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An infinity of super-Belnap logics

Umberto Rivieccio*

School of Computer Science, The University of Birmingham, Edgbaston, Birmingham, UK

We look at extensions (i.e., stronger logics in the same language) of the Belnap–Dunn
four-valued logic. We prove the existence of a countable chain of logics that extend the
Belnap–Dunn and do not coincide with any of the known extensions (Kleene’s logics,
Priest’s logic of paradox). We characterise the reduced algebraic models of these new log-
ics and prove a completeness result for the first and last element of the chain stating that
both logics are determined by a single finite logical matrix. We show that the last logic of
the chain is not finitely axiomatisable.

Keywords: extensions of Belnap logic; strong Kleene logic; De Morgan lattices;
non-protoalgebraic logics; abstract algebraic logic

1. Introduction

The Belnap–Dunn four-valued logic, also known as the logic of first-degree entailment (FDE),
is a many-valued system that is well known to both logicians and computer scientists. It was
introduced by Dunn (1966) and developed by Belnap (1976, 1977), who proposed a famous
interpretation of the four values in terms of what a computer is told about the truth or falsity of
a given sentence. In more recent years Belnap’s approach was generalised with the introduction
of bilattices (Arieli & Avron, 1996; Fitting, 1990; Ginsberg, 1988), which opened the way to a
variety of new applications of many-valued systems, especially in computer science.

In parallel with the computer-science-oriented line of research, the Belnap–Dunn logic has
also been investigated from a purely logical point of view, with particular emphasis on its
algebraic features (Font, 1997; Pynko, 1995a, 1999a). These studies pointed out the existence
of an interesting connection between the Belnap–Dunn logic and the algebraic theory of De
Morgan lattices, a class of algebras that provide a natural semantics for the logic.

The present work aims at giving a contribution to this last line of investigation, focusing
on extensions of the Belnap–Dunn logic. Here by ‘extension’ we mean a strengthening, in the
same language, of a given logic, as opposed to expansions (such as those considered in
Pynko, 1999a), which are obtained by introducing new connectives. Some extensions of the
Belnap–Dunn logic are quite well known (see Section 4.1) and have applications in computer
science and philosophical logic.1 However, as far as the author is aware, this topic has never
been systematically investigated.

The first question one might ask is: how many proper extensions does the Belnap–Dunn
logic have? This is the question that gave rise to the present work. One of the main results
contained in the paper is that the Belnap–Dunn logic has at least countably many extensions.
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The next issue would then be to give a precise description of the structure of the lattice of
(all) its extensions. This problem in its full generality is still unsolved, and we will give an
idea of where the difficulties in tackling it lie. We have, however, obtained some partial
results that shed some light on the landscape of extensions of the Belnap–Dunn logic, which
in the future may hopefully lead to a satisfactory solution to the general problem.

The paper is organised as follows. In Section 2 we introduce definitions and algebraic
results on De Morgan lattices that will be needed for our study of extensions of the Belnap–
Dunn logic. In Section 3 we formally introduce the logic and recall some known results that
will also be used in the study of its extensions. This is developed in Section 4. We first con-
sider the extensions that have already been mentioned in the literature (Section 4.1), then
show how to build a countable chain of logics that extend the Belnap–Dunn system and still
do not collapse to any of the known ones (Section 4.2). We prove completeness results for
the first and last member of this chain and we show that the latter logic is not finitely
axiomatisable. Finally, in Section 5 we mention some further results and discuss future
prospects.

2. De Morgan lattices

De Morgan lattices are well-known algebraic structures whose origin traces back to the
1930s. They can be seen as one of the possible generalisations of Boolean algebras (in fact,
in Rasiowa (1974), bounded De Morgan lattices are called quasi-Boolean algebras). It was
clear since its very introduction that the Belnap–Dunn logic had some non-trivial relation
with De Morgan lattices. In fact, the concrete four-element lattice used by Dunn and Belnap
as a semantics for their logic is a particular example of a De Morgan lattice (see Section 3).
Nowadays we also know from Font (1997) that De Morgan lattices constitute, according to
the theory of algebraisation of logics developed in Font and Jansana (2009), the canonical
algebraic counterpart of the Belnap–Dunn logic.

In the present work we are going to exploit this relation to obtain some insight into the
structure of the lattice of extensions of the Belnap–Dunn logic. In this section we therefore
recall the necessary algebraic results on De Morgan lattices (unless otherwise specified, con-
sult Balbes and Dwinger, 1974, for proofs and further details).

Notation. The algebraic (as well as the logical) language considered in this paper will
always be assumed to be h^;_;:i, sometimes expanded with the constants 0 and 1. On a
logical level, ^ is interpreted as a conjunction, _ as a disjunction and : as a negation. The
constants 0 and 1 stand for false and true as in the classical case. We use uppercase bold-
faced letters A, B, C, etc. to denote algebras in this language (with universes A, B, C, etc.).
We denote by Fm the formula algebra (with universe Fm ¼ fu;w; . . .g) freely generated by a
countable set of variables Var ¼ fp; q; r; . . . ; x; y; z; . . .g. We use �, ), and & as formal
symbols for, respectively, the equality relation, implication, and conjunction in the (first-order)
language that we use to speak about algebras. We will also abbreviate the equation
u � u ^ w as u � w.

