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Abstract: Transfinite ordinal numbers enter mathematical practice mainly via the method of definition by transfinite recursion.
Outside of axiomatic set theory, there is a significant mathematical tradition in works recasting proofs by transfinite recursion
in other terms, mostly with the intention of eliminating the ordinals from the proofs. Leaving aside the different motivations
which lead each specific case, we investigate the mathematics of this action of proof transforming and we address the problem
of formalising the philosophical notion of elimination which characterises this move.
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Introduction
Transfinite ordinal numbers1 are essential for the current development of axiomatic (Zermelo-
Fraenkel) set theory (ZF). We prove theorems about ordinals (or other objects definable from
them), and we prove theorems by means of ordinals. In the latter case, when the theorem to be
proved does not mention the ordinals, the transfinite numbers used in the proof only appear to
play an instrumental role and we can ask for alternative proofs not involving them.

As a matter of fact, in mathematics we can find a lot of examples — and a variety of reasons
— for avoiding ordinals in proofs, when unnecessary. On the other hand, by carrying out a
mathematical proof inside set theory, we can deal with the ordinals as sets. So, faced with a
proof in which we feel the ordinals to be, in some sense, extraneous to the domain of discourse,
we can try to eliminate the transfinite numbers either by implementing them as sets or by avoid-
ing their use. In which cases, actually do we have the choice? Which are the salient differences
between this two kinds of elimination?

In general, expressions such as “instrumental role” or “avoiding” do not convey precise math-
ematical concepts. Our purpose will be to investigate some cases in which it becomes possible
to give a rigorous, logical content to the previous questions. For, we will focus on a particular,
but ubiquitous, set-theoretical construction: the method of definition by transfinite recursion.

Informally, a general formulation of this method is the following:

Transfinite Recursion. For every function G there exists a unique function F such that

F (α) = G(F �α<), (1)

holds for every α ∈ On (where On is the class of all ordinal numbers, α< denotes the set of
the ordinal numbers less than α and F � α< denotes the restriction of F to the domain α<).
We denote by Σ(G) the function F whose existence and uniqueness are granted by transfinite
recursion.

The intuitive idea, behind a proof which involves an application of transfinite recursion, is
that we want to build some object by an iterative process: the function G captures the principles
of construction we use at each step of the process, while the ordinals provide suitable indices
for identifying the steps. So we are led to study the instances of the method of definition
by transfinite recursion in which the ordinals only play an instrumental role as indices of the
construction.

1In this paper transfinite numbers, ordinals, ordinal numbers all will be used as synonyms for transfinite ordinal numbers.



1. Kuratowski’s programme from a modern perspective
Our starting point will be a well-known theorem with a lot of applications in many areas of
mathematics, namely Bourbaki’s Fixed Point theorem:

Theorem 1.1. (Bourbaki, 1939, p. 37) Let P = 〈P,�〉 be an inductive poset and let Γ : P → P
be expansive2. Then there is a unique W ⊆ P wellordered by ≺ satisfying:

(a) x = lub(Γ ′′{y ∈ W | y ≺ x}), for every x ∈ W , and

(b) lub(Γ ′′W ) ∈ W .

Bourbaki’s theorem can be proved by using ordinal numbers. We define by transfinite recur-
sion the following ordinal-length sequence S:

1. S0 = ⊥ (the bottom of P).

2. Sα+1 = Γ(Sα).

3. Sγ = lub(S ′′γ) when γ is a limit ordinal.

Then we show that ran(S), the range of S, is wellordered by ≺ and satisfies both (a) and (b).
Alternatively, we can say that a subset X of P is Γ-inductive when

1. x ∈ X → Γ(x) ∈ X , and

2. Y ⊆ X ∧ ∃ lub(Y )→ lub(Y ) ∈ X .

Then we can show that, when Γ is expansive, the least Γ-inductive set I(Γ) always exists and
that if, further, P is inductive, then I(Γ) satisfies all the requirements of Bourbaki’s theorem.
This latter was the route followed by Bourbaki in his (1949/50) proof of the theorem.

Both Bourbaki’s theorem and proof are straightforward abstract versions of an older theorem
proved by Kuratowski (1922) for the special case of P = P(E) being the powerset of a fixed
set E partially ordered by inclusion3.

