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Abstract. We study the problem of embedding Halpern and Moses’s modal logic of minimal
knowledge states into two families of modal formalism for nonmonotonic reasoning, McDermott
and Doyle’s nonmonotonic modal logics and ground nonmonotonic modal logics. First, we prove
that Halpern and Moses’s logic can be embedded into all ground logics; moreover, the translation
employed allows for establishing a lower bound (5

p
3 ) for the problem of skeptical reasoning in all

ground logics. Then, we show a translation of Halpern and Moses’s logic into a significant subset
of McDermott and Doyle’s formalisms. Such a translation both indicates the ability of Halpern and
Moses’s logic of expressing minimal knowledge states in a more compact way than McDermott and
Doyle’s logics, and allows for a comparison of the epistemological properties of such nonmonotonic
modal formalisms.
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1. Introduction

Research in nonmonotonic modal logics has developed from its early years along
two different lines. On the one hand, several studies have proposed the defini-
tion of a nonmonotonic modal formalism by characterizing the epistemic states
of the agent modeled through a fixpoint equation (McDermott and Doyle, 1980;
McDermott, 1982; Moore, 1985; Konolige, 1988). The family of logics thus de-
fined includes autoepistemic logic (Moore, 1985) and McDermott and Doyle’s
family of logics (MDD logics), and has been thoroughly investigated. In particular,
it has been shown (Schwarz, 1990) that Moore’s autoepistemic logic is an instance
of MDD logics, and, more generally, that McDermott and Doyle’s characterization
can be considered a very powerful schema for defining nonmonotonic modal logics
(Marek and Truszczýnski, 1993; Schwarz and Truszczyński, 1994).

On the other hand, several researchers have proposed various notions of non-
monotonic modal logics based on apreference semantics(Shoham, 1987) on mod-
els of a monotonic modal logic. Among these approaches, the logic of minimal
knowledge states, due to Halpern and Moses (1985), is based on a simple and “nat-
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ural” preference semantics for the modal logicS5 (Shoham, 1987; Moore, 1985),
which realizes the intuitive principle of minimization of knowledge of the agent
modeled. Such a logic, initially proposed for modeling knowledge and ignorance
of processes in a distributed computer system, constitutes the basis of several non-
monotonic modal formalisms proposed in the literature (Lifschitz, 1991; Lin and
Shoham, 1992, 1998; Engelfriet, 1996; Meyer and van der Hoek, 1995a, b; Donini
et al., 1995; Rosati, 1997a).

Recently, there has been a considerable effort towards the reconciliation of the
syntactic and the semantic approach to the definition of nonmonotonic modal log-
ics. One of the most important steps in this direction is due to Schwarz (1992a) who
provides a preference semantics, based on a partial ordering of Kripke models, for
a large subset of MDD logics. Conversely, Halpern and Moses’s logic of knowl-
edge states can be given a fixpoint characterization (Tiomkin and Kaminski, 1990)
which is a slight variation of McDermott and Doyle’s equation, and which actually
defines a whole family of logics based on the minimal knowledge paradigm, the so-
calledgroundnonmonotonic modal logics (ground logics for short) (Tiomkin and
Kaminski, 1990; Schwarz, 1992b; Donini et al., 1997). Furthermore, the definition
of a preference semantics for ground logics (Nardi and Rosati, 1995) has shown,
from the semantical viewpoint, the existence of deep analogies between this family
of formalisms and MDD logics.

Finally, recent studies on the computational properties of the logic of minimal
knowledge states (Donini et al., 1997) have shown that reasoning in this logic is
strictly harder (unless the polynomial hierarchy collapses to NP, see Johnson, 1990)
than reasoning in all the most popular propositional nonmonotonic formalisms
(Cadoli and Schaerf, 1993; Gottlob, 1992), in particular with regard to many MDD
logics (Marek and Truszczyński, 1993). Therefore, the question arises of how “sim-
ilar” the logic of minimal knowledge states to MDD logics, and in which sense, if
any, MDD logics are “less expressive” than minimal knowledge states is.

The goal of the present work is to study the possibility of representing mini-
mal knowledge states in nonmonotonic modal logics. In particular, we study the
problem of embedding Halpern and Moses’s logic into ground logics and MDD
logics.

The results presented in this paper can be summarized as follows: the logic of
Halpern and Moses is “easily” embeddable in most of the nonmonotonic modal
formalisms taken into consideration. More specifically, we first provide an embed-
ding of Halpern and Moses’s logic into ground logics which in turn allows for
establishing a computational property (5

p

3-hardness) for the deduction problem in
the whole family of ground logics.

Then we show that Halpern and Moses’s logic can easily be embedded into
many MDD logics, in the sense that, in many cases, a simple transformation of
modal theories realizes the embedding of minimal knowledge states into MDD
logics.
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Finally, we point out the existence of syntactic restrictions under which minimal
knowledge states and preferred models in MDD logics coincide. This result allows
for both establishing a computational characterization of the problem of reasoning
in Halpern and Moses’s logic under such syntactic restrictions, and analyzing the
epistemological properties of the logic of minimal knowledge states, as compared
to MDD logics. Surprisingly, it turns out that in a large subset of MDD logics
modalities can be given a minimal knowledge interpretation, as far as they are
not nested modalities. Thus, the higher degree of complexity of reasoning about
minimal knowledge states cannot be attributed to the interpretation of the modal
operator in this logic. Rather, the translation we provide indicates the ability of
Halpern and Moses’s logic of expressing minimal knowledge states in a more
compact form than MDD logics.

