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Paradox, ZF, and the Axiom of Foundation∗

Adam Rieger

It is a great pleasure to contribute to this Festschrift for John Bell. No-one
has done more than he has to demonstrate the fruitfulness of the interplay
between technical mathematics and philosophical issues, and he is an inspira-
tion to all of us who work somewhere in the borderland between mathematics
and philosophy.

I also owe him a great personal debt. I arrived at the LSE dejected and
disillusioned by my experiences of the Mathematical Tripos at Cambridge,
but it is impossible to be downhearted for long in the company of John. His
enthusiasm, humour and warmth were the perfect antidote to the stuffiness
and inhumanity of Cambridge and helped hugely to rebuild my interest and
self-confidence. John’s energy levels must be seen to be believed, and an
evening with him is an unforgettable experience. It generally starts about
4 p.m. and ends around 5 in the morning, when the last of his companions
(never John, who always gives the impression that he could go on talking
indefinitely) finally succumbs to sleep.

At John’s suggestion, I wrote my M.Sc. dissertation at the L.S.E. on
truth, which led on eventually to an Oxford D.Phil. which concerned both
the semantic and set-theoretical paradoxes. It is the concept of set—example
par excellence of one that straddles philosophy and mathematics—that is the
subject of this essay.

1

At the beginning of the twentieth century there was a crisis in the foundations
of mathematics. The crisis centred around the concept of set, which suddenly
achieved prominence in two different ways. Firstly Cantor’s theory of the

∗Some of the material here has been presented in Glasgow, at a St Andrews workshop on
the island of Raasay, and at the Kraków meeting of the IUHPS. I thank the audiences for
their comments on those occasions. In Rieger [2000] reference is made a to ‘forthcoming’
paper with the title Zermelo-Fraenkel set theory: an emperor with no clothes? In fact no
such paper has appeared; much of the material intended for that paper is contained here.
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transfinite showed that sets were of great intrinsic mathematical interest.
And secondly through the work of Frege and Russell it emerged that sets were
central to the philosophical project—logicism—of reducing mathematics to
logic.

The discovery by Russell and others that, if handled carelessly, sets give
rise to contradictions, threatened not only the logicist programme, but also
mathematics itself; for large parts of mathematics, in particular analysis,
make essential use of the completed infinite, and the paradoxes seemed to
show that this was a risky practice.

A hundred years later there is no longer a foundational crisis. Why is this?
By 1930, mathematicians had found a way of coping with the paradoxes. A
system of axiomatic set theory, Zermelo-Fraenkel set theory (ZF for short)
had been developed, which allowed mathematicians to do all they wanted to
do with sets, whilst maintaining consistency. ZF is not the only axiomatic
set theory, but at the present time it has a completely dominant position
amongst such theories. For the purposes of university mathematics courses,
for example, set theory just is ZF.

Does ZF really deserve its elevated position? Below I examine three sorts
of argument which can be adduced in support of ZF:

1. Argument from the paradoxes

2. Argument from the iterative conception

3. Argument from pragmatic mathematical considerations

and conclude that none of them are convincing.

2

There is a widespread view that one needs some kind of hierarchy, and hence
ZF or something like it, to avoid the paradoxes.1 Let us go back to basics to
examine the merits of this claim.

According to the naive conception of set, any arbitrary collection forms
a set.2 This entails the truth of the naive comprehension schema

∃x∀y(y ∈ x ↔ φ(y)).

1Logical cognoscenti know that this is false, but the view is common amongst those
who are mathematically, but not logically, well-informed.

2As far as I know, nobody has ever explicitly put forward the naive conception, though
it is implicit in Frege’s Grundgesetze [1893].
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But this schema is in fact logically false: for as Russell noticed [1902], on
letting φ be y 6∈ y we obtain a contradiction.

Now whilst this shows that there is a fatal defect with the naive concep-
tion, it does not yield an illuminating explanation of what exactly is wrong
with it, an explanation that might be of some use in the reform of the concept
of set which must inevitably follow.

Such an explanation is, however, available.
Suppose a is a set, and consider the set

b = {x ∈ a : x 6∈ x}.

It is easy to see that b 6∈ a. So we have a recipe which, for any set a, gives us
a set which is not a member of a. The set b “diagonalizes out” of a.

If a already has all sets as members, trouble arrives in the shape of the
Russell paradox. And naively, there must be such a set a, for example the
set of everything whatever. (Just take φ(y) to be y = y in the naive schema
above.) On this way of looking at it, contradiction arises because, under the
naive conception, we have both extensibility (the ability to extend any given
set by finding something that is not one of its members) and universality (the
existence of a set which contains everything). Clearly these cannot co-exist
consistently.

