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Abstract

The primate visual system can rapidly and with great accuracy recognize a large
number of diverse objects in cluttered scenes under widely varying viewing condi-
tions. Recent data (Thorpe et al., 1996; Li et al., 2002) have suggested that complex
object recognition tasks can be performed in one feedforward pass without the need
for attention, providing strong constraints for models of object recognition in cor-
tex. I will review a “Standard Model” that is an extension of the original model of
simple and complex cells of Hubel and Wiesel. Despite its simplicity, this feedfor-
ward model can already explain a number of experimental findings, and has been
shown to be able to perform object detection in natural images. Moreover, the
model can be extended in a straightforward way to investigate how “top-down”
attention can modulate “bottom-up” processing to improve its performance. This
leads to constraints on the scenarios in which attention can aid object recognition,
and to experimental predictions on how attention and feedforward processing might
interact.
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1 Introduction

Object recognition is a fundamental cognitive task essential for survival, e.g., to
detect predators or to discriminate food from non-food. Despite the apparent
ease with which the visual system performs object recognition, it is a very
complex computational task requiring a quantitative trade-off between invari-
ance to certain object transformations on the one hand, and specificity for
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individual objects on the other. For instance, object recognition needs to be
invariant across huge variations in the appearance of objects such as faces,
due to viewpoint, illumination, or occlusions. At the same time, the system
needs to maintain specificity, i.e., the ability to discriminate between different
faces.

How does the brain perform object recognition, and what is the role of at-
tention in this process? The experimental data paint a complex picture: Even
very complicated visual tasks, such as determining whether an arbitrary nat-
ural scene contains an animal or not, can be performed in the absence of
attention. However, other tasks that would appear to be “simpler” such as
discriminating bisected colored discs from their mirror images seem to require
attention (Li et al., 2002).

In this chapter, I will first review some basic experimental data on object
recognition in cortex which motivate a simple computational model that can be
viewed as an extension of the original simple-to-complex cell scheme of Hubel
and Wiesel. The model can perform object recognition in cluttered natural
scenes in one feedforward pass, in agreement with the experimental data. I
will then discuss how the model can be extended to incorporate attentional
effects, and under what conditions attention can aid object recognition, leading
to predictions for experiments.

2 Object Recognition in Cortex: Some Experimental Results

Object recognition in cortex is thought to be mediated by a hierarchy of brain
areas called the “ventral visual stream” (Ungerleider and Haxby, 1994) extend-
ing from primary visual cortex (V1) to inferior temporal cortex, IT. IT in turn
provides input to prefrontal cortex (PFC) which appears to play a crucial role
in linking perception to action. Starting from simple cells in primary visual
cortex, V1, with small receptive fields that respond preferably to oriented bars,
neurons along the ventral stream show an increase in receptive field size as well
as in the complexity of their preferred stimuli (Kobatake and Tanaka, 1994).
At the top of the ventral stream, in anterior inferotemporal cortex (AIT), cells
are tuned to complex stimuli such as faces and other relevant stimuli from the
monkey’s environment (Logothetis and Sheinberg, 1996). A hallmark of these
IT cells is the robustness of their firing to stimulus transformations such as
scale and position changes (Logothetis and Sheinberg, 1996). In addition, as
these and other studies have shown, most neurons show specificity for a cer-
tain object view or lighting condition (so-called view-tuned neurons), while
some neurons show view-invariant tuning (view-invariant/object-tuned neu-
rons). The tuning of the view-tuned and object-tuned cells in AIT can be
modified by visual experience (for references, see (Riesenhuber and Poggio,
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2002)). Recent fMRI data have shown a similar pattern of tuning properties
for the Lateral Occipital Cortex (LOC), a brain region in human visual cortex
central to object recognition and believed to be the homologue of monkey area
IT (Grill-Spector et al., 2001).

ERP experiments have established that the visual system is able to perform
even complex recognition tasks such as object detection in natural images
within 150ms (Thorpe et al., 1996), which is on the order of the latency of
neurons in prefrontal cortex, close to the site of the measured ERP effect.
Further experiments have shown that such detection tasks can be performed
in the absence of attention (Li et al., 2002), and in parallel for two images
(Rousselet et al., 2002). These results point to a feedforward account of object
recognition in cortex — at least for object detection tasks in natural images
— in which recognition is achieved in one processing pass through the ventral
visual stream.

