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ABSTRACT
Quasi-Nelson logic (QNL) was recently introduced as a common
generalisation of intuitionistic logic and Nelson’s constructive logic
with strong negation. Viewed as a substructural logic, QNL is the
axiomatic extension of the Full Lambek Calculus with Exchange and
Weakening by the Nelson axiom, and its algebraic counterpart is a
variety of residuated lattices called quasi-Nelson algebras. Nelson’s
logic, in turn, may be obtained as the axiomatic extension of QNL
by the double negation (or involutivity) axiom, and intuitionistic
logic as the extension of QNL by the contraction axiom. A recent
series of papers by the author and collaborators initiated the study of
fragments of QNL, which correspond to subreducts of quasi-Nelson
algebras. In the present paper we focus on fragments that contain
the connectives forming a residuated pair (the monoid conjunction
and the so-called strong Nelson implication), these being the most
interesting ones from a substructural logic perspective. We provide
quasi-equational (whenever possible, equational) axiomatisations
for the corresponding classes of algebras, obtain twist representa-
tions for them, study their congruence properties and take a look
at a few notable subvarieties. Our results specialise to the involutive
case, yielding characterisations of the corresponding fragments of
Nelson’s logic and their algebraic counterparts.
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1. Introduction

The introduction of quasi-Nelson algebras and their logical counterpart (quasi-Nelson
logic ), recent as it is (Rivieccio and Spinks (2019)), has already resulted in a sub-
stantial research output (Liang & Nascimento, 2019; Nascimento & Rivieccio, 2021;
Rivieccio, 2020a, 2020b, 2022a; Rivieccio & Jansana, 2021; Rivieccio et al., 2020; Riv-
ieccio & Spinks, 2020). As these papers demonstrate, a particularly fruitful trend has
turned out to be the investigation of logics and classes of algebras corresponding to
fragments of the quasi-Nelson language. Such a study was pursued in particular in Riv-
ieccio et al. (2020), Rivieccio (2020b), Rivieccio (2020a), Rivieccio and Jansana (2021),
Rivieccio (2022a), and Nascimento and Rivieccio (2021). The present paper is also a
contribution to this research line.
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As discussed in the papers Rivieccio and Jansana (2021) and Rivieccio (2022a) – to
which we also refer the reader for further background and motivation – the proposi-
tional language of quasi-Nelson logic/algebras, which coincides with that of Nelson’s
constructive logic with strong negation (Nelson, 1949), is particularly rich. Indeed, as
far as fragments are concerned, the quasi-Nelson setting proved to be even more com-
plex and interesting than that of Nelson logic, because a number of inter-definabilities
among connectives are destroyed by the non-involutivity of the negation.

One of the prominent features of Nelson logic and Nelson algebras is that they may
be presented in two equivalent propositional/algebraic languages, namely, either (i)
the language {∧, ∨, ∗, ⇒, 1} of residuated lattices/substructural logics, or (ii) the lan-
guage {∧, ∨, →} of intuitionistic logic/Heyting algebras enriched with a new (so-called
‘strong’) involutive negation (here denoted by ∼). Accordingly, one may regard Nel-
son algebras either (i) as a subclass of involutive (commutative, integral, and bounded)
residuated lattices, i.e. models of involutive Full Lambek Calculus with Exchange and
Weakening (Galatos et al., 2007), or (ii) as a class of Kleene algebras enriched with
an intuitionistic-type implication operator. This dual view also applies, mutatis mutan-
dis, to quasi-Nelson logic and algebras: but in this case the Nelson negation (∼) is
no longer required to be involutive, so for (i) we need to consider non-necessarily
involutive residuated lattices (models of Full Lambek Calculus with Exchange and
Weakening) and for (ii) we need the class of quasi-Kleene algebras (introduced in
Rivieccio, 2020b) enriched with an intuitionistic-type implication.

When it comes to fragments of the (quasi-)Nelson language, one is thus able to play
with an extended set of basic propositional connectives {∧, ∨, ∗, →, ⇒, ∼, 0, 1}, from
which other standard ones may be defined (e.g. the bi-conditionals ↔ and ⇔ corre-
sponding to the strong and weak implications → and ⇒). Within quasi-Nelson logic,
all these connectives are related by a number of inter-definabilities, determining a
complex landscape of distinct fragments. In the involutive case, the {∧, ∨, ∼}-fragment
(corresponding to the variety of Kleene lattices) was studied by Monteiro and his school
(see e.g. Cignoli, 1986), while the ‘two-negation’ {∧, ∨, ∼, ¬}-fragment (obtained by
adding a second negation given by ¬x := x → 0, whereas the Nelson negation can
be defined by ∼ x := x ⇒ 0) is investigated in Sendlewski (1991) and shown to cor-
respond to the class of weakly pseudo-complemented Kleene algebras. These studies
were extended to the non-involutive setting of quasi-Nelson algebras in, respectively,
Rivieccio (2020a, 2020b); see also Rivieccio et al. (2020).

The more recent papers Rivieccio and Jansana (2021), Rivieccio (2022a), and Nasci-
mento and Rivieccio (2021), generalising earlier work on related structures (Riviec-
cio, 2014), characterise the {∼, →}-fragment of quasi-Nelson logic and the correspond-
ing class of algebras. As argued in Rivieccio and Jansana (2021) and Rivieccio (2022a),
the interest in this particular fragment is motivated by the observation that the con-
nectives ∼ and → form a minimal ‘algebraizable core’ of (quasi-)Nelson logic (see Blok
& Pigozzi, 1989); the above-mentioned papers also demonstrate that the correspond-
ing models (QNI-algebras) form a well-behaved class of algebras with a rich structure
theory.

In the present paper, we shift our attention to fragments of quasi-Nelson logic that
contain the two ‘substructural’ connectives, the strong (monoid) conjunction (∗) and
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the strong implication (⇒), which together form a residuated pair on every quasi-
Nelson algebra (in this case viewed as a residuated lattice). Such fragments form
the core of substructural logics and are therefore of traditional interest within this
field (see e.g. Aglianò et al., 2007; Blok & Ferreirim, 1993, 2000; Blok & Raftery, 1997;
Esteva et al., 2003); in the case of (quasi-)Nelson logic, they also appear to be key
to a deeper understanding of certain peculiar features of the Nelson implication. We
note that none of these fragments has been previously considered in the literature
on Nelson logic; aside from technical difficulties, this may be explained by the fact
that the substructural view on Nelson logic is a relatively recent achievement (Spinks
& Veroff, 2008).

In this paper our main focus will be on the {∗, ⇒, ∼}-fragment of quasi-Nelson logic
(which coincides with the {∗, →, ∼}-fragment, as we shall see) and on the {∧, ∗, ⇒, ∼}-
fragment (coinciding with the {∧, →, ∼}-fragment); however, for technical as well as
pedagogical reasons, we shall begin our study by first looking at the {∗, ∼}-fragment. In
each case, the principal question we will address is whether the algebraic counterpart
of a given fragment of quasi-Nelson logic (i.e. the corresponding class of subreducts
of quasi-Nelson algebras) can be axiomatised abstractly by means of identities or
quasi-identities. Our main mathematical tool in this investigation will the twist-algebra
representation, which will allow us to establish a bridge between the subreducts of
quasi-Nelson algebras and more well-known subreducts of Heyting algebras (i.e. alge-
braic models of fragments of intuitionistic logic); from this connection we shall also
derive further information and insight on the classes of algebras of interest.

While the main object of interest in the present paper is not the twist representa-
tion itself, it will be apparent as we proceed that it has been neccessary to extend the
twist-algebra construction to more general classes of algebras than has been done so
far in the literature on (quasi-)Nelson logic. Indeed, if the aim is to obtain a twist-type
representation for a given class of algebras (say, within the (quasi-)Nelson family), then
the non-involutivity of the negation constitutes a first and major technical difficulty,
which has only been overcome thanks to the generalisation of the twist construction
introduced in Rivieccio and Spinks (2019). A second difficulty arising in the present
context derives from the fact that we will be working with a reduced subset of the
algebraic language of (quasi-) Nelson logic. This explains why we will have to deal with
somewhat exotic classes of algebras as factors in the twist construction (or will even
have to introduce new ones: see e.g. Definitions 3.7, 4.4 and 5.3); these considerations
also suggest that the present paper may be regarded as an exploration of the current
boundaries of applicability of twist constructions.

Let us stress that, although we shall be dealing almost exclusively with classes of
algebras (rather than logical systems), all of them are ‘algebras of logic’; indeed, the
main motivation for our study derives from non-classical logics, and our algebraic
results have a clear logical interpretation. In particular, from our equational presen-
tation of each of the main classes of algebras of interest, one can straightforwardly
obtain a Hilbert-style axiomatization for the corresponding logical system by applying
the standard methods available for algebraizable logics (Blok & Pigozzi, 1989).

