of the agent modeled through a fixpoint equation (McDermott and Doyle, 1980;
McDermott, 1982; Moore, 1985; Konolige, 1988). The family of logics thus de-
fined includes autoepistemic logic (Moore, 1985) and McDermott and Doyle's
family of logics (MDD logics), and has been thoroughly investigated. In particular,
it has been shown (Schwarz, 1990) that Moore’s autoepistemic logic is an instance
of MDD logics, and, more generally, that McDermott and Doyle’s characterization
can be considered a very powerful schema for defining nonmonotonic modal logics
(Marek and Truszc#yski, 1993; Schwarz and Truszémki, 1994).

On the other hand, several researchers have proposed various notions of non-
monotonic modal logics based opeeference semanti¢g§Shoham, 1987) on mod-
els of a monotonic modal logic. Among these approaches, the logic of minimal
knowledge states, due to Halpern and Moses (1985), is based on a simple and “nat-
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ural” preference semantics for the modal logi& (Shoham, 1987; Moore, 1985),
which realizes the intuitive principle of minimization of knowledge of the agent
modeled. Such a logic, initially proposed for modeling knowledge and ignorance
of processes in a distributed computer system, constitutes the basis of several non-
monotonic modal formalisms proposed in the literature (Lifschitz, 1991; Lin and
Shoham, 1992, 1998; Engelfriet, 1996; Meyer and van der Hoek, 1995a, b; Donini
et al., 1995; Rosati, 1997a).

Recently, there has been a considerable effort towards the reconciliation of the
syntactic and the semantic approach to the definition of nonmonotonic modal log-
ics. One of the most important steps in this direction is due to Schwarz (1992a) who
provides a preference semantics, based on a partial ordering of Kripke models, for
a large subset of MDD logics. Conversely, Halpern and Moses’s logic of knowl-
edge states can be given a fixpoint characterization (Tiomkin and Kaminski, 1990)
which is a slight variation of McDermott and Doyle’s equation, and which actually
defines a whole family of logics based on the minimal knowledge paradigm, the so-
calledgroundnonmonotonic modal logics (ground logics for short) (Tiomkin and
Kaminski, 1990; Schwarz, 1992b; Donini et al., 1997). Furthermore, the definition
of a preference semantics for ground logics (Nardi and Rosati, 1995) has shown,
from the semantical viewpoint, the existence of deep analogies between this family
of formalisms and MDD logics.

Finally, recent studies on the computational properties of the logic of minimal
knowledge states (Donini et al., 1997) have shown that reasoning in this logic is
strictly harder (unless the polynomial hierarchy collapses to NP, see Johnson, 1990)
than reasoning in all the most popular propositional nonmonotonic formalisms
(Cadoli and Schaerf, 1993; Gottlob, 1992), in particular with regard to many MDD
logics (Marek and Truszcigki, 1993). Therefore, the question arises of how “sim-
ilar” the logic of minimal knowledge states to MDD logics, and in which sense, if
any, MDD logics are “less expressive” than minimal knowledge states is.

The goal of the present work is to study the possibility of representing mini-
mal knowledge states in nonmonotonic modal logics. In particular, we study the
problem of embedding Halpern and Moses’s logic into ground logics and MDD
logics.

The results presented in this paper can be summarized as follows: the logic of
Halpern and Moses is “easily” embeddable in most of the nonmonotonic modal
formalisms taken into consideration. More specifically, we first provide an embed-
ding of Halpern and Moses’s logic into ground logics which in turn allows for
establishing a computational properfyf§-hardness) for the deduction problem in
the whole family of ground logics.

Then we show that Halpern and Moses’s logic can easily be embedded into
many MDD logics, in the sense that, in many cases, a simple transformation of
modal theories realizes the embedding of minimal knowledge states into MDD
logics.
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Finally, we point out the existence of syntactic restrictions under which minimal
knowledge states and preferred models in MDD logics coincide. This result allows
for both establishing a computational characterization of the problem of reasoning
in Halpern and Moses’s logic under such syntactic restrictions, and analyzing the
epistemological properties of the logic of minimal knowledge states, as compared
to MDD logics. Surprisingly, it turns out that in a large subset of MDD logics
modalities can be given a minimal knowledge interpretation, as far as they are
not nested modalities. Thus, the higher degree of complexity of reasoning about
minimal knowledge states cannot be attributed to the interpretation of the modal
operator in this logic. Rather, the translation we provide indicates the ability of
Halpern and Moses’s logic of expressing minimal knowledge states in a more
compact form than MDD logics.