Definition 1. A De Morgan lattice is an algebra A ¼ hA;^;_;:i of type h2; 2; 1i such that
hA;^;_i is a distributive lattice and the following equations are satisfied:

:ðx ^ yÞ � : x _ : y ðneg 1Þ
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:ðx _ yÞ � : x ^ : y ðneg 2Þ

x � :: x: ðneg 3Þ

A De Morgan algebra is an algebra A ¼ hA;^;_;:; 0; 1i of type h2; 2; 1; 0; 0i such that
hA;^;_;:i is a De Morgan lattice and hA;^;_; 0; 1i is a bounded lattice. A Kleene lattice
(algebra) is a De Morgan lattice (algebra) that additionally satisfies the following equation:

x ^ : x � y _ :y: ðKleeÞ

(neg 1) and (neg 2) are usually called De Morgan laws, while (neg 3) is referred to as
double negation law (or involutivity of negation).

Figure 1 shows the Hasse diagram of some De Morgan lattices. The lattice operations in
these algebras are determined by the diagram, while the behaviour of negation is indicated by
the names of the elements (in all cases 0 ¼ :1 and 1 ¼ :0). Notice also that we denote by
? and > the elements that are fixed points of negation.

As mentioned above, Boolean algebras are a particular example of Kleene lattices (or
Kleene algebras, if we include the constants in the signature), which can be axiomatised for
instance by adding the following equation: x ^ :x � y. Both the class of De Morgan lattices
(denoted DMLat) and of De Morgan algebras (denoted DMAlg) are varieties. Also, both clas-
ses have only two proper non-trivial sub-varieties, namely (bounded) Kleene lattices (KLat)
and Boolean algebras.

Up to algebraic language, bounded De Morgan lattices coincide thus with De Morgan
algebras. However, the choice of the language makes a substantial difference when we look
at the theory of sub-quasi-varieties of these classes.

Pynko (1999b) showed that De Morgan lattices have only four proper non-trivial sub-
quasi-varieties (which are not varieties). On the other hand, the lattice of sub-quasi-varieties
of Kleene algebras has the cardinality of the continuum (Gaitán & Perea, 2004). Thus, the
lattice of sub-quasi-varieties of De Morgan algebras has at least the cardinality of the
continuum. In particular, Gaitán and Perea (2004, Section 3) showed that any quasi-equation
bn of the following form

x1 � : x1 & ::: & xn � : xn & x1 _ ::: _ xn � 1 ) x � y ðbnÞ

Figure 1. Some De Morgan lattices.
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for any natural number n � 1 defines a proper sub-quasi-variety of De Morgan algebras and
these quasi-varieties are all distinct. The quasi-variety defined by the infinite set of
quasi-equations (bn) for all n � 1 is precisely QðD12Þ, the quasi-variety generated by the De
Morgan algebra D12 shown in Figure 1. Gaitán and Perea proved that QðD12Þ is not finitely
based, i.e., it cannot be axiomatised by a finite set of quasi-equations. For our purposes, the
following fact will be important:

Lemma 2. Within the variety of De Morgan algebras, the quasi-equation (bn) is equivalent,
for any n � 1, to the following one:

ðx1 ^ : x1Þ _ . . . _ ðxn ^ :xnÞ � 1 ) x � 1:

Proof. It is obvious that a De Morgan algebra A satisfies the equation x � y if and only if A
satisfies x � 1 if and only if A is trivial. Now suppose that A satisfies ðbnÞ for some n � 1
and there are elements a1; . . . ; an 2 A such that ða1 ^ :a1Þ _ . . . _ ðan ^ :anÞ ¼ 1. Then,
letting bi :¼ ai ^ :ai for 1 � i � n, we have that bi � :bi for each 1 � i � n and
b1 _ . . . _ bn ¼ 1. Thus, the premises of (bn) are satisfied. Then a ¼ b for any a; b 2 A, which
means that A is trivial.

Conversely, assume A satisfies the quasi-equation stated in Lemma 2 and there are ele-
ments a1; . . . ; an 2 A such that ai � :ai for each 1 � i � n and a1 _ . . . _ an ¼ 1. Then
ai ¼ ai ^ :ai for any 1 � i � n. Hence,

a1 _ . . . _ an ¼ ða1 ^ :a1Þ _ . . . _ ðan ^ :anÞ ¼ 1:

Then, by hypothesis, we can conclude that A � x � 1, which implies that A is trivial. �

Let us notice that the quasi-equation shown in Lemma 2 has a clearer logical flavour. In
fact, we will see that the equivalence established by Lemma 2 allows us to associate to each
of the above-mentioned quasi-varieties of De Morgan algebras an extension of the Belnap–
Dunn logic.

3. The Belnap–Dunn logic

In this section we recall some known results on the Belnap–Dunn logic and highlight its rela-
tion with De Morgan lattices.

Let us introduce some logical terminology and general results that we will need (see
Font and Jansana, 2009, for proofs and further details). By a (sentential) logic we mean a pair
L = hFm, ‘Li, where Fm is the formula algebra of our similarity type and ‘L is a structural
closure operator over the set Fm. Notice that we use the symbol ‘ to denote any operator of
this kind, independently of the way it is defined (syntactical, semantical, etc.). Instead, we
will use �K to refer to the equational consequence associated with a class of algebras K. We
say that a logic L0 is an extension of (or: is stronger than) L when, for all C [ fug, if
C ‘L u, then C ‘L0 u. We abbreviate this as L � L0 (we write L\L0 to indicate that more-
over the two logics do not coincide).

