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ABSTRACT: Background independence is generally considered to be ‘the mark of distinction’ of gen-
eral relativity. However, there is still confusion over exactly what background independence is and
how, if at all, it serves to distinguish general relativity from other theories. There is also some con-
fusion over the philosophical implications of background independence, stemming in part from the
definitional problems. In this paper I attempt to make some headway on both issues. In each case
I argue that a proper account of theobservablesof such theories goes a long way in clarifying mat-
ters. Further, I argue, against common claims to the contrary, that the fact that these observables are
relational has no bearing on the debate between substantivalists and relationalists, though I do think it
recommendsa structuralist ontology, as I shall endeavour to explain.

1
INTRODUCTION

Everybody says they want background independence, and thenwhen they see
it they are scared to death by how strange it is ... Backgroundindependence
is a big conceptual jump. You cannot get it for cheap... ([Rovelli, 2003], p.
1521)

In his ‘Who’s Afraid of Absolute Space?’[1970], John Earman defended New-
ton’s postulation of absolute, substantival space at a timewhen it was very un-
fashionable to do so, relationalism being all the rage. Later, in his World Enough
and Space-Time, he argued for atertium quid, fitting neither substantivalism nor
relationalism, substantivalism succumbing to the hole argument and relational-
ism offering “more promissory notes than completed theories” ([Earman, 1989],
p. 195). More recently, in a pair of papers written with Gordon Belot [1999;
2001], substantivalism comes under attack again. This time the culprit is the back-
ground independence of general relativity, and the potential background indepen-
dence of a future theory of quantum gravity. The claim is thatwere the successful
future theory of quantum gravity shown to be background independent, then sub-
stantivalism would be rendered untenablefor reasons of physics—thus providing a
clear-cut example of Shimonyan ‘experimental metaphysics’ in action.1 Still more
recently, in Volume 1 from this series[Dieks, 2006], Earman returns to hister-
tium quid idea, defending, again on the basis of (a manifestation of) background

1In fact, this is really just the hole problem again. In another paper,[Rickles, 2005b], I explicitly
translated the hole argument into the framework of (background independent) loop quantum gravity,
thus demonstrating that (this approach to) quantum gravitydoes not put the debate between substanti-
valists and relationalists on better ground than in the classical theory: substantivalists have nothing to
fear from quantum gravity (not in the case of loop quantum gravity at any rate). I will aim to strengthen
this conclusion further in this chapter.
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independence, what I consider to be astructuralistposition which denies the fun-
damental existence ofsubjects(in the sense of ‘bearers’ of properties), thus ruling
out both relationalismandsubstantivalism[Earman, 2006a].2

However, my primary target in this paper is the issue of what background in-
dependence is: only when this is resolved can we assess the claim that it might
serve to settle debates over the ontology of spacetime (my secondary target). Let
us begin by considering some basic metaphysical aspects of background structure,
dependence, and independence, before firming the discussion up with the technical
and definitional aspects. Ontological implications must wait until the final section.

2
METAPHYSICS OF BACKGROUNDS

Metaphysicians like to tell the following story to distinguish between physicalism
and other non-physicalist positions:

When God made the world did He lay out all the local physical matters of fact (properties at spacetime
points) and the rest (causation, laws, modality, consciousness, etc.) followed, or did He then have to
add theseafter or in addition to doing that?3

Physicalists, of course, think that in fixing the local physical facts in a world He
thereby fixedeverythingthere is to that world: all that there is is physical.Mutatis
mutandis, we can use this strategy to distinguish between positions on spacetime
ontology too:

When God made the world did He first create spacetimeand thenadd matter (particles, fields, strings,
etc.) to it or did He create matter andtherebyfix the existence of spacetime?

Or, in other words, do spacetime, and spatiotemporal properties and relations, exist
independentlyof physical, material objects (particles, fields, strings,branes, etc...)
or is the existence of some such objectsnecessary4 for their existence? Substan-
tivalists will answer Yes to the first disjunct and relationalists will answer Yes to
the second. Let us be clearer on exactly what is meant by theseterms. Here I shall
follow Sklar[1974] (himself followed by Earman and a generation of philosophers
of physics) in taking substantivalism to be the position that views spacetime to be
an entity which existsover and aboveany material objects it might contain; or,
in Earman’s words, “prior to the objects it contains” instead of being “nothing

2Earman goes so far as to suggest an entirely new ontological category: a “coincidence occurrence”
([Earman, 2006a], p. 16). This is close to what I take to be one of the main ontological implications
of background independence; however, as I have already intimated, I couch matters in structuralist
terms—see§4. See also[Rickles, 2006] for a similar proposal drawn from the frozen formalism and
problem of time in classical and quantum gravity, and[Rickles, Forthcoming] for a more general de-
fense of the view on the basis of (gauge) symmetries in physics.

3In other words, are causation, laws, modality, consciousness, etc.,supervenienton the local phys-
ical matters of fact (but notvice versa), or do they constitute something ‘over and above’ these facts?

4Or justsufficientif we wish to wage a war over ontological parsimony.
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but (might be constituted by, might be reducible to) the mutual relations among
coexistent objects” ([Earman, 1989], p. 289).

This also captures much of the intuitive distinction between background inde-
pendence and dependence: is spactime (geometry) fixed ‘prior’ to the determina-
tion of the state of matter in the universe or does one need to know what the state of
matter is ‘prior’ to the determination of spacetime geometry? Given this superfi-
cial similarity, the distinction between background independence and background
dependence is often supposed to latch on to the distinction between relationalism
and substantivalism: relationalism being committed to theformer; substantival-
ism being committed to the latter.5 However, the ‘dual role’ of the metric field in
general relativity rather muddies the waters here.

The schizophrenic nature of the metric field was viewed by Einstein as a neces-
sary consequence of the equivalence principle, identifying inertia and weight: “the
symmetric ‘fundamental tensor’ [gµν ] determines the metrical properties of space,
the inertial behaviour of bodies in it, as well as gravitational effects” ([Einstein,
1918c], p. 241). Or, as Carlo Rovelli puts it: “What Einstein has discovered is that
Newton had mistaken a physical field for a background entity.The two entities
hypostatized by Newton, space and time, are just a particular local configuration
of a physical entity — the gravitational field — very similar to the electric and the
magnetic field” ([Rovelli, 2006], p. 27). In other words: “Newtonian space and
time and the gravitational field are the same entity” (ibid.).