The paper is structured as follows. In the next section we recall some prelimi-
nary definitions and properties of nonmonotonic modal logics. Then, in Section 3
we show the embedding of the logic of minimal knowledge states into ground
logics, and in Section 4 we show that the logic of minimal knowledge states can
be embedded into a large subset of MDD logics. Section 5 presents new complex-
ity results for the problem of reasoning in ground logics, and an epistemological
interpretation of such results. Finally, some conclusions are drawn in Section 6.

2. Preliminaries

In this section we briefly recall some preliminary definitions and properties of
nonmonotonic modal logics. The interested reader is referred to (Marek and
Truszczýnski, 1993; Nardi and Rosati, 1995) for further details.

We useL to denote a fixed propositional language built in the usual way from
an alphabetA of propositional symbols (containing the symbolstrue, false) and
the propositional connectives∨, ∧, ¬, ⊃. Formulas overL will often be called
objective, because they do not contain occurrences of the modal operator.

We denote withLK the modal extension ofL with the only modalityK (for
knowledge), and withL0

K the set{Kϕ | ϕ ∈ L}. L1 stands for the set of formulas
built fromL0

K and the propositional connectives∨,∧,¬,⊃. The symbolL6
K stands

for the restriction ofLK to the formulas in which only propositional symbols from
the modal theory6 ⊆ LK appear. The set ofmodal atomsof a theory6 ⊆ LK

is the setMA(6) = {ϕ | Kϕ is a subformula of a formula from6}. A formula
ϕ ∈ LK has modal depthn if each subformula ofϕ lies within the scope of at most
n nested modalities.

Given a modal logicS, we denote withCns the logical consequence operator in
S. Given two modal logicsS1 andS2, byS1 ⊆ S2 we mean that all axioms of logic
S1 are also axioms (or theorems) in logicS2 (e.g.,K ⊆ KD45 ⊆ S5).

We denote withS4F (also known asS4.3.2; see Segerberg, 1971) the modal
logic obtained by adding toS4 the following axiom schemaF:

(ϕ ∧ ¬K¬Kϕ) ⊃ K(¬K¬ϕ ∨ ϕ)
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and withSW5 (also known asS4.4; see Segerberg, 1971) the modal logic obtained
by adding toS4 the following axiom schemaW5:

ϕ ⊃ (¬K¬Kϕ ⊃ Kϕ).
A Kripke modelM is defined as usual by a triple〈W,R,V 〉, whereW is a set

of worlds,R is a binary relation onW andV is a function assigning a propositional
valuation to each worldw ∈ W . WhenR isW ×W (i.e.,M is a universal model)
we simply write〈W,V 〉.

We denote withT h(M) the set of formulas ofLK that are satisfied inM, i.e.,
T h(M) = {ϕ ∈ LK |M |= ϕ}, whereM |= ϕ for eachw ∈ V , (M, w) |= ϕ (the
satisfiability relation between a modal formulaϕ and a worldw in a Kripke model
M is defined in the usual way).

Given a modal logicS, a consistent set of formulasT is anSMDD expansion for
a set of initial knowledge6 ⊆ LK if

T = CnS(6 ∪ {¬Kϕ | ϕ ∈ LK\T }), (1)

whereCnS is the consequence operator in (classical) modal logicS.
The resulting consequence operator is defined as the intersection of allSMDD

expansions for6: given 6 ⊆ LK , ϕ ∈ LK , we say thatϕ is entailed by6
in SMDD (and write6 |=SMDD

ϕ) iff ϕ belongs to allSMDD expansions for6.
Such an operator is in general nonmonotonic; thus, for every modal logicS, the
(nonmonotonic) modal logicSMDD is obtained by means of Equation (1).

Let us now briefly recall the minimal knowledge paradigm. Informally, such a
principle consists of considering, among the epistemic states which are consistent
with the initial knowledge6 of the agent, only the subset composed of each stateE

which is minimal with respect to the objective knowledge, i.e., any other epistemic
stateE′ either is inconsistent with6 or contains more objective knowledge thanE.
In a modal logic setting, such a paradigm can be stated as follows: given a modal
logic S, a modelM is a model of minimal knowledge for6 ⊆ LK in S if M is a
model for6 in S and for every modelM′ for 6 in S, T h(M′)∩L 6⊂ T h(M)∩L.

We say thatS is a logic of minimal knowledge if for every theory6 ⊆ LK ,
every model for6 in S is a model of minimal knowledge for6 in S.

In Halpern and Moses (1985) the notion of minimal knowledge is applied
to modal logicS5: the logic of minimal knowledge states is therefore the logic
obtained by considering as models for6 ⊆ LK only the models of minimal
knowledge among theS5 models satisfying6 (Shoham, 1987; Lifschitz, 1991).

The logic of minimal knowledge states can be given a fixpoint characterization,
which is similar to the one given in the MDD case, and that gives rise to the family
of groundnonmonotonic modal logics. Given a normal modal logicS, a consistent
set of formulasT is anSG expansionfor a set6 ⊆ LK if

T = CnS(6 ∪ {¬Kϕ | ϕ ∈ L\T }).
Note that, in this case, negative introspection is bounded to objective knowledge in
the right-hand side of the equation.
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Given6 ⊆ LK , ϕ ∈ LK , we say thatϕ is entailedby 6 in SG (and write
6 |=SG ϕ) iff ϕ belongs to allSG expansions for6.