The paper is structured as follows. In the next section we recall some prelimi-
nary definitions and properties of nonmonotonic modal logics. Then, in Section 3
we show the embedding of the logic of minimal knowledge states into ground
logics, and in Section 4 we show that the logic of minimal knowledge states can
be embedded into a large subset of MDD logics. Section 5 presents new complex-
ity results for the problem of reasoning in ground logics, and an epistemological
interpretation of such results. Finally, some conclusions are drawn in Section 6.

2. Preliminaries

In this section we briefly recall some preliminary definitions and properties of
nonmonotonic modal logics. The interested reader is referred to (Marek and
Truszczyski, 1993; Nardi and Rosati, 1995) for further details.

We useL to denote a fixed propositional language built in the usual way from
an alphabetA of propositional symbols (containing the symboise, false) and
the propositional connectiveg, A, —, D. Formulas overl will often be called
objective because they do not contain occurrences of the modal operator.

We denote withLx the modal extension of with the only modalityk (for
knowledge), and witht® the set{K¢ | ¢ € L£}. £, stands for the set of formulas
built from £% and the propositional connectivesA, —, O. The symbol£% stands
for the restriction ofL ¢ to the formulas in which only propositional symbols from
the modal theoryz C L appear. The set oghodal atomof a theoryX C Lg
is the setM A(X) = {¢ | K¢ is a subformula of a formula frorz}. A formula
¢ € L has modal depth if each subformula of lies within the scope of at most
n nested modalities.

Given a modal logic$, we denote withiCrn, the logical consequence operator in
4. Given two modal logicss; and 45, by 8, C 8, we mean that all axioms of logic
4, are also axioms (or theorems) in logig (e.g.,K € KD45 C S5).

We denote withS4F (also known ass4.3.2; see Segerberg, 1971) the modal
logic obtained by adding t64 the following axiom schema:

(@ AN—=K—=Kgp) D K(—=K—¢ V ¢)
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and withSW5 (also known a$4.4; see Segerberg, 1971) the modal logic obtained
by adding tos4 the following axiom schema/s:

¢ D (mK—=K¢ D Ko).

A Kripke modelM is defined as usual by a tripléV, R, V), whereW is a set
of worlds, R is a binary relation o andV is a function assigning a propositional
valuation to each worldy € W. WhenR is W x W (i.e., M is a universal model)
we simply write(W, V).

We denote withl'h (M) the set of formulas oft ¢ that are satisfied o, i.e.,
Th(M) ={p € L | M E ¢}, whereM = ¢ for eachw € V, (M, w) = ¢ (the
satisfiability relation between a modal formyland a worldw in a Kripke model
M is defined in the usual way).

Given a modal logics, a consistent set of formuldsis an4$ypp expansion for
a set of initial knowledg& C Lk if

T =Cng(ZU{—Kg|¢peLg\T}), 1)

whereCn g is the consequence operator in (classical) modal I6gic

The resulting consequence operator is defined as the intersection&pfpall
expansions forx: given X C Lk, ¢ € Lk, we say thaly is entailed byXx
in $ypp (and write = ST N, @) iff ¢ belongs to allSypp expansions forx.
Such an operator is in general nonmonotonic; thus, for every modal foghte
(nonmonotonic) modal logiéypp is obtained by means of Equation (1).

Let us now briefly recall the minimal knowledge paradigm. Informally, such a
principle consists of considering, among the epistemic states which are consistent
with the initial knowledgex of the agent, only the subset composed of each &tate
which is minimal with respect to the objective knowledge, i.e., any other epistemic
stateE’ either is inconsistent witl or contains more objective knowledge th&n
In a modal logic setting, such a paradigm can be stated as follows: given a modal
logic 8, a modelM is a model of minimal knowledge fat C Lk in 8 if Mis a
model forX in § and for every modeM’ for X in 8, Th(M)YNL & Th(M)N L.

We say that§ is a logic of minimal knowledge if for every theory C L,
every model forX in 4 is a model of minimal knowledge fax in §.

In Halpern and Moses (1985) the notion of minimal knowledge is applied
to modal logicS5: the logic of minimal knowledge states is therefore the logic
obtained by considering as models far € L only the models of minimal
knowledge among th85 models satisfyingz (Shoham, 1987; Lifschitz, 1991).

The logic of minimal knowledge states can be given a fixpoint characterization,
which is similar to the one given in the MDD case, and that gives rise to the family
of groundnonmonotonic modal logics. Given a normal modal lo§ji@ consistent
set of formulasl’ is an4$s expansiorfor a setx C Ly if

T =Cng(SU{=Kg | ¢ € L\T)).

Note that, in this case, negative introspection is bounded to objective knowledge in
the right-hand side of the equation.
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GivenX C [Lg, ¢ € Lg, we say thaiy is entailedby ¥ in 85 (and write
¥ =4, @) iff ¢ belongs to als; expansions foi.