This duality, one expression of background independence ingeneral relativ-
ity, has been responsible for much recent debate in the philosophy of spacetime
physics. Again, it is seen to be implicated in the traditional debate between sub-
stantivalism and relationalism:

In Newtonian physics, if we take away the dynamical entities, what remains is space and time. In
relativistic physics, if we take away the dynamical entities, nothing remains. As Whitehead put it, we
cannot say that we can have spacetime without dynamical entities, anymore than saying that we can
have the cat’s grin without the cat. ([Rovelli, 2006], p. 28)

The reason being that the gravitational field is dynamical and does the work of
two in also supplying the structures that characterize spacetime. However, the pro-
posed link to the substantivalism-relationalism debate isproblematic. Rovelli is
lumping all of the dynamical fields together, as being ontologically ‘on all fours’;
but this is a mistake: we can remove all fields with the exception of the gravita-
tional field and still have a dynamically possible world6—i.e. there arevacuum

5There are other,prima faciemore substantive reasons for the alignment; however, thesereasons
ultimately fail as well: see[Rickles, 2005b; 2005a; 2006; Forthcoming] for the reasons why.

6The still Machian Einstein of 1918 would not agree with this claim. He writes that “with [Mach’s
Principle] according to the field equations of gravitation,there can be no G-field without matter” ([Ein-
stein, 1918b], p. 34)—of course, this is where hisλ-term appears, precisely in order to make the
field equations compatible with Mach’s Principle. The field equations lose out, being transformed into
Gµν − λgµν = −κ(Tµν − 1

2
gµνT ), which do not allow for empty (i.e.Tµν = 0) spacetimes. The

position I come to defend is not a million miles away from this: other fields are needed to form the
gauge-invariant correlations (between field values) that provide the basic physical content of the theory.
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solutions to Einstein’s field equations. But we cannot remove the gravitational
field in the same way, leaving the other fields intact. This is an indication that
there is somethingspecialabout the gravitational field: it can’t be switched off; it
is not just one field among many.

Hence, the substantivalist would be perfectly within her rights to claim owner-
ship. But, so would the relationalist since there is this ambiguity over the ontolog-
ical nature of the field7: spacetime or material object? I take this state of affairs
(namely ‘joint ownership’ of the metric field) to lend substantial support to Robert
Rynaseiwicz’s[1996] claim that the debate between substantivalism and relation-
alism is “outmoded” in this context. However, we are drifting somewhat from our
brief, which is to get a grip on the concept of background independence (and its
companions, background structure and background dependence).

Background structures are contrasted withdynamicalones, and a background
independent theory only possesses the latter type—obviously, background depen-
dent theories are those possessing the former type in addition to the latter type.8

Philosophers, and some physicists, will be more familiar with the term ‘absolute
element’ in place of background structure, and the latter concept certainly soaks up
a large part of the former. On the former concept, in his 1921 Princeton Lectures
on the Theory of Relativity, Einstein writes:

Just as it was consistent from the Newtonian standpoint to make both the statements,tempus est abso-
lutum, spatium est absolutum, so from the standpoint of the special theory of relativity we must say,
continuum spatii et temporis est absolutm. In this latter statementabsolutummeans not only “phys-
ically real,” but also “independent in its physical properties, having a physical effect, but not itself
influenced by physical conditions. ([Einstein, 1921], p. 315)

There are three components here: a realist thesis, an independence thesis, and a
non-dynamical thesis. Clearly the realist thesis can’t simply mean that space and
time exist, for Leibniz too would surely assent to such a thesis in somesense. In-
stead, I take it to mean that space and time arefundamentalin the sense that they
do not supervene on any further, underlying objects, properties, or facts. The in-
dependence thesis just looks like a denial of relationism, while the non-dynamical
thesis amounts to ‘absolute’ in something like the sense of Anderson’s notion of
‘absolute object’ ([Anderson, 1967], pp. 83-7)—this itself, of course, corresponds
most closely to Newton’s notion of absolute in the sense ofimmutability, itself
followed very closely by Einstein himself:

If Newton called the space of physics ‘absolute’, he was thinking of yet another property of that which
we call ‘ether’. Each physical object influences and in general is influenced in turns by others. The

7For example, the relationalist might, as Rovelli does, drawattention to the fact that “a strong burst
of gravitational waves could come from the sky and knock downthe rock of Gibraltar, precisely as a
strong burst of electromagnetic radiation could” ([Rovelli, 1997], p. 193).

8There is often a fair amount of slipping and sliding on this: there aredegreesof background
structure. Generally, one has in mind backgroundfields rather than structuresper se; that is, one is
interested in the freedom (or not) from geometric-object fields on a manifold that are deemed ‘back-
ground’. Though the manifold itself appears as a backgroundstructure, this is generally not counted
when assessing a theory’s background independence. This isa contentious point that we return to
later—see, especially, footnote 10.
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latter, however, is not true of the ether of Newtonian mechanics., The inertia-producing property of this
ether, in accordance with classical mechanics, is precisely not to be influenced, either by the configu-
ration of matter, or by anything else. For this reason, one may call it ‘absolute’. ([Einstein, 1999], p.
15)

Anderson prefers to call this “the principle of reciprocity”:

It is seen that the absolute elements of a theory effect [sic.] the physical behaviour of a system. That
is, a different assignment of values to the absolute elements would change the physical behaviour of
the system. For instance, the assignment of different values to the metric might result in particle paths
that are circles rather than straight lines. On the other hand, the physical behaviour of a system does
not affect the absolute elements. An absolute element in a theory indicates a lack of reciprocity; it can
influence the physical behaviour of the system but cannot, inturn, be influenced by this behaviour. This
lack of reciprocity seems to be fundamentally unreasonableand unsatisfactory. We may express the
converse in what might be called a general principle of reciprocity: Each element of a physical theory
is influenced by every other element. In accordance with thisprinciple, a satisfactory theory should
have no absolute elements. ([Anderson, 1964], p. 192]

Lee Smolin too adopts a similar line, explicitly linking this notion of absolute with
the notion of background. He writes that “[t]he background consists of presumed
entities that do not change in time, but which are necessary for the definition of
the kinematical quantities and dynamical laws” ([Smolin, 2006], p. 204). How-
ever, matters are not so simple as this. This rough ‘absoluteelements’ way of
defining background independence and background dependence is too vague to do
any real work, and the various methods of firming things up face serious problems
(as we shall see). Moreover, the peculiar nature of general relativity, replete with
its treatment of the metric as a local dynamical variable, threatens to collapse the
debate between substantivalism and relationalism. The interpretation of spacetime
physics appears to be floundering.

