Skip to main content
Log in

Cut elimination for entailment relations

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

Entailment relations, introduced by Scott in the early 1970s, provide an abstract generalisation of Gentzen’s multi-conclusion logical inference. Originally applied to the study of multi-valued logics, this notion has then found plenty of applications, ranging from computer science to abstract algebra. In particular, an entailment relation can be regarded as a constructive presentation of a distributive lattice and in this guise it has proven to be a useful tool for the constructive reformulation of several classical theorems in commutative algebra. In this paper, motivated by these concrete applications, we state and prove a cut-elimination result for inductively generated entailment relations. We analyse some of its consequences and describe the existing connections with analogous results in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aczel, P., Rathjen, M.: Notes on constructive set theory. Technical report, Institut Mittag–Leffler, 2000–2001. Report No. 40

  2. Artin, E.: Über die Zerlegung definiter Funktionen in Quadrate. Abh. Math. Sem. Univ. Hambg. 5(1), 100–115 (1927)

    Article  MATH  Google Scholar 

  3. Artin, E., Schreier, O.: Algebraische Konstruktion reeller Körper. Abh. Math. Sem. Univ. Hambg. 5(1), 85–99 (1927)

    Article  MATH  Google Scholar 

  4. Cederquist, J., Coquand, T.: Entailment relations and distributive lattices. In: Buss, S.R., Hájek,P., Pudlák, P. (eds.) Logic colloquium ’98. Proceedings of the Annual European Summer Meeting of the Association for Symbolic Logic, Prague, Czech Republic, August 9–15, 1998, vol. 13 of Lecture Notes Logic, pp. 127–139. A. K. Peters, Natick, MA (2000)

  5. Coquand, T.: Topology and sequent calculus. In: Conference Presentation: Topology in Computer Science: Constructivity. Asymmetry and Partiality; Digitization, Dagstuhl (2000)

  6. Coquand, T.: Geometric Hahn–Banach theorem. Math. Proc. Camb. Philos. Soc. 140, 313–315 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Coquand, T., Lombardi, H.: Hidden constructions in abstract algebra. In: Krull Dimension, Going Up, Going Down. Technical report. Göteborg University (2001)

  8. Coquand , T., Lombardi, H.: Hidden constructions in abstract algebra (3): Krull dimension of distributive lattices and commutative rings. In: Fontana, M., Kabbaj, S.-E., Wiegand, S., (eds.) Commutative Ring Theory and Applications, volume 231 of Lecture Notes in Pure and Applied Mathematics, pp. 477–499. Addison-Wesley, Reading, MA (2002)

  9. Coquand, T., Lombardi, H.: A logical approach to abstract algebra. Math. Struct. Comput. Sci. 16, 885–900 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Coquand, T., Lombardi, H., Neuwirth, S.: Lattice-ordered groups generated by ordered groups and regular systems of ideals (2017). arXiv:1701.05115 (preprint)

  11. Coquand, T., Lombardi, H., Roy, M.-F.: An elementary characterisation of Krull dimension. In: Crosilla, L., Schuster, P. (eds.) From Sets and Types to Topology and Analysis, volume 48 of Oxford Logic Guides, pp. 239–244. Oxford University Press, Oxford (2005)

    Google Scholar 

  12. Coquand, T., Lombardi, H., Schuster, P.: The projective spectrum as a distributive lattice. Cah. Topol. Géom. Différ. Catég. 48, 220–228 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Coquand, T., Sadocco, S., Sambin, G., Smith, J.M.: Formal topologies on the set of first-order formulae. J. Symb. Log. 65(3), 1183–1192 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Coquand, T., Sambin, G., Smith, J., Valentini, S.: Inductively generated formal topologies. Ann. Pure Appl. Logic 124, 71–106 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Coquand, T., Zhang, G.: Sequents, frames, and completeness. In: Clote, P.G., Schwichtenberg, H. (eds.) Computer Science Logic (Fischbachau, 2000), Volume 1862 of Lecture Notes in Computer Science, pp. 277–291. Springer, Berlin (2000)