Actually, Kuratowski was mostly concerned with the method, provided by the proof of his
theorem, of eliminating the use of the transfinite numbers from a wide range of mathematical
proofs. His purpose was explicitely stated in the title (A method of eliminating the transfinite
numbers from the mathematical reasoning) and illustrated in details in the first part of his paper.

Kuratowski first fixes the scope and the goals of his work by focusing on a particular kind
of construction by transfinite recursion which occurs in the original proofs of several theorems;
then establishes a general result and shows its equivalence with the given construction; finally,
he illustrates how his theorem can be applied for recasting old proofs in ordinals-free terms,
by showing that similar achievements previously obtained by ad hoc procedures all can be
addressed in a uniform way by his general method. We will refer to this complex of motivations
and results as to Kuratowski’s programme.

By sticking, for convenience, to Bourbaki’s abstract setting, we can identify the schema of
transfinite recursion taken under consideration by Kuratowski with the instances Σ(G) in which
G is defined by cases from an element a ∈ P , an expansive function Γ : P → P and the
least upper bound of the range taken at limits, as in the above definition of the sequence S

2A partially ordered set (“poset” for short) is inductive if exists the least upper bound (lub) of any nonempty chain. A map
Γ : P → P is expansive if x � Γ(x) for every x ∈ P . For X a subset of P , Γ ′′X denotes the image of X under Γ, i.e., the
set {Γ(x) | x ∈ X}.

3By the way, Bourbaki’s version is not really more general than Kuratowski’s, since every partial order can be represented
by inclusion (see, for instance, Moore, 1982, p. 226) and Kuratowski’s proof only uses the inductiveness of P(E).



(we will call this schema Kuratowski recursion). Kuratowski gives the definition of the set
I(Γ, a) (as above, with a in the role of ⊥) then prove that I(Γ, a) and ran(Σ(Γ, a)) coincide.
This identity grounds his method of the elimination of the ordinals which consists, he says, in
“replacing in each process represented by Σ(Γ, a) the definition of the set ran(Σ(Γ, a)) by the
definition of the set I(Γ, a)” (Kuratowski, 1922, p. 79). Kuratowski stresses the fact that his
definition of the set I(Γ, a) does not appeal to the transfinite numbers but that, obviously, the
proof of its equivalence with the definition of ran(Σ(Γ, a)) does. Hence, this equivalence acts
as a promise of an effective elimination of the ordinals, as resulting from an application of the
general method. In Kuratowski’s words “in each singular case, where we will have the purpose
of eliminating the transfinite numbers, we will not make any use of this equivalence; it will
never appear as a premise” (Kuratowski, 1922, p. 79). In particular, Kuratowski directly proves
the properties of the set I(Γ, a) which we have summarised in the statement of Bourbaki’s
theorem.

Kuratowski was writing before von Neumann implementation of the ordinal numbers in set
theory, hence his programme was well rooted in contemporary concerns about using these ob-
jects. The reception of the transfinite numbers by the mathematical community was affected by
the general difficulties in accepting the new Cantorian theory of sets, but also by the fact that,
at this stage, the theory of ordinal numbers was not established as a sound mathematical theory
yet. Nevertheless, transfinite induction and transfinite recursion as methods in establishing new
theorems, entered mathematics through the works given by Cantor himself and others. And
these theorems, despite some scepticism about the techniques used in proving them, generally
was accepted by the mathematical community.

As a result, proofs involving ordinals were mostly seen as a kind of informal arguments
or as heuristic methods in finding solutions and became rather a common attitude to look for
alternative proofs avoiding the ordinals4. As representative of this kind of attitude towards the
transfinite numbers we can quote Borel’s position, generally concerning “Cantor’s arguments”,
expressed in a letter to Hadamard in 1905: “One may wonder what is the real value of these
arguments that I do not regard as absolutely valid but that still lead ultimately to effective results.
In fact, it seems that if they were completely devoid of value, they could not lead to anything,
since they would be meaningless collections of words”5.

Kuratowski’s 1922 work, as a strictly intended programme of elimination of the ordinals,
was superseded one year later by Von Neumann’s implementation of ordinal numbers in set
theory. Von Neumann (1923) established transfinite ordinals as legitimate mathematical objects,
in fact sets. Even though Von Neumann ordinals provided a sound set-theoretical basis for
doing transfinite recursion, Kuratowski’s method of proof was rediscovered and survived in
mathematical practice at least in two different forms, one requiring the axiom of Choice and
one not requiring the axiom.

