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Abstract: General Morphological Analysis (GMA) is a method for structuring a conceptual problem space 
– called a morphospace – and, through a process of existential combinatorics, synthesising a solution 
space. As such, it is a basic modelling method, on a par with other scientific modelling methods includ-
ing System Dynamics Modelling, Bayesian Networks and various types graph-based “influence dia-
grams”. The purpose of this article is 1) to present the theoretical and methodological basics of morpho-
logical modelling; 2) to situate GMA within a broader modelling theoretical framework by developing a 
(morphological) model representing different modelling methods, and 3) to demonstrate some of the 
basic modelling techniques that can be carried out with GMA using dedicated computer support. 
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1. Introduction 
 
This article is about General Morphological Analysis (GMA) as a basic, conceptual (non-quantified) 
modelling method. As such, it can be compared with a wide range of other scientific modelling 
methods, including System Dynamics Modelling (SDM), Bayesian Networks (BN) and various forms 
of “influence diagrams”. As will be shown, all of these modelling methods are based on variations 
among a common set of components and properties, and are developed through the same iterative 
process involving cycles of analysis and synthesis (Ritchey, 1991, 2012). Indeed, these variations in 
modelling properties can themselves be modelled morphologically. 
 
Firstly, the theoretical and methodological foundations of GMA as a modelling method are pre-
sented. This will include the task of providing a general operational definition of a (scientific) model, 
in order to identify its components and properties. Next, GMA will be situated within a wider mod-
elling theoretical framework by developing a morphology of modelling methods, which will allow 
for the systematic identification, classification and comparison of different such methods. The con-
struction of this morphological (meta-) model will also serve as an example of how to “build” mor-
phological models in general. The meta-model also gives us a graphical representation of how a 
given modelling method can be transformed into another by altering one or more of its parametric 
values. Finally, a number of GMA modelling techniques will be demonstrated that have been made 
possible by the introduction of dedicated computer support in the early 1990’s.  
 
We begin by discussing the basic nature of a “scientific model”, in order to identify those modelling 
properties by which to create a morphospace of modelling methods.  
 
 

2. What is a scientific model? 
 
The notion of a model, like that of a system or a theory, belongs to a class of concepts which essen-
tially encompass an unbounded domain. The open-ended nature of these concepts makes it diffi-
cult to give them both an all inclusive and a precise definition (cf. Portides, 2014; Koperski, 2016). 
From the perspective of the philosophy of science it is understandable to opt for an all-inclusive 
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account, and we often find the concept of a model being based on the notion of “representation”, 
e.g. a model is a (mathematical, symbolic or conceptual) representation of the thing being mod-
elled. This is certainly all inclusive, but is only a nominal designation. For our present purposes a 
”real” or operational definition needs to put forward – even if it is not “all-inclusive” – in order to 
better clarify how models are actually developed and how they do their work, i.e. their means of 
representation. 
 
Here, the notion of a (scientific) model is defined on the basis of 1) its components and structure 
(variables and links) and 2) its method of generation (analysis and synthesis). There is nothing es-
sentially new in this operational description, but since we claim that GMA is a fundamental model-
ling method itself, with its own unique place in the menagerie of such methods, a review of these 
formal principles is warranted. (The following text is a further development of work appearing in 
Ritchey 2011a & 2012). 
 
The following criteria are posited as necessary and sufficient for at least a minimal definition of a 
scientific model. (At this point I am going to drop the “scientific” qualifier and ask that this be un-
derstood.) The two criteria are: 
 

A. A model must contain two or more (mental) constructs that can serve as variables which 
can support a range of states or values – otherwise called the variable’s domain or value 
range (since we are not necessarily working with directed mathematical functions here, 
these two terms are interchangeable). Such variables represent those aspects of reality (or 
abstract system) one wants to treat, and which make up the dimensions of the modelling 
space to be developed. We shall call these variables the model’s parameters. [The term pa-
rameter is being used here in its broader “systems science” sense, as being one of a set of 
factors that defines a system and determines its behaviour, and which can be varied in an 
experiment – including a Gedankenexperiment.] 

 
B. One must be able to establish relationships (e.g. causal, statistical, logical, modal, norma-

tive) between the different parameters, such that each parameter is “connected to” (i.e. 
constrained or influenced by) at least one of the other parameters.  