Essentially the same diagnosis can be given for the other standard set-
theoretic paradoxes. In the so-called Cantor paradox, extensibility arises
from the power set operation—since the power set P (a) of a is always strictly
larger than a, there must be elements of P (a) which are not in a. So again
the existence of a universal set leads to contradiction.

In some of the paradoxes the extensibility and universality are relativised
to particular sub-collections of the universe. For example, the Burali-Forti
paradox hinges on the tension between (i) the principle that, for any initial
segment of ordinals, we can, by considering the ordinal number of the segment
itself, find an ordinal not in that segment, and (ii) the principle that there
is a well-ordered set of all ordinals. The slightly less well-known Mirimanoff
paradox concerns the set W of all well-founded sets.3 Since all the members
of W are well-founded, so is W , but then it should be a member of itself, and
so, after all, not well-founded. Here extensibility is obtained by considering,
for any set a of well-founded sets, the set b = a ∪ {a}; this is another set of
well-founded sets (since a itself must be well-founded), yet it has a member
(namely a itself) which is not a member of a (else we have a ∈ a, so a is not
well-founded).4

3For the definition of well-founded, see below.
4For more details, including attempts to apply the same idea to the semantic para-
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A consequence of this diagnosis is that there is a neat and rather natural way
to solve the paradoxes: ban universality by not allowing very large collections
(e.g. the universe and the collection of all ordinals) to be sets. Remarkably,
this solution was hit upon by the originator of set theory, Georg Cantor,
before the “paradox industry” had even got under way. In a letter he wrote
to Dedekind [1899] we find the following passage:

. . . it is necessary, as I discovered, to distinguish two kinds of
multiplicity. . . For a multiplicity can be such that the assumption
that all of its elements “are together” leads to a contradiction, so
that it is impossible to conceive of the multiplicity as a unity, as
“one finished thing”. Such multiplicities I call absolutely infinite
or inconsistent multiplicities . . . If on the other hand the totality
of the elements of a multiplicity can be thought of without con-
tradiction as “being together”. . . I call it a consistent multiplicity
or set.5

Cantor has discovered what in modern parlance is called the set/class
distinction, usually attributed to von Neumann [1925]. The key idea is that
some infinite collections are all right, and they form the sets; others are just
too big, and are either abolished altogether, or allowed in as some other
kind of entity (proper classes).6 The idea is, in the light of our diagnosis,
thoroughly motivated and not at all ad hoc.

And, indeed, this is exactly what happens with ZF. This is sometimes ex-
pressed, somewhat misleadingly, by saying that ZF incorporates the doctrine
of limitation of size—misleading because this phrase suggests that there is
some cardinal magnitude below which collections are safe but above which

doxes, see Chapter 1 of Rieger [1996] or the article Priest [1994] (Priest uses the terms
transcendence and closure). Dummett’s idea of an indefinitely extensible concept ([1991]
p. 316), and Grim’s book The Incomplete Universe [1991] are also relevant. The basic
idea can be found in Russell’s paper [1906c] which I discuss below.

5Though it is not quite as explicit, the distinction between the transfinite and the ab-
solute infinite can be found much earlier in Cantor’s writings (e.g. Cantor [1883] p. 205). It
seems likely that, having realized that any set can be enlarged by the power set operation,
Cantor drew immediately the conclusion that there can be no universal set. Cantor is
sometimes accused of believing in naive set theory (e.g. Körner [1960] p. 44: “Cantor’s
theory of classes, by admitting as a class any collection, however formed, leads to contra-
dictions”). This is quite unjustified: rather “his conception of set. . . was one in which the
paradoxes cannot arise” (Menzel [1984] p. 92). See also Hallett [1984] p. 38 and passim.

6More precisely, the principle that a collection is too big to form a set iff it can be put
into 1-1 correspondence with the universe can be taken as the basis for an axiomatization
of set theory, as is done in von Neumann [1925].

4



they are paradoxical, whereas the point is not that sets must be below some
particular size but that they must not be as big as the universe.

Nothing we have said so far, however, requires sets to be arranged in a
hierarchy. But the ZF axioms embody such a requirement. In particular,
the axiom of foundation states that every (non-empty) set x has a member
y which is minimal, in the sense that no member of x belongs to y.7 Another
way of putting this, equivalent in the presence of the axiom of choice, is that
there is no infinite descending membership chain x 3 x1 3 x2 3 . . .. So there
cannot be, for example, a set which is a member of itself, or a member of a
member of itself.

A suspicion therefore arises that ZF restricts the notion of set more than is
necessary to avoid the paradoxes, and therefore offends against the following
methodological principle: when forced by paradox to reform a naive concept,
preserve as much of it as possible. The naive concept of set does not obey
the axiom of foundation: it allows such self-membered sets as the set of
absolutely everything, and the set of all things discussed in this paper. ZF
rules out both of these, but the principle of restricting universality seems
to deny sethood only to the first.8 Can there be a consistent theory which
allows the second?