    Google Scholar 

  16. Coste, M., Lombardi, H., Roy, M.-F.: Dynamical method in algebra: effective Nullstellensätze. Ann. Pure Appl. Logic 111(3), 203–256 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Crosilla, L., Schuster, P.: Finite methods in mathematical practice. In: Link, G. (ed.) Formalism and Beyond. On the Nature of Mathematical Discourse, Volume 23 of Logos, pp. 351–410. Walter de Gruyter, Boston (2014)

    Google Scholar 

  18. Delzell, C.N.: Kreisel’s unwinding of Artin’s proof. In: Odifreddi, P. (ed.) Kreiseliana. About and Around Georg Kreisel, pp. 113–246. A K Peters, Wellesley (1996)

    Google Scholar 

  19. Fuchs, L.: Partially Ordered Algebraic Systems. Dover Publications, Mineola (2011)

    MATH  Google Scholar 

  20. Gentzen, G.: Untersuchungen über das logische Schließen II. Math. Z. 39, 405–431 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gentzen, G.: Über das Verhältnis zwischen intuitionistischer und klassischer Arithmetik. Arch. Math. Logik Grundlagenforsch. 16, 119–132 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hertz, P.: Über Axiomensysteme für beliebige Satzsysteme. Math. Ann. 101(1), 457–514 (1929)

    Article  MathSciNet  MATH  Google Scholar 

  23. Johnstone, P.: Stone Spaces. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  24. Lombardi, H.: Relecture constructive de la théorie d’Artin–Schreier. Ann. Pure Appl. Logic 91, 59–92 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lombardi, H.: Algèbre dynamique, espaces topologiques sans points et programme de Hilbert. Ann. Pure Appl. Logic 137, 256–290 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lombardi, H., Quitté, C.: Commutative Algebra: Constructive Methods: Finite Projective Modules. Springer, Dordrecht (2015)

    Book  MATH  Google Scholar 

  27. Lorenzen, P.: Algebraische und logistische Untersuchungen über freie Verbände. J. Symb. Logic 16(2), 81–106 (1951)

    Article  MATH  Google Scholar 

  28. Lorenzen, P.: Die Erweiterung halbgeordneter Gruppen zu Verbandsgruppen. Math. Z. 58(1), 15–24 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  29. Negri, S.: A sequent calculus for constructive ordered field. In: Schuster, P., Berger, U., Osswald, H. (eds.) Reuniting the Antipodes—Constructive and Nonstandard Views of the Continuum (Venice. 1999), Volume 306 of Synthese Library, pp. 143–155. Kluwer, Dordrecht (2001)

    Chapter  Google Scholar 

  30. Negri, S., von Plato, J.: Cut elimination in the presence of axioms. Bull. Symb. Log. 4(4), 418–435 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Negri, S., von Plato, J.: Structural Proof Theory. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  32. Negri, S., von Plato, J.: Proof Analysis. A Contribution to Hilbert’s Last Problem. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  33. Negri, S., von Plato, J.: Concepts of Proof in Mathematics, Philosophy, and Computer Science. In: Probst, D., Schuster, P. (eds.) Cut Elimination in Sequent Calculi with Implicit Contraction, with a Conjecture on the Origin of Gentzen’s Altitude Line Construction, Ontos Mathematical Logic, vol. 6, pp. 269–290. Walter de Gruyter, Berlin (2016)

    Google Scholar 

  34. Payette, G., Schotch, P.K.: On preserving. Log. Univers. 2, 295–310 (2007)

    Article  MATH  Google Scholar 

  35. Payette, G., Schotch, P.K.: Remarks on the Scott–Lindenbaum theorem. Stud-Logica 102(5), 1003–1020 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Persson, H.: An application of the constructive spectrum of a ring. In: Type Theory and the Integrated Logic of Programs. Chalmers University and University of Göteborg, Ph.D. thesis (1999)

