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Abstract. When people combine concepts these are often characterised
as “hybrid”, “impossible”, or “humorous”. However, when simply
considering them in terms of extensional logic, the novel concepts
understood as a conjunctive concept will often lack meaning having an
empty extension (consider “a tooth that is a chair”, “a pet flower”,
etc.). Still, people use different strategies to produce new non-empty
concepts: additive or integrative combination of features, alignment of
features, instantiation, etc. All these strategies involve the ability to deal
with conflicting attributes and the creation of new (combinations of)
properties. We here consider in particular the case where a Head concept
has superior ‘asymmetric’ control over steering the resulting concept
combination (or hybridisation) with a Modifier concept. Specifically, we
propose a dialogical approach to concept combination and discuss an
implementation based on axiom weakening, which models the cognitive
and logical mechanics of this asymmetric form of hybridisation.
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1. Introduction

Meredith: This is like a haunted coffeehouse thing?
Michael: No. Dwight is confusing you. That - it’s, it’s more of a disco.
Andy: It’s like a haunted disco.
Michael: ... with coffee but without the haunted.
Phyllis: It’s a combo dance house coffee bar.
Michael: It’s a daytime disco on the ground floor of an industrial office building.
Erin: It’s a cafe disco.
Michael: Exactly.
Kevin: So, like, a disco cafe?
Michael: Wha - No. No. Not even close.

The Office, Season 5, “Cafe Disco” [1]

The scene above demonstrates an interesting phenomenon. Namely, that concepts
can be interpreted in different ways based on the weights of their attributes.
The differentiation between a ‘disco cafe’ and a ‘cafe disco’ is determined by
which of the two concepts has the more prominent role in the compound. While
this difference might be quite intuitive for a native English speaker, it is a non-
trivial problem to construct and explain in a formal setting. There exist different
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views of what concepts are and how they should be represented. The logic-based
view aims to represent concepts in term of definitions or, more precisely, as
sets of individually necessary and jointly sufficient conditions [2]. In this setting,
the combination of two or several concepts is commonly understood in terms
of set theoretic operations. This view presents advantages for classic knowledge
representation, mostly because it offers a compositional and well-understood
semantics that is in line with mainstream reasoning systems. Unfortunately,
empirical evidence in psychology and cognitive science has shown that many
concepts lack precise definitions, being subject to various degrees of indeterminacy
as well as to typicality effects [3]. Moreover, as we will further discuss, a number
of cognitive phenomena linked to concept combination are difficult to reconcile
with a straightforward modelling of concepts using Boolean extensional logic [4].

This paper will analyse the case of “incompatible” combinations, based on
the empirical research on impossible combinations [5, 6, 7] and hybridisation
[8], focusing on asymmetric combinations. Impossible conceptual combination
(e.g. the combination of Fish and Vehicle, of Furniture and Fruit,..) has been
studied in the context of experimental psychology to investigate the flexibility and
adaptability of concept meaning. If we look at concepts simply from an extensional
point of view, when combining concepts without obvious similarities or shared
features, the intersection will often be empty. Still, people use different strategies
to produce creative non-empty concepts: alignment of features, instantiation,
features emergence etc. These strategies involve the ability to deal with conflicting
attributes and the creation of new properties: simply put, a sort of game of
meaning negotiation.

In order to elucidate and model the cognitive and logical mechanics in
this kind of asymmetric concept combination, we here propose a computational
framework based on three essential ingredients:

(1) a computational model of concept combination taking into account cognitive
aspects [9];

(2) formal approaches based on axiom weakening [10];

(3) an agent-based dialogical implementation1 combining (1) and (2) to
simulate meaning negotiation and construction in the asymmetric combination
as it is found in the literature on hybrid concepts [7, 8].

Our approach to hybrid concept combination is related to conceptual blending
(e.g. [11]) and, in particular, the distinction between Head and Modifier is
reminiscent of asymmetric amalgams [12]. Please note, however, that our approach
does not rely on the identification of a shared structure between the two input
spaces via anti-unification — i.e. it does not require the identification of a generic
space to steer the combination process. In contrast, our focus is on the asymmetric
roles of Head and Modifier in the combination process [6], the integration process,
and the resulting hybrid aspects of the combined concept [7, 8].

A similar distinction between Head and Modifier concepts is used in [13],
where the authors propose an algorithm for concept combination based on a

1The notion of dialogue here is quite abstract and the choice of the term “dialogue” is justified
by the intention to point to the literature in multiagent systems and dialogical logics.
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non-monotonic description logic of typicality. In contrast to our approach, which
relies on axiom weakening, the proposed algorithm discards all the axioms of the
Modifier which are inconsistent with the Head concept. The only constraint is
that the combined concept should not be trivial, i.e., should not include all the
features associated with the Head concept. It is not obvious how such a procedure
could account for the kind of impossible combination proposed here.