Yet both debates, between background independence and background depen-
dence and between substantivalism and relationalism, are believed by many physi-
cists and a handful of philosophers to play a vital role in thesearch for a quantum
theory of gravity. For example, in much of his recent work LeeSmolin (e.g.[2004;
2006]) defends the idea that background independence is anecessarypiece of the
quantum gravity puzzle: it is essential to solve the puzzlesthat quantum gravity
raises that the geometry of spacetime is given as a solution of some equations of
motion, rather than placed in the theory ‘by hand.’ But Smolin also argues that
background independenceuniquelysupports relationalism, claiming that physi-
cists “often take backgound independent and relational as synonymous” ([Smolin,
2006], p. 204). A big target in this paper is just this claim—a claimalso made
by Belot and Earman[1999; 2001] in order to prop up the listless body of the
substantivalism/relationalism debate.Substantivalists needn’t be afraid of back-
ground independence any more than relationalists. However, ultimately both lose
out to a structuralist position!

3
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DEFINITIONS AND DISPUTATIONS

It is often claimed that thenoveltyof general relativity lies in its (manifest) ‘back-
ground independence.’ However, background independence is a slippery concept
apparently meaning different things to different people. In this section we attempt
to gain a firmer grip on this slippery customer by consideringvarious elucidations
of background independence that have been suggested. Thereis a clear core to
the notion, and I argue that this core can be made clearer by connecting the con-
cept of background independence to the nature of the observables in background
independent theories.

Let us begin by presenting a general way of making sense of thevarious proposals—
here I largely follow[Giulini, Forthcoming]. Let us specify a theory by writing
down its laws as a set of equations of motion representing relations between the
central objects of the theory. We get the following schema:

(1) E[D,B] = 0

HereD represents the dynamical structures (those that have to be solved to get their
values, such as the electromagnetic field and the metric in general relativity—these
represent the physical degrees of freedom of the theory, outwhich the observables
will be constructed) andB the background structures (those whose values are put
in ‘by hand’, such as the topology and, in pre-general relativistic theories, the
metric). Now let us represent the space ofkinematicallypossible histories byK.
ThenE[D,B] = 0 selects a subsetP ⊂ K of dynamicallypossible histories (or
‘physically’ possible worlds) relative toB.9 Now, if there are no suchBs (or,
rather, noB-fields) then the physically possible histories (the dynamics) is given
by relations between theDs (and, at least fiducially—i.e. in terms of theformal
definition of the fields—the manifold, but the diffeomorphism symmetry washes
this dependence away). This impacts on the observables of the theory, for the
observables must then make no reference to theBs, only to theDs. This is the
source of the claim that general relativity, and backgroundindependent theories,
arerelational: it simply means that the states and observables of the theory do not
make reference to background structures.10

9As Wheeler puts it, “[k]inematics describes conceivable motions without asking whether they
are allowed or forbidden. Dynamics analyses the differencebetween a physically reasonable and a
disallowed history” ([Wheeler, 1964], p. 65).

10Though, again, this does not include the manifold which is required for the (formal) definition of
the dynamical fields. The inescapable presence of the manifold, in which dimension, topology, differ-
ential structure and signature are fixed independently of the equations of motion, leads Smolin to call
general relativity only a “partly relational theory” ([2006], §7.4). However, the absence of background
fields coupled with the symmetry of the manifold means that a displacement (via a diffeomorphism)
of the dynamical fields with respect to it simply produces a gauge-equivalent representation of one and
the same physical state. Elimination of these redundant possibilities (“surplus structure” in Redhead’s
sense[1975]) further reduces the size ofP , giving us the reduced spaceP = P/Diff(M). This ‘su-
perspace’ contains points that are entire orbits of the gauge group, representingabstract‘delocalized’
structures known as a “geometries”—see[Misneret al., 1973], p. 522. This is supposed to be a space
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This way of understanding a theory lets us recapitulate in a clearer way our
earlier definitions of covariance and invariance. LetG be a group of spacetime
symmetries that acts onK asG × K → K—i.e. elements ofG map kinemati-
cally possible solutions onto kinematically possible solutions. We say thatG is a
symmetry group of the theory whose space of kinematically possible histories is
K just in caseP is left invariant by its action. Alternatively, and more usefully for
what follows, we can express the distinction between covariance and invariance
as—this is summarized schematically in fig. 1:11

[COV] ⇒ E[D,B] = 0 iff E[g · D, g · B] = 0 (∀g ∈ G) (2)

[INV] ⇒ E[D,B] = 0 iff E[g · D,B] = 0 (∀g ∈ G) (3)

Covaria
nce

Invariance

Equations of Motion

Spacetime Model

Diffeomorphism

Symmetry Group

Dynamical FieldsBackground Fields

E[φ · D,B] = 0E[φ · D, φ · B] = 0

E[D,B] = 0

D : M → V

φ : M → M

B : M → V

φ ∈ G ⊆ Diff(M)

〈M,B,D〉

Figure 1. How to understand covariance and invariance groups in a spacetime
theory. Here, the fields take values in a vector space (or a more structured space).
The diffeomorphisms drag fields along to new points. The equations of motion are
of the form ‘solve forD givenB’.

fit only for relationalists; however, there are plenty of good arguments that show that the substantivalist
has just as much right to occupy it—see[Pooley, Forthcoming] and[Rickles, Forthcoming] for more
details.

11Cf. Giulini [Forthcoming], p.6. I recommend that all philosophers of physics interested in back-
ground independence, and the difficulties in defining absolute objects, read this article: it is an excep-
tionally clear-headed review.
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As I said, in the context of general relativity[COV] = [INV] sinceB = ∅
(manifold aside). Of course, the fact that the manifold appears in the laws—and
the absence of symmetry-reducing background fields (i.e. toreduce the effective
symmetry group of the theory)—means that the there will be surplus structure: the
localization on the manifold of the dynamical fields is pure gauge.12

All this symmetry affects the dynamics so that a standard Hamiltonian or La-
grangian formulation is not possible. Respectively, the canonical variables are not
all independent (being required to satisfy identities known as constraints:φ(q, p) =
0) and the Euler-Lagrange equations are not all independent.These identities serve
to ‘constrain’ the set of phase space points that represent genuine physical possi-
bilities: only those points satisfying the constraints do so, and these form a subset
in the full phase space known as the ‘constraint surface’.

As I also said, this has an impact on the form of the observables—and this is
terribly important for the quantization of the theory. Since a pair of dynamical vari-
ables (not observables) that differ by a gauge transformation are indistinguishable,
corresponding to one and the same physical state of affairs,the observables ought
to register this fact too: that is, the observables of a gaugetheory should beinsen-
sitive to differences amounting to a gauge transformation—as should the states in
any quantization of such a theory: i.e. ifx ∼ y thenΨ(x) = Ψ(y).13 Where ‘O’
is a dynamical variable, ‘O’ is the set of (genuine) observables,x, y ∈ P , and ‘∼’
denotes gauge equivalence, we can express this as:

(4) O ∈ O ⇐⇒ (x ∼ y) ⊃ (O(x) = O(y))

Or, equivalently, we can say that the genuine observables are those dynamical
variables that are constant on gauge orbits ‘[x]’ (where[x] = {x : x ∼ y}):

(5) ∀[x] , O ∈ O ⇐⇒ O[x] = const.