  37. Rinaldi, D.: A constructive notion of codimension. J. Algebra 383, 178–196 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rinaldi, D., Sambin, G., Schuster, P.: The basic Zariski topology. Conflu. Math. 7, 55–81 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rinaldi, D., Schuster, P.: A universal Krull–Lindenbaum theorem. J. Pure Appl. Algebra 220, 3207–3232 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Rinaldi, D., Schuster, P., Wessel, D.: Eliminating disjunctions by disjunction elimination. Bull. Symb. Logic 23(2), 181–200 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Rinaldi, D., Schuster, P., Wessel, D.: Eliminating disjunctions by disjunction elimination. Indag. Math. (N.S.) 29(1), 226–259 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Rinaldi, D., Wessel, D.: Extension by conservation: Sikorski’s theorem. Technical report, University of Verona and University of Trento (2016) (submitted)

  43. Rounds, W.C., Zhang, G.-Q.: Clausal logic and logic programming in algebraic domains. Inf. Comput. 171(2), 183–200 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sambin, G.: Intuitionistic formal spaces—a first communication. In: Skordev, D., (ed.) Mathematical Logic and Its Applications, Proceedings of Advanced International Summer School-Conference, Druzhba, Bulgaria, 1986, pp. 187–204. Plenum, New York (1987)

  45. Sambin, G.: Some points in formal topology. Theor. Comput. Sci. 305(1–3), 347–408 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sambin, G.: The Basic Picture. Structures for Constructive Topology. Oxford Logic Guides. Clarendon Press, Oxford (forthcoming)

  47. Scott, D.: On engendering an illusion of understanding. J. Philos. 68, 787–807 (1971)

    Article  Google Scholar 

  48. Scott, D.: Completeness and axiomatizability in many-valued logic. In: Henkin, L., Addison, J., Chang, C.C., Craig, W., Scott, D., Vaught, R. (eds.) Proceedings of the Tarski Symposium (Proc. Sympos. Pure Math., Vol. XXV, Univ. California, Berkeley, Calif., 1971), pp. 411–435. Amer. Math. Soc., Providence, RI (1974)

  49. Shoesmith, D.J., Smiley, T.J.: Multiple-Conclusion Logic. Cambridge University Press, Cambridge (1978)

    Book  MATH  Google Scholar 

  50. Tarski, A.: Fundamentale Begriffe der Methodologie der deduktiven Wissenschaften. I. Monatsh. Math. Phys. 37, 361–404 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wessel, D.: Ordering groups constructively. Commun. Algebra (forthcoming)

  52. Zhang, G.-Q., Rounds, W.C.: An information-system representation of the Smyth powerdomain. In: International Symposium on Domain Theory, Shanghai (1999)

Download references

Acknowledgements

The research that has led to this paper was carried out within the project “Categorical localisation: methods and foundations” (CATLOC) funded by the University of Verona within the programme “Ricerca di Base 2015”; the related financial support is gratefully acknowledged. This work was further supported by the “National Group for Algebraic and Geometric Structures, and their Applications” (GNSAGA - INdAM). The final version of this paper was prepared within the project “A New Dawn of Intuitionism: Mathematical and Philosophical Advances” (ID 60842) funded by the John Templeton Foundation, as well as within the project “Dipartimenti di Eccellenza 2018–2022” of the Italian Ministry of Education, Universities and Research (MIUR). The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation.

We wish to express our gratitude to Peter Schuster for his encouragement and insights, and thank Henri Lombardi and Stefan Neuwirth for interesting discussions. Last but not least, we thank the anonymous referee, whose expertly remarks and valuable suggestions helped to improve our manuscript, and the anonymous referee of a forerunner of this paper for pointing out to us the connection with hyperresolution calculi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Wessel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rinaldi, D., Wessel, D. Cut elimination for entailment relations. Arch. Math. Logic 58, 605–625 (2019). https://doi.org/10.1007/s00153-018-0653-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-018-0653-0

Keywords

Mathematics Subject Classification

Navigation