3 The “Standard Model”

The data described in the previous section motivate a “Standard Model” of
visual processing in cortex, which reflects in its general structure the average
belief of many visual physiologists and cognitive scientists. We have provided a
quantitative computational implementation (Riesenhuber and Poggio, 1999b)
that demonstrates the feasibility of the basic architecture, and allows us to
integrate experimental data in a rigorous framework and make quantitative
predictions for new experiments. The model reflects the general organization of
visual cortex in a series of layers from V1 to IT to PFC. From the point of view
of invariance properties, it consists of a sequence of two main modules based
on two key ideas. The first module, shown schematically in the inset in Fig. 1,
leads to model units showing the same scale and position invariance properties
as view-tuned IT neurons (Riesenhuber and Poggio, 2002; Logothetis and
Sheinberg, 1996; Riesenhuber and Poggio, 1999b). Computationally, this is
accomplished by a scheme consisting of a hierarchy of just two operations: i)
a “MAX” operation, and ii) a “template match” operation.

In detail, the model proposes that a MAX pooling function, in which a cell’s
output is determined by its strongest afferent, provides invariance to scaling
and translation as well as robustness to clutter while maintaining feature speci-
ficity. To illustrate the idea of MAX pooling, consider the example of simple
and complex cells in primary visual cortex: Both simple and complex cells re-
spond to bars of a certain orientation, but while simple cells have separate on
and off regions (i.e., responding to light and dark bars, resp.) and small recep-
tive fields, complex cells have larger receptive fields with overlapping on/off
regions. In the model, complex cells (C1 units in Fig. 1) increase translation in-
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variance by performing a MAX pooling operation over simple cells (S1) tuned
to the same feature but at different positions (and phase). Besides increasing
translation (and scale) invariance, the MAX pooling function is also advan-
tageous for object recognition in clutter: By design, the MAX operation only
selects the strongest input to a cell, and the response is not affected by the
presence of other objects that activate other afferents to a lesser degree (but
might cause strong activation of the afferents to another cell, e.g., one tuned
to a different orientation). Thus, the MAX operation provides a biologically
plausible mechanism to perform invariant object recognition in clutter (see
(Riesenhuber and Poggio, 1999a)) without the need for a separate segmenta-
tion process or special neural circuits to reroute the visual input to a standard
reference frame, which are challenged by the timing constraints for object
detection imposed by the experimental data, in particular for visual scenes
containing more than a single object (but see [DIRECTED VISUAL ATTEN-
TION AND THE DYNAMIC CONTROL OF INFORMATION FLOW]).

While oriented edges are a good model for the preferred features of V1 neurons,
neurons in higher areas along the ventral stream are tuned to more complex
shapes. This is achieved in the model by the other basic neural mechanism,
a “template match” operation in which feature complexity is increased by
combining simpler features into more complex ones (e.g., from the C1 to S2
and C2 to VTU levels in Fig. 1). This operation is performed at different
levels in the hierarchy to build increasingly complex features while maintaining
invariance.

In the second part of the architecture, arbitrary transformations can be learned
by interpolating between multiple examples, i.e., different view-tuned neurons,
leading to neural circuits performing specific tasks. The key idea here is that
interpolation and generalization can be obtained by simple networks that learn
from a set of examples, that is input-output pairs (Poggio and Girosi, 1990). In
this case, inputs are views and the outputs are the parameters of interest such
as the label of the object or its pose or expression (for a face). The weights
from the view-tuned units to the output are learned from the set of examples
(see Riesenhuber and Poggio (2002)). In principle, two networks sharing the
same VTU input units but with different weights (from the VTUs to the
respective output units), could be trained to perform different tasks such as
pose estimation, view-invariant recognition, or categorization.