It turns out that, ifS = S5, then the logic of minimal knowledge states is
obtained from the above equation (Tiomkin and Kaminski, 1990). Hence,S5G
corresponds to Halpern and Moses’s logic.

Let us now introduce a characterization of MDD (respectively, ground) logics
based on a syntactic preference criterion on Kripke models. In the next section,
we will use such a characterization, thus referring toSMDD models (SG models)
instead ofSMDD expansions (SG expansions).

DEFINITION 2.1. Given a modal logicS ⊆ S5 characterized by the classC of
Kripke models and a theory6 ⊆ LK , a modelM ∈ C is anSMDD modelfor 6 iff
M |= 6 and, for every modelN ∈ C, if N |= 6 ∪ {¬Kϕ | ϕ ∈ LK\T h(M)},
thenT h(M) = T h(N ).

DEFINITION 2.2. Given a normal modal logicS ⊆ S5 characterized by the class
C of Kripke models and a theory6 ⊆ LK , a modelM ∈ C is anSG modelfor 6
iff M |= 6 and, for every modelN ∈ C, if N |= 6 ∪ {¬Kϕ | ϕ ∈ L\T h(M)},
thenT h(M) = T h(N ).

It holds that anS5 modelM is anSMDD model for6 ⊆ LK iff T h(M) is anSMDD

expansion for6 (Marek and Truszczýnski, 1993), and that anS5 modelM is an
SG model for6 ⊆ LK iff T h(M) is anSG expansion for6 (Nardi and Rosati,
1995). Moreover, for any modal logicS betweenK andS5, and for any6 ⊆ LK ,
eachSG model for6 is anSMDD model for6.

PROPOSITION 2.3.LetS1, S2 be any two normal modal logics, and let6 ⊆ LK .
If S1 ⊆ S2, then eachS1

MDD model for6 is an S2
MDD model for6 and eachS1

G

model for6 is anS2
G model for6.

The following property directly follows from Marek and Truszczyński (1993:
theorem 8.16).

PROPOSITION 2.4.Let T ⊆ LK be a stable theory. LetM be a Kripke model
such thatM |= (T ∩L) ∪ {¬Kϕ | ϕ ∈ L\T }. Then, for everyϕ ∈ LK , ϕ ∈ T iff
M |= ϕ, namelyT = T h(M).

Let us finally recall a normal form for modal theories inS5, which is based on the
fact that inS5 every modal formulaKϕ is equivalent to a formula in the setL1,
namely a formula without nested occurrences of the modality and in which each
occurrence of a propositional symbol lies within the scope of exactly one modality.
The procedure for transforming the formula is conceptually simple:? informally, it

? For a detailed description of such a procedure, see Hughes and Cresswell, 1968: chapter 3).
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is based on the following equivalences, which are valid inS5:

K(ϕ ∧ψ) ≡ Kϕ ∧Kψ,
K(ϕ ∨Kψ) ≡ Kϕ ∨Kψ,

K(ϕ ∨ ¬Kψ) ≡ Kϕ ∨¬Kψ,
KKϕ ≡ Kϕ,

K¬Kϕ ≡ ¬Kϕ.
We call S5 normal formof a modal formulaKϕ the formulaN FS5(Kϕ) ∈

L1 obtained by reducingKϕ to a formula belonging toL1 through the above
procedure.

Let6 be a modal theory such that each formulaϕ from6 is of the formKψ .
TheS5 normal form of6, denoted asN FS5(6), is defined as

N FS5(6) = {N FS5(ϕ) | ϕ ∈ 6}.
Note that, in general the size ofN FS5(6) is exponential in the size of6, which is
informally due to the fact that, in order to transform a modal formula of the form
Kϕ, it is necessary to putϕ in a “modal conjunctive normal form” (see Hughes
and Cresswell, 1968, for more details). Moreover, every propositional symbol in
N FS5(6) lies within the scope of exactly one modal operator.

3. Minimal Knowledge in Ground Logics

In this section we show how to embed the logic of minimal knowledge states into
ground logics. In particular, we first provide a very simple translation for theories
without nested occurrences of the modality. Then, we extend such a translation in
order to deal with general modal theories; notably, this last translation allows for
a computational characterization of the entailment problem in all ground logics,
which generalizes a previous result shown in Donini et al. (1997).

In the following, we use the termembedding(or translation) to indicate a trans-
formation function for modal theories, i.e.,E : L→ LK . Sometimes we will abuse
terminology, using this term also to indicate the application of a transformation to
a modal theory.

We are interested in findingfaithful embeddings, in the following sense: given
two modal logicsS1, S2, E is a faithful embedding fromS1 into S2 if, for each
6 ⊆ LK and for each Kripke modelM, M is anS1 model for6 iff M is anS2

model forE(6).
We now define the following transformation functions for modal theories:

K(6) = {Kϕ | ϕ ∈ 6},
T (6) = 6 ∪ {(Kϕ ⊃ ϕ) | ϕ ∈MA(6)},

TN(6) = N FS5(K(6)) ∪ {(Kϕ ⊃ ϕ) | ϕ ∈MA(N FS5(K(6)))}.
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It is easy to see that anyS5 modelM is a model for6 iff it is a model for
K(6). Moreover, since each formulaKϕ ⊃ ϕ is valid inS5, the following lemma
holds:

LEMMA 3.1. Let 6 ⊆ LK . Then,M is an S5G model for6 iff M is an S5G
model forT (6). Moreover,M is anS5G model for6 iff M is anS5G model for
N FS5(K(6)).