Indeed there can. One sort of theory with this property is discussed by
Aczel [1988]. Briefly, the idea is to take the axioms of ZF except foundation,
and add to them some version of an anti-foundation axiom. This is best
understood in terms of membership graphs. There is a natural sense in
which (directed) graphs can be regarded as pictures of sets: for example,
Figure 1 is a picture of the von Neumann ordinal 2 = {∅, {∅}}.

Only well-founded graphs (graphs without infinite paths) can be pictures
of sets in the ZF universe; to obtain the richer non-well-founded universes
we allow any graph to be a picture of a set. Thus Figure 2 is the picture of
a set a = {a, ∅}.

By constructing a graph model from a model of ZF, Aczel proves that
these systems are consistent if ZF is.9

Summary: it can be rigorously proved that ZF restricts the notion of set
more than the paradoxes demand.

7A set x satisfying this condition is said to be well-founded.
8To make the example work, interpret “discussed in this paper” so that it applies to

only a small (e.g. finite) number of things.
9For more details see Aczel [1988]. I discuss the merits of the various anti-foundation

axioms in Rieger [2000].
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Figure 1: An exact picture of 2
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Figure 2: A non-well-founded graph
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4

How did the idea take hold that a hierarchy is necessary to solve the para-
doxes? To answer this it will be necessary to take a short historical detour.

In December 1905 Russell read a remarkable paper to the London Mathe-
matical Society, later published as Russell [1906c]. In it he states clearly that
the lesson of the paradoxes is that naive comprehension must be rejected:

What is demonstrated by the contradictions we have considered
is broadly this: ‘A propositional function of one variable does not
always determine a class.’ (Russell [1906c] pp. 144–5)

And he gives essentially the diagnosis above:

. . . there are what we may call self-reproductive processes and
classes. That is, there are some properties such that, given any
class of terms10 all having such a property, we can always define
a new term also having the property in question. Hence we can
never collect all the terms having the said property into a whole;
because, whenever we hope we have them all, the collection which
we have immediately proceeds to generate a new term also having
the said property. (Russell [1906c] p. 144)

This insight would seem to lead naturally to the conclusion outlined
above, that a solution to the paradoxes may be obtained by ensuring that
there is no universal class, no class of all ordinals, etc. However, Russell
does not simply draw this inference; rather he considers three different re-
sponses, all of which would indirectly ban the offending classes: the “zigzag”
theory, the “limitation of size” theory, and the “no-classes” theory, tenta-
tively suggesting that the last of these offers the most promising route for a
solution.11

Less than a year later, Russell had changed his mind about the paradoxes.
In a paper published in September 1906, he wrote this:

I recognise, however, that the clue to the paradoxes is to be found
in the vicious-circle suggestion. (Russell [1906b] p. 198)

The “vicious-circle suggestion” is

10“Term” here just means “object”.
11It might be thought that “limitation of size” embodies exactly the idea of restricting

universality, but it is clear that Russell does not think of it in this way: rather he sees
the theory as posing the question “how far up the series of ordinals it is legitimate to go”
(p. 53), a question which he cannot see any prospect of answering.
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. . . that whatever in any way concerns all o[r]12 any or some (un-
determined) of the members of a class must not itself be one of
the members of a class.13 (Russell [1906b] p. 198)

A new concept, circularity, has now entered the discussion. Russell believes
that all the paradoxes result from the (allegedly) circular practice of allow-
ing totalities containing members which, in some appropriate sense to be
discussed below, “concern” that very totality.

It might perhaps seem at first sight that this is just another way of stating
the original diagnosis. For is not this circularity the key feature of the “self-
reproductive” classes identified in the earlier paper? But in fact the difference
is dramatic. According to the previous diagnosis, there cannot be a class of
all ordinals or all things (for this would lead to the contradictory consequence
that there is a new ordinal (thing) which both must and must not be in the
class). But in the later paper, Russell advocates the very much stronger
principle that there can be no class whatever, large or small, which has
members concerning that very class. This inevitably imposes a hierarchical
structure on the universe of classes. At this point an alien constructivism was
imported into classical mathematics, vestiges of which are still visible today.
For the vicious circle principle is inextricably linked with a constructivist
view of the metaphysics of mathematics.14

5

What had happened to Russell in the few months between the two papers?
He had been reading Poincaré. The second paper was, in fact, written in
reply to Poincaré [1905-6]. In that work Poincaré blames the paradoxes
on circularity. His treatment is sketchy, and he discusses only Richard’s
paradox15 in any detail, claiming that “the same explanation serves for the

12The original has “of”, which seems to be a misprint.
13The occurrence of “any” (and “some”) may seem puzzling here: since anything pre-

sumably concerns itself, the principle seems to rule out anything ever being a member
of a class. But Russell should be read as forbidding any member of a class concerning
quantification over the class.