The agent-based dialogical concept combination proposed in this paper is
taking concept combination approaches further particularly regarding the so far
rather monolithic debugging techniques for inconsistent blends, see [14].

More in line with our work is [15], which employs epistemic logic to negotiate
the debugging of aligned ontologies. In terms of cognitive heuristics, the work
proposed here goes beyond the plain distinction between Head and Modifier,
and instead presents a model of steering the dynamics of cognitive concept
combination as suggested by the results of Hampton [6].

2. Forms of Concept Combination: Hybridity and Impossibility

Knowledge Representation (KR) systems are usually characterised by their
compositional behaviour. Compositionality is the principle according to in which
any complex concept or expression is understood as a function of the parts
it is composed by, plus a set of syntactic operations to combine them. This
perspective became a cornerstone of classical logic and moved from there to be
also a paradigm in description logic. In this setting, where concepts are essentially
considered in terms of sets, the combination of two (or several) concepts is mostly
understood in terms of set theoretic operations. The compound concept “Tool
Weapon” would be understood as the intersection of the set of tools and the
set of weapons (the component concepts). Compositionality is sometimes used
to explain, at least in part, the ease and prolific ability by which humans create
and understand new and meaningful phrases, arguably, part of its theoretical
strength. In KR, in particular, it offers the advantage of having a clear and well
understood semantics. Related to compositionality, one beneficial feature of many
KR systems is attribute inheritance. Namely, for each class A in an ontology, the
instances of sub-classes B � A would inherit all the attributes from the super-
class. For combined concepts this would mean that what lies in the intersection of
two concepts would inherit all the features normally associated to any conjunct
(see [16] for a recent simulation study on inheritance illustrating the complexity
of the issues involved).

The process of concept combination has been extensively studied in the field
of cognitive science and experimental psychology. This led to several distinct
accounts of concept combination, diverging widely from what is expressible in
terms of intersections of sets [4, 8, 17, 18].

Hybridity. For instance, it is possible to distinguish between different kinds
of combinations depending on whether we consider adjective-noun combinations
or noun-noun combinations. Although, in simpler logical modellings, they are
often treated in the same way, it is at the same time normally assumed that
noun-noun combinations involve much more semantic change in the compound
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concept [18]. Looking at noun-noun combinations in English, two parts can be
distinguished, the Head and the Modifier, depending on the syntactic construction
of the compound (this has been extensively studied in Linguistics, see e.g. [19]).
Considering again “Tool Weapon”, the noun “weapon” would play here the role of
the Head, whereas “tool” would be the Modifier. As the names suggest, the Head
provides the base category of the combined concept, whilst the Modifier alters
the attributes of the Head. This means that humans interpret “Weapon Tool”
(e.g. a certain repair tool for the Avtomat Kalashnikova) significantly different
from a “Tool Weapon” (e.g. James Bond’s typical screwdriver-shaped flame
thrower). Clearly, any formal system employing compositional and commutative
conjunction for such purposes would not be able to distinguish the two cases.
Accounting for the difference in attribute inheritance is an important but logically
challenging problem.

According to Wisniewski [8], there exist at least three ways to interpret
noun-noun combinations: 1) The first is the relation-linking interpretation, where
some kind of relation between the components is highlighted (using Wisniewski’s
example [8, p. 168] a robin snake is a snake that eats robin). 2) The second is
the property interpretation, where one or more properties of the Modifier noun
apply to the Head concept (a robin snake is a snake with a red under-belly [8,
p. 169]). 3) The third is called hybridisation, where the result of the combination
corresponds essentially to a ‘mesh-up’ or ‘blend’ of both components.

We focus here on the third kind of combination interpretation, Hybridisation,
and give a formal definition and computational account of it. In [8], the author
refers to this last kind as a “combination of the two constituents [. . . ] or a
conjunction of the constituents” (p. 169). Conceptually, this corresponds to the
combinations analysed in [4]. In [4]’s experiments, people were asked to interpret
noun-noun combinations expressed with a that-clause (e.g. a Tool Weapon is
expressed as a “Weapon that is also a Tool”). This was done to encourage people
to think of the combination in conjunctive terms [6]. Hampton’s experiments [4]
are of particular interest because he analysed the combination of ordinary
concepts in terms of a logical interpretation. He found that, although it was
possible to identify predictable patterns in the relation between compound and
components, people are often not consistent with the rules of set theory.2