For ease of reference, the classes of subreducts of quasi-Nelson algebras that have
been characterised up to now (either in the present paper or elsewhere) are shown in
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Table 1. Subreducts of quasi-Nelson algebras characterised so far.

Operations Subreducts of QNA Twist factor Intuitionistic subclass

∼,→ quasi-Nelson implication nuclear Hilbert bounded
[¬, 0, 1] algebras (Rivieccio, 2022a) semigroups Hilbert algebras
∼, ∗ quasi-Nelson monoids ⇀-semilattices pseudo-complemented
[¬, 0, 1] semilattices
∼, ∗,→ quasi-Nelson pocrims implicative bounded implicative
[⇒,¬, 0, 1] semilattices with� semilattices
∼,∧,→ quasi-Nelson semihoops ⊕-implicative bounded implicative
[∗,⇒,¬, 0, 1] semilattices semilattices
∼,¬,∧,∨ quasi-Kleene algebras with weak pseudo-complemented pseudo-complemented
[0, 1] pseudo-complement (Rivieccio, 2020a) lattices with� lattices
∼,∧,∨, 0 quasi-Kleene algebras distributive pseudo-complemented
[1] (Rivieccio, 2020b) lattices with� lattices

Table 1 (for each fragment, the term definable operations are shown between square
brackets).

A systematic classification of fragments of quasi-Nelson (or even Nelson) logic is
to this day still lacking, and it is not at all obvious that the techniques employed in
the present paper (or in its predecessors) may be successfully adapted to arbitrary
fragments; see Section 10 for a discussion of the potential difficulties one is likely to
encounter.

Indeed, the very question of ‘how many’ fragments there are is relative to a chosen
set of initial connectives; notice in this respect that the first fragment to be studied
(in Sendlewski, 1991) is in the language {∧, ∨, ∼, ¬} which includes the so-called ‘intu-
itionistic negation’ (¬) that is not part of the basic set of connectives in which Nelson
logic is usually presented. The same applies to the bi-conditionals ↔ and ⇔, which
appear nevertheless to be of obvious interest from a logical point of view; indeed, it is
easy to see that the fragments corresponding to the languages {↔, ∼} and {⇔} both
form ‘algebraizable cores’ of quasi-Nelson logic in the sense of Rivieccio (2022a).

The preceding limitations notwithstanding, we believe that the study contained
in the present paper constitutes a valuable contribution not only to the theory of
(quasi-)Nelson logic/algebras but also, more generally, towards a more satisfactory
understanding of the behaviour of connectives/operations (notably ∗ and ⇒) that play
a central role within substructural logics.

The paper is organised as follows. The next section contains preliminary results on
the known classes of algebras we shall be working with, notably those correspond-
ing to fragments of intuitionistic logic (Subsection 2.1) and quasi-Nelson algebras
(Subsection 2.3), for which we also recall the fundamental twist representation result
(Theorem 2.10). In Subsection 2.2, we introduce and briefly discuss the modal opera-
tors known as nuclei, which form an essential ingredient in our twist representation of
non-involutive algebras.

Section 3 introduces the class of {∗, ∼}-subreducts of quasi-Nelson algebras, which
we dub quasi-Nelson monoids (Definition 3.2). We define this class through an abstract
quasi-equational presentation (Subsection 3.1) and then introduce a corresponding
twist construction (Subsection 3.2); the main result of the section is the twist represen-
tation (Theorem 3.18), stating that every quasi-Nelson monoid is embeddable into a
twist-algebra.
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In Section 4, we augment the language of quasi-Nelson monoids with the weak
quasi-Nelson implication (→); in this way the strong implication (⇒) also becomes
term definable, so we have a residuated pair (∗, ⇒), and the resulting class of algebras
is a variety of bounded pocrims (partially ordered commutative residuated integral
monoids) which we dub quasi-Nelson pocrims (Definition 4.9). In our study of this class
of algebras, we rely on previous work (Nascimento & Rivieccio, 2021; Rivieccio, 2022a;
Rivieccio & Jansana, 2021) on the class of {→, ∼}-subreducts of quasi-Nelson algebras,
known as quasi-Nelson implication algebras (Definition 4.1). The main representation
result is Theorem 4.16.

Section 5 further expands the language of quasi-Nelson pocrim with the additive
conjunction (∧), which realises a semilattice operation on the algebras. In this way we
obtain a class of bounded semihoops (Esteva et al., 2003) which we call quasi-Nelson
semihoops (Definition 5.1). The corresponding representation result is Theorem 5.9.

In the following Section 6, we consider the question of when the previously defined
embeddings may be upgraded to isomorphisms: this is answered positively in the case
of quasi-Nelson pocrims (Theorem 6.9) and semihoops (Theorem 6.10), whereas the
corresponding problem for quasi-Nelson monoids is open.

Section 7 shows how to embed each algebra in the above-mentioned classes
into a quasi-Nelson algebra, thereby justifying the claim of having characterised the
corresponding subreducts of quasi-Nelson algebras.

In Section 8, we apply the twist representations to obtain information on
congruence-theoretic properties of the classes of algebras under study. The essen-
tial result is the existence of an isomorphism between the lattice of congruences of
each subreduct of quasi-Nelson algebras and the lattice of congruences of the under-
lying factor algebra as given by the twist representation. This allows us to establish that
quasi-Nelson implication algebras, quasi-Nelson pocrims and quasi-Nelson semihoops
are all congruence-distributive varieties (by contrast, we verify that the congruence lat-
tices of quasi-Nelson monoids do not satisfy any non-trivial identity). We further obtain
an order-theoretic characterisation of subdirectly irreducible algebras (Corollary 8.10),
and establish that all the algebras whose language includes the weak implication
possess a (commutative, non-regular) ternary deduction term; hence these varieties
also have equationally definable principal congruences and the strong congruence
extension property (Proposition 8.14).

In Section 9, we take a look at a few notable subvarieties of the classes of algebras
under consideration, focussing in particular on the correspondence between the iden-
tities satisfied by a given subvariety and the properties enjoyed by the corresponding
factor algebras given by the twist representation.

Section 10 contains a few suggestions for potential directions of future research. To
improve readability, the lengthier proofs of a number of results have been grouped
together at the end of the paper, in the Appendix.

2. Preliminaries

As mentioned in the introduction, our main tool in the study of algebraic counterparts
of fragments of quasi-Nelson logic will be the twist construction. The latter allows one
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to represent every algebra A in a given class K (in our standard example, K is the vari-
ety of Nelson algebras: see Definition 2.8) as a subalgebra of a special binary power
of (i.e. as a twist-algebra over) some algebra H, which in the Nelson case is a Heyting
algebra (Definition 2.4). The connection between Nelson and Heyting algebras is a fun-
damental one; discovered already in the 1970s by M.M. Fidel and D. Vakarelov, it would
be summarised in the title of a later paper by A. Sendlewski: Nelson algebras through
Heyting ones (Sendlewski, 1990).

Another paper by the same author (Sendlewski, 1991) showed that, even if A is not
quite a Nelson algebra but a subreduct thereof (one that lacks, for instance, the impli-
cation connective), it may still be possible to represent A as a twist-algebra over a
subreduct L of a Heyting algebra; in the case studied in Sendlewski (1991), the alge-
bra L was a pseudo-complemented distributive lattice (i.e. the {∧, ∨, ¬}-subreduct of a
Heyting algebra). We shall see that, as one considers weaker and weaker fragments
of Nelson logic (corresponding to poorer algebraic languages), establishing a twist
representation becomes a harder puzzle, until one reaches a point where the very
mechanism of the twist construction seems to break down (regarding this, see the
second research direction mentioned in the concluding Section 10).

A difficulty that is somehow orthogonal to the previous one arises if we con-
sider, instead of subreducts, other classes of algebras in the same language as Nelson
algebras but being more general in that they may not satisfy certain equational
properties: for instance, non-necessarily integral Nelson algebras (i.e. N4-lattices) or
non-necessarily involutive Nelson algebras (i.e. quasi-Nelson algebras: Definition 2.8).
Twist representations covering these two cases have been introduced, respectively, in
Odintsov (2004) and Rivieccio and Spinks (2019); both may in fact be seen as special
cases of the construction recently proposed in Rivieccio (2022b).

In the present paper we tackle both the above-mentioned difficulties, for we shall
be dealing with subreducts of non-necessarily involutive Nelson algebras. We will thus
need to consider, as factors in our twist representations, algebraic structures that are
related to but, more general, as a rule, than the subreducts of Heyting algebras; follow-
ing the approach of Rivieccio and Spinks (2019), we will expand these algebras with
a modal-like operator which is essentially designed to account for the extra freedom
that the non-involutive negation enjoys on quasi-Nelson algebras.