Despite its simplicity, our implementation of this “Standard Model” of ob-
ject recognition in cortex has turned out to explain a number of experimental
results (for a recent review, see Riesenhuber and Poggio (2002)), and make pre-
dictions for new experiments. Importantly, there is now evidence from phys-
iology for the MAX pooling prediction, in complex cells in V1 (I. Lampl,
M. Riesenhuber, T. Poggio, D. Ferster, Soc. Neurosci. Abs. 2001 ) as well as
V4 (Gawne and Martin, 2002). Also, recent data from an experiment in which
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monkeys were trained to categorize “cat” and “dog” stimuli followed by record-
ings from the animals’ IT and PFC support the model prediction of a shape-
based but object-class specific representation (in this case for “cat”/“dog”-like
shapes) that provides input to task-specific circuits, in this case trained on the
categorization task (in IT and PFC, resp., see (Freedman et al., 2003)).

While the “Standard Model” is purely feedforward and thus in principle fast
enough to explain the data of Thorpe et al. (1996), the question is whether such
a simple model can indeed perform real-world object recognition tasks. Recent
work (Serre et al., 2002; Louie, 2003) has provided some very encouraging
results: The feedforward architecture of Fig. 1 can detect objects (in this case,
faces) in natural images, at a level comparable or even superior to state-
of-the-art machine vision systems (Fig. 2). Key to the model’s success on
this difficult task is the learning of a set of object class-specific features, at
the S2 level in the model, roughly corresponding to V4 cells in cortex. In
combination with the MAX pooling operation, this specialized set of features
allows the system to isolate the relevant features from the surrounding clutter,
without the need for a separate segmentation step. Moreover, the specialized
object class representation also greatly simplifies the complexity of the learning
problem, permitting the use of a simple linear classifier (see curve for “Kmeans
classifier” in Fig. 2) similar to the architecture shown in Fig. 1.

The observed difference in the attentional demands of different recognition
tasks (Li et al., 2002) could thus be related to the “naturalness” of the objects
involved: If the visual system has learned optimized features of intermediate
complexity for familiar objects (like animals in natural scenes), this would
facilitate detection of these objects in a single feedforward processing pass even
in the presence of clutter. In the case of unfamiliar or artificial objects, such
as bisected colored disks (Li et al., 2002), for which there are no specialized
features, however, the higher level of interference caused by the simultaneous
presence of other objects is more likely to prevent “attentionless” recognition of
the target objects (i.e., in one feedforward pass through the ventral stream), as
observed in the experiment (Li et al., 2002). In section 4 we will discuss possible
mechanisms of how attention could modulate processing in the recognition
system to improve performance in such cases.

3.1 Limitations of the Feedforward Approach

As described in the previous section, the purely feedforward “Standard Model”
is already able to perform very complex object recognition tasks. However, the
feedforward architecture has some limitations:

• There is experimental evidence that the visual system can exploit informa-
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Fig. 1. Sketch of the “Standard Model” of the recognition architecture in cortex.
It combines and extends several recent models and effectively summarizes many
experimental findings. The view-based module shown in the inset is an hierarchical
extension of Hubel and Wiesel’s classical paradigm of building complex cells from
simple cells. The circuitry consists of a hierarchy of layers leading to greater speci-
ficity and greater invariance by using two different types of mechanisms (a MAX
pooling mechanism (dashed lines), to increase invariance, and a template match
operation (solid lines), to increase feature specificity, see text). The output of the
view-based module is represented by view-tuned model units Vn that exhibit tight
tuning to rotation in depth (and illumination, and other object-dependent trans-
formations such as facial expression, etc.) but are tolerant to scaling and trans-
lation of their preferred object view. Invariance to rotation in depth (or other
object-specific transformations) is obtained by combining in a learning module
several view-tuned units Vn tuned to different views (or differently transformed
versions) of the same object (Poggio and Edelman, 1990), creating view-invariant
(object-tuned) units On. These, as well as the view-tuned units, can then serve as
input to task modules that learn to perform different visual tasks such as identifi-
cation/discrimination or object categorization. They consist of same generic learn-
ing circuitry but are trained with appropriate sets of examples to perform specific
tasks. The stages up to the object-centered units probably encompass V1 to ante-
rior IT (AIT). The last stage of task dependent modules may be localized in AIT
or prefrontal cortex (PFC). For more information on the model, including source
code, see http://riesenhuberlab.neuro.georgetown.edu/hmax. Modified from
(Riesenhuber and Poggio, 2002).
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Fig. 2. The feedforward model of object recognition in cortex can perform face
detection in natural images (faces were a subset of CMU PIE database, non-faces
were selections from natural scenes selected as “face-like” by an LDA classifer, see
(Louie, 2003)) at a level comparable to that of one of the best available machine
vision face detection systems (Heisele et al., 2002). The figure shows ROC curves of
the biological system with feature learning (“HMAX”) and different machine vision
face detection systems. The “HMAX” system was like the one shown in Fig. 1, with
the difference that S2 features were learned from a set of faces images (Serre et al.,
2002). This object-class specific feature set enabled the system to robustly detect
faces in cluttered images. For details, see (Louie, 2003).