 
The development of these two components (variables and connective links) into a model is essen-
tially an iterative process of analysis and synthesis. In the analysis phase, variables and their respec-
tive domains are formulated which represent the model’s initial problem space. In the synthesis 
phase, connective relationships between parameters are defined which bind the modelling space 
and determine its topological properties. It also constrains the total modelling space in order to 
produce a solution or outcome space.  
 
Thus the basic framework for a model is an internally connected, n-dimensional conceptual space 
which goes under a number of different names depending on the nature of the model, its area of 
application and the properties of the space to be emphasised: e.g. parameter space, configuration 
space, state space or phase space, or, in the case of GMA, a morphospace.  
 
At this point we need to distinguish between so-called static and dynamic models. (These terms are 
used somewhat differently in different modelling contexts, but are here generalised.) In dynamic 
models, the variables have explicitly defined, specified domains; and the connective links between 
variables are connections between their respective domains. This means that the modelling space 
can be manipulated by treating one or more of the model’s variables as “independent”, varying its 
values (as inputs) and realising the results on the remaining “dependent” variables (as outputs). 
This is what we usually think of as a proper “model” in science. Included here are SDM, BN and 
GMA. 
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In static models, the variables are treated as black boxes and only an overall (graphic) connective 
structure is indicated. No dynamic input-output variability is obtainable. Indeed, this is why such 
“models” are often referred to as diagrams, charts or graphs. Included here are flow charts, classi-
cal influence diagrams and so-called system dynamics (SD) diagrams. Although we are primarily 
concerned with dynamic models, we will include static models in the meta-model in order to mark 
out the interface between these two basic modelling types. 
 
It is interesting to note that this general operational definition of a model is quite similar that of an 
experiment. In experimental research the aim is to design an environment by which one is able to 
manipulate designated (“independent”) variables in order to examine the effect on the remaining 
(“dependent”) variables. Thus the very definition of an experiment involves the identification of 
variables and a “set up” that both creates and allows one to examine the (e.g. causal) connections 
between such variables. In this sense, dynamic models in general can be regarded as conceptual 
experiments or thought experiments (although this is only one aspect of the notion of thought ex-
periments; see e.g. Sorensen, 1992). This is why we have often referred to morphological models as 
conceptual laboratories. 
 
 

3. A morphology of modelling methods 
 
On the basis of this operational definition of a model, we will proceed to develop a theoretical 
morphospace by which we can identify and compare a range of different modelling methods, in-
cluding GMA itself. The development of this meta-model will also serve as a procedural example of 
how to create a (relatively simple) morphological model. 
 
We begin with the analysis phase of defining the parameters (i.e. variables and their respective 
domains) which represent the meta-model’s initial “problem space”. Note that variables in mor-
phological models consist of discrete category variables. There are no metric relationships or nu-
merical calculations involved. Even if a variable in a morphospace may look like a magnitude or 
interval scale variable (e.g. age, weight, income bracket), they are nonetheless treated as discrete 
categories and assessed as such. The only scaling property utilised in classical morphological model-
ling is “rank order”. (Some extended forms of GMA allow for the use of probabilities or other nu-
meric relationships but, as we shall see, this in effect is a shift into another modelling type.) 
 
For the purposes of this (meta-) model, we employ the following five parameters (further devel-
oped from Ritchey, 2012): 
 
P1. Variable type: Are the domains of the variables (a) continuous, (b) discrete or (c) unspecified 
(black boxes)? 
 
P2. Directionality of connective links: Are the connections between the variables (a) directed 
(asymmetric) or (b) non-directed (symmetric)? 
 
P3. Quantification of connectivity: Are the relationships of connectivity between the variables (a) 
quantified or (b) non-quantified? 
 
P4. Cyclic relationships: Does the model allow for (a) cyclic connectivity (closed loops, circular feed-
back) between the variables, or is the model (b) acyclic. 
 
P5. Type of connectivity: What is the nature of the connective relationships between variables? For 
instance, are they (a) mathematical/functional, (b) probabilistic, (c) non-causal (e.g. logical, modal, 
normative), or (d) unspecified (or quasi-causal). 
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The combinatoric reduction of the problem space creates a solution space which, with proper com-
puter support, can be treated as an inference model. The CCA process also serves as a check on the 
integrity and clarity of the concepts being employed, since ambiguous or otherwise poorly defined 
concepts are immediately exposed and are difficult to assess in a distinct manner. Indeed, one of 
the functions of the CCA is to serve as an initial “garbage detector”. 
 