In the next subsections we introduce a few definitions and basic results on the
classes of algebras that are most relevant to the present study, beginning with the sub-
reducts of Heyting algebras. We will start from the more general algebras presented
in a minimal language, and then gradually add further properties and operations.
Regarding the latter, we should already at this point warn the reader that, in order to
simplify the notation, we will often overload certain symbols of algebraic operations –
e.g. we use → to denote both the (Heyting) implication on the factor algebra and the
(quasi-Nelson) implication on the twist-algebra, etc. – whenever we believe context
will minimise the risk of confusion; in this we are following common practice on twist
representations for Nelson algebras and related structures.

We assume familiarity with standard results on universal algebra and (residuated)
lattices; for all unexplained terminology, we refer the reader to Burris and Sankap-
panavar (1981) and Galatos et al. (2007).
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2.1. Subreducts of Heyting algebras

The purely implicational subreducts of Heyting algebras are known in the literature as
Hilbert algebras or (positive) implication algebras.

Definition 2.1: A Hilbert algebra is an algebra 〈H; →, 1〉 of type 〈2, 0〉 that satisfies the
following (quasi-)identities:

(i) x → (y → x) = 1.
(ii) x → (y → z) = (x → y) → (x → z).

(iii) if x → y = y → x = 1, then x = y.

Every Hilbert algebra has a natural order ≤ given, for all a, b ∈ H, by a ≤ b iff
a → b = 1, having 1 as top element (as a matter of fact, the constant 1 need not be
included in the language, for it is term definable by 1 := x → x). If the order ≤ also has
a minimum element (denoted 0), we speak of a bounded Hilbert algebra. In such a case
we include 0 in the algebraic signature, and one can define a negation operation ¬
by ¬x := x → 0. Bounded Hilbert algebras correspond to the {→, ¬, 0, 1}-subreducts
of Heyting algebras. Hilbert algebras that satisfy Peirce’s law ((x → y) → x = x) are
known as Tarski algebras, and are precisely the subreducts of Boolean algebras. A
bounded Tarski algebra is just a Boolean algebra in disguise, for all Boolean operations
become term definable.

The subreducts of Heyting algebras obtained by keeping only the infimum and
the negation form the class of pseudo-complemented semilattices or p-semilattices
(Frink, 1962; Sankappanavar, 1979).

Definition 2.2: A pseudo-complemented semilattice is an algebra 〈S; ∧, ¬, 0, 1〉 of type
〈2, 1, 0, 0〉 such that:

(i) 〈S; ∧, 0, 1〉 is a bounded semilattice (with order ≤).
(ii) x ≤ ¬y (i.e. x ∧ ¬y = x) if and only if x ∧ y = 0.

We shall refer to item (ii) above as to the ‘property of the pseudo-complement’.
Pseudo-complemented semilattices form a variety (Galatos et al., 2007, p. 26) whose
only proper subvariety is the class of Boolean algebras (Sankappanavar, 1979, p. 305);
the latter can thus be relatively axiomatized by adding any identity that is not valid on
all pseudo-complemented semilattices (for instance the involutive law ¬¬x = x).

If we retain both the meet and the intuitionistic implication, we obtain implicative
semilattices (also known as Brouwerian semilattices).

Definition 2.3: An implicative semilattice is an algebra 〈S; ∧, →, 1〉 of type 〈2, 2, 0〉 such
that:

(i) 〈S; ∧, 1〉 is an upper-bounded semilattice (with order ≤ and top element 1).
(ii) x ∧ y ≤ z if and only if x ≤ y → z.
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The property in item (ii) is known as residuation, and we shall say that 〈∧, →〉 form a
residuated pair (cf. Definition 2.7(iii) below). Implicative meet semilattices are precisely
the ∨-free subreducts of Heyting algebras; in turn, the ∧-free reduct of every implica-
tive meet semilattice forms a Hilbert algebra. A bounded implicative semilattice is one
whose semilattice reduct has a least element 0. In such a case, by letting ¬x := x → 0,
one obtains a pseudo-complemented semilattice.

Definition 2.4: A Heyting algebra is an algebra 〈H; ∧, ∨, →, 0, 1〉 of type 〈2, 2, 2, 0, 0〉
such that:

(i) 〈H; ∧, ∨, 0, 1〉 is a bounded lattice.
(ii) 〈H; ∧, →, 1〉 is an implicative semilattice.

The pseudo-complement negation ¬ is defined, on every Heyting algebra, by ¬x :=
x → 0, as in the case bounded implicative semilattices.

2.2. Nuclei

In this and the following sections we shall consider algebras that result from adding
a modal-like operator to the subreducts of Heyting algebras introduced earlier. Such
operators are known as nuclei (or modal operators, or multiplicative closure operators),
and have been extensively studied in the literature on residuated lattices and Heyting
algebras; for our purposes, the results contained in the dissertation by Macnab (1976)
will be particularly useful. We shall consider two different but essentially equivalent
definitions for a nucleus, which depend on which other operations are available on the
algebra.

Definition 2.5: Let A be an algebra having a reduct 〈A; ∧, 0〉 that is a (meet-) semilat-
tice with order ≤ and minimum 0. We shall say that an operation � : A → A is a nucleus
on A if the following identities are satisfied:

(i) x ≤ �x = ��x
(ii) �(x ∧ y) = �x ∧ �y

(iii) �0 = 0.

The third condition is not usually included in the definition of nucleus, and those
nuclei that satisfy it are called dense. In the present paper, however, we do not need this
distinction, for we will only work with dense nuclei. Observe that the above properties
entail that, if the order ≤ has a maximum element 1, then �1 = 1 (so, � is indeed a
modal-like operator in that it preserves all finite meets).

When the underlying algebra does not have a meet operation, we can define a
nucleus as follows.

Definition 2.6 (Rivieccio, 2022a, Def. 4.3): Given an algebra having a bounded
Hilbert algebra reduct 〈H; →, 0, 1〉, we say that an operation � : H → H is a nucleus
on H if:
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(i) x ≤ �x = ��x,
(ii) �(x → y) ≤ �x → �y,

(iii) �0 = 0.

Hilbert algebras with nuclei are considered in the recent paper (Celani & Mon-
tangie, 2020, Def. 6), but already appeared (under the name of ‘positive implication
algebras’) since at least (Macnab, 1976, Ch. 13). An easy consequence of Macnab (1976,
Thm. 13.13) which will be used later on is the following. If a bounded Hilbert algebra H
satisfies Peirce’s law (and is therefore term equivalent to a Boolean algebra), then the
only possible nucleus on H is the identity map. This is because every nucleus satisfies
x ≤ �x ≤ ¬¬x; the same holds for any nucleus (in the sense of Definition 2.5) defined
on a Boolean algebra (Macnab, 1976, Thm. 2.2).

Another useful observation is the following (which is essentially Macnab, 1976,
Thm. 2.3); but see Rivieccio (2022a, Lemma 4.4) or Celani and Montangie (2020, Thm. 3)
for a proof in the setting of Hilbert algebras): the two conditions (i) and (ii) above can
be equivalently replaced by the single one:

(iv) x → �y = �x → �y.

It is easy to verify that both definitions of nucleus introduced above are equivalent
on bounded implicative semilattices and Heyting algebras.

2.3. Quasi-Nelson algebras and their twist representation

We now proceed to introduce formally the class of quasi-Nelson algebras, which we
view as a subvariety of the class of commutative, integral and bounded residuated
lattices.

Definition 2.7: A commutative integral bounded residuated lattice (CIBRL) is an algebra
A = 〈A; ∧, ∨, ∗, ⇒, 0, 1〉 of type 〈2, 2, 2, 2, 0, 0〉 such that:

(i) 〈A; ∗, 1〉 is commutative monoid, (Mon)
(ii) 〈A; ∧, ∨, 0, 1〉 is a bounded lattice (with order ≤), (Lat)

(iii) x ∗ y ≤ y iff x ≤ y ⇒ z. (Res)

On every CIBRL A, the presence of the constant 0 allows us to define a negation
operation (∼) given by ∼ x := x ⇒ 0. A Heyting algebra H can be viewed as a CIBRL
where the operations ∧ and ∗ coincide (hence, the implication ⇒ is the residuum of
the meet ∧).