14To avoid confusion, I should perhaps make it clear that here and throughout the paper
I use “constructivism” as a name for a metaphysical view about mathematics, roughly that
mathematical objects are brought into existence by some activity of human minds. The
term is sometimes now used for mathematics without the law of excluded middle, but I
shall use it in its earlier sense.

15This is a semantic paradox, introduced in Richard [1905], which concerns the collection
E of all reals definable in a finite number of words; by a diagonal argument we can obtain
a new real, not in E yet definable in a finite number of words.
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other antinomies, as may be easily verified” (p. 190). Thus applied to classes,

. . . the definitions that must be regarded as non-predicative are
those which contain a vicious circle.16 (p. 190)

Though he does not explicitly formulate the VCP, it is clear from a later
passage in the paper that he has the same conception of it as Russell:

. . . if the definition of a notion N depends on all the objects A,
it may be tainted with the vicious circle, if among the objects A
there is one that cannot be defined without bringing in the notion
N itself. (p. 194)

Now Poincaré’s views on the VCP arise completely naturally from his
wider views on the philosophy of mathematics, in particular, his view on
mathematical existence. He is explicit in his constructivism. In a paper
written in 1912, he declares that a mathematical object “exists only when it
is conceived by the mind” (Poincaré [1963] p. 72). He considers a “genus”
(set) G with a member X, and writes of the members of G

. . . they will exist only after they have been constructed; that
is, after they have been defined; X exists only by virtue of its
definition,17 which has meaning only if all the members of G are
known beforehand, and X in particular.

This conception of existence of course provides a motivation for the VCP.
If mathematical objects are brought into existence by their definitions, then it
seems that no totality can possibly contain members defined in terms of that
very totality. However, Russell adopted Poincaré’s views on impredicativity
without accepting the constructivist outlook. By doing so he landed the
classical mathematical community in a philosophical confusion from which
it has yet to emerge.18

16The original italicises this sentence. At this point “non-predicative” means simply
“not defining a class”; confusingly, Russell, having accepted the diagnosis, started using
“impredicative” to mean “violating the vicious circle principle”.

17My italics.
18Goldfarb [1989] attempts to reconcile Russell’s predicativism with his lack of con-

structivism, arguing that his views on variables and their ranges of significance can lead
to ramification of intensional entities (in particular propositions and propositional func-
tions) even on a realist conception. But even if this is right—and Goldfarb says he is only
making a “first step” (p. 27) towards a full treatment of the issue—the fact remains that
Russell advocates the VCP in full generality. As Goldfarb admits (pp. 30–1), it is hard to
see how the ramification of sets can be justified except on a constructivist view.
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6

Armed with his diagnosis of the paradoxes and aided by Whitehead, Russell
embarked on reworking mathematics whilst obeying the VCP: the result was
the ramified type theory of Principia Mathematica [1910–3]. This is not the
place for a detailed discussion of that work, but for present purposes it is
enough to note that the system obtained is a (rather complex) hierarchy of
propositional functions; the position of a function in the hierarchy depends
not only on (i) its arguments but also on (ii) the ranges of any quantifications
in its definition (this latter refinement making the hierarchy “ramified”), both
(i) and (ii) being required to be lower down in the hierarchy.

But despite Whitehead and Russell’s efforts, their system has never been
accepted as a foundation for mathematics. Instead, the system of axiomatic
set theory developed in continental Europe, mostly by Zermelo, proved much
easier to work with. Most of the axioms appear first in Zermelo’s paper [1908],
which contains versions of: extensionality, empty set, pairs, separation, power
set, union, choice and infinity, that is, all the axioms in the now-standard
theory except for replacement and foundation. Interestingly Zermelo’s moti-
vation at this point seems only partly to have been the paradoxes; primarily
he was concerned to analyse exactly which principles concerning sets he had
used in his proof that every set can be well-ordered (Zermelo [1904]). The
central idea is to replace naive comprehension by separation: that is, we can-
not in general form the set of absolutely all y such that φ(y), but only the
set of all members of some set a such that φ(y). Paradox is avoided because
there is no way to prove that the universe is a set; indeed the Russell paradox
becomes a proof that it is not a set.19

The replacement axiom was added later by Fraenkel [1922] and Skolem
[1922]. As for the axiom of foundation: the issue first seems to have been
considered by Mirimanoff ([1917a] and [1917b]), who distinguishes “ordinary”
sets which do not have infinite descending membership chains from “extra-
ordinary” ones which do. He does not assert, however, that there is anything
wrong with the extraordinary sets. Von Neumann [1925] describes non-well-
founded sets as “superfluous” (p. 404) and gives an axiom (p. 412) which
excludes some, but not all, of them. Three years later [1928] he formulates
the axiom of foundation in the form ∀x(x 6= ∅ → ∃y ∈ x(y ∩ x = ∅)). How-
ever, it is not until the paper Zermelo [1930] that the axiom of foundation is
explicitly adopted as a postulate. With this paper all the axioms of standard
modern set theory are in place.