Figure 2 shows the CCA for the morphospace in Figure 1. Out of necessity, this CCA was carried out 
solo by the author. This is not the ideal situation. Such an assessment should be carried out in a 
group setting with modelling specialists representing different competencies and traditions, and 
where dialogue and a collective learning process can be established. In any event, I chose to be 
extremely tolerant and only constrained those combinations of values which represent blatant logi-
cal contradictions – i.e. “contradictions in terms” (marked by the shaded, numbered cells). All the 
rest of the configurations were allowed survive. (The reader may want to scrutinise and adjust 
these assessments.) 
 
The deleted pairs of conditions concern the following (by the numbered cells):  
 
(1): Variables with “continuous domains” would not employ “non-quantified connections”, as this 
would render these domains useless and render the variables equivalent to “black-boxes”. 

 
(2) & (3): Variables with both continuous and discrete specified domains would not employ “un-
specified connections”, for the same reason as above (1). 

 
(4): Black-box variables are intrinsically incompatible with “mathematical/functional” connections 
between variables, since a “Black-box variable” has, by definition, no domain by which to support 
such connections. 
 
(5) & (6): Models employing mathematical/functional connections must, by definition, be quanti-
fied and have (functional) direction.  

 
(7): Models based on probabilistic connections are – by definition – quantified.  

 
These seven pair-wise exclusions reduce the problem space from 96 formal configurations to 44 
possible modelling types (shown in Table 2, below). Thus, beyond the given analytical contradic-
tions, everything else is considered (at least) possible. One might suspect that some of these possi-
ble theoretical modelling types would be of marginal utility or only represent slight modelling varia-
tions. Others may seem just plain weird. However, as we all know, “weird” things can sometimes 
lead to interesting discoveries.  
 
Note that there is no generally agreed upon nomenclature for all of these 44 possible modelling 
types. Some are clearly distinguishable (like SDM, BN and GMA) while others may denote broad or 
vague categories of models such as “influence diagrams”. One of the main purposes, and results, of 
collective morphological modelling is to develop a common “domain terminology”, which would 
include at least an attempt to assign names to these types. Since I have performed this (first-cut) 
CCA alone, I have not attempted to tackle this problem. (The reader might like to try to identify 
other known modelling types and/or consider names for others not-so-well-known.) 
 
As far as GMA goes, it is significant that we find it at the “bottom” (I would rather use the word 
“base”) of the list of dynamic models (Table 2), with only a special type of GMA, in the form of an 
“acyclic” tree, containing less information. Thus, as represented within our defined parameter 
space, morphological models are the “simplest”, but also the most flexible, of the dynamic model-
ling types.   
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4. Examples of modelling types 
 
The first step is to test this (meta-) model by plugging into it a number of more or less well estab-
lished modelling types. Five such (recognised) modelling types are chosen in Table 1.  
 

 
Table 1: Five of the 44 possible modelling types represented in the meta-model. 

 
We begin by looking at the two extremes or boundary cases represented by the meta-model (Fig-
ure 3). The black configuration at the top shows the properties of System Dynamics Models (SDM) 
and the light shaded configuration at the bottom shows the properties of an “Non-quantified, undi-
rected tree” in graph theory. These two modelling types have no common attributes in the mor-
phospace and a transformation from a graphic tree to a SDM would require a significant augmenta-
tion of information – the most significant being the shift from black-box variables to variable involv-
ing continuous functions, and thereby a shift from unspecified connections to mathematical-
functional one. 
 

 
Figure 3: The two extreme configurations of the meta-model, a System Dynamics Model (black) and a 

“non-quantified, undirected tree”” in graph theory (light shaded).  

 
 
Figure 4 compares Morphological Models (light blue) and Bayesian Networks (gray). Here we see 
that both modelling types employ discrete variable ranges but that they are otherwise disjoint. 
However, in this case the shift between modelling types is relatively easy: Once the possibility of 
applying probability distributions between conditionally dependent variables is established, this 
automatically implies a shift to both directed and quantified connections. The only change of struc-
ture required beyond this is turning the GMA’s cyclic network into an acyclic BN tree. Indeed, in 
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working with social-technical and policy driven modelling, the most common modelling progression 
is just from GMA and BN, which can be appreciated by looking at the modelling steps of these two 
modelling types in Figure 5. For a real example, see De Waal & Ritchey (2007). 
 