Definition 2.8 (Rivieccio & Spinks, 2019): A quasi-Nelson algebra (QN-algebra) is a
CIBRL that further satisfies the Nelson identity:

(x ⇒ (x ⇒ y)) ∧ (∼ y ⇒ (∼ y ⇒ ∼ x)) = x ⇒ y. (Nelson)

A Nelson algebra is a quasi-Nelson algebra that satisfies the involutive law ∼ ∼ x = x.
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As mentioned earlier, QN-algebras have been introduced only recently, but are
the subject of a rapidly growing literature (Liang & Nascimento, 2019; Nascimento
& Rivieccio, 2021; Rivieccio, 2020a, 2020b, 2022a; Rivieccio & Jansana, 2021; Rivieccio
et al., 2020; Rivieccio & Spinks, 2020). Nelson algebras, on the other hand, have been
around for over four decades.1 Every Heyting algebra satisfies the identity (Nelson),
and is therefore an example of a QN-algebra on which the operations ∧ and ∗ coincide
(on the other hand, the only Heyting algebras that are also Nelson algebras are the
Boolean algebras). As observed earlier, the class of quasi-Nelson algebras can thus be
viewed as a common generalisation of Heyting and Nelson algebras.

An alternative language in which (quasi-)Nelson algebras have been traditionally
considered is {∧, ∨, →, 0, 1}, in which the residuated implication ⇒ (in this context
known as the strong implication) is replaced by the weak implication →, defining:

x ⇒ y := (x → y) ∧ (∼ y → ∼ x).

We shall see yet another and novel way of defining the operation ⇒ in Proposi-
tion 2.11. On every QN-algebra A, a second negation ¬ can be defined by the term
¬x := x → 0, and it is easy to show that ¬ only coincides with ∼ iff A is a Heyting
algebra. In turn, the weak implication is definable via the strong one by the term
x → y := x ⇒ (x ⇒ y). Relying on this equivalence, and depending on convenience,
we can thus employ either the strong or the weak implication to express the properties
of QN-algebras we are interested in.

As discussed earlier, a most fundamental result on quasi-Nelson algebras (and their
subreducts, as we shall see) is the twist representation, which we now proceed to
introduce.

Definition 2.9: Let H = 〈H; ∧, ∨, →, �, 0, 1〉 be a Heyting algebra with a nucleus.
Define the algebra H�� = 〈H��; ∧, ∨, ∗, ⇒, 0, 1〉 with universe:

H�� := {〈a1, a2〉 ∈ H × H : a2 = �a2, a1 ∧ a2 = 0}

and operations given, for all 〈a1, a2〉, 〈b1, b2〉 ∈ H × H, by:

1 := 〈1, 0〉
0 := 〈0, 1〉

〈a1, a2〉 ∗ 〈b1, b2〉 = 〈a1 ∧ b1, (a1 → b2) ∧ (b1 → a2)〉
〈a1, a2〉 ∧ 〈b1, b2〉 := 〈a1 ∧ b1, �(a2 ∨ b2)〉
〈a1, a2〉 ∨ 〈b1, b2〉 := 〈a1 ∨ b1, a2 ∧ b2〉

〈a1, a2〉 ⇒ 〈b1, b2〉 := 〈(a1 → b1) ∧ (b2 → a2), �a1 ∧ b2〉.

A quasi-Nelson twist-algebra over H is any subalgebra A ≤ H�� satisfying π1[A] = H.

As mentioned earlier, following common practice in the literature on Nelson logics,
we overload certain algebraic symbols such as ∧, ∨, 0 and 1 (and, later on, ≤ and →)
to denote both the operations on the Heyting algebra H and on the twist-algebra H��.
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This greatly improves readability of proofs, and we trust that context will minimise the
risk of confusion.

The {∧, ∨, 0, 1}-reduct of every quasi-Nelson twist-algebra is a bounded distribu-
tive lattice whose order ≤ is given by 〈a1, a2〉 ≤ 〈b1, b2〉 if and only if (a1 ≤ b1 and
b2 ≤ a2). Indeed, every quasi-Nelson twist-algebra is a quasi-Nelson algebra on which
the negation is given by ∼ x := x ⇒ 0 and the weak implication by x → y := x ⇒
(x ⇒ y). These definitions give us:

∼〈a1, a2〉 = 〈a2, �a1〉 and 〈a1, a2〉 → 〈b1, b2〉 = 〈a1 → b1, �a1 ∧ b2〉.

Moreover, every quasi-Nelson algebra is embeddable into a quasi-Nelson twist-
algebra, as explained below.

Given a QN-algebra A = 〈A; ∧, ∨, ∗, ⇒, 0, 1〉 and a, b ∈ A, define:

a ≡ b iff a → b = b → a = 1.

The relation ≡ thus obtained is compatible with the operations 〈∧, ∨, ∗, →〉, though
not necessarily with ⇒ and ∼, giving us a quotient 〈A/≡; ∧, ∨, ∗, →, 0, 1〉. The latter
is a Heyting algebra on which the operations ∗ and ∧ coincide. Moreover, since a ≡ b
entails ∼∼ a ≡ ∼ ∼ b for all a, b ∈ A, one can enrich the quotient 〈A/≡; ∧, ∗, ∨, →, 0, 1〉
with a well-defined operation, given by �[a] := [∼ ∼ a] for each class [a] ∈ A/≡, which
turns out to be a nucleus. Letting A�� := 〈A/≡; ∧, ∨, →, �, 0, 1〉, we can construct the
twist-algebra (A��)�� as prescribed by Definition 2.9, obtaining the following result.

Theorem 2.10 (Representation of quasi-Nelson algebras, I): Every quasi-Nelson
algebra A embeds into the quasi-Nelson twist-algebra (A��)�� constructed according to
Definition 2.9 through the map ι given by ι(a) = 〈[a], [∼ a]〉 for all a ∈ A.

Theorem 2.10 specialises to Nelson algebras (i.e. involutive quasi-Nelson algebras),
thus allowing us to recover the well-known twist representation due to Fidel and
Vakarelov. Indeed, a quasi-Nelson algebra A is a Nelson algebra if and only if A can
be embedded into a twist-algebra (A��)�� such that the nucleus on A�� is the identity
map. As in the case of Nelson algebras, Theorem 2.10 also yields a number of interest-
ing consequences, including a characterisation of congruences on each quasi-Nelson
algebra in terms of those on the corresponding Heyting algebra factor (see Rivieccio
& Jansana, 2021, Sec. 3.2 and Section 8 in the present paper). The twist representation
also helps one simplify computations on algebraic terms in the quasi-Nelson language.
A first application of this is provided by the following proposition, which has a special
significance to the present study.

Proposition 2.11: Every quasi-Nelson algebra satisfies the following identity:

x ⇒ y = (x → y) ∗ ((x → y) → (∼ y → ∼ x)).
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Proof: Relying on Theorem 2.10, we work with a quasi-Nelson twist-algebra
A ≤ H��. Let 〈a1, a2〉, 〈b1, b2〉 ∈ A. Recall that

〈a1, a2〉 ⇒ 〈b1, b2〉 = 〈(a1 → b1) ∧ (b2 → a2), �a1 ∧ b2〉.

We compute the first component of the expression:

(〈a1, a2〉 → 〈b1, b2〉) ∗ ((〈a1, a2〉 → 〈b1, b2〉) → (∼〈b1, b2〉 → ∼〈a1, a2〉)),

which is (a1 → b1) ∧ ((a1 → b1) → (b2 → a2)) = (a1 → b1) ∧ (b2 → a2), as requi
red. The second component is:

((a1 → b1) → (�(a1 → b1) ∧ �a1 ∧ b2))

∧ (((a1 → b1) → (b2 → a2)) → (�a1 ∧ b2)),

which we need to show to be equal to �a1 ∧ b2. Using the nucleus properties
(and the assumptions b2 = �b2 and b1 ∧ b2 = 0), we have �(a1 → b1) ∧ �a1 ∧ b2 =
�((a1 → b1) ∧ a1 ∧ b2) = �(b1 ∧ a1 ∧ b2) = �(a1 ∧ 0) = �0 = 0. Thus, the above
expression reduces to

((a1 → b1) → 0) ∧ (((a1 → b1) → (b2 → a2)) → (�a1 ∧ b2)).

Let us verify the inequality:

�a1 ∧ b2 ≤ ((a1 → b1) → 0) ∧ (((a1 → b1) → (b2 → a2)) → (�a1 ∧ b2)).

Indeed, we have �a1 ∧ b2 ≤ ((a1 → b1) → (b2 → a2)) → (�a1 ∧ b2) simply by the
properties of the Heyting implication. But also �a1 ∧ b2 ≤ (a1 → b1) → 0 because,
by residuation, the latter is equivalent to �a1 ∧ b2 ∧ (a1 → b1) = 0. This holds, for
we have �a1 ∧ b2 ∧ (a1 → b1) ≤ �a1 ∧ �b2 ∧ �(a1 → b1) = �(a1 ∧ (a1 → b1) ∧
b2) = �(a1 ∧ b1 ∧ b2) = �(a1 ∧ 0) = �0 = 0. To check the converse inequality, we
use residuation. We have:

((a1 → b1) → 0) ∧ (((a1 → b1) → (b2 → a2)) → (�a1 ∧ b2)) ≤ �a1 ∧ b2

if and only if

((a1 → b1) → (b2 → a2)) → (�a1 ∧ b2) ≤ ((a1 → b1) → 0) → (�a1 ∧ b2).