19The axiom of foundation immediately rules out a universal set, for such a set would
be a member of itself. But the point is that such a set is ruled out anyway by the other
axioms. Foundation plays no role in solving the paradoxes.
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7

In comparing type theory with ZF, it is useful to try to get clearer about
what the VCP is saying. Russell never provided a single clear statement of
it. Here are two attempts:

I. No totality may contain members defined in terms of itself.
(Russell [1908] p. 75)

II. Whatever involves all of a collection must not be one of the
collection. (Russell [1908] p. 63)

Now it seems that Russell took these, and other, statements to be different
formulations of the same principle.20 However, Gödel [1944] pointed out that
it looks like there is more than one principle here, in particular one to do
with definitions, the other to do with the notion of involving.21 Let us call
these VCP I and VCP II, and try to see more precisely what implications
they have for sets.

VCP I seems closest to the constructivist spirit of Poincaré. It rules out
impredicative definitions : for example definitions of x which quantify over a
collection of which x is a member.22

Since sets presumably “involve” their members, VCP II rules out sets
which are members of themselves. It also seems reasonable that “involving”
is transitive, so that a set also involves the members of its members, and so
on. Hence a reasonable explication of “x involves y” in the case of sets is “y
is a member of the transitive closure of x”,23 in which case VCP II will be
obeyed if sets satisfy the axiom of foundation.24

20Some other statements from Russell’s writings are to be found at the pages cited
above, and also Russell [1906b] p. 204, Whitehead and Russell [1910] p. 37.

21Gödel claims to discern a third principle, concerning “pre-supposing”, which I shall
not discuss here.

22This will not do as it stands as a characterization of impredicative definitions. For
example it will be equally objectionable if, instead of x itself being a member of the totality,
some second object y, defined using x, is a member. Presumably to make this rigorous
we would require some notion of well-foundedness for definitions; I shall not attempt to
supply details here.

23The transitive closure of x is the set whose members are the members of x, the members
of the members of x, and so on.

24Though he does not state it explicitly, this seems to be what Gödel has in mind in his
paper (see p. 131 with its footnote reference to Mirimanoff). It is a little too strong to say
that VCP II entails the axiom of foundation, for an infinite descending membership chain
x1 3 x2 3 . . . in which all the xi are different violates foundation without circularity. Such
a chain seems equally offensive to the constructivist intuitions underpinning the VCPs,
and suggests that they do not fully capture those intuitions.
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Now the system of Principia Mathematica obeys both VCP I and VCP
II. Impredicative definitions are rigorously avoided, and the universe has a
hierarchical structure. That ZF obeys VCP II is, as I have said, guaranteed
by the axiom of foundation. But ZF violates VCP I. The axiom of separa-
tion allows us, for any set a, to define a new set b by admitting only those
members of a satisfying some formula φ(x). But there is no restriction on the
quantifiers that may occur in φ(x): they may range over the whole universe.
Impredicative definitions are perfectly allowable in ZF.

8

As I recounted above, most of the axioms of ZF resulted from Zermelo’s at-
tempt to defend his proof that every set could be well-ordered. This does not
apply, however, to the axiom of foundation. I conjecture that it was inspired
by type theory, but I do not know of anything explicit in the early litera-
ture which supports this. In any case, somewhat later a new way justifying
the axioms developed. This is the second of the three ways I mentioned of
arguing in favour of ZF.

The idea is as follows. We all have an intuitive grasp of the concept
of natural number, that is, we grasp a structure which we refer to as “the
natural numbers”. If someone wanted to justify the Peano axioms for number
theory, they would appeal to the evident truth of the axioms in this intuitively
understood structure. The claim is that something analogous can be done for
set theory. There is an intuitive conception of set, the iterative conception,
which gives rise to an intuitively understood model, the cumulative hierarchy.
The axioms (or at least, a number of them)25 are then justified by appealing
to the fact that they are true in this model.