tion about target location (spatial cues, e.g., (Posner, 1980)) to enhance
processing at the location of interest. The model cannot explain such “top-
down” effects.

• There are situations where the feedforward system is overwhelmed and can-
not correctly detect the object of interest, for instance, when the target ap-
pears together with a number of other objects and the surrounding clutter
interferes with the representation of the target object (see Tsotsos (1990);
Riesenhuber and Poggio (1999a)). This is the case in some visual search
tasks where the visual system appears to resort to a serial approach to
sequentially process different parts of the visual input.
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4 Extending the Feedforward System: Roles for Top-Down Atten-

tional and Task-Dependent Modulations

4.1 Spatial Cueing

It is straightforward to incorporate task-relevant information in form of a
spatial cue into the framework of the feedforward model by appropriately
modulating the pooling range of units performing a MAX operation. In this
way, spatial attention could enhance signals from the region of interest and
suppress input from nonrelevant parts of the visual field (see Fig. 3). This is
compatible with reports from physiology that show that the receptive fields
of neurons in V4 can constrict around the location of interest (Luck et al.,
1997), and similar observations of enhancement of processing for the region of
interest and suppression elsewhere in fMRI experiments [BIASING COMPE-
TITION IN HUMAN VISUAL CORTEX,SPATIALLY-SPECIFIC ATTEN-
TIONAL MODULATION REVEALED BY FMRI]. Regarding the underly-
ing neural mechanisms, recent data suggest that deploying spatial attention
to a region that includes the receptive field of a particular neuron causes a
leftward shift of that neuron’s contrast response curve [VISUAL CORTICAL
CIRCUITS AND SPATIAL ATTENTION]. Thus, focusing attention on a par-
ticular region in space would be equivalent to raising the effective contrast of
that part of the input (and conversely, non-attended regions would be expected
to show a lowered effective contrast). In the framework of the model, such a
modulation of effective contrast directly reduces the interference caused by
non-attended regions, as high-contrast stimuli cause higher responses which
are more likely to win the MAX competition and thus determine the response
of pooling units along the pathway and ultimately of view-tuned IT neurons
(Riesenhuber and Poggio, 1999a). This parallel between attentional modula-
tion and contrast is also very appealing since it directly relates to the notion
of “salience” at the heart of popular models of attentional selection Itti and
Koch (2000) [MODELS OF BOTTOM-UP ATTENTION AND SALIENCY].