It turns out that, if8§ = S5, then the logic of minimal knowledge states is
obtained from the above equation (Tiomkin and Kaminski, 1990). He®sg,
corresponds to Halpern and Moses’s logic.

Let us now introduce a characterization of MDD (respectively, ground) logics
based on a syntactic preference criterion on Kripke models. In the next section,
we will use such a characterization, thus referringSt@p models 8z models)
instead of$ypp expansions4; expansions).

DEFINITION 2.1. Given a modal logig < S5 characterized by the clags of
Kripke models and a theory C Lk, a modelM e € is an$ypp Mmodelfor T iff
M = T and, for every modeW € C,if ¥ E X U{—=K¢ | ¢ € Lg\Th(M)},
thenTh(M) = Th(N).

DEFINITION 2.2. Given a normal modal logi€ € S5 characterized by the class
C of Kripke models and a theor¥ C Lx, a modelM € € is an$; modelfor =

iff M &= X and, for every modeW € C,if ¥ E T U{—=Kgp | ¢ € L\Th(M)},
thenTh(M) = Th(N).

It holds that ar65 modelM is andypp Mmodel forX C Lk iff Th(M) is andypp
expansion forz (Marek and TruszcZyski, 1993), and that aB5 model M is an
8c model forX C Lg iff Th(M) is ands expansion forx (Nardi and Rosati,
1995). Moreover, for any modal logig betweerk andss, and for anyX C L,
each$s; model forx is an$ypp model forx.

PROPOSITION 2.3Let 4%, 82 be any two normal modal logics, and [BtC L.
If 81 C 42, then each8ypp model forX is an 83, model for= and eachs?
model forE is an 8% model fors.

The following property directly follows from Marek and Truszéski (1993:
theorem 8.16).

PROPOSITION 2.4Let T C Lg be a stable theory. LeM be a Kripke model
suchthatM = (T N L) U {—=K¢ | ¢ € L\T}. Then, for every € Lk, ¢ € T iff
M = ¢, namelyT’ = Th(M).

Let us finally recall a normal form for modal theoriessg, which is based on the
fact that inS5 every modal formulaK ¢ is equivalent to a formula in the sét;,
namely a formula without nested occurrences of the modality and in which each
occurrence of a propositional symbol lies within the scope of exactly one modality.
The procedure for transforming the formula is conceptually simptéormally, it

* For a detailed description of such a procedure, see Hughes and Cresswell, 1968: chapter 3).
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is based on the following equivalences, which are valigsn
K(pAny) = Ko AKY,
KV Ky) = KoV Ky,
K(pv—-Ky) = KoV Ky,
KK¢ = Ko,
K—-K¢ = —Ko.

We call S5 normal formof a modal formulaK ¢ the formulaN Fss(K¢) €
L1 obtained by reducingC¢ to a formula belonging ta£; through the above
procedure.

Let X be a modal theory such that each formglrom X is of the formK .
The S5 normal form ofX, denoted asv F55(X), is defined as

N Fss(X) = {N Fss(p) | ¢ € X}

Note that, in general the size of F55(X) is exponential in the size &, which is
informally due to the fact that, in order to transform a modal formula of the form
Ko, it is necessary to pup in a “modal conjunctive normal form” (see Hughes
and Cresswell, 1968, for more details). Moreover, every propositional symbol in
N Fss5(X) lies within the scope of exactly one modal operator.

3. Minimal Knowledge in Ground Logics

In this section we show how to embed the logic of minimal knowledge states into
ground logics. In particular, we first provide a very simple translation for theories
without nested occurrences of the modality. Then, we extend such a translation in
order to deal with general modal theories; notably, this last translation allows for
a computational characterization of the entailment problem in all ground logics,
which generalizes a previous result shown in Donini et al. (1997).

In the following, we use the terrembeddindor translation) to indicate a trans-
formation function for modal theories, i.&,: £ — L. Sometimes we will abuse
terminology, using this term also to indicate the application of a transformation to
a modal theory.

We are interested in findingithful embeddings, in the following sense: given
two modal logics$y, 45, & is a faithful embedding frons$, into 4§, if, for each
¥ C J[Lg and for each Kripke modeM, M is an4$; model for X iff M is an4,
model for&(X).

We now define the following transformation functions for modal theories:

K(E) = (K¢ |p e X},
T(X) = ZU{(Ke Do) |peMAX),
Tn(E) = NFss(K (X)) U{(Ke D 9) | ¢ e MA(N Fss(K(X)))].
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It is easy to see that ar§5 model M is a model forX iff it is a model for
K (X). Moreover, since each formukay D ¢ is valid in S5, the following lemma
holds:

LEMMA 3.1. Let X C Lg. Then, M is an S5; model forX iff M is an S5
model for7 (). Moreover,.M is an S5; model forX iff M is an S5, model for
N Fss(K(X)).