The result then follows from this observation: by the properties of the Heyting implica-
tion, from 0 ≤ b2 → a2 we have (a1 → b1) → 0 ≤ (a1 → b1) → (b2 → a2) and, from
the latter,

((a1 → b1) → (b2 → a2)) → (�a1 ∧ b2) ≤ ((a1 → b1) → 0) → (�a1 ∧ b2),

as required. �

Proposition 2.11 is especially significant in the present context because it entails
that the {∗, →, ∼}-fragment of quasi-Nelson logic (which we shall study in Subsec-
tion 4.2) is term equivalent to the {∗, ⇒, ∼}-fragment; we note that this observation
does not seem to have ever been made before in the literature on Nelson logic.
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To conclude the section, we mention a result first established in Rivieccio
and Spinks (2020), which is also relevant to the present study. As shown in Riviec-
cio and Spinks (2020, Sec. 4), Theorem 2.10 can be sharpened so as to establish
not just an embedding but a full isomorphism result, in the spirit of (and general-
ising) Sendlewski’s representation of Nelson algebras and of their implication-free
subreducts (Sendlewski, 1990, 1991).

Recall that the set D(H) of the dense elements of a Heyting algebra H can be
characterised as follows:

D(H) = {a ∈ H : ¬a = 0}
where ¬x := x → 0. D(H) is a lattice filter of the lattice reduct of H, and every lattice
filter ∇ ⊆ H such that D(H) ⊆ ∇ is said to be dense.

Proposition 2.12 (Rivieccio & Spinks, 2020, Prop. 9): Let H be a Heyting algebra with
a nucleus, and let ∇ ⊆ H be a dense filter. Then the set:

Tw(H, ∇) := {〈a1, a2〉 ∈ H�� : a1 ∨ a2 ∈ ∇}
is the universe of a twist-algebra over H, which we denote by Tw(H, ∇).

An equivalent definition for Tw(H, ∇) is the following:

Tw(H, ∇) = {〈a1, a2〉 ∈ H�� : ¬a1 → ¬¬a2 ∈ ∇}
where ¬x := x → 0 (cf. Propositions 6.2 and 6.7).

Given a quasi-Nelson algebra A, we let:

A+ := {a ∈ A : ∼ a ≤ a}.

Notice that A+ can also be characterised as follows:

A+ = {a ∈ A : ∼ a � a} = {a ∨ ∼ a : a ∈ A}.

Proposition 2.13 (Rivieccio & Spinks, 2020, Prop. 10): Let A ≤ H�� be a quasi-Nelson
twist-algebra.

(i) A+ = {〈a, 0〉 : 〈a, 0〉 ∈ A} is a lattice filter of A.
(ii) ∇A := π1[A+] is a dense filter of H.
(iii) A = Tw(H, ∇).

The preceding proposition allows us to state the announced refinement of the rep-
resentation theorem for quasi-Nelson algebras. Notice that, if A is any quasi-Nelson
algebra (not necessarily identified with a twist-algebra), one can obtain a dense filter
∇A by letting ∇A := {[a] ∈ A/≡ : [a] = [b] for some b ∈ A+}.

Theorem 2.14 (Representation of quasi-Nelson algebras, II): Every quasi-Nelson
algebra A is isomorphic to the quasi-Nelson twist-algebra Tw(A��, ∇A), constructed
according to Proposition 2.12, through the map ι given by ι(a) = 〈[a], [∼ a]〉 for all a ∈ A.
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We will see in the next sections that Theorem 2.10 can be extended to all the sub-
reducts of quasi-Nelson algebras under consideration. On the other hand, the proof of
Theorem 2.14 relies on the presence of certain algebraic operations in the language
(notably the pair 〈∗, →〉) and it is therefore unclear for the time being whether or how
it might be established if these operations are lacking.

3. The {∗, ∼}-fragment: quasi-Nelson monoids

In this section we begin our study by looking at the {∗, ∼}-fragment of the quasi-
Nelson language. As mentioned earlier, working initially with such a reduced language
appears to be a convenient approach both from a technical and a pedagogical point
of view. The idea is to first obtain information and insight on weaker algebras and then
proceed by specialisation as we add language, properties and structure.

Observe that the constants 0 and 1 are already term definable in this fragment
by 0 := x ∗ ∼ x and 1 := ∼ 0 (cf. Lemma 3.6). Furthermore, in the involutive case, the
strong implication ⇒ and the weak → are also definable by x ⇒ y := ∼(x ∗ ∼ y) and
x → y := x ⇒ (x ⇒ y). Thus the {∗, ∼}-fragment of Nelson logic is equivalent to the
{∗, →, ⇒, ∼}-fragment, which we will look at (in full generality) in Subsection 4.2.

In the next subsection we introduce the quasi-variety QNM of quasi-Nelson monoids
(Definition 3.2). We shall eventually prove that QNM is precisely the class of {∗, ∼}-
subreducts of quasi-Nelson algebras (Corollary 7.8); this result shall be established
in two steps, the first being a new kind of twist representation whose factors are
bounded semilattices having an implication-type operation and a term definable
nucleus (Subsection 3.2).

3.1. Quasi-Nelson monoids

Following standard notation on monoids and residuated lattices, given a natural
number n, we define the term:

xn := x ∗ . . . ∗ x︸ ︷︷ ︸
n times

.

We set x0 := 1 and x1 := x.
We say that the operation ∗ is n-potent when the identity xn = xn+1 is satisfied.

Definition 3.1: A 3-potent commutative monoid is an algebra M = 〈M; ∗, 1〉 of type
〈2, 0〉 such that:

(i) 〈M; ∗, 1〉 is a commutative monoid, (Mon)
(ii) M � x2 = x3. (3-Pot)

In what follows, we shall write x � y as a shorthand for the identity x2 = x2 ∗ y2, and
x ≡ y as a shorthand for (x � y and y � x). We also write x ≤ y instead of (x � y and
∼ y �∼ x), and we use the abbreviation x ⇀ y := ∼(x ∗ x ∗ ∼ y).

Definition 3.2: A quasi-Nelson monoid (QNM) is an algebra M = 〈M; ∗, ∼, 0, 1〉 of type
〈2, 1, 0, 0〉 such that:
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(i) 〈M; ∗, 1〉 is a 3-potent commutative monoid (Definition 3.1), (3-CM)
(ii) the relation induced by ≤ is a partial order on A. (PO)

(iii) M satisfies the following (quasi-)identities:
(1) x ∗ y ≤ x.
(2) if x ≤ y, then x ∗ z ≤ y ∗ z.
(3) x ⇀ y ≡ x2 ⇀ y2.
(4) (x ∗ y) ⇀ z = x ⇀ (y ⇀ z).
(5) x ⇀ (y ∗ z) ≡ (x ⇀ y) ∗ (x ⇀ z).
(6) x ≤ ∼ y if and only if x ∗ y = 0.
(7) ∼ x = ∼∼ ∼ x.
(8) ∼ 1 = 0 and ∼ 1 = 0.
(9) ∼∼(x ∗ y) = ∼∼ x ∗ ∼∼ y.

(10) ∼(x ∗ y) ≡ (x ⇀ ∼ y) ∗ (y ⇀ ∼ x).

The class of all quasi-Nelson monoids will be denoted QNM.

Problem 3.3: It is clear from the definition that QNM is a quasi-variety, but is it in fact
a variety?

Using the twist representation, it is straightforward (if tedious) to check that the
{∗, ∼, 0, 1}-reduct of every quasi-Nelson algebra A = 〈A; ∧, ∨, ∗, ⇒, 0, 1〉 is a quasi-
Nelson monoid. Another example of quasi-Nelson monoid is provided by pseudo-
complemented semilattices: this is in keeping with the observation that Heyting
algebras are special quasi-Nelson algebras, so the same holds for their subreducts.

Proposition 3.4: Every pseudo-complemented semilattice 〈S, ∧, ¬, 0, 1〉 is a quasi-Nelson
monoid (where ∧ = ∗ and ¬ = ∼).

Notice that Proposition 3.4 may be invoked to show that certain algebraic opera-
tions of quasi-Nelson algebras (such as ∨ and ⇒) are not term definable on quasi-
Nelson monoids. For, if they were, then the same terms would define the correspond-
ing operations (join and implication) on Heyting algebras using just the meet and
the pseudo-complement, which is well known not to be the case. In other words, as
expected, there are quasi-Nelson monoids that are not quasi-Nelson algebras; similar
considerations apply to the richer subreducts considered in the next sections. We shall
obtain more examples of quasi-Nelson monoids thanks to the twist representation,
towards which we now proceed.