Impossibility. In a series of experiments [5, 6, 7], Hampton asked people to
combine concepts that usually would not be combined, leading to impossible,
or at least imaginary, objects. The aim of the investigation was to analyse
the underlying principles for concept combination in a setting free from bias
and prior knowledge of the concepts involved in order to study how adaptable
and flexible concepts are. In [6], people were presented with a list of concept
pairs (e.g. “Furniture” and “Fruit”, “Vehicle” and “Fish”, “Bird” and “Kitchen
Utensil”, etc.). Then, they were asked to imagine the objects resulting from the
combination (e.g. “a Vehicle which is also a Fish”), and to describe, or draw, the
attributes they would expect such an object to have. If analysed in terms of set-
theoretic operations, the intersection of the concepts involved would be the empty
set, and the set of axioms associated to both component concepts would likely

2For a formal analysis of these Hampton phenomena in weighted logics, we refer to [20, 21].
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be inconsistent. Still, subjects showed a great variability of strategies to solve
incompatible combinations. In this context, the process of properties alignment is
particularly interesting. In order to select the ‘right’ properties for the compounds,
people try to align properties and functions of the two component concepts. This
was also noticed by [8], which, particularly in relation to hybridisation, proposed
a comparison and alignment model where the Head and Modifier concepts are
first aligned, so that the properties of one concept are put in correspondence
with the properties of the other, and then are compared to find connections. This
process can then go in quite different directions. First, subjects can find some
alignable differences [17]: once the two representation are aligned, it is possible to
find differences wrt. some of the aligned properties (or dimensions). In [6, table
9], for instance, when people analysed the concept “a Fruit which is a kind of
Furniture”, they tended to align the skin of the fruit with the fabric of a sofa.
Or, when asked about “a Vehicle which is a kind of Fish”, they reasoned that
both could move, or made the analogical mapping between fuel and food. This
alignment process corresponds to either finding commonalities in the differences
that helps to understand which properties of the Modifier are integrated into
the Head concept, or to find strong incompatibilities between the concepts. For
instance, subjects could notice that, whereas a piece of furniture is made to last,
fruit is perishable. Likewise, while a vehicle is normally controlled, a fish is likely
to be ‘self-motivated’. In these cases, people react to incompatibilities producing
new, or emergent attributes [6]. Emergent attributes are defined as features that
were not listed as true neither of the Head concept, nor of the Modifier, but that
appear, or emerge, for the combined concept.

Another strategy observed by Hampton in his experiments is the process
of instantiation: when asked to combine two super-ordinate categories (such as
Vehicle and Fish or Fruit and Furniture), people would find it easier to come
up with a solution “instantiating” one of them to a more basic and well-known
category (combining e.g. Boat and Fish, or Banana and Furniture). Moreover,
some of the categories were more likely to be instantiated than others (for
instance, the category of Vehicle was almost always instantiated, whereas this
very rarely happened to the one of Fish). The phenomenon of instantiation does
not have an obvious explanation, since a more general concept would pose fewer
constraints on the combination. Likely this is due to the fact that basic categories
are easier to be imagined and more familiar to subjects, with more concrete
properties to combine [7].

Aside from all these strategies, it is possible to observe some asymmetries
between the Head and Modifier even in the case of impossible combinations.
Hampton [7] shows that the solutions elaborated from the subjects usually bear
more similarity to the Head noun than to the Modifier. Also in the case of
impossible combinations, subjects keep the Head noun as a base to be modified
by means of the Modifier.

3. Concept Refinements and Axiom Weakening

We here consider ontologies as sets of formulae in an appropriate logical language
with the purpose of describing a particular domain of interest. The choice
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of a specific logic used is not crucial to our general approach, but we here
employ the well-known description logic ALC both for illustrating examples and
in our experimental prototype implementation. Syntactically, the ALC concept
language is based on two disjoint sets NC and NR of concept names and role
names, respectively. The set of ALC concepts is generated by the grammar
C ::= A | ¬C | C � C | C � C | ∀R.C | ∃R.C, where A ∈ NC and R ∈ NR. We
denote by L(NC , NR) the set of ALC concepts built over NC and NR. Axioms
are general concept inclusions (GCIs) or individual assertions. GCIs are of the
form C � D, where C and D are concepts. Finite sets of GCIs are called
TBoxes which constitute the general, terminological knowledge of the ontology.
Finally, individual assertions are of the form C(a) where C is a concept and a
an individual name; such statements constitute ABoxes. We assume standard
DL syntax and semantics [22]. By sub(C) we denote the set of subconcepts of
C, defined recursively as usual. The set of subconcepts in an axiom C � D is
sub(C � D) = sub(C) ∪ sub(D); also, sub(C(a)) = sub(C), and sub(O) denotes
the set of all the subconcepts of all the axioms in O.