The Choice horn of the story is represented by a maximality principle already proved in Kura-
towski’s 1922 paper as an application of his method, and later popularised as a fruitful algebraic
tool by Zorn (1935) (nowadays known from this latter as Zorn’s lemma), and successfully used
in other mathematical branches too, alongside with other equivalent maximality principles6.

The Choice-free horn is represented by Kuratowski’s 1922 main result emphasised as a fixed-
point theorem by Bourbaki and, in this form and in later more specific variants, now acting as a
central tool in order-theoretic applications, in particular to computer science issues7.

Hence, even in current mathematical practice, we have evidence that Kuratowski’s (and re-
4See Moore (1982, p. 222), Potter (2004, p. 292-293), Ferreirós (2007, p. 373).
5In (Baire et al., 1905), English translation from Moore (1982, p. 320).
6See Rosser (1953, pp. 481-482), Kuratowski and Mostowski (1976, p. 256, n. 1), Moore (1982, pp. 220-235).
7See Dugundji and Granas (1982), Davey and Priestley (1990, pp. 94ff), Carl and Heikkilä (2011).



lated) method of definition can be perceived as alternative to transfinite recursion. But what can
we say in general? When does a method of definition have to count as an elimination of the
ordinals from the proofs? Which is the mathematical content of Kuratowski’s programme that
survives von Neumann implementation of the ordinals in set theory?

Besides the empirical motivation represented by pre-existing examples of proofs recast in
ordinals-free terms, Kuratowski gave two other reasons for pursuing his programme:

Even though, sometimes, transfinite numbers can be shown to be fruitful in making the
exposition shorter or easier, the existence of a process that allows to avoid ordinals,
in proving theorems that do not deal with the transfinite, is important for the follow-
ing two reasons: in reasoning about ordinals we implicitly appeal to axioms which
ensure their existence; but weakening the axioms system we use in proving something
is desirable both from a logical and from a mathematical point of view. Moreover,
this strategy expunges from the arguments the unnecessary elements, increasing their
æsthetic value8.

In modern terms, the willing expressed by Kuratowsi could be formulated in precise, logical
terms as follows 9.

Let L be a two-sorted first order language, with lower case Latin letters as variables for
sets and lower case Greek letters for ordinal numbers. We assume Zermelo’s set theory be
axiomatised in this language and we add the Axiom of Ordinals:

Axiom of Ordinals. For every wellordered set 〈A,R〉 there exists exactly one ordinal number
α, the order type of 〈A,R〉, denoted by ot(A,R), such that

ot(A,R) = ot(B, S) ⇐⇒ 〈A,R〉 ∼ 〈B, S〉,

where “∼” denotes the notion of isomorphism (or similarity) between wellordered sets.

In this formal setting, the purpose of “eliminating the ordinals from the proofs” can be stated
as follows:

Given a theorem whose statement is formulated in the pure language of sets — i.e.,
not mentioning ordinal numbers — we look for a proof of this theorem in the same
language, from Zermelo’s axioms, not using the Axiom of Ordinals.

We can recognise in Kuratowski’s programme the following two motivations for eliminating
the ordinals from a proof: (1) an unnecessary use of the Axiom of Ordinals; and (2) an instance
of the “purity of method” concern: namely, if the statement of a theorem does not mention the
ordinal numbers we want the proof neither does.

What is the significance of these two motivations after Von Neumann’s implementation of
the ordinals in set theory?

Since Von Neumann ordinals are sets, hardly we can attribute a precise, logical content to the
expression “a theorem whose statement is formulated in the pure language of sets”. Since Von
Neumann ordinals are a proper subclass of the class of all sets we can, of course, positively say
that “the ordinals occur in the statement of a theorem (or in a step of a proof)”, but negating
this statement raises some puzzles: on one hand, the universally quantified variables of the
statement of the theorem, if any, range over all sets, ordinals included; besides, how we can

8Kuratowski, 1922, p. 77 (my translation). Of course, “æstethic value” is a matter of taste: for an opposite evaluation see
Hausdorff (1935, p. 188, 1957 English translation)

9See Kuratowski and Mostowski (1976) for details.



exclude that the statement speaks about the ordinals in some indirect way, perhaps via Scott-
Tarski’s implementation10 instead of Von Neumann’s, or even by speaking about other sets
which can play the role of ordinals, even though we are not aware of this possibility?