4.2 Nonspatial Cueing

The case of nonspatial cueing is not as straightforward as the spatial case,
however. While a spatial signal can be translated into a modulatory signal for
cells at all levels of the processing hierarchy depending on the overlap of a
neuron’s receptive field with the extent of the “spotlight” of attention, it is
not clear how a nonspatial, e.g., object-level cue (such as “look for a face”)
can be translated into response modulations of neurons tuned to different fea-
tures along the ventral pathway to selectively improve detection of the object
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of interest. For instance, if the goal is to detect “a face”, there is a multitude
of potential target objects and it is not clear which neurons should be modu-
lated and in which way to increase the detectability of any face vs. non-faces.
Consider the simplest case: Assume the target is a particular face in a par-
ticular pose (lighting condition, expression etc. ), and that further there is a
particular view-tuned cell in IT tuned to this exact face (a so-called “grand-
mother cell”), and the target face is declared “detected” if the activation of
this VTU exceeds a certain threshold. How should afferent neurons tuned to
simpler features in lower processing levels, e.g., in V4, be modulated to im-
prove the system’s selectivity (i.e., to improve detection without an increase
in false alarms) for the target object? If the VTU is tuned to a characteristic
distributed activation pattern over its afferents (with high and low activations,
depending on which features are present in the face and to what degree), then
how should those afferents be modulated, in particular in the absence of in-
formation about target contrast? Increasing the afferents’ gain might change
their response to the target object in such a way that the resulting activation
pattern over the afferents could actually be less optimal to activate the VTU
than the unmodulated activation pattern (for supporting simulation results,
see (Schneider and Riesenhuber, 2004)). The situation is even more problem-
atic in the more general case where object identity is encoded by a population
of view-tuned units tuned to e.g., different faces (Young and Yamane, 1992).
Here, the same V4 neuron can provide input to different VTUs and conceiv-
ably receives top-down signals from more than one IT cell. How should the
possibly different top-down inputs be combined to modulate the V4 neuron?

These computational arguments concerning the conceptual simplicity of spa-
tial cueing on the one hand and the difficulties associated with nonspatial
cueing on the other are compatible with reports from electrophysiology that
suggest that featural and spatial attentional effects are qualitatively different.
In particular, while spatial effects appear to occur close to response onset,
nonspatial modulations appear to have a latency of at least 150ms (Motter,
1994; Hillyard and Anllo-Vento, 1998). A possible interpretation of these data
could be that nonspatial attention only sets in after an initial feedforward
pass through the visual system, when the precise shape, contrast etc. of the
target and the activation it evokes at the different processing stages would be
known. However, this would suggest very different roles for spatial and featural
attention, at least for the case of rapidly presented images (when processing
is limited mainly to a feedforward pass): While spatial cues could aid recogni-
tion as it is possible to “tune” the system before stimulus onset, information
about features would not be able to enhance performance of the initial feed-
forward processing pass, but might serve to, e.g., “highlight” instances of the
target object in the visual field, as in a saliency map (Motter, 1994; Mazer and
Gallant, 2003) to inform other processes such as eye movements to potential
targets (see also section 5).
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4.3 Visual Search

If the target object appears together with a number of similar distractor ob-
jects that interfere with the representation of the target object so much that it
cannot be recognized in a feedforward pass anymore (see Fig. 3(b), dark bars)
one computational strategy for the visual system is to “divide and conquer” to
reduce the influence of clutter and detect the target by sequentially analyzing
parts of the image. This piecemeal approach could use the same mechanism
underlying spatial attention described above, i.e., spatial modulation of the
pooling range of neurons along the processing hierarchy, but now controlled
not by external spatial cues but by, for instance, a “saliency map” (Itti and
Koch, 2000) [MODELS OF BOTTOM-UP ATTENTION AND SALIENCY]
as shown in Fig. 3 (Walther et al., 2002). It is an interesting question whether
this saliency map is based solely on “bottom-up” factors such as orientation or
intensity contrast, or whether there are task-specific components to saliency
(that would serve to, e.g., increase the salience of purple regions when looking
for Barney, the Dinosaur). Also, given the feature-based modulations of V4
neurons and their possible role in object recognition described in section 4.2,
it is interesting to ask whether more complex features, like those represented
by V4 neurons (Kobatake and Tanaka, 1994) are integrated into the saliency
map. Clearly, investigating this link between attention and recognition should
be a priority for future studies.

5 Summary and Conclusions

“Basic” object recognition tasks such as object detection in natural images
can be understood to a first approximation as resulting from a single feed-
forward pass through the processing hierarchy of the ventral visual stream
in cortex from primary visual cortex, V1, to inferotemporal cortex, IT. A
hierarchical computational model of the ventral stream based on just two op-
erations, a MAX pooling function to increase tolerance to stimulus translation
and scaling and a template match operation to increase feature complexity,
can provide an explanation for the shape tuning and invariance properties of
view-tuned cells in IT, and explain how the ventral stream can perform object
detection in complex natural scenes. The model makes very few assumptions.
For instance, model unit responses have no dynamics, and there are no lat-
eral interactions, oscillations or synchronous ensembles of units. This does not
mean such mechanisms do not play a role in vision. However, the simulation
results show that they are not necessary to explain the relevant data on object
recognition.