Proposition 3.5: Let M ∈ QNM, and let a, b, c, d ∈ M be such that a ≡ b and c ≡ d.
Then:

(i) a ∗ c ≡ b ∗ d.
(ii) a ⇀ c ≡ b ⇀ d.

Proof: (i). Straightforward. Indeed, assuming a2 = b2 and c2 = d2, we have a2 ∗ c2 =
b2 ∗ d2. By commutativity of ∗, we have a2 ∗ c2 = (a ∗ c)2 and likewise b2 ∗ d2 = (b ∗
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d)2, from which the desired result immediately follows. (ii). From a2 = b2 and c2 = d2

we have a2 ⇀ c2 = b2 ⇀ d2. Then the required result follows from Definition 3.2 (iii).3
(and the transitivity of ≡). �

Proposition 3.5 suggests that we can factor each quasi-Nelson monoid M =
〈M; ∗, ∼, 0, 1〉 by the relation ≡, obtaining a partial quotient algebra 〈M/≡; ∗, 0, 1〉
which is easily verified to be a bounded semilattice. The latter can be further endowed
with a binary operation ⇀ and a unary operation � given by �x := 1 ⇀ x, the former
acting as an implication and the latter as a nucleus. These properties, which we shall
study abstractly in the next subsection, are consequences of the following lemma; for a
proof we refer the reader to the Appendix, where we have also collected the lengthier
proofs of several subsequent results.

Lemma 3.6: Every M ∈ QNM satisfies the following (quasi-)identities:

(i) 0 ≤ x ≤ 1.
(ii) x ∗ ∼ x = 0.
(iii) x ≤ ∼∼ x.
(iv) If x � y, then ∼∼ x � ∼ ∼ y and x � x ∗ y.
(v) If x ≤ y, then ∼ y ≤ ∼ x.
(vi) x ≤ y ⇀ x.
(vii) x � ∼ y if and only if x ⇀ ∼ y = 1.
(viii) x ∗ y � ∼ z if and only if y � x ⇀ ∼ z.
(ix) x ⇀ y = ∼∼ x ⇀ ∼∼ y = x ⇀ ∼∼ y.
(x) ∼(x ∗ y) = ∼(x ∗ ∼ ∼ y).

3.2. Twist-algebras over ⇀-semilattices

We are now going to introduce the class of algebras (⇀-semilattices) that shall be
needed as factors in the twist representation of quasi-Nelson monoids; these are
bounded semilattices having an implication-type operation and a term definable
nucleus (Definition 3.7); we then define the twist-algebras arising as binary powers of
⇀-semilattices, which we call QNM twist-algebras (Definition 3.14). We will then show
that each quasi-Nelson monoid may be identified, up to isomorphism, with a QNM
twist-algebra (Theorem 3.18).

Definition 3.7: A ⇀-semilattice is an algebra S = 〈S; ∧, ⇀, 0, 1〉 satisfying the follow-
ing properties (we abbreviate �x := 1 ⇀ x):

(i) 〈S; ∧, 0, 1〉 is a bounded semilattice (with order ≤).
(ii) x ⇀ (y ⇀ z) = (x ∧ y) ⇀ z.

(iii) x ⇀ (y ∧ z) = (x ⇀ y) ∧ (x ⇀ z).
(iv) �0 = 0.
(v) x ≤ �x.

(vi) x ∧ �y = x ∧ (x ⇀ y).
(vii) x ≤ y ⇀ z if and only if x ∧ y ≤ �z.
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(viii) x ⇀ y = �x ⇀ �y.

Items (ii)–(v) of the preceding Definition entail that, upon defining �x := 1 ⇀ x,
the operation � indeed realises a nucleus (in the sense of Definition 2.5) on every
⇀-semilattice S. Therefore, whenever convenient, we shall consider ⇀-semilattices as
algebras in the language that includes the nucleus � thus defined. The operation ⇀

can be thought of as a generalised (intuitionistic) implication in the following sense.
For every algebra having a bounded implicative semilattice reduct 〈S; ∧, →, 0, 1〉 as
per Definition 2.3 and a nucleus �, we can obtain a ⇀-semilattice by letting x ⇀ y :=
x → �y (cf. Definition 4.11 and Example 4.12). As a nucleus, we can for example take
the double negation (which gives us x ⇀ y = x → ¬¬y) or the identity function on S
(yielding ⇀ = →). The latter case is clarified in the following proposition.

Proposition 3.8: Let S = 〈S; ∧, ⇀, 0, 1〉 be a ⇀-semilattice. The following are equiva-
lent:

(i) S � �x ≤ x.
(ii) 〈S; ⇀, 1〉 is a Hilbert algebra.
(iii) 〈S; ∧, ⇀, 1〉 is an implicative semilattice.

Proof: Since every Hilbert algebra satisfies �a = 1 ⇀ a = a, it suffices to show that (i)
entails (iii). Assuming (i), we have that � is the identity map. Then Definition 3.7(iii).7
tells us that ∧ and ⇀ form a residuated pair, so 〈S, ∧, ⇀, 1〉 is an implicative
semilattice. �

As another natural example, consider any pseudo-complemented semilattice
〈S; ∧, ¬, 0, 1〉 as introduced in Definition 2.2. Upon defining x ⇀ y := ¬(x ∧ ¬y), we
have that the algebra 〈S; ∧, ⇀, 0, 1〉 is a ⇀-semilattice. To verify this, we shall use the
following (quasi-)identities, which are valid on all pseudo-complemented semilattices
(Sankappanavar, 1979, p. 305):

(1) x ∧ 0 = 0.
(2) x ∧ ¬(x ∧ y) = x ∧ ¬y.
(3) x ∧ ¬0 = x.
(4) ¬¬0 = 0.
(5) x ≤ ¬¬x.
(6) If x ≤ y, then ¬y ≤ ¬x.
(7) If x ≤ y, then ¬¬x ≤ ¬¬y.
(8) ¬¬¬x = ¬x.
(9) ¬x ∧ ¬y = ¬¬(¬x ∧ ¬y).

(10) ¬(¬x ∧ ¬y) = ¬(¬¬x ∧ ¬¬y).
(11) ¬¬(x ∧ y) = ¬¬x ∧ ¬¬y.

Proposition 3.9: Given a pseudo-complemented semilattice P = 〈P; ∧, ¬, 0, 1〉, define
x ⇀ y := ¬(x ∧ ¬y). Then 〈P; ∧, ⇀, 0, 1〉 is a ⇀-semilattice.
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We are going to see that, conversely, on every ⇀-semilattice one can define a
pseudo-complement operation (Corollary 3.11). To show this, it is useful to estab-
lish a few properties of ⇀-semilattices that will simplify our computations. Given a
⇀-semilattice S = 〈S; ∧, ⇀, 0, 1〉, we abbreviate ¬x := x ⇀ 0.

Proposition 3.10: Every ⇀-semilattice satisfies the following (quasi-)identities.

(i) x ⇀ x = 1.
(ii) If x ≤ y, then z ⇀ x ≤ z ⇀ y.
(iii) If x ≤ y, then y → z ≤ x → z.
(iv) x ⇀ y = 1 if and only if x ≤ �y.
(v) If x ∧ y ≤ z, then x ≤ y ⇀ z.
(vi) x ∧ y = 0 if and only if x ≤ ¬y.
(vii) x ⇀ �y = �x ⇀ y = x ⇀ y = �(x ⇀ y).
(viii) ¬x = ¬�x = �¬x.
(ix) ¬(x ∧ y) = x ⇀ ¬y.
(x) ¬¬(x ⇀ y) = x ⇀ ¬¬y.
(xi) x ⇀ ¬y = y ⇀ ¬x.

The following result is a rephrasing of Proposition 3.10(vi).

Corollary 3.11: Let S = 〈S; ∧, ⇀, 0, 1〉 be a ⇀-semilattice. Then the algebra 〈S; ∧, ¬, 0, 1〉
is a pseudo-complemented semilattice.

Given Proposition 3.9 and Corollary 3.11, one might at this point wonder whether
⇀-semilattices as introduced in Definition 3.7 are just pseudo-complemented semi-
lattices under an unusual presentation. This is not the case. Indeed, although we have
seen that to every pseudo-complemented semilattice 〈P; ∧, ¬, 0, 1〉 one can associate a
⇀-semilattice 〈P; ∧, ⇀, 0, 1〉 by letting x ⇀ y := ¬(x ∧ ¬y), the latter algebra will sat-
isfy �x = 1 ⇀ x = ¬¬x. That is, the definition x ⇀ y := ¬(x ∧ ¬y) corresponds to a
particular choice (the maximal one in order-theoretic terms) for the nucleus operator
on P; all the other possible choices allowed by Definition 3.7 (see e.g. Example 4.12) are
not accounted for. This observation is made precise in the following propostion.