Even the Axiom of Ordinals hardly can help in distinguishing between proofs involving or
not involving the ordinals. Even though the Axiom of Ordinals for Von Neumann ordinals is
not provable in Zermelo set theory, the instances of transfinite recursion which Kuratowski’s
method aims to eliminate are provable in Zermelo set theory. Hence, after Kuratowski’s “elim-
ination” of the ordinals, we obtain a “new” proof of the theorem in the same language and from
the same axioms.

Puzzles of this sort about the logical content of the expression “eliminating the ordinals from
the proofs” in a Zermelo context lead to the unpleasant conclusion that the “purity of method”
concern might make sense only from a historical or epistemological point of view: the possibil-
ity of distinguishing ordinals from sets would only depend on our knowledge about the existence
of a set-theoretical implementation of the ordinals, not on what sets and ordinals actually are.

Yet, in the informal mathematical language, we still speak about “theorems and proofs in-
volving (or not involving) the ordinals” and we understand that “the ordinals play an instru-
mental role in a proof of a theorem” when, first, “the theorem does not talk about the ordinals”
and, secondly, we can find another proof of the same theorem in which “the ordinals do not
appear”11.

Hence we are looking for other ways of recasting Kuratowski’s programme in formal terms
which can capture the sense of the expression “eliminating the ordinals from the proofs”.

Referring to the analysis given by Quine (1960, Chapter VII) of the elimination of the ab-
stract objects from the mathematical discourse, we can say that the implementation of the or-
dinal numbers in set theory counts as an elimination in the sense of Quine’s example of the
implementation of the ordered pairs12. Yet, it remains the possibility of an elimination by para-
phrasing, as in Quine’s example about the infinitesimals.

We will try to give an operative sense to the word “elimination”, the sense implicitly given
by Kuratowski when, speaking about his programme, says:

After we have defined this schema [transfinite recursion by an expansive function]
I will establish a general method which allows us to transform every construction
represented by this schema into another which no longer makes appeal to any notion
of transfinite number.13

Our strategy will be the following. We look at instances Σ(G) of transfinite recursion where
G takes values from a fixed set P , and try to identify properties of G which allow to transform
the definition of ran(Σ(G)) in a way recognisable, in some sense, as an “elimination of the
ordinals”. We will consider a few such properties which lead to corresponding progressively
stronger notion of “eliminability”. Finally we observe that Kuratowski’s schema and method fit
the stronger of such notions.

Our criteria for eliminating the ordinals will be extracted from an analysis of the intuitive
process which is formalised by transfinite recursion, namely, the iterated application of an op-
erator G, continued into the transfinite. The outcome of an application of transfinite recursion
is a definable transfinite sequence Σ(G) provably recursive on the full class of the ordinals. As
a set-theoretical definition, Σ(G) is a correspondence between sets implementing the ordinals

10Scott (1955) and Tarski (1955).
11See Fitting (1986), Moschovakis (1994), Back and Von Wright (1998), for some examples of “post-Von Neumann” works

in which similar attitudes, towards the role played by the ordinals in mathematics, are implicitly adopted.
12See Kuratowski and Mostowski (1976, Chapter VII, §9).
13Kuratowski, 1922, p. 77 (the translation is mine, italics are in the original).



and other sets. As in Cantor’s first formulation of this idea, in the iterative process the ordinals
just play the role of indices, no matter which is their internal structure. So, our first criterion is:

First Criterion. The range ran(Σ(G)) has to be independent from the specific set-theoretical
implementation of the ordinals used to formalise the definition of the transfinite sequence Σ(G).

The second criterion concerns the length of the defined sequence. Transfinite recursion pro-
duces an ordinal-length sequence, i.e., a sequence defined on the proper class of all ordinals.
But hardly this is needed when the purpose of the iterative process is just to extract the relevant
information from some set. Cantor’s original need was to be able to perform the iteration as
long as necessary, as long as some closure condition — identifying the goal of the iteration —
was met. After the stage where this condition holds is reached, the iteration produces infor-
mation redundancies and resuming the process adds nothing to the relevant information carried
by the already constructed sequence. This remark leads to the idea of an indefinitely prolonge-
able process, up to a variable length depending on some side condition, rather than to an actual
ordinal-length sequence, as the output provided by transfinite recursion is.