Most of the work done on finding the observables of general relativity is done using
the 3 + 1 projection of the spacetime Einstein equations. That is, the constraints are
understood as conditions laid down on the initial data14 〈Σ, h, K〉 when we project
the spacetime solution onto a spacelike hypersurfaceΣ—here,h is a Riemannian

12This difference corresponds, then, to that between ‘passive’ and ‘active’ diffeomorphism invari-
ance. As Rovelli puts it: “A field theory is formulated in manner invariant under passive diffs (or change
of co-ordinates), if we can change the coordinates of the manifold, re-express all the geometric quanti-
ties (dynamicaland non-dynamical) in the new co-ordinates, and the form of the equations of motion
does not change. A theory is invariant under active diffs, when a smooth displacement of the dynamical
fields (the dynamical fields alone) over the manifold, sends solutions of the equations of motion into
solutions of the equations of motion” ([Rovelli, 2001], p. 122). We will call the former general co-
variance and the latter diffeomorphism invariance—Earman[2006b] calls the lattersubstantivegeneral
covariance, on the understanding that it amounts to a gauge symmetry, as we have assumed.

13It seems that Einstein was aware of this implication soon after completing his theory of general
relativity, for he writes that “the connection betweenquantities in equationsandmeasurable quantities
is far more indirect than in the customary theories of old” ([Einstein, 1918a], p. 71).

14Note that John Wheeler refers to constraints as “initial value equations” ([Wheeler, 1964], p. 83).
This terminology gets one closer to thephysicalmeaning of the constraints.
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metric onΣ andK is the extrinsic curvature onΣ. I won’t go into the nitty gritty
details here, but it turns out that the Hamiltonian of general relativity is a sum of
constraints on this initial data (of the kind that generate gauge motions, namely 1st
class)—hence, the dynamics is entirely generated by constraints and is therefore
pure gauge.15

This formulation allows us to connect the characterizationof the observables
up to the dynamics (generated by constraintsHi) more explicitly:

(6) O ∈ O ⇐⇒ {O,Hi} ≈ 0 ∀i

In other words, the observables of the theory are those functions that have weakly
vanishing (i.e. on the constraint surface) Poisson brackets with all of the first-class
constraints. These are the gauge-invariant quantities. A pressing problem in gen-
eral relativity—especially pressing for quantum gravity—is to find suitable entities
that satisfy this definition. There are at least two types that fit the bill: highly non-
local quantities defined over the whole spacetime16 and (differently) non-local,
‘relational’ quantities built out of correlations betweenfield values. There seems
to be some consensus forming, at least amongst ‘canonical relativists’, that the
latter type are the most natural.

I return to the interpretation of these correlational observables in§4. Let us
now consider a number of standard takes on the question of what background in-
dependence amounts to. We assess two main ways of doing this—utilizing general
covariance and diffeomorphism invariance—before considering J. L. Anderson’s
proposal for firming up the latter approach and discussing the connection to ob-
servables.

As we saw above, general covariance simply refers to the factthat when we hit
a solution with an arbitrary diffeomorphism, we get anothersolution back. That is
to say, the equations of motion are covariant with respect todiffeomorphisms. This
amounts to a a carrying along of all of the fields. Covariance is not so restrictive
as invariance (or “symmetry” as Anderson calls it). The former just says that if M
is a solution then so isM whereM′ = g(M) andg is an element of the covariance
group, the group that preserves the form of the laws (the equations of motion).
The theory is said to beg-covariant. But this is just a constraint on theform of the
theory, not on its physical content. In other words, generalcovariance in this sense
is simply a property of the formulation of the theory. This is, of course, just what
Kretschmann taught Einstein soon after general relativitywas written down in its
final form. The problem is that (general) covariance just means that the equation

15This turns out to be behind the two worst conceptual problemsof general relativity: the hole
argument and the frozen formalism problem. For details on these connections see[Belot and Earman,
1999; 2001; Rickles, 2006]. Earman[2003] gives a splendid presentation of the relationship between
the constrained Hamiltonian formalism and gauge, including their implications for time and change.

16There is a proof (for the case of closed vacuum solutions of general relativity) that there can be no
local observables at all[Torre, 1993]—‘local’ here means that the observable is constructed as a spatial
integral of local functions of the initial data and their derivatives.
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of motion iswell-definedin the sense of differential geometry: the equation need
simply ‘live’ on the manifold.

Recall how coordinatization occurs. Firstly, we associatepoints of the manifold
with R

4 so that eachx ∈ M gets four numbers{xµ} (µ = 1, 2, 3, 4) associated to
it. We can do this in many ways, as mentioned above. We might use the assignment
{x′µ} → y ∈ M instead. Because these numbers are assigned to thesamepoint
there will be some relationship between the coordinate systems:17

(7) x′µ = x′µ(xν)

Given the differential structure of the manifold, we get an infinitely continuously
differentiable function between the thus related coordinate systems (with a simi-
larly differentiable inverse).18 This is a diffeomorphism passively construed; it is
gauge in a very trivial sense, as Wheeler says: “How one drawscoordinate surfaces
through space-time is a matter of paperwork and bookkeeping, and has nothing to
do with the real physics” ([Wheeler, 1964], p. 81). This goes for any reasonable
spacetime theory. Hence, general covariance understood inthese terms does not
have the power to distinguish between spacetime theories, and if background inde-
pendence is supposed to distinguish general relativity from previous theories, then
general covariance cannot underwrite it.

Hence,anyspacetime theory written in terms of geometric objects on the man-
ifold will be generally covariant in the sense of havingDiff(M) as its covariance
group. However,invarianceis a much stronger requirement that picks out a sub-
group of the covariance group; this says that if M is a solution then so isM where
M′ = g(M) andg and nowg is an element of a subgroup of the covariance group
that preserves the absolute elements. The theory is said to be g-invariant. Hence,
in one we map all of the objects, in the other we only map the dynamical objects,
whilst preserving the background structure.19

This is the standard view: rather than considering the background fields to be
transformed along with the dynamical fields, we view the diffeomorphisms in
an activeway, as shifting the dynamical fields relative to thesamebackground
fields. Thus, Lee Smolin writes that “[g]eneral coordinate invariance [general
covariance—DR] is not the same thing as diffeomorphism invariance, and it is
the latter, and not the former, that is the key to the physicalinterpretation of the
theory”. He goes on to say that

17It is useful to think of the pair of coordinate systems as being like a pair of languages and as the
particular coordinates assigned to some particular point as being like nouns in the language referring
to a particular object. A translation manual between the languages would be analogous to the differ-
entiable functions relating distinct coordinate descriptions of one and the same point; in this case we
would have distinct words referring to the same object, these words being inter-translatable.