We now show that minimal knowledge states are easily embeddableaimyto
ground logicss. We start by analyzing the case of theorlesC £;.

LEMMA 3.2. LetX C .£1. LetM be anS5; model for: and let.V be aK model.
fFNETEU{-Ke|@e LTh(M)},thenTh(M)N L =Th(N)N L.

Proof. Let ¢ € «£; and let D(¢) be the DNF ofg, obtained considering
each modal atom as a propositional symbol. DY) = {D(¢) | ¢ € X}.
By hypothesis¥ = T U {—=K¢ | ¢ € L\Th(M)}, and sincep = D(p)
is valid in K, & = D(X). Now consider each theor{l;(X) obtained from
{(—=K¢ | ¢ € L\Th(M)} by adding one conjunct af, for eachyp € D(X). Since
N E DXZ)U{=Kp | ¢ € LA\Th(M)}, N must satisfy at least one of such
theoriesH;(X). On the other hand, the fact that is anS5; model implies that
eachH;(X) either isS5-inconsistent or is minimal, in the sense that for each pair
of S5-consistent theorie$l; (X), H;(X), {¢ | K¢ € H;(X)} is propositionally
equivalent tolg | K¢ € H;(X)}. Hence, for eacl$5-consistent; (%), the theory
{Kep | Ko € H;(X)} is equivalent inS5 to the theory{K¢ | ¢ € MA(X) and
M = ¢}. Now, due to the form of théd;(X)’s, eachH;(X) is S5-consistent iff
it is K-consistent; consequently, the above equivalence also holds in theklogic
Therefore N E{K¢ | ¢ € MA(Z) andyp € Th(M)NLY, and sinceV = T (X),
it follows that ;N &= {0 | ¢ € MA(X) and M E ¢}. Now, sinceX C L, it
follows thatTh(M) N L = Cn({ep | ¢ € MA(X) and M = ¢}, consequently
N E Th(M) N L. Onthe other handV E {—K¢ | ¢ € L\Th(M)} implies
Th(N)NL C Th(M)N L, thereforeTh(N) N L = Th(M) N L. O

We can now prove that, for theoriés C £, 7(X) is a faithful embedding of
S5¢ into any ground logicsg.

THEOREM 3.3.LetX C £4, and let§ be any modal logic such th&t C § C Sb5.
Then, a Kriple mode is anS5; model forx iff M is an$s model forT ().

Proof. If part. Follows straightforward from the fact that evesy: model for
7 (X2) is also ars55; model for7 (¥) and from Lemma 3.1.

Only-if part SupposeM is an S5; model for X. Then, by Lemma 3.1,
it follows that M is an S5; model for 7(X). Now suppose thatM is not
an 8; model for 7(X). Therefore, there exists ad model & such that
NET(E)U{=Kg | ¢ € L\Th(M)}andTh(N) # Th(M). Now, Lemma 3.2
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implies thatTh(M) N L = Th(N) N L. ConsequentlyVN = Th(M) N L, and
by Proposition 2.4 it follows thal A (M) = Th(N). Contradiction. Thereforem
is an$s model for7 (X). ]

We now prove tha5; can be embedded into any ground lodfig through a
polynomial-time transformation of modal theories. First, we prove the following
lemma.

LEMMA 3.4. LetX C Lk and let

=X U U {K¢ D ¢}
KpeMA(S)

U U (Ko D KK}
KoeMA(T)

U U {—K¢>K-Kg}
KpeMA(S)

Then, ans5 modelM is aKg model forx, iff M is anS5; model forx.

Proof. Only-if part Follows from the fact thak is S5-equivalent toXx; and
from Proposition 2.3.