The process of iteration abstracts from the idea of looking for an object which satisfies certain
properties by examining step by step a list of candidates. When the candidates are bounded to
belong to some set, we want to look at a searching inside this set, not at an endless process. This
idea also has impact on the possibility of avoiding any reference to proper classes, since any se-
quence defined by transfinite recursion is a proper class, while, under the usual implementation
of the ordinals, for any fixed length the process stopped at this length produces a set.

Therefore, we can state our second criterion as

Second Criterion. We say that G is local if there exists an ordinal δ such that ran(Σ(G)) =
ran(Σ(G)�δ).

If there exists an ordinal such as δ, there exists also a least one. We call this latter the
characteristic length of G and denote it by δ(G).

The naı̈ve idea is that, if G is local, then we can just define S from G up to δ = δ(G), by
using the local version of transfinite recursion, which we denote by Σ(G, δ). Besides, if G is
also invariant, we can choose any wellordered set similar to δ as the base for recursion, so even
dispensing with a particular implementation of the ordinal numbers.

However, to realise this project, we need to find a uniform way for estimating the character-
istic length of G before running the recursion, i.e., we need a criterion on G to say that G is
local, and we need a functionH which computes a wellordered setH(G) which turns out to be
similar to the characteristic length δ(G).

Finally, the last criterion will deal with the possibility of recovering the relevant information
without appealing to the intuitive idea of an iterative process: we need to positively formulate
an alternative method, as Kuratowski did for the special case of the transfinite iteration of a
progressive operator. This means to find a definition of the range of Σ(G) based on resources
already present in the set of values taken by G, despensing at all with extraneous sets acting as
“indices” in a recursive process.

Since G is defined on sequences from P , in particular G is defined on wellordering from P .
Since arbitrary wellordering from P can be identified with families of subsets of P , we can see
G as an operator from P(P(P )) into P . Hence our third criterion will be stated as follows:

Third Criterion. Let P be some fixed structure with domain P . We say that G is internal to P
if ran(Σ(G)) is definable in some finite-order structure over 〈P, G〉.



2. Hartogs recursion
In this section we characterise a schema of transfinite recursion which meets all three criteria
for eliminating the ordinals and generalises Kuratowski’s method.

Our formalisation of the First Criterion will be provided by the notion of indexed mapping.
An indexed mapping S will be a pair (F,<), where F is a mapping and < is a wellordering
of dom(F ), the domain of F . This notion intends to be a generalisation of both notions of
sequence and wellordering, since every sequence is associated to its domain wellordered by the
less than relation between ordinals and every wellordering 〈A,R〉 can be seen as the indexed
mapping (idA, R), where idA is the identity on A.
Definition 2.1. Let S, T be two indexed mappings whose domains are, respectively, A and B.
We say that S and T are similar if and only if

• A and B are similar wellorderings, and

• S(x) = T (χ(x)) for every x ∈ A, where χ is the unique isomorphism between A and B.

Definition 2.2. We say that a mapping G is invariant if and only if G(S) = G(T ) whenever S
and T are similar indexed mappings.

For instance, it is straightforward to see that the map S 7→ ran(S) is an invariant mapping.
The formal notion of invariant captures the intuitive idea that, when we are only interested in

the information given by H(S), where H is invariant, and not in the full S, the wellordering on
the domain of S just plays the role of a system of indices, freely interchangeable with any other
similar wellordering.
Definition 2.3. Let G be any mapping. We say that an indexed mapping S is G-recursive if and
only if

S(x) = G(S �x<),

for every x ∈ dom(S), where x< denotes the initial segment14 of the domain of S determined
by x.

The method of definition by transfinite recursion naturally extends to indexed functions in
the form: for every mapping G and for every wellordering A there exists a unique G-recursive
indexed mapping F such that dom(F ) = A. The indexed mapping F uniquely determined by
G and A will be denoted by Σ(G,A).