We consider logical matrices as models of logics, by a logical matrix meaning a pair
hA;Di where A is an algebra and D#A is a set of designated elements. A matrix is a model
of a logic L when C ‘L u implies that, for any valuation h (i.e., for any homomorphism
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h:Fm ! A), if hðcÞ 2 D for all c 2 C, then hðuÞ 2 D. In particular, this implies that D is
closed under any rule

u1; . . . ;un

u

of L , i.e., for all valuations h, if hðuiÞ 2 D with 1 � i � n, then hð/Þ 2 D.
Conversely, any matrix hA;Di determines a logic ‘hA;Di by defining C ‘hA;Di u if and

only if, for all homomorphisms h:Fm ! A, hðcÞ 2 D for all c 2 C implies hðuÞ 2 D. In the
same way any family of matrices M ¼ fhAi;Dii: i 2 Ig defines a logic by letting C ‘M u iff
C ‘hAi;Dii u for any i 2 I. A remarkable fact, which we will use in the next section, is that
any logic L defined by a finite family of finite matrices is finitary (this result can be found,
for instance, in Wójcicki, 1988). By finitary we mean that, if C ‘L u, then there is a finite
set D#C such that D ‘L u.

A matrix congruence of a matrix hA;Di is a congruence of A such that whenever two
elements a; b 2 A are related and a 2 D, then b 2 D as well. Any matrix has a greatest matrix
congruence; we say that a matrix is reduced when it has just one matrix congruence (which
needs to be the identity).

Any logic L is complete with respect to the class of all its matrix models, in the sense that
C ‘L u iff, for any matrix hA;Di of L, hðcÞ 2 D for all c 2 C implies hðuÞ 2 D. More inter-
estingly, it is known that any logic is complete (in the above sense) with respect to the class of
its reduced matrix models. This implies in particular that, when trying to disprove something,
it is sufficient to look at reduced models. In fact, if C 0L u, then there must be some reduced
matrix hA;Di for L and some valuation h such that hðcÞ 2 D for all c 2 C but hðuÞ R D.

This last fact will play an important role in our approach to extensions of the Belnap–
Dunn logic. Another straightforward but very useful result is the following: for any logics
L;L0 such that L � L0, it holds that Mod�ðL0Þ#Mod�ðLÞ, where Mod�ðLÞ and Mod�ðL0Þ
denote the classes of reduced matrix models of, respectively, L and L0 (the same obviously
holds for non-reduced models).

Using the above terminology, we can introduce the Belnap–Dunn four-valued logic
(which we will denote by B) as the logic defined by the logical matrix hD4; f1;>gi or, equiv-
alently (Font, 1997, Proposition 2.3), by the matrix hD4; f1;?gi, where D4 is the four-ele-
ment De Morgan lattice shown in Figure 1. It can also be proved that B is the logic

Table 1. A calculus for the Belnap–Dunn logic.

ðR1Þ p ^ q

p
ðR2Þ p ^ q

q
ðR3Þ p q

p ^ q

ðR4Þ p

p _ q ðR5Þ p _ q

q _ p
ðR6Þ p _ p

p

ðR7Þ p _ ðq _ rÞ
ðp _ qÞ _ r

ðR8Þ p _ ðq ^ rÞ
ðp _ qÞ ^ ðp _ rÞ ðR9Þ ðp _ qÞ ^ ðp _ rÞ

p _ ðq ^ rÞ

ðR10Þ p _ r

::p _ r
ðR11Þ ::p _ r

p _ r ðR12Þ :ðp _ qÞ _ r

ð:p ^ :qÞ _ r

ðR13Þ ð:p ^ :qÞ _ r

:ðp _ qÞ _ r
ðR14Þ :ðp ^ qÞ _ r

ð:p _ :qÞ _ r
ðR15Þ ð:p _ :qÞ _ r

:ðp ^ qÞ _ r
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determined by the class of all matrices of the form hA;Di where A 2 DMLat and D#A is a
lattice filter of A or is empty (Font, 1997, Corollary 2.6).

It follows from the result mentioned above that B is finitary. It is also easy to show that
the Belnap–Dunn logic has no theorems, i.e., there is no formula u such that ; ‘B u.

Font (1997) proved that the Belnap–Dunn logic is axiomatised by the calculus shown in
Table 1. It is obvious that all rules of Table 1 are also rules of classical logic: thus, the
classical propositional calculus is an extension of the Belnap–Dunn logic. It is also easy to
show by algebraic means that any extension of the Belnap–Dunn logic must at the same time
be a weakening of classical logic.

Notice that, because of the absence of theorems, any calculus for the Belnap–Dunn logic will
have only proper rules and no axioms. The fact that B is a theoremless logic has a crucial conse-
quence for our purposes: it implies that the Belnap–Dunn logic is not algebraisable in the sense
of Blok and Pigozzi (1989). In fact, it is not even protoalgebraic (Font, 1997, Theorem 2.11).

This means that we cannot employ a well-known result of the theory of algebraisation of
logics, namely that the lattice of extensions of an algebraisable logic is isomorphic to the lat-
tice of sub-quasi-varieties of its algebraic counterpart. This is one of the major difficulties in
the study of extensions of the Belnap–Dunn logic.

It follows then that B cannot have an equivalent algebraic semantics in the sense of Blok
and Pigozzi (1989, Definition 2.8). However, an algebraic semantics (Blok & Pigozzi, 1989,
Definition 2.2) for this logic is provided by the class of De Morgan lattices, as shown by the
following result (Font, 1997, Proposition 2.5).