18Generally, because the manifolds in general relativity arecoordinatized by gluing patches together,
the function will be evaluated on theoverlapbetween coordinate systems.

19The story then goes: special relativity cannot be diffeomorphism invariant—i.e. it cannot have
Diff(M) as its symmetry group—because the imposition of the Minkowski metric reduces the invari-
ance group to a subgroup of the covariance group, namely the Poincarè group of isometries of this
metric, of Minkowski spacetime. This smaller group is the largest that preserves the (background)
structure of Minkowski spacetime; there are clearly elements ofDiff(M) that would not do so.
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with the introduction of explicit background fields any fieldtheory can be written in a way that is
generally coordinate invariant. This is not true of diffeomorphism invariance, which relies on the fact
that in general relativity there are no non-dynamical background fields. Diffeomorphisms, in contrast
to general coordinate transformations, are active transformations that take points to other points, so
that diffeomorphism invariance is, explicitly, the statement that the points are not meaningful. Both
philosophically and mathematically, it is diffeomorphisminvariance that distinguishes general relativity
from other field theories. ([Smolin, 2003], p. 234).

There are at least two ways in which this misses the mark. Firstly, one can
retain the physical content of diffeomorphism invariance without disposing of
points: either one can adopt a Kretschmann-Bergmann-Komar‘intrinsic coordi-
nates’ method ([Kretschmann, 1917; Bergmann, 1977; 1961; Bergmann and Ko-
mar, 1972]—see also§4), or else one can view diffeomorphism invariance as im-
posing a constraint on the form of the observables of a theory, so that it is true
that “points are not meaningful” only in the sense thatfrom the point of view of
the physics, as encoded in the observable content of the theory, there isan ‘indif-
ference’ to the points of the manifold (i.e. as to which pointplays which role).
Both are compatible with their being points. Secondly, and more problematic for
our purposes, is that this faces a Kretschmann-type objection too:anybackground
field can be made dynamical by making it satisfy some equations of motion, how-
ever physically vacuous they might happen to be. Hence, unless we have some
other way of making sense of the distinction between background and dynami-
cal fields, then this account fails in the same way the generalcovariance account
fails—fortunately, Anderson provides just such a method, but first let us go through
the details of why this account fails as it stands.

The objection is that we are free to extend the invariance group to the covariance
group by making any background fields into dynamical ones, thus collapsing the
distinction between invariance and covariance groups. If there are no background
fields then the invariance group automatically becomes identical to the covariance
group (i.e. the diffeomorphism group). In the case of a specially relativistic theory,
say, in order to preserve the structure of Minkowski spacetime we would have to
impose a condition of flatness on the metric. But, of course, this makes the metric
dynamical (in the sense of satisfying equations of motion)!The problem is, this
all depends upon the availability of some way of distinguishing between absolute
and dynamical fields, and so far we simply have an intuitive notion. Clearly if this
intuitive notion amounts to ‘being solved for’ then we can make special relativity
background independent, which then conflicts with our basicintuitions about what
background independence is.

Take the following stock example of a massless scalar field onMinkowski
spacetime:

(8) �φ ≡ ηµν∇µ∇νφ = 0

All we do here is replace the background metric with a generalmetric and make
the new metric obey a ‘flatness condition’:
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ηµν → gµν (9)

�φ ≡ gµν∇µ∇νφ = 0 (10)

Riem[g] = 0 (11)

Like the generally relativistic case, we now appear to have no background fields!
If diffeomorphism invariance is what underwrites background independence then
the latter cannot be what makes general relativityspecial.20 Hence, it appears that
we have made a specially relativistic theory generally relativistic!

Anderson ([1964], pp. 182-3) complains about this procedure on the grounds
that the way the general metric was introduced was physically unmotivated: there
is no need to have a general metric since nonflat metrics are not considered. Pre-
sumably this is similar to what Einstein had in mind when he complained that
although it was possible to reformulate other spacetime theories in a generally
covariant way, this does not produce theirsimplestformulation: “Among two the-
oretical systems, both compatible with experience, one will have to prefer the one
that is simpler and more transparent from the point of view ofthe absolute differ-
ential calculus” ([Einstein, 1918b], p. 34). There is a lot of room for the metric
to move with a general metric that is not being occupied in these reformulations;
hence, no additional content is being added by using it. Anderson argues that the
expansion of the invariance group of a theory (to encompass alarger covariance
group of which it is usually a subgroup) reveals pre-existing absolute objects in the
theory. The metric in special relativity is an absolute object whose “existence was
masked by the fact that [it] had been assigned [a] particular[value]” ([Anderson,
1964], p. 192).

Anderson provides the split between background and dynamical fields so that
the diffeomorphism invariance definition of background independence can do its
work. What Anderson proposes is that absolute elements (called “absolute ob-
jects” in [Anderson, 1967]), understood as variables whose “determination is en-
tirely independent of other physical objects of the theory”([1964], p. 186), serve
to define “the relativity principle” associated with some theory—that is, the prin-
ciple stating that the theory’s laws are invariant under theinvariance group. Let us
work through Anderson’s proposal to see how this works and how it contributes to
the problem of defining background independence.

He begins, as we did above, by specifying a theory as a set of functional rela-
tions (i.e. equations of motion) between the independent variables of the theory
(particles, fields, fluids, strings, branes, etc.):

(12) Li(yA) = 0

20As Guilini notes ([Giulini, Forthcoming], pp. 13-4), there are in fact problems with this example:
if we consider the (reasonable) requirement that our equations of motion have to be the Euler-Lagrange
equations for some action principle then we find that the action principle delivering Eqs. 10 and 11
generates a bigger solution space than that of Eq. 8. The two are not equivalent formulations of the
same theory.
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Anderson seeks to find a way of identifying the background structures in a theory
that is so specified. The idea is to inspect all of the invariant functions (thegenuine
observables) under the theory’s covariance group that can be constructed from
various subsets of the variablesyA, and to then see if the values of these functions
are uniquely determined by Eq.12 alone (independently of additional conditions).
Those values of the functions that are determined independently of the values of
others are deemed absolute.