We now show that minimal knowledge states are easily embeddable intoany
ground logicSG. We start by analyzing the case of theories6 ⊆ L1.

LEMMA 3.2. Let6 ⊆ L1. LetM be anS5G model for6 and letN be aK model.
If N |= T (6) ∪ {¬Kϕ | ϕ ∈ L\T h(M)}, thenT h(M) ∩L = T h(N ) ∩L.

Proof. Let ϕ ∈ L1 and letD(ϕ) be the DNF ofϕ, obtained considering
each modal atom as a propositional symbol. LetD(6) = {D(ϕ) | ϕ ∈ 6}.
By hypothesisN |= 6 ∪ {¬Kϕ | ϕ ∈ L\T h(M)}, and sinceϕ ≡ D(ϕ)

is valid in K, N |= D(6). Now consider each theoryHi(6) obtained from
{¬Kϕ | ϕ ∈ L\T h(M)} by adding one conjunct ofϕ, for eachϕ ∈ D(6). Since
N |= D(6) ∪ {¬Kϕ | ϕ ∈ L\T h(M)}, N must satisfy at least one of such
theoriesHi(6). On the other hand, the fact thatM is anS5G model implies that
eachHi(6) either isS5-inconsistent or is minimal, in the sense that for each pair
of S5-consistent theoriesHi(6), Hj(6), {ϕ | Kϕ ∈ Hi(6)} is propositionally
equivalent to{ϕ | Kϕ ∈ Hj(6)}. Hence, for eachS5-consistentHi(6), the theory
{Kϕ | Kϕ ∈ Hi(6)} is equivalent inS5 to the theory{Kϕ | ϕ ∈ MA(6) and
M |= ϕ}. Now, due to the form of theHi(6)’s, eachHi(6) is S5-consistent iff
it is K-consistent; consequently, the above equivalence also holds in the logicK.
Therefore,N |= {Kϕ | ϕ ∈MA(6) andϕ ∈ T h(M)∩L}, and sinceN |= T (6),
it follows that N |= {ϕ | ϕ ∈ MA(6) andM |= ϕ}. Now, since6 ⊆ L1, it
follows thatT h(M) ∩ L = Cn({ϕ | ϕ ∈ MA(6) andM |= ϕ}, consequently
N |= T h(M) ∩ L. On the other hand,N |= {¬Kϕ | ϕ ∈ L\T h(M)} implies
T h(N ) ∩L ⊆ T h(M) ∩L, thereforeT h(N ) ∩L = T h(M) ∩L. 2

We can now prove that, for theories6 ⊆ L1, T (6) is a faithful embedding of
S5G into any ground logicSG.

THEOREM 3.3.Let6 ⊆ L1, and letS be any modal logic such thatK ⊆ S ⊆ S5.
Then, a Kriple modelM is anS5G model for6 iff M is anSG model forT (6).

Proof. If part. Follows straightforward from the fact that everySG model for
T (6) is also anS5G model forT (6) and from Lemma 3.1.

Only-if part. SupposeM is an S5G model for 6. Then, by Lemma 3.1,
it follows that M is an S5G model for T (6). Now suppose thatM is not
an SG model for T (6). Therefore, there exists anS model N such that
N |= T (6) ∪ {¬Kϕ | ϕ ∈ L\T h(M)} andT h(N ) 6= T h(M). Now, Lemma 3.2
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implies thatT h(M) ∩ L = T h(N ) ∩ L. Consequently,N |= T h(M) ∩ L, and
by Proposition 2.4 it follows thatT h(M) = T h(N ). Contradiction. Therefore,M
is anSG model forT (6). 2

We now prove thatS5G can be embedded into any ground logicSG through a
polynomial-time transformation of modal theories. First, we prove the following
lemma.

LEMMA 3.4. Let6 ⊆ LK and let

61 = 6 ∪
 ⋃
Kϕ∈MA(6)

{Kϕ ⊃ ϕ}


∪
 ⋃
Kϕ∈MA(6)

{Kϕ ⊃ KKϕ}


∪
 ⋃
Kϕ∈MA(6)

{¬Kϕ ⊃ K¬Kϕ}
 .