Proposition 3. For any u1; . . . ;un;u 2 Fm, the following are equivalent:

(i) fu1; � � � ;ung �B u
(ii) D4 � u1 ^ � � � ^ un � u
(iii) DMLat � u1 ^ � � � ^ un � u:

The equivalence between (i) and (iii) might be paraphrased by saying that the
Belnap–Dunn logic is the logic of the lattice order of De Morgan lattices. In fact, Font (1997,
Theorem 4.1) showed that the class of De Morgan lattices is the algebraic counterpart of the
Belnap–Dunn logic according to the criteria of Font and Jansana (2009). It may also be inter-
esting to note that the De Morgan lattices are not the equivalent algebraic semantics of any
algebraisable logic (Font, 1997, Proposition 2.12).

For our study of extensions of the Belnap–Dunn logic, the following characterisation of
reduced models of B will be especially useful (Font, 1997, Theorem 3.14).

Theorem 4. For any non-trivial algebra A, the matrix hA;Di is a reduced model of B if and
only if A 2 DMLat and D is a lattice filter such that, for all a; b 2 A with a\b, there is
c 2 A such that either (i) or (ii) holds:

(i) a _ c R D and b _ c 2 D (DP)
(ii) :a _ c 2 D and :b _ c R D.

The importance of this result can be easily seen if we take into account the fact that, as
mentioned above, any (reduced) model of an extension of the Belnap–Dunn logic will also
be a (reduced) model of the Belnap–Dunn logic.

We will call the property defined in Theorem 4 the disjunction property (DP). The term
has already been used in the literature for a similar separation property of lattices (without
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negation): see, for instance, Wallman (1938) and Cignoli (1991). Notice that the assumption
that a\b can be replaced by the weaker requirement that a–b. In fact, if a and b are incom-
parable and a– b, then a ^ b\b, so by (DP) we have that there is c such that either
ða ^ bÞ _ c R D and b _ c 2 D or :ða ^ bÞ _ c 2 D and :b _ c R D: In the first case, using
distributivity, we have that ða _ cÞ ^ ðb _ cÞ R D and since b _ c 2 D and D is a lattice filter,
we conclude that a _ c R D. In the second case we use De Morgan laws to obtain :a _ :b_
c 2 D, so defining c0 ¼ :b _ c we have that :a _ c0 2 D and :b _ c0 R D.

4. Extensions of the Belnap–Dunn logic

We are now going to look at extensions of B. We begin by briefly reviewing the ones that
have already been studied in the literature.

4.1. The known

Kleene’s strong three-valued logic K (Kleene, l950) is the logic defined by the matrix
hK3; f1gi, where K3 is the three-element Kleene lattice shown in Figure 1. It is easy to check
that this logic has no theorems as well. However, K validates the following rule

ðp ^ :pÞ _ q

q

which is not sound with respect to the semantics of the Belnap–Dunn logic. In fact, it is
possible to prove that K can be axiomatised by adding this rule to those of Table 1.

Kleene’s logic of order K� considered in Font (1997) is the logic that corresponds to the
lattice order of Kleene lattices. It can be defined by the set of matrices fhK3; f1gi;
hK3; f1;?gig. The name ‘logic of order’ is justified by the following property (Cf. Proposition 3):

Proposition 5. For any u1; . . . ;un; u 2 Fm, the following are equivalent:

(i) fu1; . . . ;ung �K� u
(ii) K3 � u1 ^ . . . ^ un � u
(iii) KLat � u1 ^ . . . ^ un � u.

It is claimed in Font (1997, Section 5.1) that K� can be axiomatised by adding the fol-
lowing rule to those of Table 1:

p ^ :p
q _ :q :

This is incorrect, as we will see in the next section. It is not difficult to prove that in order
to obtain an axiomatisation for K� the following stronger rule should be added instead:

ðp ^ :pÞ _ r

ðq _ :qÞ _ r
:

It is also easy to check that K�\K.
Priest’s logic of paradox LP (Priest, 1979) is the logic defined by the single matrix

hK3; f1;?gi. Unlike the two above-mentioned Kleene’s logics, LP is an axiomatic extension
of the Belnap–Dunn logic. Thus, it has theorems. For instance, it holds that
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‘LP p _ :p:

In fact, it is proved in Pynko (1995b) that LP can be axiomatised by adding the axiom
p _ :p to the rules of Table 1. It is also obvious from its semantic definition that K�\LP.

The three logics mentioned above are, as far as the author is aware, the only extensions
of the Belnap–Dunn logic that have been considered so far in the literature (besides, of
course, classical logic, which we denote by CL). The inclusion relations among these logics
are displayed in Figure 2. In the next section we look at the yet unexplored extensions.

4.2. The unknown

This section contains the main new results of the paper. Before entering into the details, let
us try to give an idea of the strategy we have followed and to sketch an overall picture of the
(rather complicated, as it seems) landscape of extensions of the Belnap–Dunn logic.

As mentioned above, any logic L is determined by the class of its reduced matrix models,
denoted Mod�ðLÞ. We also have that if L � B, then Mod�ðLÞ#Mod� ðBÞ. Conversely, any
subclass of Mod�ðBÞ defines an extension of the Belnap–Dunn logic. For instance, in the pre-
vious section we have seen that, using two different matrices based on the same algebra K3, it
is possible to define three new logics. Notice that both matrices hK3; f1gi and hK3; f1;?gi
are in fact reduced, because K3 is a simple algebra. So both matrices belong to Mod� ðBÞ.

It is certainly true that many different subfamilies of Mod�ðBÞ will define the same logic:
for instance we have seen that the consequence determined by the whole class Mod�ðBÞ coin-
cides with that of the single matrix hD4; f1;>gi. However, it is possible to show that in many
cases (at least countably many, as we will see) the logics defined by different subclasses do
not coincide. Unfortunately, we do not know of any general procedure for establishing
whether two classes of matrices define the same logic or not. This partly explains the diffi-
culty (and also the interest) of the problem we are facing.