Refinement operators [10, 23] have been used for ontology aggregation in [24].
Here, they will be instrumental for concept combination. Given the quasi-ordered
set 〈L(Nc, NR),�〉, a generalisation refinement operator satisfies γO(C) ⊆ {C ′ ∈
L(Nc, NR) | C �O C ′}. A specialisation refinement operator satisfies ρO(C) ⊆
{C ′ ∈ L(Nc, NR) | C ′ �O C}. Generalisation refinement operators take a concept
C as input and return a set of descriptions that are more general than C by taking
an ontology O into account. A specialisation operator, instead, returns a set of
more specific descriptions. We can now define the notion of axiom weakening.
The set of weakenings of an axiom wrt. a reference ontology O is defined as
follows. Given an inclusion axiom C � D of O, the set of (least) weakenings of
C � D wrt. O, denoted by gO(C � D), is the set of all axioms C ′ � D′ such
that C ′ ∈ ρO(C) and D′ = D or C ′ = C and D′ ∈ γO(D). Given an individual
assertion C(a) of O, the set of (least) weakenings of C(a), denoted gO(C(a)), is
the set of all axioms C ′(a) such that C ′ ∈ γO(C).

The proposal laid out in this paper can make use of any refinement operator.
When specific refinement operators are needed, as e.g. in examples and the
implementation, we will be using the refinement operators from [10].

4. Dialogues for Concept Combination

We assume two agents, h and m, are interacting, trying to build a consistent
compromise ontology R describing a concept. Each agent has an ontology
associated, Oh and Om, describing their initial version of R. Moreover, they
each have a preference orderings ≺h and ≺m over the axioms of their respective
ontology. The preferences represent the importance of the axiom for describing
the concept.

In the dialogue, the agents are proposing in turn axioms coming from their
ontology to be added to the ontology under construction R, weakening them when
necessary. This is inspired by an approach from [24] for ontology aggregation.
When the axioms proposed by the agents turn out to render the devised ontology
inconsistent, the axiom weakening procedure is called to solve that inconsistency.
A dialogue protocol is described informally in Algorithm 1.
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Algorithm 1 Combination(Oinit, Oh,≺h, Om,≺m, probh)
1: R← Oinit

2: TreatedAxioms ← ∅
3: FinishedAgents ← ∅
4: ag ← RandomPickOneAgent(probh, {h,m})
5: while FinishedAgents �= {h,m} do
6: if ∀ axiom ϕ ∈ Oag: ϕ ∈ TreatedAxioms or R entails ϕ then
7: FinishedAgents ← FinishedAgents ∪ {ag}
8: else
9: ϕ ← FavoriteNextAxiom(≺ag, Oag,TreatedAxioms, R) � Favorite axiom of agent ag,

not in TreatedAxioms, and not entailed by R
10: TreatedAxioms ← TreatedAxioms ∪{ϕ}
11: while R ∪ {ϕ} is inconsistent do
12: ϕ ← RandomPickOneWeakening(gR(ϕ))

13: R← R ∪ {ϕ}
14: ag ← RandomPickOneAgent(probh, {h,m})
15: return R

The algorithm takes a few parameters: an initial ontology Oinit, an ontology
Oi for each agent i ∈ {h,m}, a (strict) preference order ≺i over the set of axioms
Oi for each agent i, and a probability probh of agent h to take a turn.

The algorithm iteratively builds an ontology R for the combined concept,
initialised with Oinit. The two agents take turns randomly following the
probability distribution (probh, 1 − probh). When it is her turn, agent i will
choose her preferred axiom ϕ in Oi according to ≺i, and not already entailed
by the combination R. As long as ϕ can not be added to R without causing an
inconsistency, it is replaced by one of its weakenings in gR(ϕ), i.e. a weakening
of ϕ wrt. the current combination R. As soon as ϕ can be added to R without
causing an inconsistency, the combination R is augmented with ϕ. When all the
axioms of an agent have been considered or are already entailed by the current
combination, this agent is finished. This iterative process continues until all agents
have finished. At the end, the combination R is returned.

In the experiments, we also consider a bounded variant of this algorithm,
where a maximum number max turns of turns is added as a parameter, and
where the while-loop exits after at most max turns iterations. We now state a
few formal properties of these two algorithms. It is easy to see that the returned
ontology R is always consistent.