There is somethingprima facierather peculiar about Anderson’s analysis in that
it implies that the metricgµν of general relativity constitutes an absolute element
(with the Lorentz group as its invariance group) in the vacuum case, because it is
uniquely determined (up to diffeomorphism)independently of other physical ob-
jects, but not in the matter-present case, where it is determined by other physical
objects in the theory. Hence, it isn’t an absolute matter whether the metric in gen-
eral relativity is an absolute object or not; rather, it depends on whether there are
other fields present, and so on which field equations are appropriate. This is at odds
with what we might expect, namely a definition of background independence that
renders general relativity background independentsimpliciter. However, given
what I had to say about the observables—i.e. that they are correlations between
fields values—I think this is what weshouldsay.21

Background independence is, then, defined using this machinery: a theory is
background independent just in case it contains no absoluteelements. This lines
up with the diffeomorphism invariance account, for a diffeomorphism invariant
theory will have no background structures; this how we get the identity between
the covariance and invariance groups. This clearly rendersgeneral relativity back-
ground independent; its covariance group is indeed identical to its invariance group
(or its ‘relativity group’). The method gets the relativityprinciples for other space-
time theories right too.

If we turn what were originally background fields into dynamical fields, by
making them obey equations of motion (in the sense of Anderson), then they will
enter into the definition of the observables, since we are understanding theD to be
the ‘ingredients’ of the observables. This is how we end up with hole-type prob-
lems: background fields—however they are tweaked in an attempt to make them
dynamical—introduce unobservable (‘unphysical surplus’) content into the physi-
cal structure (as given by theDs). This can be seen explicitly if we consider how
the born-again dynamical fields look in the solution space ofthe theory.P is our
solution space, and since we are taking the theory to be diffeomorphism invariant
it will carry an action of the gauge groupDiff(M). The dynamical fields serve to
separate the points ofP . However, there will be a redundancy in the labeling since
the diffeomorphism invariance allows us to construct solutions from solutions by
acting on them with elements ofDiff(M). For each solution of the original equa-
tions we now have an orbit of solutions. If we understand the diffeomorphism

21Compare this with the Einstein quote I give on p.17. I think this clearly shows that Einstein would
have sided with Anderson on this point.
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symmetry as a gauge freedom then this will be a gauge orbit. This gives us a
potential way to further detrivialize this approach, for wecan see that the flatness
condition forces the value ofgµν to be the same ineach and every orbit.22 Hence, if
we identify the gauge orbits then we have just one state here—I am shelving com-
plications to do with locality; for more details see Giulini([Forthcoming], §2.5).
This is what it means to say the metric is an absolute object: something that is the
same in every solution. But the inability to distinguish between orbits is the defini-
tion of an unobservable here too, so we have the connection between background
independence and observables that we were looking for (and the connection be-
tween background structures and non-observability). Moreover, it matches what
we intuitively mean by background independence.23

4
IMPLICATIONS FOR THE ONTOLOGY OF SPACETIME

Diffeomorphism invariance makes local observables an impossibility. Since there
clearly are local degrees of freedom, and these are what we observe, we need
some notion of local observable that does not make referenceto spacetime geom-
etry. That is, we need a background independent notion of local observable. The
obvious (and indeed, only thing to do) is to use physical degrees of freedom to
localize. The observables so localized are relational.

Calling those dynamical variables whose motion can be uniquely determined
by the field equations the “true observables”, Anderson writes that:

A unique state of the system is ... specified by giving, at someinstant of time, values of the true ob-
servables and their first time derivatives. In a sense, thesetrue observables are the physical meaningful
“coordinates” of the system. ([Anderson, 1958], p. 1197)

These true observables are the gauge-invariant quantitiesI mentioned earlier. Ear-
man asks: “Does the gauge-invariant content of GTR characterize a reality that

22That is, the value is not just constant on gauge orbits—whichis part and parcel of being a good
observable—it is constantacrossgauge orbits too. No observable can distinguish between such orbits;
hence the structure is unobservable.

23There are problem cases that remain, as discussed, for example, in [Pitts, 2006]—namely, the so-
called ‘Jones-Geroch counterexample’ which apparently shows that the 4-velocity of a ‘cosmic dust
field’ counts as a background structure (according to the Anderson-Friedman analysis). The problem
stems from Michael Friedman’s’ modification of Anderson’s identification of background structures as
those with singleDiff(M) orbits. Friedman argues that the condition should be madelocal in order to
get at the notion that background structures do not correspond to local degrees of freedom. To achieve
this he counts as background structures fields that are locally diffeomorphism equivalent—this condi-
tion is satisfied when there is a diffeomorphism mapping neighbourhoods (of any any manifold point)
to neighbourhoods, such that two fields restricted to the neighbourhoods (connected by a carry-along)
take on the same values. The problem is that any pair of nowhere vanishing vector fields will always
satisfy this condition and, therefore, always count as background structures. The absurd conclusion is
that any diffeomorphism invariant vector field theory will automatically be branded background depen-
dent. Utilizing the observables can help here, at least in the present case: the observables will register
the physical fact that such fields will generally not cover the wholeof spacetime.
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answers the relationist’s dreams, or do the terms of the absolute-relational contro-
versy no longer suffice to adequately describe what Einsteinwrought?” ([Earman,
2006a], p. 10). Earman answers Yes to the latter disjunct, and No to first. He
proposes to put an entirely new ontological scheme, based on‘coincidence occur-
rences’, in place of the absolute and relational positions.As Earman points out,
“a coincidence occurrence consists in the corealization ofvalues of pairs of (non-
gauge invariant) dynamical quantities” ([Earman, 2006a], p. 16). Earman thinks
that this new conception of physical quantities signals thenecessity of a shift from
the traditional ‘subject-predicate’-based ontologies, such as substantivalism and
relationalism. As I said earlier, I think this is the right thing to say; however, I
would spell it out rather differently, in terms of structuralism. Rovelli’s framework
of partial and complete observables provides the formal underpinning.

Firstly, how might relationalism and substantivalism get afoothold in this back-
ground independent context? According to the relationalist (about motion) all mo-
tion is relative motion. But motion relative to what? The gravitational field? But
if it is the gravitational field, then we face a problem in GR (and background
independent theories in general): is this field spacetime ormatter? Einstein, and
Rovelli, claim that the gravitational field should beidentifiedwith spacetime. Here
we see that both positions can get a foothold on the ontological rock face of gen-
eral relativity; the substantivalist can lay claim to the same object against which
relative motion occurs. The same goes for localization, which is, I suspect, more
what Earman has in mind: if localization is relative to the gravitational field, then
both substantivalists and relationalists (in the ontological sense) can get a foothold.
Matters have clearly degenerated (pardon the pun) to the point where this division
is no longer doing any real work.

But we can say more. I mentioned above that reduction (i.e. the elimination
of symmetry) was supposed to be implicated. The idea here is that the natural
representational tool for relational spacetime is thegeometryrather than individual
metrics on the manifold:

[T]he basic postulate that makes GR a relational theory is [that] ... [a] physical spacetime is defined to
correspond , not to a single(M, gab, f), but to an equivalence class of manifolds, metrics, and fields
under the action of Diff(M)([2006], p. 206).