Let us begin by defining a logic, denoted B1, that we will later use to construct a count-
able chain B\B1\B2\B3 . . . of extensions of B.

Definition 6. Let B1 be the extension of B obtained by adding the following rule (that we call
disjunctive syllogism) to the calculus of Table 1:

p ^ ð:p _ qÞ
q

: ðDSÞ

It is easy to check that (DS) is not sound with respect to the semantics of the Belnap–
Dunn logic, therefore B1 is indeed a proper extension of B. Moreover, we will see that B1

does not coincide with classical logic nor, as far as the author is aware, with any known

Figure 2. Known extensions of the Belnap–Dunn logic.
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logic.1 It is also easy to check that (DS) is satisfied by the matrix hD4; f1gi, therefore B1 is
weaker than the logic determined by hD4; f1gi. In fact, we are going to prove that B1 is
exactly the logic of the matrix hD4; f1gi. We will need a few lemmas.

Proposition 7. For any u1; . . . ;un; u 2 Fm, the following are equivalent:

(i) fu1; . . . ;ung �hD4;f1gi u
(ii) D4 � u1 ^ . . . ^ un � :ðu1 ^ . . . ^ unÞ _ u
(iii) DMLat � u1 ^ . . . ^ un � :ðu1 ^ . . . ^ unÞ _ u.

Proof. (i))(ii). Let h:Fm ! D4 be a valuation and let us abbreviate w:¼u1 ^ . . . ^ un.
Assume (i). If hðwÞ ¼ 0, we are done. If hðwÞ ¼ ?, then hð:wÞ ¼ ? as well and obviously
? � ? _ a for any a 2 D4. The same reasoning applies to the case where hðwÞ ¼ >. Finally,
if hðwÞ ¼ 1, then by (i) hðuÞ ¼ 1 as well and since 1 � :1 _ 1 ¼ 1, we are done.

(ii))(i). Assume hðuiÞ ¼ 1 for 1 � i � n. Then hðwÞ ¼ 1, so by (ii) we have
1 � :1 _ hðuÞ ¼ hðuÞ, which obviously implies hðuÞ ¼ 1.

(ii),(iii). Follows from the fact that D4 generates the variety of De Morgan lattices. �

As mentioned above, the logic determined by any finite matrix is finitary. This implies
that the previous proposition characterises the consequence relation determined by hD4; f1gi
in full generality and not only for finite sets of premises. Proposition 7 also allows us to
obtain the following completeness result.

Theorem 8. B1 is the logic determined by the matrix hD4; f1gi.

Proof. We have mentioned earlier that B1 is weaker than the logic of the matrix hD4; f1gi.
Hence, to obtain the desired result it will be sufficient to prove that B1 is also stronger than
the logic determined by hD4; f1gi, which implies that the two consequence relations coincide.
To see this, suppose C0B1w but C �hD4;f1gi w. As mentioned above, we can without loss of
generality assume that C is finite because both logics are finitary (B1 is finitary because it is
defined by a finite set of finite rules). Let then C :¼fu1; . . . ;ung and u :¼ u1 ^ . . . ^ un.
The assumptions imply that there is some reduced model hA;Di of B1 and a valuation h such
that hðuiÞ 2 D for all 1 � i � n and hðwÞ R D. Since B1 is an extension of B, hA;Di is a
model of B as well. As proved in Font (1997, Theorem 3.14), this implies that A is a De
Morgan lattice and D is a lattice filter. Moreover, by assumption, D is closed under (DS).
Thus we have that hðu1Þ ^ . . . ^ hðunÞ ¼ hðu1 ^ . . . ^ unÞ ¼ hðuÞ 2 D. By Proposition 7,
fu1; . . . ;ung �hD4;f1gi w implies that the equation u � :u _ w is valid in any De Morgan
lattice. Then hðuÞ � :hðuÞ _ hðwÞ and, since D is an up-set with respect to the lattice order,
we have that :hðuÞ _ hðwÞ 2 D. But D is closed under (DS), so we should have hðwÞ 2 D,
which is against the hypothesis. �

It is now easy to check that B1 does not coincide with classical logic, for B1 has no valid
formulas. To see this, it suffices to note that the constant valuation h:Fm ! D4 defined by
hðpÞ ¼ ? for all p 2 Var is a homomorphism. Therefore, there is no formula u such that
hðuÞ ¼ 1 for all valuations h:Fm ! D4, which means that there is no u such that ‘B1 u.

The previous argument can be generalised as follows. Let hA;Di be a matrix such that
A 2 DMLat and there is an element a 2 A such that a ¼ :a R D. Then fag is the universe of
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a subalgebra of A, therefore the constant map hðpÞ ¼ a is a homomorphism from Fm to A.
As a consequence, since a R D, there cannot be any formula u such that hðuÞ 2 D for all
valuations h. Hence, any logic having hA;Di among its models (and in particular the logic
determined by hA;Di itself) has no valid formulas.

The above reasoning proves that both Kleene’s logics considered in Section 4.1 are also
theoremless. It also implies that B1 does not coincide with Priest’s logic of paradox, because
LP does have theorems.