Proposition 3.12: Let S = 〈S; ∧, ⇀, 0, 1〉 be a ⇀-semilattice, with the pseudo-comple
ment operation ¬ given by ¬x := x ⇀ 0. The following are equivalent:

(i) S � �x = ¬¬x.
(ii) S � x ⇀ y = ¬(x ∧ ¬y).

Proof: Let us preliminarily observe that the inequality a ⇀ b ≤ ¬(a ∧ ¬b) holds for
all a, b ∈ S. Indeed, by the property of the pseudo-complement, the latter is equivalent
to a ∧ ¬b ∧ (a ⇀ b) ≤ 0, which does hold true, for we have:

a ∧ ¬b ∧ (a ⇀ b) = a ∧ �b ∧ ¬b Definition 3.7(vi)

≤ a ∧ �b ∧ �¬b x ≤ �x
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= a ∧ �(b ∧ ¬b) �(x ∧ y) = �x ∧ �y

= a ∧ �0 x ∧ ¬x = 0

= a ∧ 0 �0 = 0

= 0.

Hence, to see that (i) implies (ii), it suffices to verify the other inequality, ¬(a ∧
¬b) ≤ a ⇀ b. By Definition 3.7(vii), the latter is equivalent to a ∧ ¬(a ∧ ¬b) ≤ �b.
Thus, assuming (i), we need to show that a ∧ ¬(a ∧ ¬b) ≤ ¬¬b. By the property
of the pseudo-complement, the latter is equivalent to ¬b ∧ a ∧ ¬(a ∧ ¬b) ≤ 0. As
observed earlier (Sankappanavar, 1979, p. 305), the pseudo-complement also satisfies
¬b ∧ ¬(a ∧ ¬b) = ¬b ∧ ¬a, hence we have ¬b ∧ a ∧ ¬(a ∧ ¬b) = a ∧ ¬b ∧ ¬a =
0 ∧ ¬b = 0, as required.

Finally, to see that (ii) implies (i), it suffices to instantiate (ii): we have �a = 1 ⇀ a =
¬(1 ∧ ¬a) = ¬¬a. �

Corollary 3.13: Let S = 〈S; ∧, ⇀, 0, 1〉 be a ⇀-semilattice. The following are equiva-
lent:

(i) S � ¬¬x ≤ x.
(ii) 〈S; ∧, ⇀, 0, 1〉 is a Boolean algebra.

Proof: The only non-trivial direction is from (i) to (ii). Observe that �a ≤ ¬¬a holds
on every ⇀-semilattice S and for all a ∈ S. Indeed, by Proposition 3.10(vi), �a ≤ ¬¬a
is equivalent to �a ∧ ¬a = 0. The latter holds because, using Corollary 3.11, we have
�a ∧ ¬a ≤ �a ∧ �¬a = �(a ∧ ¬a) = �0 = 0. Thus, assuming (i), we have �a ≤
¬¬a ≤ a for all a ∈ S. Then we can use Proposition 3.8 to conclude that 〈S; ∧, ⇀, 1〉
is an implicative semilattice. Then, by the assumption that the pseudo-complement ¬
is involutive, we have that 〈S; ∧, ⇀, ¬, 0, 1〉 is a Boolean algebra. �

In the next definition we introduce the twist-algebra construction that will allow
us to give a more concrete representation for quasi-Nelson monoids. In this setting,
the involutive quasi-Nelson monoids (i.e. {∗, ∼}-subreducts of Nelson algebras) will
be obtained by restricting our attention to the twist-algebras whose underlying ⇀-
semilattice S is in fact an implicative semilattice on which the nucleus is the identity
map (cf. Proposition 3.8).

Definition 3.14: Let S = 〈S; ∧, ⇀, 0, 1〉 be a ⇀-semilattice. Define the algebra S�� =
〈S��; ∗, ∼, 0, 1〉 with universe:

S�� := {〈a1, a2〉 ∈ S × S : a2 = �a2, a1 ∧ a2 = 0}

and operations given, for all 〈a1, a2〉, 〈b1, b2〉 ∈ S × S, by:

1 := 〈1, 0〉
0 := 〈0, 1〉
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∼〈a1, a2〉 := 〈a2, �a1〉
〈a1, a2〉 ∗ 〈b1, b2〉 := 〈a1 ∧ b1, (a1 ⇀ b2) ∧ (b1 ⇀ a2)〉.

A QNM twist-algebra over S is any subalgebra M ≤ S�� satisfying π1[M] = S.

Let us check that the above-defined set S�� is indeed closed under the algebraic
operations. The case of the constants is immediate. Assume 〈a1, a2〉, 〈b1, b2〉 ∈ S��.
Then a2 ∧ �a1 = �a2 ∧ �a1 = �(a2 ∧ a1) = �0 = 0 and ��a1 = �a1. Hence, S��
is closed under the negation. Regarding ∗, using Definition 3.7(vi) and the nucleus
properties, we have a1 ∧ b1 ∧ (a1 ⇀ b2) ∧ (b1 ⇀ a2) = a1 ∧ �b2 ∧ b1 ∧ �a2 = a1 ∧
b2 ∧ b1 ∧ a2 = 0 ∧ 0 = 0. Also, by Proposition 3.10(vii), we have �((a1 ⇀ b2) ∧ (b1 ⇀

a2)) = �(a1 ⇀ b2) ∧ �(b1 ⇀ a2) = (a1 ⇀ b2) ∧ (b1 ⇀ a2).
On every QNM twist-algebra M ≤ S��, we define the following relations:

(i) the pre-order � by 〈a1, a2〉�〈b1, b2〉 iff a1 = a1 ∧ b1;
(ii) the equivalence relation ≡ by 〈a1, a2〉 ≡ 〈b1, b2〉 iff (〈a1, a2〉�〈b1, b2〉 and

〈b1, b2〉�〈a1, a2〉);
(iii) the partial order ≤ by 〈a1, a2〉 ≤ 〈b1, b2〉 iff (〈a1, a2〉�〈b1, b2〉 and ∼〈b1, b2〉�

∼〈a1, a2〉).

We overload the symbol ≤ to denote both the above-defined partial order and the
partial order of the semilattice S. Observe that 〈0, 1〉 and 〈1, 0〉 are (respectively) the
least and greatest element of ≤. The symbol ⇀ will also be overloaded to define, on
each QNM twist-algebra M ≤ S��, the operation given by the following term:

x ⇀ y := ∼(x ∗ x ∗ ∼ y).

Notice that in the involutive case, i.e. on every (subreduct of a) Nelson algebra, the term
∼(x ∗ x ∗ ∼ y) gives us the weak Nelson implication (→).

For M ≤ S�� and 〈a1, a2〉, 〈b1, b2〉 ∈ M, it is useful to compute the following:

〈a1, a2〉 ∗ 〈a1, a2〉 = 〈a1, a1 ⇀ 0〉 = 〈a1, ¬a1〉
〈a1, a2〉 ⇀ 〈b1, b2〉 = 〈a1 ⇀ b1, �a1 ∧ b2〉.

The former equality suggests that by letting ¬x := ∼(x ∗ x) we have an alternative
way of introducing the ‘intuitionistic’ negation of quasi-Nelson algebras (defined e.g.
in Rivieccio, 2020a by ¬x := x → 0).

Let us justify the preceding equalities. The definition gives us 〈a1, a2〉 ∗ 〈a1, a2〉 =
〈a1, a1 ⇀ a2〉. Observe that ¬a1 = a1 ⇀ 0 ≤ a1 ⇀ a2 holds by Proposition 3.10(ii). On
the other hand, by Definition 3.7(vii), we have a1 ⇀ a2 ≤ a1 ⇀ 0 if and only if (a1 ⇀

a2) ∧ a1 ≤ �0 = 0. By Definition 3.7(vi) and the requirements a1 ∧ a2 = 0 and �a2 =
a2, we have (a1 ⇀ a2) ∧ a1 = a1 ∧ �a2 = a1 ∧ a2 = 0, as desired.

Regarding the second equality, the definition gives us 〈a1, a2〉 ⇀ 〈b1, b2〉 =
∼(〈a1, ¬a1〉 ∗ ∼〈b1, b2〉) = 〈(a1 ⇀ �b1) ∧ (b2 ⇀ ¬a1), �(a1 ∧ b2)〉. Using Proposi-
tion 3.10(vii), the nucleus properties and the assumption �b2 = b2, we can obtain
〈(a1 ⇀ �b1) ∧ (b2 ⇀ ¬a1), �(a1 ∧ b2)〉 = 〈(a1 ⇀ b1) ∧ (b2 ⇀ ¬a1), �a1 ∧ b2〉. It
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remains to show that a1 ⇀ b1 ≤ b2 ⇀ ¬a1. Observe that, by Definition 3.7(ii), we
have b2 ⇀ ¬a1 = b2 ⇀ (a1 ⇀ 0) = a1 ⇀ (b2 ⇀ 0). Thus, if we show b1 ≤ b2 ⇀ 0, the
result will follow by Proposition 3.10(ii). By Definition 3.7(vii), the inequality b1 ≤ b2 ⇀

0 is equivalent to b1 ∧ b2 ≤ �0 = 0, which is certainly true.