Proposition 1 (Consistency). If Oinit is consistent and Algorithm 1 (or its bounded
variant) returns R, then R is consistent as well.

Also, as a corollary of [25, Th. 2], we can show that the algorithm almost
always terminates when using the refinement operators of [10].

Proposition 2 (Termination). If probh 
∈ {0, 1}, then Algorithm 1 (and its bounded
variant) terminates with probability 1.

Moreover, we can formulate a sufficient condition for the combination R to
be maximal in the following sense:
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Proposition 3 (Maximality). Let R be an ontology returned by Algorithm 1 (or
by its bounded variant with max turns ≥ |Oh ∪ Om|) and let ϕ be an axiom in
Oh ∪Om. Then R ∪ {ϕ} is either inconsistent or equivalent to R.

We can readily use the algorithm for asymmetric concept combination of
a Head concept H described by an ontology Oh with a Modifier concept M
described by an ontology Om. The result is an ontology intended to describe the
target concept MH, which is the asymmetric hybridisation of the Head concept
H with the Modifier concept M .

Probability probh. The asymmetry of the hybridisation must be enforced by
a suitable weight given to the Head and to the Modifier, and an appropriate
probability to take turns in the dialogue. In the asymmetric case, the Head agent h
will be given a greater weight than the Modifier agent, agent m; it will have
relatively more opportunities to insert its information into the hybridisation. One
then needs to translate these weights into a probability for the Head and Modifier
agents to take turns. In practice, one needs to consider the granularity of the
information contained in both ontologies. At the time of the combination, an agent
with a high granularity ontology, i.e. many detailed axioms, is likely to require
more turns to add its information into the blend. To this end, we need a way
to quantify the amount of information in an ontology. We take into account the
logical axioms in a given ontology and also the inferred class hierarchy. Given an
ontology O, we define the set of axioms in the inferred class hierarchy as follows:
inf(O) = {C � D | C,D ∈ NC ∩ sub(O), C �O D}, where sub(O) is the set of
subconcepts appearing in O. This provides us with a useful measure to evaluate
the ‘amount’ of information contained in an ontology O, namely defined as the
quantity |O∪ inf(O)|. Combining two ontologies Oh and Om with weights wh and
wm, agent h will play wh · |Oh ∪ inf(Oh)| = fh turns when agent m will play
wm · |Om ∪ inf(Om)| = fm turns. The probability passed as a parameter to the
algorithm is then probh = fh

fh+fm
.

Preferences ≺h and ≺m. The preferences of the agents represent the importance
of their axioms in expressing certain features of the concept at issue, for the
purpose of the specific combination. We take them here as given inputs, provided
by the agents, and they partially determine the ‘direction’ of the combination.

Initial Ontology Oinit. The choice of the initial ontology is motivated by the goal
of combining two concepts. So, when combining H and M , the initial ontology
Oinit will contain the two axioms: MH � H and MH � M , where MH is the target
hybrid concept. This is enough to bootstrap the formalisation of the requirement
that the hybrid concept is an H that is also an M . Moreover, to avoid the
trivial result where the resulting ontology is consistent but the hybrid concept is
unsatisfiable we must also add an axiom MH(a) for a fresh individual name a,
making sure that some MH’s do exist.

5. Computational Simulations of Impossible Combinations: The FishVehicle

We illustrate how the two versions of our algorithm work in the case of an
impossible combination. Namely, we simulate the combination of the concepts
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Fish and Vehicle as it is described in Hampton’s experiments [6] by means of
our dialogue implementations.3 We start with a consistent initial ontology, which
will guide our weakening procedure. To provide some of the high level ontological
distinctions needed for representing the input concepts, we include in our initial
ontology an excerpt of the taxonomy of DOLCE, formulated in ALC. DOLCE (i.e.
Descriptive Ontology for Linguistic and Cognitive Engineering) is a cognitively
oriented Foundational Ontology, which enables a fine-grained analysis of concepts.
As such, it provides a number of basic ontological and cognitive distinctions
required to represent and confront the common sense concepts at issue. The
most general categories of DOLCE include Perdurants, Endurants, Abstracts and
Qualities (see [26]). We are mostly interested in Endurants, and in particular
in the distinctions related to Physical Endurants, which branch into Amount of
Matter,Features and Physical Objects. Fish and Vehicle are indeed Physical Objects.
Food and Fuel, for instance, which appear in our input ontologies in axioms such
as “fish eats food”, “vehicles need fuel”, are here included in Amount of Matter. To
state that “fish has slippery surface”, we include Slippery Surface in Feature. We
also use Qualities from DOLCE, to represent, for instance, the shape, the colour,
the spatial locations of Fish and Vehicles. DOLCE Abstract and Space Region,
i.e. values for spatial location qualities, are required to classify places such as
Air, Ground, and Water, which we use in axioms such as “fish swims in water”.
Moreover, Abstracts allow for introducing conceptual spaces, to model the values
of the individual qualities (e.g. colour, shape, weights) of fish and vehicles.