Then, anS5 modelM is a KG model for61 iff M is anS5G model for6.
Proof. Only-if part. Follows from the fact that6 is S5-equivalent to61 and

from Proposition 2.3.
If part. Let M be anS5G model for6. Then, since6 is S5-equivalent to61,

M is anS5G model for61. SupposeM is not aKG model for61. Then there exists
a modelM′ = 〈W ′, R′, V ′〉 such thatM′ |= 61 ∪ {¬Kϕ : ϕ ∈ L\T h(M)}. Now,
letKϕ be a modal atom of6 such thatϕ ∈ L. Suppose there exists a worldw in
M′ such that〈M′, w〉 |= ¬ϕ. Then, sinceKϕ ⊃ ϕ ∈ 61 andM′ |= 61, it follows
that 〈M′, w〉 |= ¬Kϕ. And since¬Kϕ ⊃ K¬Kϕ ∈ 61, 〈M′, w〉 |= K¬Kϕ. It
follows that 〈M′, w′〉 |= ¬Kϕ holds for everyw′ such that(w,w′) ∈ R′. Now
let w′′ be a world inM′ such that(w′′, w) ∈ R′. Clearly,〈M′, w′′〉 |= ¬Kϕ. Let
w′′′ be a world such that(w′′′, w′′) ∈ R′. Then〈M′, w′′′〉 |= ¬KKϕ, and since
Kϕ ⊃ KKϕ ∈ 61, it follows that〈M′, w′′′〉 |= ¬Kϕ. By iteration we arrive at the
conclusion that〈M′, w′〉 |= ¬Kϕ holds for eachw′ in the connected component
to whichw belongs. That is, for each connected componentM′

i of M′, and for
eachKϕ ∈ MA(6) such thatϕ ∈ L, eitherM′

i |= Kϕ or M′
i |= ¬Kϕ. Now let

P1 = {Kϕ : ϕ ∈ L andKϕ ∈ MA(6) andM′
i |= Kϕ}, letN1 = {Kϕ : ϕ ∈ L

andKϕ ∈ MA(6)}\P1, and let6(P1,N1) be the theory obtained by substituting
each occurrence ofKϕ in 6 with true if Kϕ ∈ P1 and each occurrence ofKϕ
in 6 with false if Kϕ ∈ N1. Clearly,M′

i |= 6(P1,N1). Again, we can conclude
that, for eachKϕ ∈ MA(6) such thatϕP1,N1) ∈ L, either M′

i |= Kϕ or
M′

i |= ¬Kϕ. Therefore, eitherM′
i |= Kϕ or M′

i |= ¬Kϕ for each modal atom in
MA(6) of modal depth 2. By iteration we arrive at the conclusion that, for each
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Kϕ ∈ MA(6) and for each connected componentM′
i of M′, eitherM′

i |= Kϕ or
M′

i |= ¬Kϕ. Now, there are two possible cases:

1. for all M′
i ’s, {Kϕ : Kϕ ∈ MA(6) and M′

i |= Kϕ} = P . Therefore,
M′ |= 6(P,N), and sinceM′ |= 61, it follows that M′ |= ϕ(P,N) for
eachKϕ ∈ P . Thus,T h(M′) ∩L = T h(M) ∩L, and sinceM′ |= {¬Kϕ :
ϕ ∈ L\T h(M)}, from Proposition 2.4 it follows thatT h(M′) = T h(M), thus
contradicting the hypothesis.

2. there exists anM′
i such that{Kϕ : Kϕ ∈ MA(6) andM′

i |= Kϕ} 6= P .
Therefore, there exists a modal atomKϕ ∈ MA(6) such thatϕ is
of depth j , all Kψ ’s in MA(6) of modal depth less thanj are such
that M′

i |= Kψ iff Kψ ∈ P , M′
i 6|= Kϕ, and M |= Kϕ. Let

P ′ = {Kϕ : Kϕ ∈ MA(6) and M′
i |= Kϕ}, let N ′ = MA(6)\P1,

and let M′′ = 〈V ′′,W ′′〉 be the S5 model such thatV ′′(w) = w and
W ′′ = {w : w |= 6(P ′,N ′) ∪ {ψ(P ′,N ′) : Kψ ∈ P ′}}. It is easy to see that
M′′ |= 6 andT h(M′′) ∩L ⊂ T h(M) ∩L, due to the existence of the above
mentioned modal atomKϕ. Therefore,M is not anS5G model for6, thus
contradicting the hypothesis.

Hence,M is aKG model for61. 2

THEOREM 3.5.Let6 ⊆ L1, and letS be any modal logic such thatK ⊆ S ⊆ S5.
Then a Kripke modelM is anS5G model for6 iff M is anSG model for the theory

61 = 6 ∪
 ⋃
Kϕ∈MA(6)

{Kϕ ⊃ ϕ}


∪
 ⋃
Kϕ∈MA(6)

{Kϕ ⊃ KKϕ}


∪
 ⋃
Kϕ∈MA(6)

{¬Kϕ ⊃ K¬Kϕ}
 .

Proof. Follows straightforward from Lemma 3.4 and Proposition 2.3. 2

Hence, it is possible to embed Halpern and Moses’s logic into any ground logic
by means of a very simple transformation, which consists of adding the instances
of modal axiom schemasT, 4, and5, relative to the modal subformulas of the
form Kϕ appearing in the theory. In Section 6, we investigate the computational
implications of this result.
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4. Minimal Knowledge in MDD Logics

In this section we show how to embed the logic of minimal knowledge states into
MDD logics. We start by taking into consideration the embedding of theories
6 ⊆ L1 into the logicKMDD. To this aim we use the following lemma, which is a
direct consequence of a property shown by Schwarz (1992: proposition 5.2):

LEMMA 4.1. Let6 ⊆ L1. ThenM is a KMDD model for6 iff M is a KG model
for 6.

The above lemma allows us to prove the following property.

THEOREM 4.2.Let6 ⊆ L1. Then a Kripke modelM is anS5G model for6 iff
M is a KMDD model forT (6).