How does the model work? Start with the empty set.26 Call this V0. V1

is the power set of V0, and in general, we obtain the next level after Vn by
taking the power set. Vω is just the union of all the Vn for finite n, and Vω+1

is the power set of Vω. Continue through the ordinals, forming power sets
at each stage and taking unions at limit ordinals. The result is a hierarchy
in which sets only have members from lower down the hierarchy. As Lavine

25There is disagreement, for example, on whether the axiom of replacement is derivable
from the iterative conception.

26A variation is possible in which instead we start with some atoms or urelements, that
is, some non-sets. Though this is probably more natural from a naive point of view,
mathematicians standardly work with a universe of pure sets, where everything is a set,
since this is technically smoother (for example the quantifiers can simply be taken to range
over all sets) and does not result in any limitation in structure. For present purposes the
difference in the two approaches is not important.
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[1994] points out, “the iterative conception gives the Axiom of Foundation
center stage” (p. 144).

The cumulative hierarchy was hinted at by Mirimanoff [1917a] and in-
troduced explicitly by von Neumann [1929] for the purposes of a consistency
proof, but the idea of using it as an intuitive model justifying the axioms only
came later. It is suggested by Gödel [1947] (pp. 474–5) but only becomes
explicit around 1970, when a number of papers appeared roughly simulta-
neously. Shoenfield [1967] and [1977], Boolos [1971] and Wang [1974] are
representative. Let us examine some of the passages in which they justify
that part of their conception of set which gives rise to the axiom of founda-
tion.27 First Shoenfield:

Sets are formed in stages. For each stage S, there are certain
stages which are before S. At each stage S, each collection con-
sisting of sets formed at stages before S is formed into a set.
. . . When we are forming a set z by choosing its members, we do
not yet have the object z, and hence cannot use it as a member
of z. The same reasoning shows that certain other sets cannot be
members of z. For example, suppose that z ∈ y. Then we cannot
form y until we have formed z. Hence y is not available as an
object when z is formed, and therefore cannot be a member of z.
(Shoenfield [1977] p. 323)

Boolos actually claims that the iterative conception of set has an intuitive
plausibility independent of the paradoxes, and that one might have come to
see it as superior to naive set theory (as embodied in the naive comprehension
axiom) even if the paradoxes had never been discovered. That is (though
this is not the way Boolos expresses it), there are really two versions of naive
set theory, one captured by naive comprehension, the other by the iterative

27More detailed marshallings of evidence against the iterative conception may be found
in Lavine [1994], Chapter V, and Hallett [1984], Chapters 5–6. The overall conclusion of
Hallett’s book, however, that “we have no satisfactory simple heuristic explanation of why
it [ZF] works”, seems to me to be too strong. It is not mysterious that ZF avoids the
paradoxes, since it is apparent from the axioms that the paradoxical collections are denied
sethood. Hallett also makes much (in Chapter 5) of the technical result that we have very
little idea of the size of the power set of ω, arguing that this refutes ZF’s claim to embody a
“limitation of size” conception. This, however, seems to depend on thinking of “limitation
of size” in the style of Russell, as “no sets allowed that are bigger than such-and-such a
cardinal”; rather, as I have been trying to convey, the point is that however big it is, P (ω)
is still a set, and therefore not as large as the universe. There is, however, another sense
of “why ZF works” considered by Hallett: why it (or indeed any set theory) is adequate
as a foundation for mathematics. I agree that this is genuinely mysterious, and I shall not
try to solve the mystery here.
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conception, and the latter has at least as great an intuitive appeal as the
former:

ZF . . . is not only a consistent (apparently) but also an indepen-
dently motivated theory of sets: there is, so to speak, a “thought
behind it” about the nature of sets which might have been put
forth even if, impossibly, naive set theory had been consistent.
(Boolos [1971] p. 490)

Boolos observes that naive comprehension implies that there is a set of
all sets, and that this set is then a member of itself. He continues

It is important to realise how odd the idea of something’s con-
taining itself is. Of course a set can and must include itself (as a
subset). But contain itself? Whatever tenuous hold on the con-
cepts of set and member were given one by Cantor’s definitions
of “set” and one’s ordinary understanding of “element”, “set”,
“collection”, etc. is altogether lost if one is to suppose that some
sets are members of themselves. The idea is paradoxical not in
the sense that it is contradictory to suppose that some set is a
member of itself, for, after all, “(∃x)(Sx & x ∈ x)”28 is obviously
consistent, but that if one understands “∈” as meaning “is a mem-
ber of”, it is very, very peculiar to suppose it true. For when one
is told that a set is a collection into a whole of definite elements
of our thought, one thinks: Here are some things. Now we bind
them up into a whole (footnote: We put a “lasso” around them,
in a figure of Kripke’s.). Now we have a set. We don’t suppose
that what we come up with after combining some elements into a
whole could have been one of the very things we combined (not,
at least, if we are combining two or more elements). (pp. 490–1)