The idea here, then, is that removing the symmetries (by ‘modding out’ by the
diffeomorphisms) is taken to correspond to relationalism;or, in other words, that
relationalism is reductionism. This is tantamount to the gauge-invariance view.
It poses no obstacle for the substantivalist; there are a variety of ways to accept
it, most of which amount to a denial of haecceitism of some sort or another (i.e.
the claim that there can be worlds that differ non-qualitatively)—see Pooley[Poo-
ley, Forthcoming] for more details. There is no necessity gluing haecceitism and
substantivalism together, and a relationalist can just as well be an haecceitist.

Like Rovelli and Smolin, Wheeler dismisses the points of space as “[m]ere
baggage”. The coordinate representations we use hide the real, objective reality:
the geometries. Hence, a geometry is an abstract object thatencodes the intrinsic
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features of a space: it stands one-to-many with localized metrics. Again, there
is no reason why the substantivalist shouldn’t say that thisintrinsic structure is
what they mean by spacetime and where their ontological commitments lie. On
the other side of the coin it is possible that the substantivalist can retain points in
the face of the gauge freedom. As Robert Dicke remarks, speaking on behalf of J.
L. Synge:

general relativity describes an absolute space ... certainthings are measurable about this space in an
absolute way. There exist curvature invariants that characterize this space, and one can, in principle,
measure these invariants. Bergmann has pointed out that themapping of these invariants throughout
space is, in a sense, labeling of the points of this space withinvariant labels (independent of coordinate
system). These are concepts of an absolute space, and we havehere a return to the old notions of an
absolute space. ([Dicke, 1964], p. 124-5)

Here the idea is to get a set of coordinate conditions that allow one to define a set
of intrinsic coordinates. One constructs the complete set of scalars from the metric
and its first and second derivatives, which for the matter-free case leaves four non-
zero scalars that take different values at different pointsof the manifold. Hence,
one achieves a complete labeling of the manifold in an intrinsic gauge-invariant—
this follows from the fact that we are dealing withscalarswhich do not change
their values under diffeomorphisms. These points can then be used to localize
quantities which become gauge-invariant as a result of the gauge-invariance of the
scalars. For Synge, the only difference between this space and Newton’s is that
the geometric properties of the Einsteinian space are “influenced by the matter
contained therein”—that is, the latter is background independent. Of course, since
we are dealing with invariants of the metric here, it is open to the relationalist to
call this a material field. So continues the interminable tug-of-war!

I think this is evidence in favour of the view that the time hascome to forget
about the ‘debate’ between substantivalism and relationalism, and focus on an al-
ternative. Here I argue that structuralism offers a suitable alternative. The position
involves the idea that physical systems (which I take to be characterized by the
values for their observables) are exhausted by extrinsic orrelational properties:
they have no intrinsic properties at all! This is a consequence of background in-
dependence coupled with gauge invariance. This leads to a rather odd picture in
which objects and structure are deeply entangled in the sense that, inasmuch as
there are objects, any properties they possess are structurally conferred: they have
no reality outside the correlation. What this means is that the objects don’tground
the structure; they are nothing independently of the structure, which takes the form
of a (gauge-invariant) correlation between (gauge variant) field values.24 We can
sum this up by paraphrasing one of Hermann Minkowski’s infamous remarks:

24There is kinship here with Eddington who writes that “the significance of a part cannot be dis-
sociated from the system of analysis to which it belongs. As astructural concept the part is a symbol
having no properties except as a constituent of the group-structure of a set of parts” ([Eddington, 1958],
p. 145); and later, “a structure does not necessarily imply anX of which it is the structure” ([Eddington,
1958], p. 151).
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Henceforth spacetime by itself and matter by itself are doomed to fade
away into mere shadows, and only some kind of union between the two
can preserve their independent reality!

This admittedly rather wild-sounding metaphysics can be made more precise through
the use of Rovelli’s framework of partial and complete observables.

A partial observable is a physical quantity to which we can associate amea-
surement leading to a number and acompleteobservable is defined as a quantity
whose value (or probability distribution) can be predictedby the relevant theory.
Partial observables are taken to coordinatize an extended configuration spaceQ
and complete observables coordinatize an associated reduced phase spaceΓred.
The “predictive content” of some dynamical theory is then given by the kernel
of the mapf : Q × Γred → R

n. This space gives thekinematicsof a theory
and thedynamicsis given by the constraints,φ(qa, pa) = 0, on the associated
extended phase spaceT ∗Q. The content appears to be this: there are quantities
that can be measured whose values arenot predicted by the theory. Yet the theory
is deterministic because it does predict correlations between partial observables.
The dynamics is then spelt out in terms ofrelationsbetween partial observables.
Hence, the theory formulated in this way describes relativeevolution of (gauge
variant) variables as functions of each other. No variable is privileged asthe in-
dependent one(cf. [Montesinoset al., 1999], p. 5). The dynamics concerns the
relations between elements of the space of partial observables, and though the in-
dividual elements do not have a well defined evolution, relations between them
(i.e. correlations) do: they are independent of coordinatespace and time.

The interpretation here is as follows:φ = T is a partial observable parametriz-
ing the ticks of a clock (laid out across a gauge orbit), andf = a is another partial
observable (also stretching out over a gauge orbit). Both are gauge variant quanti-
ties. A gaugeinvariant quantity, a complete observable, can be constructed from
these partial observables as:

(13) O[f ;T ](τ, x) = f(x′)

These quantities encode correlations. They tell us what thevalue of a gauge variant
functionf is when, under the gauge flow generated by the constraint, thegauge
variant functionT takes on the valueτ . This correlation is gauge invariant. These
are the kinds of quantity that a background independent gauge theory like general
relativity is all about. We don’t talk about the value of the gravitational fieldat a
point of the manifold, but where some other physical quantity (say, a value of the
electromagnetic field) takes on a certain value. Once again,we find that Einstein
was surprisingly modern-sounding on this point, writing that “the gravitational
field at acertain locationrepresents nothing ‘physically real,’ but the gravitational
field together with other data does” ([Einstein, 1918a], p. 71).

Now here I would agree with Einstein and disagree with Rovelli about the in-
terpretation of these correlations. Rovelli claims that “theextendedconfiguration
space has a directphysicalinterpretation, as the space of the partial observables”
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([Rovelli, 2002], p. 124013-1, my emphasis).Bothspaces—the space of genuine
(complete) observables and partial observables—are invested with physicality by
Rovelli; the partial observables, in particular, are takento be physical variables.
Einstein argues that only the correlation is physically real. In this he is clearly
followed by Stachel[1993] who argues that the kinematical state space of a back-
ground independent theory like general relativity has no physical meaning prior
to a solution (so that only the dynamical state space is invested with the power to
represent genuine physical possibilities; kinematics then being in this sense deriva-
tive).