Not surprisingly, simulations show that there are situations where such a sim-
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Fig. 3. Coupling of the Saliency Map model of attention (Itti and Koch, 2000) and
the model of object recognition (Riesenhuber and Poggio, 1999b). (a) Sketch of the
integrated system: The saliency map (left) provides a modulatory signal to C2 model
units (corresponding to V4 neurons in cortex) to modulate their pooling range,
causing their receptive fields to focus around the location of interest selected by the
saliency map. (b) Recognition results with and without attentional modulation, as
a function of target and distractor stimulus separation. While a purely feedforward
analysis of the image yields only poor performance, iterative piecewise analysis of
the image through attentional modulation of the spatial extent of receptive fields
dramatically improves recognition performance. From (Walther et al., 2002).
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ple feedforward system breaks down, for instance, in the case of visual clutter
when the receptive field of a model IT unit contains several interfering ob-
jects. Similar effects are observed in natural vision, and it will be interesting
to compare the conditions under which feedforward vision fails in the model
and in the experiment. As the modeling studies on face detection demonstrate
(Serre et al., 2002; Louie, 2003), familiarity with objects from the target class
is expected to play a crucial role: If a subject is well trained on a certain object
class such that specific intermediate representations have been learned, then
interference caused by simultaneously presented distractor objects and thus
attentional demands for this task should decrease. Reports that some initally
“serial” tasks can become “parallel” with practice (Sireteanu and Rettenbach,
1995), and that well-practiced object recognition tasks (such as animal detec-
tion in natural scenes) do not seem to require attention whereas more artificial
ones (like discriminating bisected colored disks) do (Li et al., 2002) are com-
patible with this hypothesis.

The challenge to perform object recognition also in more difficult situations
when the feedforward system fails, together with experimental data that show
spatial cueing effects in behavior as well as attention-related modulations of
processing observed in physiology and fMRI, has motivated extensions of the
basic model to incorporate spatial modulations of processing to reduce the
effect of clutter. These modulations can be based on explicit information about
the target (for instance in form of a spatial cue), or could possibly be driven
more indirectly by stimulus saliency (Itti and Koch, 2000; Walther et al.,
2002) as in serial visual search. In the case of spatial attention, information
about target location permits a “tuning” of the visual system prior to stimulus
exposure that can improve the performance of the feedforward system.

From a computational point of view, featural attention, where the system is
given information about the shape of a target but not its location, seems to be
fundamentally different (Schneider and Riesenhuber, 2004): While the transla-
tion of information about target location into a neuronal modulation pattern
is straightforward based on the match of the location of a cell’s receptive field
with the region of interest, and can be applied to any cell irrespective of its
position in the processing hierarchy, information about complex target objects
is difficult to translate into appropriate attentional modulations of simpler fea-
ture detectors in lower levels of the hierarchy. Nevertheless, object recognition
tasks that leave sufficient time to perform iterations of feedforward and feed-
back processing might profit from featural attention. In these cases, an initial
feedforward pass could provide hypotheses about possible targets which could
then provide specific top-down signals to influence lower levels of processing,
possibly explaining observed effects of featural attention on task performance
in some experiments (Rossi and Paradiso, 1995; Blaser et al., 1999; Lee et al.,
1999). Alternatively, these results might suggest the intriguing and computa-
tionally feasible hypothesis that pre-stimulus “featural tuning” of feedforward
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processing is possible for the basic visual features that neurons at the lower
processing levels are tuned to, such as color and orientation. Such modula-
tions of processing could consist in a sharpening of tuning curves (possibly
paired with an increase in gain akin to the aforementioned increase in ef-
fective contrast in the spatial case) (Lee et al., 1999) of those neurons that
are directly tuned to the target stimulus. Opportunities abound for interesting
hypothesis-driven experiments seeking to clarify the role of attention in object
recognition.
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