DOLCE serves to provide, via alignment, the ontological distinctions needed
to represent and reason about the possible incompatibilities between the two
concepts to be combined. Aside from DOLCE, the initial ontology contains also
two additional axioms, which directly relate to the concept we want to build (as
described in the section above): FishVehicle � Fish and FishVehicle � Vehicle.
To ensure the concept FishVehicle is not empty, we also add an instance of the
concept: FishVehicle(Wanda).

We need then two ontologies, which represent the concepts of Fish and Vehicle
respectively, before the combination can be started. These can be seen as micro-
theories, little domain ontologies, modelling the two concepts involved. In our
setting, they are associated with two different agents, and each axiom corresponds
to a possible move in the dialogue. The specific content of the ontology of
Vehicle (resp. Fish) is partly reverse-engineered using the information contained
in Hampton’s experiments described above (e.g. a fish eats food, is autonomous
and can swim; a vehicle needs fuel, is controlled, and can move, etc.). Additional
information (e.g. body parts, vehicle component, etc.) is inspired by the Leuven
Database ([27]), which collects psychological, commonsense data on a feature
generation task of 15 concepts (including fish and vehicle).

In order to make the two input ontologies of fish and vehicle interoperable,
they are aligned to the common upper level provided by DOLCE (to achieve
that, the classes of the domain ontologies are subsumed under the pertinent
categories of DOLCE). DOLCE is particularly well-suited to account for some
of the distinctions observed by Hampton in his experiments. E.g., it can

3See https://bitbucket.org/troquard/ontologyutils/src/master/.
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capture the distinction between the agency of the Fish (modelled as a sub-
class of AgentivePhysicalObject) contrasting the non-agency of the Vehicle (i.e. a
NonAgentivePhysicalObject), asserted indirectly through the possibility to control
it.

The goal of the procedure is to build the concept of FishVehicle, which should
share both features of the concept of Fish and features of the concept of Vehicle.
When the algorithm starts, at each turn the agents will try to add their favourite
axioms to the initial ontology. If the axiom cannot be added without causing
inconsistency, it is weakened by the procedure.

We have two agents: agent h represents the Head concept (in this case,
Vehicle) and agent m represents the Modifier (Fish). To implement the asymmetry
of the combination, we do not distribute the turns equally between the two agents.
At each round, the weight for agent h to play is higher than the one for agent m.
Having the possibility to play its favourite axioms sooner, agent h is more likely
to add less weakened information to the initial ontology.

The last important aspect to consider is the preference order that we put
on the axioms. As already mentioned, if an axiom is preferred and added sooner
to the initial ontology, it will be less likely that it causes an inconsistency and
is weakened. We consider three different preference orders. Firstly, we consider
an order which enforces the strength of the ontological distinctions, i.e. the link
between the ontologies of Vehicle (resp. Fish) with DOLCE. Secondly, we consider
the opposite situation, i.e. where the specific axioms of Vehicle (resp. Fish) were
preferred. Finally, for the domain ontologies we here follow a preference order
aiming at replicating the process of instantiation as described by Hampton [7]
and outlined in Section 2. In this case, agent h preferred all the axioms containing
information related to Car. In contrast, we left the Fish order as a random order.

The unbounded version of our algorithm ends, in any case, when both agents
have done all their possible moves, and we obtain a maximally informative
ontology R about FishVehicle. The bounded version ends after the selected number
of moves, returning a consistent ontology R for FishVehicle.

6. Evaluating Asymmetric Concept Hybridisations

Distinguishing between good and bad hybridisations is neither a straightforward
task nor an entirely new one. Research on it appears both in computational
creativity when evaluating machine-generated combinations [28], and in cognitive
psychology, where identifying human strategies and cognitive heuristics are the
focus [5]. In his experiments, Hampton asked two independent judges to evaluate
on a 1 to 10 scale the ‘success’ of the responses given by the subjects to an
impossible combinations task [7]. However, this does not tell us much about how
to effectively evaluate computationally the outcome of an impossible combination.

Lacking this kind of information, what we can measure is what kind of effects
our strategies show on the output of the algorithm. We therefore consider next
two parameters, namely the asymmetry of the combination and its hybridity.