It is easy to check that the rule
p ^ :p
q _ :q ð1Þ

mentioned in Section 4.1 is satisfied by the matrix hD4; f1gi. Thus, it is a rule of B1. How-
ever, the rule

ðp ^ :pÞ _ r

ðq _ :qÞ _ r
ð2Þ

fails in hD4; f1gi. Thus, (2) does not follow from (1) together with the rules of Table 1. Since
(2) is valid in K� (this can be directly checked in the matrices hK3; f1gi and hK3; f1;?gi or
using Proposition 5), we may conclude that the axiomatisation of K� proposed in Font
(1997, Section 5.1) is not correct.

Next we give a characterisation of reduced models of B1 that will prove to be particularly
useful for our purposes.

Proposition 9. Let hA;Di be a reduced model of B1 with A non-trivial. Then A is a bounded
De Morgan lattice and D ¼ f1g.

Proof. Since hA;Di is a reduced model of the Belnap–Dunn logic, we already know that A is
a De Morgan lattice and D is a lattice filter. It will be then sufficient to prove that D is a
singleton. Reasoning by contradiction, suppose there are a; b 2 D such that a– b. We may
assume that a\b, otherwise we could take a ^ b and a _ b (both belong to D since it is a lat-
tice filter). By the disjunction property (DP), there must be c 2 A such that either b _ c 2 D
and a _ c R D or :a _ c 2 D and :b _ c R D. Since a 2 D, it is obviously impossible that
a _ c R D. It follows that :a _ c 2 D and :b _ c R D. Using the fact that D is a lattice filter,
we can conclude that a ^ ð:a _ cÞ 2 D. Now observe that a ^ ð:a _ cÞ � :ða ^ ð:a _ cÞÞ
_:b _ c. This is so because, by De Morgan and double negation laws, we have that

:ða ^ ð:a _ cÞÞ _ :b _ c ¼ :a _ ða ^ :cÞ _ :b _ c � :a _ c

while obviously a ^ ð:a _ cÞ � :a _ c: Now, since D is closed under (DS), we should have
:b _ c 2 D, which contradicts the hypothesis. So a ¼ b and, since D is a lattice filter, a must
be the top element of A: �

From the previous result together with Theorem 4 we immediately obtain the following.

Theorem 10. Let hA;Di be a matrix, with A non-trivial. Then hA;Di is a reduced model of
B1 if and only if:

(i) A is a bounded De Morgan lattice
(ii) D ¼ f1g
(iii) hA; f1gi satisfies the disjunction property (DP).
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It is easy to check that, for any bounded De Morgan lattice A, the matrix hA; f1gi is a
model of B1. While these models are not necessarily reduced, Theorem 10 tells us that all the
reduced models of B1 have this form.

Taken together, these facts imply that B1 is complete with respect to the class of all matri-
ces of the form hA; f1gi where A is a bounded De Morgan lattice and 1 is the top element
of A.

The main relevance of Theorem 10, as we will see, comes from the fact that a reduced
matrix hA; f1gi for B1 satisfies a rule of the form

u1; . . . ; un

/

if and only if the De Morgan algebra A satisfies the quasi-equation

u1 � 1 & . . . & un � 1 ) / � 1:

Thus, we have a way of translating any logical rule into a quasi-equation in the language
of De Morgan algebras (notice that we had to include the constant and 1 in the algebraic lan-
guage).

Using the completeness result of Theorem 8, it is easy to check that B1 satisfies the fol-
lowing rule, sometimes called (ECQ) for ex contradictione quodlibet:

p ^ :p
q

: ðECQÞ

This implies that B1, unlike the Belnap–Dunn logic, is not paraconsistent in the usual
sense. Neither does B1 belong to the family of relevant logics, because in (ECQ) there is no
relation whatsoever between the premise and the conclusion.

It is not difficult to see that (ECQ) does not imply (DS). Consider, for instance, the matrix
hD12; f1;:agi, where D12 is the twelve-element De Morgan algebra shown in Figure 1. It is
easy to check that hD12; f1;:agi satisfies (ECQ). On the other hand, (DS) can fail, as shown
by the following example. Let h:Fm ! D12 be a valuation such that hðpÞ ¼ :a and
hðqÞ ¼ d. Then hðp ^ ð:p _ qÞÞ ¼ :a ^ ð::a _ dÞ ¼ :a but hðqÞ R f1;:ag. Thus, B +
(ECQ) is a new logic that is strictly weaker than B1. The problem of characterising the
(reduced) models of this logic has yet to be addressed, and the completeness results for B1

stated above seem to indicate that the strategy adopted in this paper will not be applicable to
B + (ECQ).

While we have seen that B1 satisfies (ECQ), it is easy to check that the following stronger
explosion rule is not sound with respect to the semantics of B1:

ðp1 ^ :p1Þ _ ðp2 ^ :p2Þ
q

: ðECQ2Þ

To see this, just consider a valuation h:Fm ! D4 such that hðp1Þ ¼ hðqÞ ¼ ? and
hðp2Þ ¼ >. On a logical level, the failure of (ECQ2) implies that reasoning by cases is not
possible in B1, because a disjunction of two formulas can take a designated value even if
none of the values of the disjuncts is designated (further considerations on this unusual fea-
ture of B1 and also on alternative versions of (ECQ) can be found in Pietz and Rivieccio,
2011).
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So, if we add (ECQ2) to our syntactical presentation of B1, we obtain a new logic, which
we will denote by B2, such that B1\B2. This procedure can be generalised in order to con-
struct a denumerable chain of extensions of the Belnap–Dunn logic as follows.

Let Bn denote the logic obtained by adding the rule (ECQn) to B, defined, for any natural
number n � 1, as

ðp1 ^ :p1Þ _ . . . _ ðpn ^ :pnÞ
q

: ðECQnÞ

Then we are able to prove the following result.