 

 
Figure 4. Transformative steps in moving from a morphological model to a Bayesian Network. The solid 
arrows are assigned changes; the dotted arrows are concomitant. 

 
 

 
Figure 5. Comparative steps in developing Bayesian Networks and Morphologi-
cal models. 
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Table 2.  List of 44 possible modelling types in the meta-model’s solution space, sorted by variable do-
main type and rank-ordered information content. Five modelling types are identified by name.  

 
 

5. Modelling Techniques with Computer-Aided GMA 
 
In much the same way that dedicated computer support revolutionised mathematical Modelling 
and Simulation (M&S), it likewise revolutionised morphological modelling. In this context it is a cu-
rious fact that the technically simpler morphological modelling procedure was given dedicated 
computer support only decades after it began to be developed for System Dynamics Modelling, and 
some years after that for Bayesian Networks. While there are interesting historical and scientific-
sociological reasons for this, it is not pertinent to the present work (see Ritchey, in preparation). 
 
As discussed above, dedicated computer support allows us to treat morphological problem spaces – 
synthesised by combinatorial procedures – as (“what-if”) input-output models. Here we present 
examples of different forms that such models can take and demonstrate how they can be treated.  
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As with all “dynamic” models – and especially with morphological models which are quite “visual” – 
it is difficult to demonstrate their dynamic features on paper. We can only show individual “snap-
shots” of given configurations. Note also that these examples are presented in order to demon-
strate modelling technical principles, not to elaborate on the content of the studies involved. If the 
reader is interested in this content, the articles in which they appear can be downloaded from the 
designated URLs.  
 

5.1  Simplex models 
 
We begin by describing a typical, “simple” (or simplex) model in order to demonstrate its basic fea-
tures and principles. Figure 6 is an organisational structure model developed for the Swedish Na-
tional Defence Research Agency in preparation for a major organisational change in the late 1990’s 
(Ritchey, 2011a). It contains seven parameters which together generate 6x6x6x6x4x6x6 = 186,624 
distinct simple configurations – i.e. consisting of a single value given under each parameter. 
 
At this point we need to distinguish between two main types of “parameters”: i.e. those whose 
domains consist of mutually exclusive values, or Boolean OR-lists; and those consisting of non-
mutually exclusive values, or Boolean AND-lists.  Both of these types of parameters can be em-
ployed in morphological models as long as they are properly defined, such that the logical relation-
ships between dependent parameters are treated properly. Most morphological models concerning 
policy-driven problems are hybrids in this manner, although “pure” OR-list models are also com-
mon (see below). It depends on the nature of the problem and the goals to be obtained. 
 
Some feel that only models consisting exclusively of OR-lists, or “true variables”, are appropriate for 
“real” scientific models. However, in the case of social-organisational, policy-space modelling, this 
restriction is misplaced. Firstly, the possibility of including variables representing concurrent condi-
tions significantly enhances GMA’s flexibility and breadth of applications – for instance allowing the 
inclusion of concurrent goals or other independent properties. Secondly, such AND-lists are actually 
sets of mutually exclusive binary parameters. Their representation as a single list of concurrent 
properties is a short-cut which “saves parameter space” and allows for more complex relationships 
without having to create excessively large and visually difficult modelling spaces. 
 
 

 Figure 6. Organisational structure model with Organisational type and Leadership culture designated as 
drivers (red).  
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Another issue concerns the distinction between independent variables and dependent variables. 
With morphological models this is an open question: any of the variables can be designated (tem-
porarily) as either/or. More specifically, the user examines the solution space of the model by 
choosing alternative input variables (or drivers) on order to scrutinize the resultant outputs. The 
models are completely flexible in this context. 
 
Thus the organisational structure model in Figure 6 is a mix of OR-lists (the first two variables “Or-
ganisation type” and “Dominant leadership culture”) and AND-lists (the rest of the variables). The 
first two variables have been temporarily designated as the independent variables or “drivers”, and 
the rest are treated (temporarily) as dependent.  The red cells under the first two parameters have 
been selected as inputs, and the cluster of dark blue cells is the output along the remaining pa-
rameters. The red “dot” in the “Bureaucratic hierarchy” cell tells us that this was the only other 
“Leadership culture” value available for an “Official state agency”. (Note that inputs, outputs and 
other properties of these computer supported models are colour coded – which can be applied in 
the PDF version of this article, but not to the paper version.)  
 