Asymmetry. The asymmetry of the combination represents the relative effect
of the Head concept (e.g., Vehicle) and the Modifier concept (e.g., Fish) in the
result ontology R. To measure this asymmetry we exploit a ratio of preserved
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information from [24]: a ratio with values between 0 and 1, measuring how much
information from an ontology Oi is present in another ontology R. The ratio of
preserved information from Oi in R is

rpi(Oi, R) =
|{ϕ ∈ Oi ∪ inf(Oi) | ϕ is entailed by R}|

|Oi ∪ inf(Oi)| .

To measure the asymmetry of the combination R, we then use the difference
between the ratios of preserved information, specifically, the difference between
the ratio of preserved information from Oh (the ontology of the Head) in R and
the ratio of preserved information from Om (the ontology of the Modifier) in R.
The measure of asymmetry of R is thus the number: rpi(Oh, R)− rpi(Om, R).

The larger the absolute value of the asymmetry, the more one of the two
concepts dominates the result ontology R. Further, a positive value indicates that
the Head does dominate the Modifier in the result ontology R, whilst a negative
weight instead means that the Modifier does.

Hybridity. Intuitively, a hybrid of Fish and Vehicle should share some of its
features with Fish and some others with Vehicle. To formally capture this
intuition, we introduce here the notion of hybrid description. A hybrid description
of Fish and Vehicle is something like a ‘shark that needs fuel’ or ‘is made of metal
and has fins’. More generally, we define the set of hybrid descriptions for a Head
concept H and a Modifier M as the set of conjunctions Ch � Cm such that Ch

(resp. Cm)

(1) is an ascendant or descendant of H within Oh (resp. of M within Om), and

(2) is not a (sub-)concept appearing in the ontology Om describing M (resp.
Oh describing H).

Formally, let Oh be the ontology defining the head concept H (e.g., Vehicle)
and Om the ontology defining the modifier concept M (e.g., Fish). Let MH be the
target hybrid concept (e.g., FishVehicle), defined through the result ontology R.
For a concept D within ontology O, define the set of ascendants and descendants
(the ‘lineage’ of D in O) as lin(O,D) = {C ∈ sub(O) | C �O D or D �O C}.
Then, to measure the hybridity of the concept MH, we count the number of times
in which MH � Ch � Cm, for Ch ∈ lin(Oh, H) \ sub(Om) and Cm ∈ lin(Om,M) \
sub(Oh), over the total number of hybrid descriptions. Notice, crucially, that we
exclude the ascendants and descendants which are shared by the two concepts.
Formally, with ΛH = lin(Oh, H) \ sub(Om) and ΛM = lin(Om,M) \ sub(Oh), the
measure of hybridity of R is the number

|{(Cm, Ch) | Ch ∈ ΛH , Cm ∈ ΛM , and MH � Ch � Cm is entailed by R}|
|ΛH | × |ΛM | .

We evaluated the output of our algorithms on the preference orders and
parameters introduced above. We present our findings next.
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Figure 1. Asymmetry and hybridity values for the two preference orders, with varying weight
of the Head. Bounded ∼50% refers to the bounded variant of Algorithm 1.

Controlling the Effects of DOLCE. In order to enforce constraints from DOLCE,
agents prefer all the axioms that bridge the classes of DOLCE within our Oinit

and the classes pertaining more strictly to the ontology of Vehicle (resp. Fish).
For instance, agents prefer axioms such as Artefact � NonAgentivePhysicalObject.
Agents also prefer the constraints imposed on the roles (Domain and Range). We
expected that enforcing the link with DOLCE, and emphasising hard ontological
distinctions, would have had a negative effect on the hybridity value.

The opposite strategy enforces the specific axioms for Vehicle (resp. Fish).
The preference gave priority to all the axioms containing the concept Vehicle
(resp. Fish) on the left or right side of the subsumption relation (e.g. Vehicle �
hasComponent.VehiclePart or Car � Vehicle). Enforcing first the specific information
for the concepts to be combined, and only establishing the link with DOLCE at
the end of the procedure, was expected to enhance the number of hybridisations,
and thus increase the hybridity value.

At the same time, increasing the weight associated to a specific concept,
i.e. increasing that agent’s probability to play, was expected to increase the
asymmetry between the two concepts.

This was confirmed by our experiments, as can be seen in Figure 1. Increasing
the weight of the first player tends to increase the asymmetry value. This is
particularly evident in the bounded cases. The value of hybridity was affected by
the preference order, and prioritising the link with DOLCE critically decreases
the number of hybridisations. The weights of the two players do not affect the
hybridity values. By contrast, by setting boundaries, hybridity decreases.