Theorem 11. There exists a denumerable chain of extensions of the Belnap–Dunn logic

B\B þ ðECQÞ\B1\B2\B3\. . .\Bn\. . .\B1\K

such that Bn\Bnþ1 for any n � 1. The chain has an upper bound (strictly weaker than KÞ
given by the logic B1 axiomatised by adding to B1 the infinite family of rules ðECQnÞ for all
n � 1.

Proof. Let us consider the logic Bn for an arbitrary n � 2. The fact that B1 � Bn implies that
Mod�ðBnÞ#Mod�ðB1Þ, i.e., any reduced matrix for Bn must have the form hA; f1gi and sat-
isfy the three properties stated in Theorem 10. Moreover, hA; f1gi will satisfy (ECQn). This
means that the De Morgan lattice A satisfies the quasi-equation

ðx1 ^ :x1Þ _ ðx2 ^ :x2Þ � 1 ) x � 1:

As mentioned in Section 2, the latter is equivalent to the quasi-equation (bn) introduced
in Gaitán and Perea (2004). Since A is a bounded De Morgan lattice, we can view it as a
De Morgan algebra, and we have that A 2 Qn, where Qn denotes the sub-quasi-variety of
De Morgan algebras axiomatised by adding (bn) to the equations that define De Morgan
algebras.

Within the context of extensions of B, it is easily proved that (ECQn) implies (ECQn	1)
for all n � 2. We have thus a countable chain of logics:

B\B þ ðECQÞ\B1\B2 � B3 � . . . � Bn � . . .

We have already seen that the first three inequalities are strict. Let us check that
Bn\Bnþ1 holds in general. Gaitán and Perea (2004, Section 3) proved that, for any quasi-
equation bn, there is a De Morgan algebra An such that An � bn but An 2 bnþ1. We have then
that the matrix hAn; f1gi satisfies ECQn but does not satisfy ECQnþ1. This means that
hAn; f1gi is a model of Bn but not a model of Bnþ1. Hence, Bn–Bnþ1. Thus, we have that

B\B þ ðECQÞ\B1\B2\B3\. . .\Bn\. . .\B1:

The above reasoning also implies that B1 does not coincide with Bn for any n � 1. In
order to prove that B1 � K, it is sufficient to check that the matrix hK3; f1gi, which defines
K, satisfies (ECQn) for all n � 1. To prove that B1–K, just notice that the matrix
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hD12; f1gi, where D12 is the twelve-element De Morgan algebra shown in Figure 1, is a
(reduced) model of B1 but not of K. �

Theorem 11 allows us to draw an improved diagram of the inclusion relations among
extensions of the Belnap–Dunn logic (Figure 3). Notice that, as shown by the diagram, all
the logics between B þ ðECQÞ and B1 are incomparable with K� and with LP. This fol-
lows, on the one hand, from the fact that any logic weaker than B1 has some reduced model
hA;Di where A is a De Morgan lattice (hence, hA;Di is not a reduced model of K� or LP).
On the other hand, neither K� nor LP satisfy (ECQ).

We are now going to prove that B1 is precisely the logic determined by the matrix
hD12; f1gi, where D12 is the twelve-element De Morgan algebra shown in Figure 1. It is easy
to check that hD12; f1gi is a model of B1. Thus, the logic defined by hD12; f1gi is stronger
than B1. To prove the converse, we will use the following result (Gaitán & Perea, 2004,
Theorem 3.5).

Theorem 12. Let A be a De Morgan algebra and let QðD12Þ be the quasi-variety generated
by D12. Then A 2 QðD12Þ if and only if A satisfies (bn) for all n � 1.

On a logical level, Theorem 12 has the following important consequence.

Lemma 13. Let hA; f1gi be a matrix such that A 2 DMAlg. The following are equivalent:

(i) hA; f1gi is a model of B1
(ii) A 2 QðD12Þ.

Proof. (i))(ii). By (i), the matrix hA; f1gi satisfies all the rules of B1, in particular, for all
n � 1,

ðu1 ^ :u1Þ _ . . . _ ðun ^ :unÞ ‘ u:

Therefore A satisfies any quasi-equation of the form

A � ðx1 ^ :x1Þ _ . . . _ ðxn ^ :xnÞ � 1 ) x � 1

which, by Theorem 12, means that A 2 QðD12Þ.

Figure 3. Some more extensions of the Belnap–Dunn logic.
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(ii))(i). We already know that, for any A 2 DMAlg, the matrix hA; f1gi is a model of all
the rules of B1. Moreover, the assumption that A 2 QðD12Þ implies that A satisfies any
quasi-equation that is valid in D12, in particular those of the form

u1 � 1 & . . . & un � 1 ) u � 1:

This means that the matrix hA; f1gi satisfies the rule (ECQn) for all n � 1. Thus,
hA; f1gi is a model of B1: �

Another important consequence of Theorem 12 is the announced completeness result.

Theorem 14. B1 is the logic determined by the matrix hD12; f1gi.