Thus any combination of drivers/inputs can be designated, giving these models great flexibility. For 
instance, Figure 7 shows the organisational consequences from a completely different perspective 
– i.e. from that of employee types and incentives. Here there are significantly different organisa-
tional requirements. 
 

 
Figure 7. The organisational structure from the perspective of a given employee type and incentive. 

 
 

5.2 Duplex models 
 
The preceding model is called a simplex model, which means that the model’s dimensions (parame-
ters) belong to a single context or structural idea – in this case those conforming to an integrated 
organisational structure. However, GMA is especially suitable for pitting one type of structure 
against another – for instance a scenario model pitted against a strategy or organisational structure 
model. (For GMA’s special application to scenario modelling, see e.g. Ritchey, 2009, 2011b.) When 
we link such structures together we call this a duplex (or multiplex) model. 
 
The idea behind a duplex model is that we can treat one of the modelling contexts as a coherent set 
of input conditions and the other as a set of output conditions – i.e. we are looking for compatibility 
not simply between different parameters within a morphospace, but between two different – albeit 
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mutually dependent -- morphospaces. This is illustrated by in the following duplex model repre-
senting the relationship between, on the one hand, an organisation’s resource structure and, on the 
other hand, the demands placed upon this structure by various stressor events (scenarios). 
 
The model in Figure 8 was developed for the Swedish National Rescue Services Board as a proto-
type and proof-of-concept for a computer-based instrument for evaluating Rescue Services’ pre-
paredness for accidents involving hazardous materials (i.e. “chemical accidents”). The instrument 
should allow any municipal Rescue Service to measure and test their preparedness resources 
against responses required for different types of chemical accidents under different conditions; and 
further to show what types of improvements in preparedness resources would result in improved 
responses. A more detailed account of this summary is available in Ritchey et. al. 2002. 
 
The resource-response evaluation instrument is made up of two inter-linked fields: a general pre-
paredness Resource field and a scenario specific Response field (Figure 8). The Resource field is gen-
eral, in that any and all rescue services – from part-time organisations in small municipalities to 
large metropolitan organisations – can be described within it. These preparedness resources are 
defined by five parameters on the left side of the model.  
 
The Response field (the three rightmost columns) describes possible responses that a rescue service 
can make within a set of critical time periods as defined by a specific accident scenario (either based 
on an actual case or on a well defined “possible scenario”). The accident scenario given in this ex-
ample was the actual case of a freight train accident involving the release of a poisonous, pressur-
ised gas (ammonia) which was released into the air in 30 minutes. In this particular case, the model 
concerns these first 30 minutes of the rescue operation. 
 
There are two ways to apply the evaluation model. The first way is to determine what level of re-
sponse to a given accident scenario is attainable for a given resource profile. That is, we use the 
Resource field as “input”, and the Response field as “output”. This is shown in Figure8, where the 
input (red) represents the preparedness resources of a medium sized Rescue Service in a small 
Swedish city (year 2001).  
 
                                               Resource field                                                                       Response field 

 
 

 
Figure 8. Given a rescue service’s preparedness profile (red), what response can be achieved given the spe-
cific scenario represented by the response field (blue)? 
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In order to establish what improvements in preparedness would result in an improved response 
profile, the configurations are “frozen”, and preparedness recourses are successively raised until 
the desired response profile is achieved (light blue cells) as shown in Figure 9. 
 
 

 
Figure 9. New parameters values are chosen in the Resource field (light blue cells) in order to see how re-
sponse can be improved. In this case, one higher degree of planning, training and equipment will maximize 
the response to the chemical release as such. 
 

The second way to apply the instrument is to run it “backwards”, so to speak, i.e. determine what 
resources would be required in order to realise a desired level of response (Figure 10). Here we use 
the Response field as input (red) and the Resource field as output (blue). This mode of use is more 
suited for the task of municipal planning, e.g. in dialogue with political decision-makers.  
 
 

 
Figure 10. Given a response level (red), what preparedness resources would be required (blue)? 
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5.3 Overlay models 
 
In contrast to the duplex model presented above, overlay models utilize a common set of parame-
ters – i.e. a common morphospace – by which two concepts can be (commonly) defined and linked. 
Examples of such dual concepts are: 
 

 Scenario-Strategy models: e.g. scenarios of external stressors vs. organisational strategies for 
dealing with different scenarios 

 Knowledge management models: e.g. knowledge resource bases for different tasks vs. knowl-
edge required in order to carry out a task. 