If part. Let M be anS5; model forX. Then, sincex is S5-equivalent tox,,
M is anS55 model forX;. SupposeM is not ak; model forx,;. Then there exists
amodelM’ = (W', R’, V') such thatM’ = X, U {—=K¢ : ¢ € L\Th(M)}. Now,
let K¢ be a modal atom oE such thaty € .£. Suppose there exists a worldin
M’ such thatM’, w) = —¢. Then, sinceKy D ¢ € X; and M’ E X, it follows
that (M', w) = —K¢. And since—K¢ D K—Kg € X1, (M, w) E K—=Kgp. It
follows that(M’, w') = —K¢ holds for everyw’ such that(w, w’) € R’. Now
let w” be a world inmM’ such thattw”, w) € R’. Clearly, (M, w”) &= =K. Let
w’” be a world such thatw”, w”) € R’. Then(M’', w"”) = =K K¢, and since
Ko D KKg € X, itfollows that(M', w”) = =K ¢. By iteration we arrive at the
conclusion that.M’, w’) &= —K¢ holds for eachw’ in the connected component
to which w belongs. That is, for each connected componémtof .M’, and for
eachK¢ € MA(X) such thatyp € £, eitherM! = K¢ or M; = —K¢. Now let
PL={K¢:¢peLandKyp € MA(Z) and M| = Ko}, letN; = (Kg : 9 € L
andKg € MA(X)}\ P, and letZ (P, N1) be the theory obtained by substituting
each occurrence dK¢ in X with true if K¢ € P; and each occurrence & ¢
in X with false if K¢ € Ni. Clearly, M| = X(P1, N1). Again, we can conclude
that, for eachKy € MA(X) such thatpPi, N1) € L, eitherM; = K¢ or
M; = =K ¢. Therefore, eithem| = K¢ or M; = —K¢ for each modal atom in
MA(XZ) of modal depth 2. By iteration we arrive at the conclusion that, for each
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K¢ € MA(X) and for each connected componeitt of M', either. M| = K¢ or
M; = —K¢. Now, there are two possible cases:

1. for all M’s, {K¢ : K¢ € MA(X) and M, = K¢} = P. Therefore,
M = X(P,N), and sinceM’ = X, it follows that M’ &= ¢ (P, N) for
eachK¢ € P. Thus,Th(M') N L = Th(M) N L, and sinceM’ &= {—K¢ :
¢ € L\Th(M)}, from Proposition 2.4 it follows thaf h(M') = Th(M), thus
contradicting the hypothesis.

2. there exists amM(; such thatfK¢ : K¢ € MA(X) andM; = K¢} # P.
Therefore, there exists a modal atoRy € MA(X) such thaty is
of depth j, all Kv's in MA(X) of modal depth less tharj are such
that M, = Ky iff Ky € P, M, = Ko, and M = Kg¢. Let
P = (K¢ : Ko € MA(Z) and M, = K¢}, let N = MA(X)\Py,
and letM” = (V”, W”) be theS5 model such thatV”"(w) = w and
W' ={w:wkE Z(P,N)U{Yy(P',N): Ky € P'}}. Itis easy to see that
M' =X andTh(M")NL C Th(M) N L, due to the existence of the above
mentioned modal atonk ¢. Therefore, .M is not anS55 model for X, thus
contradicting the hypothesis.

Hence M is aKg; model forx;. ]

THEOREM 3.5.LetX C £4, and let§ be any modal logic such th&t C § C Sb5.
Then a Kripke modeM is anS5; model forX iff M is an$s model for the theory

=2 U | |J Kede)
KpeMA(Y)

U ) {Ke¢D> KK
KoeMA(T)

U | (—K¢>Kk-Kg)
KpeMA(S)

Proof. Follows straightforward from Lemma 3.4 and Proposition 2.3. O

Hence, it is possible to embed Halpern and Moses’s logic into any ground logic
by means of a very simple transformation, which consists of adding the instances
of modal axiom schemas, 4, and5, relative to the modal subformulas of the
form K¢ appearing in the theory. In Section 6, we investigate the computational
implications of this result.
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4. Minimal Knowledge in MDD Logics

In this section we show how to embed the logic of minimal knowledge states into
MDD logics. We start by taking into consideration the embedding of theories
> C L into the logicKypp. To this aim we use the following lemma, which is a
direct consequence of a property shown by Schwarz (1992: proposition 5.2):

LEMMA 4.1. Let ¥ C £1. ThenM is aKypp model forX iff M is aKg model
for .

The above lemma allows us to prove the following property.

THEOREM 4.2.Let X~ C £1. Then a Kripke modeM is anS5; model forX iff
M is aKypp model forg (X).

Proof. If part. If M is aKypp model for7 (), then, sincer (X) C L4, from
Lemma 4.1 it follows thatM is aKg model for7 (X), which in turn implies that
M is anS55 model for7 (X). Therefore, by Lemma 3.1M is anS5; model for
2.

Only-if part If M is an S5; model for X, then, by Lemma 3.1M is an
S5; model for7 (X). Now, sinceT () C L4, it follows from Theorem 3.3 that
M is aKg model forg (X), which in turn implies thaiM is aKypp model forx. O

Now we show that, for theories contained ify, S4Fypp models andS5;
models coincide. To this aim, we make use of the two following lemmas, which
derive directly from the possible-world semantic characterizations of MDD and
ground logics given, respectively, in Schwarz (1992a) and Nardi and Rosati (1995).