It is for this reason that I think structuralism can help withthe interpretation
of background independent, gauge-invariant theories—that is, we don’t need to
go as far as Earman in postulating a whole new ontological category. Recall that
epistemic structural realism argues that the best we can hope for is to get to know
structural aspects of the world, since we only ever get to observe relational proper-
ties rather than intrinsic ones (in our experiments and so on). However, in a back-
ground independent gauge theory like general relativity wehave seen that the phys-
ical observables justare relational quantities: this is all there is! In other words,
there’s nothing ‘underneath’ the relational properties (as encoded in theD-fields),
so that theseexhaustwhat there is, leading to anontologicalstructuralism.25 This
is why we face the problems regarding the ‘subject-predicate’-style ontologies that
Earman mentions: thereareno independent subjects that are the ‘bearers’ of prop-
erties and the ‘enterers’ of relations. Hence, unless one can have objects without
intrinsic properties (and I don’t think this is a metaphysically healthy route to fol-
low), we should follow Earman’s lead, and I say that this journey will lead us to
some variant of ontic structural realism.

5
CONCLUSION

I have argued that we can make good sense of background structure and back-
ground independence by following an Anderson-style account (involving the view
that background structures have singleDiff(M) orbits) and utilizing the appropri-
ate gauge-theoretic definition of ‘observable’. These set up a connection between
Anderson’s idea and the intuitive notion that background structures are not the
kinds of thing we can measure, and not the kinds of things thatcan ground things
(fields values and so on) we might wish to measure. The ontological implica-
tions of background independence, so conceived, are not what is often claimed:

25Hence, we have here an empirical argument for ontic structural realism that evades the standard
‘no relations without relata’ objection. The relations arethe correlations here (the gauge invariant,
complete observables), and the ‘relata’ would be the gauge variant, partial observables. But the partial
observables being gauge variant do not correspond to physical reality (at least not in any fundamental
sense): only the complete observables do. We cannotdecomposethe correlations in an ontological
sense, though we clearly can in a epistemic sense—indeed, the correlates constitute our ‘access points’
to the more fundamental correlations.
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relationalism is not uniquely supported. Substantivalists too can uphold their in-
terpretation in the context of background independent theories. However, aspects
of the observable content of background independent theories was shown to cause
problems for both relationalism and substantivalism. i argued that these aspects
recommend a structuralist position.
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steins neue und seine ursprüngliche relativitätstheorie. Annalen der Physik, 53:575–614, 1917.

[Misneret al., 1973] C. W. Misner, K. S. Thorne, and J. A. Wheeler.Gravitation. W. H. Freeman and
Company, 1973.

[Montesinoset al., 1999] M. Montesinos, C. Rovelli, and T. Thiemann. AnSL(2, R) model of con-
strained systems with two hamiltonian constraints.Physical Review D, 60:044009, 1999.

[Pitts, 2006] J. Brian Pitts. Absolute objects and counterexamples: Jones-geroch dust, torretti con-
stant curvature, tetrad-spinor, and scalar density.Studies in the History and Philosophy of Modern
Physics, 37:347–371, 2006.

[Pooley, Forthcoming] O. Pooley.The Reality of Spacetime. Oxford University Press, Forthcoming.
[Redhead, 1975] M. L. G. Redhead. Symmetry in intertheory relations.Synthese, 32:77–112, 1975.
[Rickles, 2005a] D. Rickles. Interpreting quantum gravity.Studies in the History and Philosophy of

Modern Physics, 36:691–715, 2005.
[Rickles, 2005b] D. Rickles. A new spin on the hole argument.Studies in the History and Philosophy

of Modern Physics, 36:415–434, 2005.
[Rickles, 2006] D. Rickles. Time and structure in canonical gravity. In D. Rickles, S. French, and

J. Saatsi, editors,The Structural Foundations of Quantum Gravity, pages 152–195. Oxford Univer-
sity Press, 2006.

[Rickles, Forthcoming] D. Rickles.Symmetry, Structure, and Spacetime. Philosophy and Foundations
of Physics. Elsevier, Forthcoming.

[Rovelli, 1997] C. Rovelli. Halfway through the woods: Contemporary research on space and time. In
J. Earman and J. Norton, editors,The Cosmos of Science, pages 180–223. University of Pittsburgh
Press, Pittsburgh, 1997.

[Rovelli, 2001] C. Rovelli. Quantum spacetime: What do we know? In C. Callender and N. Huggett,
editors,Physics Meets Philosophy at the Planck Scale, pages 101–122. Cambridge University Press,
2001.

[Rovelli, 2002] C. Rovelli. Partial observables.Physical Review D, 65:124013–124013–8, 2002.
[Rovelli, 2003] C. Rovelli. A dialog on quantum gravity.International Journal of Modern Physics D,

12(9):1509–1528, 2003.
[Rovelli, 2006] C. Rovelli. The disappearance of space and time. In D. Dieks,editor,The Ontology of

Spacetime, volume 1 ofPhilosophy and Foundations of Physics, pages 25–36. Elsevier, Amsterdam,
2006.

[Rynasiewicz, 1996] R. Rynasiewicz. Absolute versus relational space-time: Anoutmoded debate.
The Journal of Philosophy, 45:407–436, 1996.

[Sklar, 1974] L. Sklar. Space, Time, and Spacetime. University of California Press, 1974.
[Smolin, 2003] L. Smolin. Time, stucture and evolution in cosmology. In A. Ashtekar, R.C. Cohen,

D. Howard, J. Renn, S. Sarkar, and A. Shimony, editors,Revisiting the Foundations of Relativistic
Physics, Festschrift in honor of John Stachel, volume 234 ofBoston Studies in the Philosophy of
Science, pages 221–274. Kluwer Academic, 2003.

[Smolin, 2004] L. Smolin. Quantum theories of gravity: Results and prospects. In J. D. Barrow,
P. C. W. Davies, and C. L. Harper, editors,Science and Ultimate Reality, pages 492–526. Cambridge
University Press, 2004.

[Smolin, 2006] L. Smolin. The case for background independence. In D. Rickles, S. French, and
J. Saatsi, editors,The Structural Foundations of Quantum Gravity, pages 196–239. Oxford Univer-
sity Press, 2006.

[Stachel, 1993] J. Stachel. The meaning of general covariance: The hole story. In J. Earman, A. Janis,
and G. Massey, editors,Philosophical Problems of the Internal and External Worlds: Essays on the
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