 
In such a model, the dual concepts are each linked, separately, to a commonly defined morpho-
space by which both concepts can be expressed. This saves parameter space and allows for more 
complex models. The example presented here is a prototype scenario-strategy overlay model de-
veloped for the Swedish Ministry of the Environment in order to evaluate and redesign an Extended 
Producer Responsibility (EPR) system in Sweden. The purpose of the study was to formulate 1) a 
range of contextual environmental scenarios by which to test and stress 2) alternative EPR organ-
isational strategies. The study was reported in Stenström & Ritchey (2004). 
 
The common morphospace by which to define these two concepts consisted of the following set of 
parameters.  
 
1. Dominant consumer behaviour concerning willingness to buy environmentally 
2. Dominant consumption patterns concerning total consumption vs. private import 
3. Dominant household sorting behaviour 
4. The scope of a national environmental policy 
5. Price levels: raw material prices vs. recycled material prices 
6. Technological developments in reduced material usage   
7. Technological  development concerning material recycling 
8. EU import/export directives 

 
Figure 11 shows the scenario and strategy alternatives as they are linked to these 8 common pa-
rameters. One scenario is selected (“Current development – pessimistic”) which then shows the 
indicated scenario configuration and the EPR strategy best able to cope with it. 
 
Scenarios ---------------------------------->                                   <------------------------------------ Strategies for 

 
Figure 11: Single scenario selected, showing the scenario’s attributes and the best available strategy. 



T. Ritchey / Technological Forecasting & Social Change / 2018 
_________________________________________________________________________________________ 

15 
 

Similarly, Figure 12 shows the strategy parameter being used as a driver, showing that Strategy “C” 
covers five of the scenarios. Finally, Figure 13 shows how opposite “corners” of a parameter pair 
can be selected to identify extreme conditions which, in this case, results in a scenario for which 
there is no adequate strategy. 
 

 
Figure 12. Selected Strategy C covers five of the designated scenarios. 
 
 

 
Figure 13.  New high-tech material processes, combined with lagging development of recycling technol-
ogy, identifies conditions for which there is no adequate strategy. 

 
 

6. Conclusions 
 
General Morphological Analysis is a dynamic “conceptual” (non-quantified, non-causal) modelling 
method which can be employed for structuring and investigating the total set of relationships con-
tained in multi-dimensional, non-quantifiable, problem complexes. It is a basic scientific modelling 
method, developed along the same lines as other scientific models: i.e. through the identification of 
variables and variable links, and through iterative cycles of analysis and synthesis.  
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We have shown that the technical properties of scientific models in general can be treated as vari-
ables in a morphospace of modelling methods. Such a meta-model identifies 44 different modelling 
types, including morphological models themselves. These modelling types can be ranked and com-
pared on the basis of different relative levels of information which they require in order to be suc-
cessfully applied to a given modelling target. 
 
GMA is shown to be a suitable method for structuring and modelling those types of so-
cial/organisational structures and processes which, by their very nature, are not applicable to for-
mal mathematical (causal deterministic) or probabilistic (stochastic) methods. This includes com-
plex policy-driven processes (a.k.a. wicked problems, see Rittel & Webber, 1973; Ritchey, 2011a) in 
which one must work with modal categories and normative constraints rather than deterministic 
and probabilistic constraints. 
 
Fritz Zwicky, the method’s modern pioneer, called morphological modelling "totality research" 
which, in an "unbiased way attempts to derive all the solutions of any given problem". It may help 
us to discover new relationships or configurations, which may not be so evident and which we 
might have overlooked by less systematic methods. Importantly, it encourages the identification 
and investigation of boundary conditions, i.e. the limits and extremes of different contexts and 
factors.  
 
GMA also has definite advantages for scientific communication and for group work. As a process, 
the method demands that parameters, conditions and the issues underlying these be clearly de-
fined. Poorly defined parameters become immediately evident when they are cross-referenced and 
assessed for internal consistency. Such assessments simply cannot be made until the morphospace 
is well defined and the working group is in agreement about what these definitions mean. This is a 
form of “garbage detection” that is especially important for policy analysis, futures studies and 
social/cultural modelling. 
 
........................................... 
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