It is straightforward to prove by induction the following
Lemma 2.4. Let G be an invariant mapping. Let S and T be two G-recursive indexed map-
pings. If the domains of S and T are similar wellorderings then S and T are similar.

By Lemma 2.4, when G is invariant all indexed mappings defined from G by transfinite
recursion are similar, no matter which wellordering (up to similarity) we choose to carry out the
recursive definition. This leads to the following:
Remark 2.5. If G is invariant then the definition by transfinite recursion of ran(Σ(G)) is in-
dependent from the implementation of the ordinal numbers, i.e., whatever wellordered proper
class of sets we choose as system of indices for the recursion we obtain the same result.
Definition 2.6. We say that G is Hartogs if and only if G is invariant and

G(f) /∈ ran(f)→ f is injective,

for every G-recursive indexed function f .
14An initial segment of an ordered set 〈A,<〉 is a subset X ⊆ A such that y < x→ y ∈ X for every x ∈ X and y ∈ A. X

is a proper initial segment of A if X 6= A. For x ∈ A, x< = {y ∈ A | y < x} is a proper initial segment of A.



Theorem 2.7. Let G be an invariant Hartogs mapping. Then there exists a wellorderingH(G)
such that

ran(Σ(G)) = ran(Σ(G,H(G))).

Proof. Let G be a Hartogs mapping.
Claim: For every wellorderingX , if Σ(G,X) is not injective then ran(Σ(G,X)) = ran(Σ(G,A))

for all A end-extending15X .
Proof of the claim. Assume that Σ(G,X) is non-injective. We will show, by induction, that

ran(Σ(G,A)) ⊆ ran(Σ(G,X)), for every wellordering A end-extending X .
Assume, by the inductive hypothesis, ran(Σ(G, Y )) = ran(Σ(G,X)), for every initial seg-

ment Y such that X ⊆ Y ⊂ A. Let y ∈ ran(Σ(G,A)).
If A has no maximum, then ran(Σ(G,A)) =

⋃
{ran(Σ(G, Y )) | Y ⊂ A} so, trivially, y ∈

ran(Σ(G,X)). If not, let S = Σ(G,A) and let x be the maximum of A, and suppose, without
loss of generality, y = S(x) = G(S � x<) = G(Σ(G, x<)). By hypothesis, if G(Σ(G, x<)) /∈
ran(Σ(G, x<)) then Σ(G, x<) is injective, contradicting the non-injectivity of Σ(G,X). Hence
y = G(Σ(G, x<)) ∈ ran(Σ(G, x<)) = ran(Σ(G,X)). a

From the claim immediately follows that if Σ(G,X) is not injective then ran(Σ(G,X)) =
ran(Σ(G)) so it only remains to show that such an X exists.

By Hartogs’ theorem (1915) there exists a wellorderable setH(P ) not injectable in P . Hence
Σ(G,H(P )) is not injective.

Theorem 2.7 shows that any Hartogs mappingG generates a transfinite sequence Σ(G) which
satisfies the first and the second criterion for eliminating the ordinals.

Theorem 2.8. Let G be an invariant Hartogs mapping. Then ran(Σ(G)) is definable in the
third-order structure over 〈P, G〉.

Proof. We say that a wellordering X ∈ P(P(P )) is G-recursive if and only if x = G(x<) for
every x ∈ X . By a straightforward generalisation of the second proof of Zermelo’s wellorder-
ing theorem16, we can prove in the third-order structure over 〈P, G〉 that there exists a unique
G-recursive wellordering K(G) = K such that G(K) ∈ K. We want to show that K =
ran(Σ(G)). By Hartogs recursion there exists a unique injective G-recursive function f whose
domainX is a proper initial segment ofH(P ) and such thatG(f) ∈ ran(f). Since f is injective
and G is invariant, f induces on its range a G-recursive wellordering Y such that G(Y ) ∈ Y .
Hence, by uniqueness,X = ran(f) = K. SinceX is a proper initial segment ofH(P ),X = a<

for a unique a ∈ H(P ). Let X ′ = X ∪ {a}. Since Σ(G,X ′)(a) = G(f) ∈ ran(f), Σ(G,X ′) is
not injective, hence by Thm 2.7, K = ran(f) = ran(Σ(G,X ′)) = ran(Σ(G)).