Simulating Hampton’s Findings. As described in Section 2, Hampton observed
the tendency of people to instantiate (or specialise) general classes in order to
find a solution to an impossible combination task. When instantiating the concept
Vehicle into, e.g., Car, the combined concept should show some of the distinctive
features of the instantiated concept. The effectiveness of an instantiation strategy
should then be evaluated on the capability of the combined concept to satisfy
the specific features of the instantiated concept. Similarly to the methodology of
competency question employed in knowledge engineering [29], we selected to this
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Priority DOLCE Priority Vehicle/Fish Instantiation

FV goes on ground 4% 2% 100%
FV has brake 0 0 100%
FV has motor 0 0 100%
FV has steering wheel 0 0 100%
FV has wheel 0 0 100%

FV does not go on air or water 16% 2% 100%
FV has not wing 18% 4% 100%

Table 1. Percentage of combinations satisfying the instantiation questions, over 50 runs.

end the questions described in Table 1, which correspond to the description of
the concept Car within the ontology of Vehicle.

To replicate this phenomenon within our set-up, we first include an additional
axiom in our initial ontology, enforcing the FishVehicle to be also a sub-concept
of Car. Then, the agent h prefers all the axioms containing information related to
Car (i.e. the concept Car occurs on the right or left hand side of a subsumption).
The effectiveness of this strategy is shown in Table 14. Namely, in all of 50 runs,
the FishVehicle showed all the features associated to Car (i.e. 100%). In our tests,
the weight for agent h is set to be 3, whereas the one for agent m is set to be 1; a
probability of about 0.75 for agent h to take a turn. In the case of the unbounded
procedure, the hybridity value was high, with an average of 0.7. The 50% bounded
version, at about 0.36, cuts that value of hybridity to about half. Although one
might have expected such an effect given the reduced opportunity to impose
‘hybrid’ information, the effect is here surprisingly strong.

Another phenomenon observed by Hampton [6] is the use of alignments.
According to his findings, people tend to align the fact that fish eat food
with the fact that vehicles need fuel; or, the fact that both have the capacity
to move. To replicate this phenomenon, the following set of axioms was then
added to the initial ontology: Food ≡ Fuel ; ∃ needs.Fuel ≡ ∃ eats.Food ;
∃ swimsIn.Water ≡ ∃ goesOn.(Water � Air � Ground) ; Water ≡ Air ;
Water ≡ Ground ; Ground ≡ Air . The alignments were not, as was to be expected,
consistent with the ontologies of the two players. Therefore, it was part of the
weakening procedure to integrate them consistently.

We expected that introducing the alignments within our procedure would
have had a positive effect on the hybridity value. This was, however, not observed
within our dataset. Looking at the effects of the alignments, the main benefit
observed was in terms of feature emergence. Introducing the alignments between
Fuel and Food and between Air, Ground and Water produced in fact some mixed
axioms, which were present neither in the ontology of Fish, nor in the ontology
of Vehicle. Table 2 shows an example of this effect.

Alignment No alignment

FV eats fuel 21 0
FV swims on air or ground 12 0

Table 2. Number of emergent features over 50 runs, on a random order, unbounded procedure.

4We report here the values for the unbounded procedure, but the result is analogous for the
bounded one.
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7. Conclusions and Future Directions

We developed a dialogue-based algorithm for the computational generation
of hybrid, sometimes considered ‘impossible’, combinations. Our method is
inspired by the empirical research in psychology identifying human heuristics for
combining concepts that lack any obvious similarities. To explore the dynamics
involved in our dialogue games and to experimentally evaluate the human
heuristics mentioned, we defined and implemented a number of measures including
ratio of preserved information (rpi), hybridity, asymmetry of the combination,
and impact of alignment with an upper ontology (here, DOLCE). In general,
the unbounded dialogue game allows for the construction of ‘almost perfect
conjunctions’ in the sense that preservation of information remains high whilst
hybridity increases. This is a feature of interest more generally to ontology
engineering. Further, the lack of high asymmetry in the unbounded combination
can be traced back to the fact that, as Prop. 3 showed, we construct maximal
combinations in this case. In contrast, the use of a bounded procedure permits
to build highly asymmetrical combinations, arguably more in line with the
distinction between Head and Modifier as described in cognitive psychology. As
may be expected, this is obtained at the cost of a decrease in hybridity.

We also showed the flexibility of our algorithm in reproducing some of the
phenomena observed in the cognitive psychology of impossible combinations,
namely the use of alignments and instantiation. To simulate human concept
combination in a subtler way, a more fine-grained protocol regarding evaluation of
preferences, prioritisation strategies and resource-bounding should be investigated
further.
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