LEMMA 4.3. Let ¥ C Lk and let.M be anS5 model. ThenM is an S4Fypp
model forX iff M &= X and, for everyS4F model N, if ¥ = M © M and
N = X, then for each worldv € Wy and for each finite set of propositional
symbolsP C A, V,(w)|p = Vy(w')|p, for somew’ € Wy,.

Informally, Lemma 4.3 states that & model M is preferred forZ in S4Fypp
iff there is n0S4F model N satisfying X such thatM is the lower cluster of&
and.V contains at least one interpretation different from thos#(in

LEMMA 4.4. LetX C Lk and letM be anS5 model. ThenM is an S5, model
for ¥ iff M = X and, for everys5 modelV, if & = X and for eachw € Wy,
and for each finite set of propositional symb@isC 4, Vi (w)|p = Vy(w')|p,
for somew’ € Wy, then for each worldw € Wy and for each finite set of
propositional symbol® C A, Vy(w)|p = Vi (w')|p, for somew’ € Wy,.
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Roughly speaking, Lemma 4.4 establishes th&8%modelM is preferred forx in

S5 iff there is noS5 model . satisfyingX and containing all the interpretations

in M such thatV contains at least one interpretation different from thosg(in
We now prove the following key property.

LEMMA 4.5. Let X C £;. Then a Kripke modeM is an S5 model forX iff M
is an S4Fypp Model forx.

Proof. If part. SupposeM is anS5; model for X, and supposeW is not an
S4Fypp model for. From Lemma 4.3, it follows that there exists S4F model
N = M © M such that there exists a world € W, and a finite set of proposi-
tional symbolsP C A such thatVy(w)|p # Vi (w)|p, for eachw’ € Wy,. Now,
let & be the modelWy, Wy x Wy, Vy), i.e., theS5 model obtained fronw by
connecting each world of the lower clustét with each world of the upper cluster
M. Lety € L1, and letw be a world inA’. It is easy to see that the set of worlds
accessible fromw in N is the same set of worlds accessible from the worlds of the
upper cluster i, i.e. {w’ | (w, w’) € Ry} = {w' | w" € W}, and(w, w’) € Ry}.
Therefore, for eacly € L1, (N, w) E ¢ iff (N, w) E ¢. And sinceX C L1
and(N, w) = X, it follows that for each worldv € N/, (N, w) E Z, there-
fore &' = X. In addition, by hypothesis there exists a worde W;, and a
finite set of propositional symbolB C A such thatVy(w)|p # Vy(w')|p, for
eachw’ € Wy, consequently, by Lemma 4.4 is not anS5; model for X.
Contradiction. ThereforeM is anS4Fypp model forX.

Only-if part SupposeM is not S5; model for ¥. Then there exists ag5
model M" such thatM’ = X and there exists a world € W;, and a finite
set of propositional symbol® < 4 such thatV;,(w)|p # Vu(w')|p, for each
w' € Wy. Now, theS4F model &/ = M’ © M is such that the set of worlds
accessible from each world i is the same set of worlds accessible from each
world in M’, i.e., {w' | (w,w') € Ry} = {w' | w' € W;, and(w, w’) € R},}.
Therefore, for eacly € L1, (N, w) E ¢ iff (M, w) E ¢. And sincexX C L1
and M’ = X, N = X. Moreover, by construction aofv it follows that there
exists a worldw € Wy and a finite set of propositional symbabsC 4 such that
Vv(w)|p # Vy(w')|p, for eachw’ € Wy,. Therefore, by Lemma 4.3\( is not an
S4Fupp model forX. O

The above lemma allows us to prove that the |cgfi¢ is easily embeddable into
a large subset of MDD logics.

THEOREM 4.6.Let X C Lk, and let$ be any modal logic such th&t C § C
S4F. Then a Kripke modeM is anS5; model forx iff M is an $ypp Model for
Tn ().

Proof. If part. If M is an$ypp model for 7y (X) (K € 8 C S4F), then, by
Proposition 2.3M is anS4Fypp model for 7y (X). Now, since axiom schemi
is valid in S4F, it follows that for each Kripke modeM, M is anS4F model for
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Ty (X) iff M is anS4F model forN Fs5(K (Z)), henceM is anS4Fypp model
for N Fss(K(X)). And sinceN Fss(K (X)) € Ly, it follows from Lemma 4.5
that.M is anS5s model forV Fs5 (K (X)). Consequently, by Lemma 3. is an
S5; model forX.