Proof. If part. If M is aKMDD model forT (6), then, sinceT (6) ⊆ L1, from
Lemma 4.1 it follows thatM is aKG model forT (6), which in turn implies that
M is anS5G model forT (6). Therefore, by Lemma 3.1,M is anS5G model for
6.

Only-if part. If M is an S5G model for6, then, by Lemma 3.1,M is an
S5G model forT (6). Now, sinceT (6) ⊆ L1, it follows from Theorem 3.3 that
M is aKG model forT (6), which in turn implies thatM is aKMDD model for6.2

Now we show that, for theories contained inL1, S4FMDD models andS5G
models coincide. To this aim, we make use of the two following lemmas, which
derive directly from the possible-world semantic characterizations of MDD and
ground logics given, respectively, in Schwarz (1992a) and Nardi and Rosati (1995).

LEMMA 4.3. Let6 ⊆ LK and letM be anS5 model. ThenM is an S4FMDD

model for6 iff M |= 6 and, for everyS4F modelN , if N = M′ � M and
N |= 6, then for each worldw ∈ WN and for each finite set of propositional
symbolsP ⊂ A, Vn(w)|P = VM(w′)|P , for somew′ ∈ WM .

Informally, Lemma 4.3 states that anS5 modelM is preferred for6 in S4FMDD

iff there is noS4F modelN satisfying6 such thatM is the lower cluster ofN
andN contains at least one interpretation different from those inM.

LEMMA 4.4. Let6 ⊆ LK and letM be anS5 model. ThenM is anS5G model
for 6 iff M |= 6 and, for everyS5 modelN , if N |= 6 and for eachw ∈ WM

and for each finite set of propositional symbolsP ⊆ A, VM(w)|P = VN(w
′)|P ,

for somew′ ∈ WN , then for each worldw ∈ WN and for each finite set of
propositional symbolsP ⊆ A, VN(w)|P = VM(w′)|P , for somew′ ∈ WM .
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Roughly speaking, Lemma 4.4 establishes that anS5 modelM is preferred for6 in
S5G iff there is noS5 modelN satisfying6 and containing all the interpretations
in M such thatN contains at least one interpretation different from those inM.

We now prove the following key property.

LEMMA 4.5. Let6 ⊂ L1. Then a Kripke modelM is anS5G model for6 iff M
is anS4FMDD model for6.

Proof. If part. SupposeM is anS5G model for6, and supposeM is not an
S4FMDD model for6. From Lemma 4.3, it follows that there exists anS4F model
N = M′ �M such that there exists a worldw ∈ W ′M and a finite set of proposi-
tional symbolsP ⊆ A such thatVN(w)|P 6= VM(w′)|P , for eachw′ ∈ WM . Now,
let N ′ be the model〈WN,WN ×WN,VN 〉, i.e., theS5 model obtained fromN by
connecting each world of the lower clusterM with each world of the upper cluster
M′. Letϕ ∈ L1, and letw be a world inN ′. It is easy to see that the set of worlds
accessible fromw in N ′ is the same set of worlds accessible from the worlds of the
upper cluster inN , i.e.,{w′ | (w,w′) ∈ R′N } = {w′ | w′ ∈ W ′M and(w,w′) ∈ RN}.
Therefore, for eachϕ ∈ L1, (N ′, w) |= ϕ iff (N , w) |= ϕ. And since6 ⊆ L1

and(N , w) |= 6, it follows that for each worldw ∈ N ′, (N ′, w) |= 6, there-
fore N ′ |= 6. In addition, by hypothesis there exists a worldw ∈ W ′M and a
finite set of propositional symbolsP ⊆ A such thatVN(w)|P 6= VM(w

′)|P , for
eachw′ ∈ WM , consequently, by Lemma 4.4,M is not anS5G model for6.
Contradiction. Therefore,M is anS4FMDD model for6.

Only-if part. SupposeM is not S5G model for6. Then there exists anS5
model M′ such thatM′ |= 6 and there exists a worldw ∈ W ′M and a finite
set of propositional symbolsP ⊆ A such thatV ′M(w)|P 6= VM(w

′)|P , for each
w′ ∈ WM . Now, theS4F model N = M′ � M is such that the set of worlds
accessible from each world inN is the same set of worlds accessible from each
world in M′, i.e., {w′ | (w,w′) ∈ RN} = {w′ | w′ ∈ W ′M and(w,w′) ∈ R′M}.
Therefore, for eachϕ ∈ L1, (N , w) |= ϕ iff (M, w) |= ϕ. And since6 ⊆ L1

and M′ |= 6, N |= 6. Moreover, by construction ofN it follows that there
exists a worldw ∈ WN and a finite set of propositional symbolsP ⊆ A such that
VN(w)|P 6= VM(w′)|P , for eachw′ ∈ WM . Therefore, by Lemma 4.3,M is not an
S4FMDD model for6. 2

The above lemma allows us to prove that the logicS5G is easily embeddable into
a large subset of MDD logics.

THEOREM 4.6.Let6 ⊆ LK , and letS be any modal logic such thatK ⊆ S ⊆
S4F. Then a Kripke modelM is anS5G model for6 iff M is anSMDD model for
TN(6).