Definition 2.9. We say that G is Kuratowski if and only if

ran(f) = ran(g)→ G(f) = G(g),

for every G-recursive indexed functions f and g.

By definition, G is Kuratowski if G is a function of the map f 7→ ran(f) restricted to
G-recursive indexed functions. Since the map f 7→ ran(f) is invariant it follows that every
Kuratowski mapping is an invariant mapping.

Lemma 2.10. Every Kuratowski mapping is a Hartogs mapping.
15An ordered set 〈A,<〉 end-extends an ordered set 〈B,≺〉 if and only if B is an initial segment of A and≺ is the restriction

of < to B.
16See Kanamori (1997, Theorem 2.1, p. 292)



Proof. Let G be a Kuratowski mapping and f a G-recursive non-injective indexed function.
Let y be first in dom(f) such that f(y) = f(x) for some x < y. We will show, by induction,
that f(z) = f(x) for every z ≥ y. Suppose, by the inductive hypotesis, f(u) = f(x) for
every u such that y ≤ u < z. Hence ran(f � y<) = ran(f � z<). Since G is Kuratowski, it
follows f(z) = G(f � z<) = G(f � y<) = f(y) = f(x). Hence ran(f) = ran(f � y), so
G(f) = G(f �y) = f(y) ∈ ran(f), i.e., G is Hartogs.

The mapping G defined by cases from an expansive operator Γ : P → P can also be defined
as G(f) = lub(Γ ′′ran(f)), so it is immediate to see that G, accordingly to our definition, is
Kuratowski. Hence Lemma 2.10 and Theorem 2.8 together give a direct account of why Kura-
towski’s theorem is successful in eliminating the ordinals (according to our three Criteria) from
arguments involving ordinal-length sequences which are generated by an expansive operator on
an inductive poset.

Actually, Hartogs recursion is more general than Kuratowski. A Hartogs mapping G gener-
ates an ordinal-length sequence Σ(G) pictured as follows: an injective sequence f = Σ(G) �δ,
followed by an ordinal-length sequence S such that S(α) ∈ ran(f) for every α ≥ δ. For con-
trast, an ordinal-length sequence generated by a mapping G which satisfies the hypotheses of
Bourbaki-Kuratowski’s theorem, looks as an injective sequence f = Σ(G) � δ, followed by a
constant ordinal-length sequence S such that S(α) = f(δ−) for every α ≥ δ, where δ− is the
immediate predecessor of δ.

On the other hand, under the hypothesis of Bourbaki’s theorem, ran(Σ(G)) admits a second-
order definition over the structure 〈P, G〉. Indeed we can prove that, in this case, is not necessary
to consider arbitrary G-recursive wellordering from P but only subset of P wellordered by the
partial order≺ of P. These latter live in P(P ) and K = ran(Σ(G))) can be characterized as the
greatest G-recursive subset of P .

Moreover, for every poset P, the following holds:

Lemma 2.11. If Γ is expansive, then the least Γ-inductive set I(Γ) exists and I(Γ) = K.

Proof. For the existence and G-recursiveness of I(Γ) = I see Bourbaki, 1949/50. Hence
I ⊆ K. We will show by induction on the wellordering of K that K = I . Suppose, towards
a contradiction, that there exists an element in K − I , and let x be the first one. Since y ∈
K ∧ y ≺ x implies y ∈ I , it follows {y ∈ I | y ≺ x} = {y ∈ K | y ≺ x}. Let Y = {Γ(y) ∈
P | y ∈ U ∧ y ≺ x}. Since K is G-recursive, x = lub(Y ). Since Y ⊆ I , lub(Y ) exists and I
is Γ-inductive, x = lub(Y ) ∈ I: contradiction. Hence K − I = ∅, so I = K.

Lemma 2.11 is just an abstract and concise formulation of the well known possibility of
giving definitions “from below” (K) or “from above” (I(Γ)) of the same set ran(Σ(G)) when
G is defined from an expansive function; a possibility first shown by the two Zermelo’s proofs
(1904 and 1908) of the wellordering theorem or, for the special case of the natural numbers, by
Dedekind (1888, §131)17. Hence, the possibility of giving a definition “from above” of the set
ran(Σ(G)) can be seen as a stronger condition satisfied by Kuratowski recursion but not shared
with (the more general) Hartogs recursion.
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