Only-if part If M is anS5; model for X, then, by Lemma 3.1M is an
S5 model for N Fss5(K (Z)). Consequently, sinceV Fss(K (X)) C L1, by
Theorem 4.2 it follows thatM is a Kypp model for 75(X). Therefore, by
Proposition 2.3, for any such that(K € 8§ C S4F), M is an$ypp model for
Tn(Z). O

COROLLARY 4.7.Let ¥ C Lk, and let 8 be any modal logic such that
T C 8 C S4F. Then a Kripke modeM is an S55 model forX iff M is an $ypp
model forN Fss(K (X)).

COROLLARY 4.8.Let ¥ C L3, and let 8 be any modal logic such that
T C 8 C S4F. Then a Kripke modeM is an S55 model forX iff M is an $ypp
model forx.

The previous theorem shows a translation of I&fig in the subset of MDD logics
betweerk andS4F.

5. On the Complexity of Reasoning about Minimal Knowledge States

In this section, we present some new complexity results for the problem of rea-
soning in ground logics, which follow from the properties shown in previous
sections.

First, we briefly recall some basic notions from complexity theory (see, e.g.,
Johnson, 1990, for further details). We denote as P the class of problems solvable
in polynomial time by a deterministic Turing machine. The class NP contains all
problems that can be solved by a nondeterministic Turing machine in polynomial
time. The class coNP comprises all problems that are the complement of a prob-
lem in NP. A problempP; is said to be NP-complete if it is in NP and for every
problemP, in NP, there is a polynomial-time reduction froRa to P;. If there is a
polynomial-time reduction from an NP-complete probl&pto a problempPy, then
P, is said to be NP-hard. With a slight abuse of terminology, we call NP-algorithm
a nondeterministic algorithm that runs in polynomial timé. (RP*) is the class
of problems that are solved in polynomial time by deterministic (nhondeterministic)
Turing machines using an oracle far(i.e., that solves in constant time any prob-
lem in A). The classe&/, 17 and A} of the polynomial hierarchy are defined
by ©{ = j = A} = P, and fork > 0, £/,, = NP¥, I17,; = cox/,, and
AP =P,

k+1
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We also recall the following computational characterization for the problem of
reasoning in the logi€5;, which has been proved in Donini et al. (1997).

PROPOSITION 5.1Entailment inS5; is a I15-complete problem.

We now present two new results concerning the complexity of reasoning in ground
logics. First, Lemma 3.4 allows for establishing a lower bound for the problem of
reasoning in all ground logics.

THEOREM 5.2.Given a modal logie such thatk C § C S5, entailment in¢ is
I1%-hard.
Proof. Follows from Lemma 3.4, from Proposition 5.1, and from the fact that

>3=X U U {K¢ D ¢}
KgeMA(E)

U ) (Ke¢>KkKe)
KpeMA(S)

U U (—K¢> K=K}
KoeMA(T)

can be computed in time polynomial with regard to the siz& of O

The above theorem generalizes a previous result (Donini et al., 1997: theorem 4.2)
which established1 as a lower bound for reasoning in a subset of ground logics.
Theorem 5.2 shows that reasoningaith ground logics is harder than reasoning

in the most famous propositional formalisms for nonmonotonic reasoning, such
as default logic, circumscription, autoepistemic logic (Cadoli and Schaerf, 1993),
several MDD logics (Marek and Truszdzski, 1993), and Levesque’s logic of only
knowing (Rosati, 1997b): reasoning in all such logics lies at the second level of the
polynomial hierarchy.

Next we show that, in the case of modal theories containefjireasoning in
Halpern and Moses'’s logic also lies at the second level of the polynomial hierarchy.
Indeed, Theorem 4.6 shows that there exists a polynomial translati®s;ointo
all MDD logics betweerKypp andS4Fypp for theories int;. Now, since entail-
ment inS4Fypp is T15-complete (Marek and Truszcagki, 1993), it follows that
entailment inS5; for theories inty is in 5.

We now prove thafl} is also a lower bound for entailment §% for theories
in L.
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LEMMAG.3. Let C £;, and letp € L. The problem of establishing whether
¥ Ess, ¢ is [T5-hard.

Proof. We reduce the problem of query answering in positive disjunctive logic
programs under the stable model semantics to an entailment problgsy; ifor
theories inL;. Query answering in positive disjunctive logic programs under the
stable model semantics is[&-complete problem (Eiter and Gottlob, 1995: the-
orem 3.2). We consider the following translatiorof a positive disjunctive logic
program intaS5¢ (which is a restriction of Lifschitz’s translation of logic programs
into the logicMKNF, see Lifschitz, 1991). Each program rulés of the form

r:pll“-lanQL--me’

wherem > 0,n > 0, and eaclp;, ¢; is an atom (propositional symbol). Such a
rule is translated into the formula

t(r) #Kq1Vv...v—Kg,V Kp1 V...V Kp,.