Proof. If part. If M is anSMDD model forTN(6) (K ⊆ S ⊆ S4F), then, by
Proposition 2.3,M is anS4FMDD model forTN(6). Now, since axiom schemaT
is valid in S4F, it follows that for each Kripke modelM, M is anS4F model for
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TN(6) iff M is anS4F model forN FS5(K(6)), henceM is anS4FMDD model
for N FS5(K(6)). And sinceN FS5(K(6)) ⊆ L1, it follows from Lemma 4.5
thatM is anS5G model forN FS5(K(6)). Consequently, by Lemma 3.1,M is an
S5G model for6.

Only-if part. If M is an S5G model for6, then, by Lemma 3.1,M is an
S5G model for N FS5(K(6)). Consequently, sinceN FS5(K(6)) ⊆ L1, by
Theorem 4.2 it follows thatM is a KMDD model for TN(6). Therefore, by
Proposition 2.3, for anyS such that(K ⊆ S ⊆ S4F), M is anSMDD model for
TN(6). 2

COROLLARY 4.7. Let 6 ⊆ LK , and let S be any modal logic such that
T ⊆ S ⊆ S4F. Then a Kripke modelM is anS5G model for6 iff M is anSMDD

model forN FS5(K(6)).

COROLLARY 4.8. Let 6 ⊆ L1, and let S be any modal logic such that
T ⊆ S ⊆ S4F. Then a Kripke modelM is anS5G model for6 iff M is anSMDD

model for6.

The previous theorem shows a translation of logicS5G in the subset of MDD logics
betweenK andS4F.

5. On the Complexity of Reasoning about Minimal Knowledge States

In this section, we present some new complexity results for the problem of rea-
soning in ground logics, which follow from the properties shown in previous
sections.

First, we briefly recall some basic notions from complexity theory (see, e.g.,
Johnson, 1990, for further details). We denote as P the class of problems solvable
in polynomial time by a deterministic Turing machine. The class NP contains all
problems that can be solved by a nondeterministic Turing machine in polynomial
time. The class coNP comprises all problems that are the complement of a prob-
lem in NP. A problemP1 is said to be NP-complete if it is in NP and for every
problemP2 in NP, there is a polynomial-time reduction fromP2 toP1. If there is a
polynomial-time reduction from an NP-complete problemP2 to a problemP1, then
P1 is said to be NP-hard. With a slight abuse of terminology, we call NP-algorithm
a nondeterministic algorithm that runs in polynomial time. PA (NPA) is the class
of problems that are solved in polynomial time by deterministic (nondeterministic)
Turing machines using an oracle forA (i.e., that solves in constant time any prob-
lem in A). The classes6p

k , 5p

k and1p

k of the polynomial hierarchy are defined
by 6p

0 = 5
p

0 = 1
p

0 = P, and fork ≥ 0, 6p

k+1 = NP6
p
k , 5p

k+1 = co6p

k+1 and

1
p

k+1 = P6
p
k .
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We also recall the following computational characterization for the problem of
reasoning in the logicS5G, which has been proved in Donini et al. (1997).

PROPOSITION 5.1.Entailment inS5G is a5p

3 -complete problem.

We now present two new results concerning the complexity of reasoning in ground
logics. First, Lemma 3.4 allows for establishing a lower bound for the problem of
reasoning in all ground logics.

THEOREM 5.2.Given a modal logicS such thatK ⊆ S ⊆ S5, entailment inSG is
5
p

3-hard.
Proof. Follows from Lemma 3.4, from Proposition 5.1, and from the fact that

61 = 6 ∪
 ⋃
Kϕ∈MA(6)

{Kϕ ⊃ ϕ}


∪
 ⋃
Kϕ∈MA(6)

{Kϕ ⊃ KKϕ}


∪
 ⋃
Kϕ∈MA(6)

{¬Kϕ ⊃ K¬Kϕ}
 .

can be computed in time polynomial with regard to the size of6. 2

The above theorem generalizes a previous result (Donini et al., 1997: theorem 4.2)
which established5p

3 as a lower bound for reasoning in a subset of ground logics.
Theorem 5.2 shows that reasoning inall ground logics is harder than reasoning
in the most famous propositional formalisms for nonmonotonic reasoning, such
as default logic, circumscription, autoepistemic logic (Cadoli and Schaerf, 1993),
several MDD logics (Marek and Truszczyński, 1993), and Levesque’s logic of only
knowing (Rosati, 1997b): reasoning in all such logics lies at the second level of the
polynomial hierarchy.

Next we show that, in the case of modal theories contained inL1, reasoning in
Halpern and Moses’s logic also lies at the second level of the polynomial hierarchy.
Indeed, Theorem 4.6 shows that there exists a polynomial translation ofS5G into
all MDD logics betweenKMDD andS4FMDD for theories inL1. Now, since entail-
ment inS4FMDD is5p

2-complete (Marek and Truszczyński, 1993), it follows that
entailment inS5G for theories inL1 is in5p

2 .
We now prove that5p

2 is also a lower bound for entailment inS5G for theories
in L1.
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LEMMA 5.3. Let6 ⊆ L1, and letϕ ∈ LK . The problem of establishing whether
6 |=S5G ϕ is5p

2 -hard.
Proof. We reduce the problem of query answering in positive disjunctive logic

programs under the stable model semantics to an entailment problem inS5G for
theories inL1. Query answering in positive disjunctive logic programs under the
stable model semantics is a5p

2-complete problem (Eiter and Gottlob, 1995: the-
orem 3.2). We consider the following translationτ of a positive disjunctive logic
program intoS5G (which is a restriction of Lifschitz’s translation of logic programs
into the logicMKNF, see Lifschitz, 1991). Each program ruler is of the form

r = p1 | . . . | pn← q1, . . . , qm,

wherem ≥ 0, n ≥ 0, and eachpi, qi is an atom (propositional symbol). Such a
rule is translated into the formula

τ(r) 6= Kq1 ∨ . . . ∨ ¬Kqm ∨Kp1 ∨ . . . ∨Kpn.
Given a positive disjunctive logic programP , τ(P ) = {τ(r) | r ∈ P }. Notice that
for each programP the theoryτ(P ) is contained inL1.