Proof. Let L be the logic determined by the matrix hD12; f1gi. As mentioned above, we only
need to prove that B1 � L. Reasoning by contradiction, assume there are formulas
C [ fug#Fm such that C ‘L u but C0B1u. Since L is determined by a single finite matrix,
it is a finitary logic. So we may assume that there is a finite set of formulas fc1; . . . ; cmg#C
such that fc1; . . . ; cmg ‘L u and obviously fc1; . . . ; cmg0B1u. This last assumption implies
that there is a reduced model hA;Di of B1 and a valuation h:Fm ! A such that hðciÞ 2 D
for 1 � i � m but hðuÞ R D. By definition, B1 � B1, so we know by Theorem 10 that A is a
De Morgan algebra with top element 1 and D ¼ f1g. We have then that hðciÞ ¼ 1 for
1 � i � m but hðuÞ–1. This means that A does not satisfy the quasi-equation

c1 � 1 & . . . & cm � 1 ) u � 1

which is instead satisfied by D12. It follows that A R QðD12Þ. So, by Theorem 12, A should
not satisfy the quasi-equation

ðx1 ^ :x1Þ _ . . . _ ðxn ^ :xnÞ � 1 ) x � 1

for some n � 1. But from the definition of B1 it follows that hA; f1gi satisfies any rule of
the form

ðu1 ^ :u1Þ _ . . . _ ðun ^ :unÞ ‘ u

for all n � 1, and this is equivalent, as we have seen, to the fact that A satisfies the quasi-
equation

ðx1 ^ :x1Þ _ . . . _ ðxn ^ :xnÞ � 1 ) x � 1

for any n. Thus we have a contradiction. Therefore, any reduced model of B1 is a model of
L, which implies that B1 � L: �

At this point one might wonder whether the logic that we have defined by means of an
infinite set of rules can be finitely axiomatised. The answer is negative, as shown by the fol-
lowing result.
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Theorem 15. The logic B1 cannot be axiomatised by any finite set of finite rules.

Proof. Assume there is a finite set of finite rules of the form

u1
i ; . . . ; uni

i

/i

ðaiÞ

with 1 � i � m for some natural number m � 1, which axiomatises B1. Then a matrix
hA;Di is a model of B1 if and only if it satisfies (ai) for 1 � i � m. In particular, this would
hold for any matrix of the form hA; f1gi with A 2 DMAlg. By Lemma 13, this means that
A 2 QðD12Þ if and only if the matrix hA; f1gi satisfies (ai) for 1 � i � m. But, as mentioned
above, hA; f1gi satisfies a rule (ai) if and only if A satisfies the quasi-equation

u1
i � 1 & . . . & uni

i � 1 ) /i � 1: ða0iÞ

Thus, for any De Morgan algebra A, we have that A 2 QðD12Þ if and only if A � a0i with
1 � i � m. This would imply that the quasi-variety QðD12Þ can be axiomatised by a finite set
of quasi-equations, which is against what was proved by Gaitán and Perea (2004). �

Using the above results it is easy to obtain a characterisation of the class Mod�ðBnÞ for
any n � 2.

Theorem 16. Let hA;Di be a matrix, with A non-trivial. Then hA;Di is a reduced model of
Bn with n � 2 if and only if:

(i) A 2 Qn

(ii) D ¼ f1g
(iii) hA; f1gi satisfies the disjunction property (DP).

Proof. Assume hA;Di is a reduced model of Bn. Since B1 � Bn, we have that hA;Di is also
a reduced model of B1. Then, by Theorem 10, we have that A is bounded (so we can view it
as a De Morgan algebra) and hA; f1gi satisfies the (DP). Moreover, hA; f1gi satisfies (ECQn),
so A will satisfy the quasi-equation bn. That is, A 2 Qn.

Conversely, assume (i), (ii) and (iii) hold. By (i), A is a De Morgan algebra. Then, by
(iii) and Theorem 4, we have that the matrix hA; f1gi is a reduced model of the Belnap–
Dunn logic. Moreover, as mentioned above, hA; f1gi satisfies (DS), so it is a model of B1.
Finally, since A 2 Qn, we have that A satisfies the quasi-equation (bn), so the rule (ECQn)
holds in hA; f1gi. This means that hA; f1gi is a model of Bn and this concludes our
proof. �

5. Further work

The results proved in the previous section can be used to obtain further information on the
known extensions of B mentioned in Section 4.1. For instance, since we have seen that
B1\K, we can apply Theorem 16 to obtain a characterisation of reduced models of K. Simi-
lar results can be used to prove interesting facts on K� and LP as well. For instance, it is
possible to show that there is no logic L such that K\L\CL or such that K�\L\LP. On
the other hand, if we add (ECQ) to LP, we obtain a new logic that is strictly weaker than
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CL. It is also easy to obtain a characterisation of the algebraic reducts of generalised models
of the above-mentioned logics, i.e., the classes of algebras that, according to the criteria of
Font and Jansana (2009), constitute the algebraic counterparts of K, K� and LP.

All the above-mentioned results will perhaps be published in a future work. However, the
landscape of extensions of the Belnap–Dunn logic is still largely unexplored and the most
interesting questions have yet to be addressed. For instance, we do not know whether there is
any logic L such that Bn\L\Bnþ1 for some Bn belonging to our infinite chain of logics. In
general, the structure of the lattice of all extensions of the Belnap–Dunn logic (or even of its
upper part) is still not quite understood. This issue is clearly beyond the scope of the present
paper and will perhaps require the development of a more general method for tackling the
problem. It is our hope that our work will serve as an invitation for other researchers to gain
an interest in this topic.
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Notes
1. A previously unknown extension has recently been introduced in Pietz and Rivieccio (2011), to

which we refer for a discussion of the usefulness and potential applications of this new logic. See
also Marcos (2011) who independently considered this logic with different motivations.

2. The logic B1 was introduced in Pietz and Rivieccio (2011), with a different motivation, under the
name ETL (“Exactly True Logic”). The completeness proof presented here (Theorem 8) is adapted
from Pietz and Rivieccio (2011, Theorem 3.4).
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