Wang says simply:

A set is a collection of previously given objects. (Wang [1974]
p. 530)

What I want to emphasize here is the constant appeal, in these passages,
to constructivist images and terminology. All three authors use temporal
words: “before”, “yet”, “until”, “when”, “now”, “previously”. The question
is, in what sense are we to take this? Clearly all agree that it is not to
be taken literally: there is not actually a time t0 at which only the empty

28Boolos is using “Sx” for “x is a set”.
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set exists, another (later) time by which the singleton of the empty set has
been formed, and so on. The constructivist language is supposed only to
be metaphorical. Boolos for example, having presented the intuitive idea
in constructivist language, then back-pedals: “From the rough description
it sounds as if sets were continually being created, which is not the case”
(p. 491).

It is clear, then, that the conception of set advanced is not supposed to
be literally constructivist, but apparently only constructivist “in principle”,
under some liberal interpretation. The trouble is, I shall argue, that the sense
has to be so liberal that it is no longer entitled to be called constructivist at
all.

Wang admits (p. 531) that there is an element of “idealization” in sup-
posing that we can “run through” an infinite number of objects in the way
required in his description of the cumulative hierarchy. But all the authors
are silent on what exactly this means. If the talk of “formation”, “collection”
and so on are to have any force, there must surely be envisaged an agent who
is doing the forming and collecting. What properties do we take this agent
to have? Parsons ([1977] p. 507) raises some problems concerning this:

It is hard to see what the conception of an idealized mind is that
would fit here: it would differ not only from finite minds but also
from the divine mind as conceived in philosophical theology, for
the latter is thought of either as in time, and therefore as doing
things in an order with the same structure as that in which finite
beings operate, or its eternity is interpreted as complete liberation
from succession.

To elaborate: if the agent is conceived of as working in ordinary time, there is
just not enough of it to generate the whole hierarchy (at least if time consists
of continuum-many instants). The agent needs to occupy a “super-time”
with perhaps a class of instants isomorphic to the ordinals. On the other
hand, we must not let the agent be too powerful; if he could move backwards
and forwards in time at will then it is mysterious why the sets need to be
constructed in order at all.

Even if the notion of the ideal agent could be satisfactorily clarified there
remains the problem of the status of the ordinals. The cumulative hierarchy
is obtained by iterating the power set operation up the entire collection of
ordinals. If these are assumed as given from the start this seems a platonistic
rather than constructive foundation for the whole enterprise. Wang (p. 532)
suggests that the conception of what ordinals there are can develop as the
hierarchy is generated. But only countably many ordinals can ever be defined,
so it seems that some kind of platonistic conception is inevitable.
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Worse than this, however, is the issue of impredicativity. A sine qua
non of constructivism is that objects are conceived of as occurring in an
order, such that at any point in the construction process, only those objects
occurring earlier in the order are available. It seems therefore that no theory
allowing impredicative definitions can rightly claim to be constructive: one
simply cannot quantify over objects which, if the constructivism is taken
seriously, do not exist (“at the time”). But the ZF axioms of which the
hierarchy is an intuitive model involve impredicative quantifications. Most
striking is the axiom of power set in tandem with the axiom of separation.
From the power set axiom we know that for any set x the power set P (x) is
also a set; the axiom of separation can then be used to pick out individual
subsets by means of a formula φ. But this formula can contain quantifications
over anywhere in the universe. To put it informally, what subsets there are of
a particular set depends not only on what happens at the level of the set, and
the next higher level, but also on what happens in the whole hierarchy—as
Bell and Machover [1977] put it, “the size of a power set Pu of a given set
u is proportional not only to the size of u but also to the ‘richness’ of the
entire universe” (p. 509).29 This seems incompatible with any constructive
interpretation.

It is not that the authors are at all unaware of this; it is just that they
are silent on the conflict between it and the constructivist heuristic which
they give for the iterative conception of set. Wang for example (p. 532)
says explicitly “we do not concern ourselves over how a set is defined, e.g.
whether by an impredicative definition” and admits (p. 560) that “if we adopt
a constructive approach, then we do have a problem in allowing unlimited
quantifiers to define other sets”, but he seems to see no conflict between his
own use of constructivist terminology and his advocacy of impredicativity.