Given a positive disjunctive logic prograi, t(P) = {t(r) | r € P}. Notice that
for each progranP the theoryr (P) is contained int;.
Correctness of the above translation follows straightforwardly from the results
presented in Lifschitz (1991); in particular, it follows that a litefr# entailed by
a positive disjunctive logic program under the stable model semantics iff:

1. 7(P) s, K1, if 1is an atom; and
2. 1(P) =ss, —K1, if 1is a negated atom.

And sincer is a transformation which can be performed in time linear with regard
to the size ofP, it follows that entailment ir85. is Hg’-hard for theories int,. O

Hence, the following property holds.

THEOREM 5.4.Let ¥ C L1, and letp € Lg. The problem of establishing
whetherY ss,, ¢ is [15-complete.

We now give an epistemological reading of the results presented above, based on
the following considerations:

— Corollary 4.8 implies that, under some syntactical restrictions (i.e., for the-
ories¥ C £7), minimal knowledge states and a significant subset of MDD
logics coincide;

— from Theorem 4.6 it follows that minimal knowledge states are embeddable
polynomial timeinto a significant subset of MDD logics, if the initial theory
¥ is such thatV F55(K (X)) can be computed in polynomial time; and

— for general theoriex < Lk, the additional degree of complexity of rea-
soning about minimal knowledge states is due to the fact that the translation
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of X in S5 normal form causes a growth of the size of the theory which is
exponential with regard to the size Bf This indicates the ability of Halpern

and Moses'’s logic of expressing minimal knowledge states in a more compact
way than MDD logics.

Summarizing, from an epistemological point of view it emerges that the two
different approaches to nonmonotonicity in modal logics produce, for a subclass
of theories, the same epistemic interpretation of the modality. In particular, it turns
out that, for the subset of theori@sC L4, the logic of minimal knowledge states
and reflexive MDD logics contained i84Fypp coincide. In the case of general
theories (with nested modalities) the embedding is realized through a conceptually
very simple translation, which basically consists of putting the initial theory in
normal form. This implies that, for such a large subset of reflexive MDD logics,
the modalityK can be interpreted as a minimal knowledge operator, as long as it
does not occur within the scope of another modality. And for other, nonreflexive,
MDD logics, such a minimal knowledge interpretation can be obtained by simply
addingfewinstances of the modal axiom scheiha

On the other hand, the existence of the normal fovifigs for S55 implies the
impossibility of expressing other notions in these logics through iterated modal-
ities, whereas in many MDD logics iterated modalities can be given interesting
interpretations (e.gK—K— can be interpreted as a “default assumption operator”
in S4Fypp, see Schwarz and Truszéwki, 1994). In this sense, the logic of min-
imal knowledge states can be considered “less expressive” than the most studied
logics in MDD family, if (as, e.g., in Gottlob, 1993) we consider the expressive
power of a nonmonotonic formalism as its ability to express sets of epistemic states
through sets of premises.

6. Conclusions

In this work we have shown that Halpern and Moses’s logic of minimal knowledge
statesS5; is easily embeddable into a large subset of the modal logics for non-
monotonic reasoning. In particular, we have proved that Halpern and Moses’s logic
can be embedded into all ground logics. This result is not surprising, since ground
logics can be considered as a generalization of the minimal knowledge paradigm
on which Halpern and Moses’s logic is based. However, the translation presented
allows for establishing a lower bound for the problem of reasoning in any ground
logic, which proves that deduction in all ground logics is harder than in all the best
known propositional formalisms for nonmonotonic reasoning.

We have also shown that the logic of minimal knowledge states can be embed-
ded into a significant subset of McDermott and Doyle’s family of nonmonotonic
modal formalisms. This result provides a first explanation of the higher degree
of complexity of deduction in minimal knowledge states with regard to the ma-
jor propositional nonmonotonic logics, since the embedding presented allows for
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identifying the additional source of complexity which makes deduction in mini-
mal knowledge states harder than in MDD logics. Moreover, the translation can
be given an epistemological interpretation, thus showing that minimal knowledge
states can be easily expressed in MDD logics, and it is therefore possible to give
an interpretation of the modality in terms of minimal knowledge for MDD logics.

As a byproduct, the study of the relationships between “classical” (MDD)
nonmonotonic modal logics and minimal knowledge states contributes to explain
the connections between MDD logics and a conspicuous number of modal for-
malisms based upon the notion of minimal knowledge (Lifschitz, 1991; Lin and
Shoham, 1992, 1998; Engelfriet, 1996; Meyer and van der Hoek, 1995a, b; Donini
et al., 1995), thus allowing for a better understanding of the epistemological and
computational properties of such logics.
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