Correctness of the above translation follows straightforwardly from the results
presented in Lifschitz (1991); in particular, it follows that a literall is entailed by
a positive disjunctive logic programP under the stable model semantics iff:

1. τ(P ) |=S5G Kl, if 1 is an atom; and
2. τ(P ) |=S5G ¬Kl, if 1 is a negated atom.

And sinceτ is a transformation which can be performed in time linear with regard
to the size ofP , it follows that entailment inS5G is5p

2-hard for theories inL1. 2

Hence, the following property holds.

THEOREM 5.4.Let 6 ⊆ L1, and let ϕ ∈ LK . The problem of establishing
whether6 |=S5G ϕ is5p

2 -complete.

We now give an epistemological reading of the results presented above, based on
the following considerations:

− Corollary 4.8 implies that, under some syntactical restrictions (i.e., for the-
ories6 ⊆ L1), minimal knowledge states and a significant subset of MDD
logics coincide;

− from Theorem 4.6 it follows that minimal knowledge states are embeddablein
polynomial timeinto a significant subset of MDD logics, if the initial theory
6 is such thatN FS5(K(6)) can be computed in polynomial time; and

− for general theories6 ⊆ LK , the additional degree of complexity of rea-
soning about minimal knowledge states is due to the fact that the translation
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of 6 in S5 normal form causes a growth of the size of the theory which is
exponential with regard to the size of6. This indicates the ability of Halpern
and Moses’s logic of expressing minimal knowledge states in a more compact
way than MDD logics.

Summarizing, from an epistemological point of view it emerges that the two
different approaches to nonmonotonicity in modal logics produce, for a subclass
of theories, the same epistemic interpretation of the modality. In particular, it turns
out that, for the subset of theories6 ⊆ L1, the logic of minimal knowledge states
and reflexive MDD logics contained inS4FMDD coincide. In the case of general
theories (with nested modalities) the embedding is realized through a conceptually
very simple translation, which basically consists of putting the initial theory in
normal form. This implies that, for such a large subset of reflexive MDD logics,
the modalityK can be interpreted as a minimal knowledge operator, as long as it
does not occur within the scope of another modality. And for other, nonreflexive,
MDD logics, such a minimal knowledge interpretation can be obtained by simply
addingfew instances of the modal axiom schemaT.

On the other hand, the existence of the normal formN FS5 for S5G implies the
impossibility of expressing other notions in these logics through iterated modal-
ities, whereas in many MDD logics iterated modalities can be given interesting
interpretations (e.g.,K¬K¬ can be interpreted as a “default assumption operator”
in S4FMDD, see Schwarz and Truszczyński, 1994). In this sense, the logic of min-
imal knowledge states can be considered “less expressive” than the most studied
logics in MDD family, if (as, e.g., in Gottlob, 1993) we consider the expressive
power of a nonmonotonic formalism as its ability to express sets of epistemic states
through sets of premises.

6. Conclusions

In this work we have shown that Halpern and Moses’s logic of minimal knowledge
statesS5G is easily embeddable into a large subset of the modal logics for non-
monotonic reasoning. In particular, we have proved that Halpern and Moses’s logic
can be embedded into all ground logics. This result is not surprising, since ground
logics can be considered as a generalization of the minimal knowledge paradigm
on which Halpern and Moses’s logic is based. However, the translation presented
allows for establishing a lower bound for the problem of reasoning in any ground
logic, which proves that deduction in all ground logics is harder than in all the best
known propositional formalisms for nonmonotonic reasoning.

We have also shown that the logic of minimal knowledge states can be embed-
ded into a significant subset of McDermott and Doyle’s family of nonmonotonic
modal formalisms. This result provides a first explanation of the higher degree
of complexity of deduction in minimal knowledge states with regard to the ma-
jor propositional nonmonotonic logics, since the embedding presented allows for
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identifying the additional source of complexity which makes deduction in mini-
mal knowledge states harder than in MDD logics. Moreover, the translation can
be given an epistemological interpretation, thus showing that minimal knowledge
states can be easily expressed in MDD logics, and it is therefore possible to give
an interpretation of the modality in terms of minimal knowledge for MDD logics.

As a byproduct, the study of the relationships between “classical” (MDD)
nonmonotonic modal logics and minimal knowledge states contributes to explain
the connections between MDD logics and a conspicuous number of modal for-
malisms based upon the notion of minimal knowledge (Lifschitz, 1991; Lin and
Shoham, 1992, 1998; Engelfriet, 1996; Meyer and van der Hoek, 1995a, b; Donini
et al., 1995), thus allowing for a better understanding of the epistemological and
computational properties of such logics.
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