The justification of ZF as constructivist in principle is an attempt to have
the best of two incompatible worlds, and results in a hybrid position which
is philosophically bankrupt and ought to satisfy nobody. A symptom of
the philosophical confusion upon which ZF rests is the status of the axiom of
choice. This is accepted by most mathematicians, but is not usually regarded
as just another of the axioms of set theory—it has a more dubious status. It
is customary to state carefully whether or not any theorem requires it, and
to do without it if possible. It is almost as though people feel a little guilty
in using it. Why is this? I suggest that the explanation is that the strongly
non-constructive feel of the axiom conflicts with the (false) idea that the rest
of ZF is constructive. But in fact the axiom of choice is fully in the spirit of

29In technical terms, the power set operation is not absolute. The issue is discussed by
Hallett [1984] pp. 206–7, 221, and [1994] pp. 83–92.
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the rest of set theory—the damage its absence does to the theory of cardinal
arithmetic is one demonstration of this. If it were clearly realised that ZF is
not constructive at all, the axiom of choice would cease to be regarded as a
second-class citizen and take up its rightful position as just another of the
axioms of set theory.

The conclusion of this section, then, is that ZF does not embody a philo-
sophically coherent notion of set. There is a coherent constructivist position,
which entails repudiating impredicative definitions, obeying VCP I, and end-
ing up perhaps with something like ramified type theory. It seems, however,
that such a position will not lead to a foundation for classical mathematics.
(Whitehead and Russell famously had to postulate the axiom of reducibil-
ity to make possible the derivation of mathematics in their system, but this
axiom is unmotivated in the light of the VCP. And alternative versions of
constructivism, for example intuitionism, are more damaging yet to classical
mathematics.) There is also a coherent anti-constructivist position, which
rejects the metaphysics of constructivism and its resultant inability to jus-
tify classical mathematics. This position rejects the VCP in all its forms.
But ZF is an uneasy compromise between these two: it pays lip-service to
constructivism without really meaning it, and in doing so forfeits its claim
to philosophical justification.

9

Suppose it is admitted that ZF cannot be given a coherent philosophical
justification. It seems there is still a third and final argument a defender of
it might use: we might call it the argument from mathematical pragmatics.

ZF has proved adequate as a foundation for mathematics, in the sense
that all known mathematics can be carried out in ZF. It is convenient to
work with: for example, the well-foundedness of the sets allows inductive
definitions to be handled smoothly. So whether or not it can be thought of
as the axiomatization of a coherent notion of set, it is reasonable—so the
argument goes—for it to occupy the position it does as the dominant theory
of sets.

One reply to this is that it is no longer clear that ignoring non-well-
founded sets gives a theory which is optimal for applications. In recent
years uses have started to be found for non-well-founded theories—indeed the
current revival of interest started with Aczel’s realization that the modelling
work he was doing in computer science (on parallel processing) was much
simpler if one abandoned foundation (Aczel [1988] Chapter 8). Rather than
attempt to describe this application in detail, I will try to give the general
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flavour with some simpler examples.
It is very common in mathematical modelling to use (ordered) n-tuples

〈x1, . . . , xn〉. There is a standard way of handling n-tuples in set theory: for
example for the pair 〈a, b〉 we use the set {{a}, {a, b}}. It can happen that
we want an entire n-tuple to be equal to one of its elements, and this will be
forbidden by the axiom of foundation.

Thus in Barwise and Etchemendy’s treatment of the liar [1987] (so far
the best-known application of non-well-founded sets) the aim is to model a
proposition which asserts its own falsehood. Propositions are modelled by
pairs,30 so what we need is a proposition p which satisfies p = 〈F, p〉 (where
F is an atom representing falsehood). This is possible only if we abandon
foundation.

A similar example, this time from computer science: a stream is a se-
quence of data items, and can neatly be defined as an ordered pair where the
first element is an item of data and the second element is a stream. Then
an infinite sequence of zeroes is a stream s satisfying s = 〈0, s〉. Once again
the axiom of foundation prevents this from being modelled in a natural way.
This example is from Barwise and Moss [1996], p. 34. The book explores
applications in other areas, for example the theory of games and the model
theory of modal logic.

It is true that a hard-line supporter of ZF cannot be forced to repudiate
foundation. We can always carry out these modellings by choosing appropri-
ate objects in the well-founded universe. But such an approach is analogous
to a hard-line disbeliever in complex numbers insisting on them as mere
pairs of reals. As more and more applications are discovered, it becomes
clearer that there is no good reason for not accepting non-well-founded sets
as genuine sets.

10

There is a second and deeper reply to the “pragmatic” argument for ZF. A
theory of sets should, I think, be answerable to our informal concept of set
as completely arbitrary collection, as well as to the needs of mathematicians.
Thus, even if mathematicians can get by using only some special class of
sets, it does not follow that we should rest content with a theory which says
that these are all the sets there are. Only a non-well-founded theory can
convincingly be shown to modify the naive conception as much as, but no
more than, is required by the paradoxes; and only in adopting such a theory
can we obtain a truly satisfactory solution.

30I am simplifying the details of the theory to bring out the essential point.
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