Proposition 3.15: Let M ≤ S�� be a QNM twist-algebra. Then:

(i) 〈M; ∗, 1〉 is a commutative monoid, and ∗ is 3-potent.
(ii) For all a, b, c, d ∈ M,

(1) a � b iff a2 = a2 ∗ b2.
(2) a ∗ b ≤ a.
(3) If a ≤ b, then a ∗ c ≤ b ∗ c (∗ is compatible with ≤).
(4) a ⇀ b ≡ a2 ⇀ b2.
(5) (a ∗ b) ⇀ c = a ⇀ (b ⇀ c).
(6) a ⇀ (b ∗ c) ≡ (a ⇀ b) ∗ (a ⇀ c).
(7) a ≤ ∼ b iff a ∗ b = 0.
(8) ∼ a = ∼∼ ∼ a.
(9) ∼ 1 = 0 and ∼ 1 = 0.

(10) ∼ ∼(a ∗ b) = ∼ ∼ a ∗ ∼ ∼ b.
(11) ∼(a ∗ b) ≡ (a ⇀ ∼ b) ∗ (b ⇀ ∼ a).

Proposition 3.15 immediately entails the following observation.

Corollary 3.16: Every QNM twist-algebra (Definition 3.14) is a quasi-Nelson monoid
(Definition 3.2).

Let M be a quasi-Nelson monoid. By Proposition 3.5, the relation ≡ determines
a quotient A/≡ which can be endowed with two binary operations ∗ and ⇀. Let us
write M�� := 〈M/≡, ∗, ⇀, 0, 1〉. The equivalence class of each a ∈ M in M�� will be often
denoted by [a].

Proposition 3.17: For every M = 〈M; ∗, ∼, 0, 1〉 ∈ QNM, the algebra M�� is a ⇀-
semilattice with underlying order ≤. Moreover, [a] ≤ [b] iff a � b, for all a, b ∈ M.

Theorem 3.18 (Representation of QNM): Every M ∈ QNM is embeddable into (M��)��
(constructed according to Definition 3.14) through the map ι : M → M�� × M�� given by
ι(a) := 〈[a], [∼ a]〉 for all a ∈ M. In other words, every M ∈ QNM is isomorphic to a QNM
twist-algebra over M��.

Proof: First of all, observe that ι is injective. Indeed, given a, b ∈ M such that ι(a) =
ι(b), we have a = b by Definition 3.2(ii). Further observe that the direct image ι(M)

satisfies the properties required by Definition 3.14. We obviously have π1(ι(M)) =
M��. Also, for all 〈[a], [∼ a]〉 ∈ ι(M), recalling Lemma 3.6(ii), we have [a] ∧ [∼ a] = [a ∗
∼ a] = [0] and, by Definition 3.2(iii).7, we have �[∼ a] = [1] ⇀ [∼ a] = [1 ⇀ ∼ a] =
[∼ ∼ ∼ a] = [∼ a].
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It remains to check that ι respects the operations. The case of the bounds is straight-
forward. Negation is also easy: one has ι(∼ a) = 〈[∼ a], [∼ ∼ a]〉 = 〈[∼ a], [1 ⇀ a]〉 =
∼〈[a], [∼ a]〉 = ∼ ι(a). Lastly, regarding the monoid operation, we have:

ι(a ∗ b) = 〈[a ∗ b], [∼(a ∗ b)]〉
= 〈[a] ∧ [b], [∼(a ∗ b)]〉
= 〈[a] ∧ [b], [(a ⇀ ∼ b) ∗ (b ⇀ ∼ a)]〉 by Definition 3.2(x)

= 〈[a] ∧ [b], [a ⇀ ∼ b] ∧ [b ⇀ ∼ a]〉
= 〈[a] ∧ [b], ([a] ⇀ [∼ b]) ∧ ([b] ⇀ [∼ a])〉
= 〈[a], [∼ a]〉 ∗ 〈[b], [∼ b]〉
= ι(a) ∗ ι(b). �

Thanks to Theorem 3.18, we shall from now on assume, whenever convenient, that
an arbitrary algebra M ∈ QNM is a subalgebra of a twist-algebra S�� (we shall briefly
write M ≤ S��), and we can take S = M��.

4. Adding implication(s): quasi-Nelson pocrims

Having gained some insight into the behaviour of the quasi-Nelson monoid operation
(∗), we are now going to look at how it interacts with the quasi-Nelson implications,
the strong and the weak one. The latter was extensively studied in the papers (Riv-
ieccio, 2022a; Rivieccio & Jansana, 2021), from which we shall import the relevant
results.

4.1. QNI-algebras

The variety of quasi-Nelson implication algebras introduced in the above-mentioned
papers (Definition 4.1 below) is precisely the class of {→, ∼}-subreducts of quasi-
Nelson algebras.

Let A = 〈A; →, ∼, 0, 1〉 be an algebra of type 〈2, 1, 0, 0〉. Following Rivieccio (2022a),
we write x � y instead of x → y = 1, and x ≡ y instead of x → y = y → x = 1. This
notation is not really at odds with the one used in the previous sections: see
Corollary 4.18. We shall also employ the following abbreviations:

x � y := ∼(x → ∼ y)

q(x, y, z) := (x → y) → ((y → x) → ((∼ x → ∼ y) → ((∼ y → ∼ x) → z))).

The usefulness of these terms was first demonstrated, in the context of (involutive)
twist-algebras, already in Rivieccio (2014).

Definition 4.1 (Rivieccio, 2022a, Def. 3.1, Prop. 3.14): An algebra A = 〈A; →, ∼, 0, 1〉
of type 〈2, 1, 0, 0〉 is a quasi-Nelson implication algebra (QNI-algebra) if the following
identities are satisfied:

(i) 1 → x = x
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(ii) x → (y → x) = x → x = 0 → x = 1
(iii) x → (y → z) = y → (x → z) = (x → y) → (x → z)
(vi) q(x, y, x) = q(x, y, y)

(v) x � (y � z) ≡ (x � y) � z
(vi) x � y ≡ y � x

(vii) ∼ x = ∼∼ ∼ x
(viii) ∼ 1 = 0 and ∼ 0 = 1

(ix) (x → y) → (∼∼ x → ∼∼ y) = 1
(x) x � (x → y) ≡ x � y

(xi) ∼(x → y) ≡ ∼ ∼ x � ∼ y.
(xii) (x � y) → z = ∼ ∼ x → (∼ ∼ y → z)

(xiii) ∼ x → ∼ y ≡ ∼ x → (∼ x � ∼ y)

(xiv) (∼ ∼ x → ∼∼ y) � (∼∼ x → ∼ ∼ z) ≡ ∼ ∼ x → (y � z).

The preceding presentation is a slight modification of the one from Rivieccio (2022a,
Def. 3.1); we have deleted some redundant conditions and replaced the quasi-
equational by equational ones (Rivieccio, 2022a, Prop. 3.14). QNI-algebras form a
variety, which we denote by QNI. Every A ∈ QNI is partially ordered by the relation
≤ defined by a ≤ b iff a → b = ∼ b → ∼ a = 1 for all a, b ∈ A; the least and greatest
element are, respectively, 0 and 1 (Rivieccio & Jansana, 2021, Lemma 22).

In subsequent proofs we shall use the properties of QNI-algebras listed in the fol-
lowing lemma (see Rivieccio, 2022a; Rivieccio & Jansana, 2021 for proofs and further
details).

Lemma 4.2: Every algebra having a QNI-algebra reduct satisfies the following (quasi-
)identities:

(i) x → x = 0 → x = x → 1 = x → (∼ x → y) = 1.
(ii) x → y = x → (x → y).
(iii) x ≡ 1 if and only if x = 1.

Since Heyting algebras are quasi-Nelson algebras, and the {→, ∼}-subreducts of
Heyting algebras are bounded Hilbert algebras, it is to be expected that bounded
Hilbert algebras constitute examples of QNI-algebras.

Example 4.3 (Rivieccio, 2022a, Prop. 3.11): Let 〈A; →, 0, 1〉 be a bounded Hilbert
algebra (Definition 2.1), on which the operation ¬ is given by ¬x := x → 0. Taking
∼ = ¬, we have that 〈A; →, ∼, 0, 1〉 is a QNI-algebra.

The analogue of Theorem 3.18 for QNI states that every QNI-algebra A is embed-
dable into a twist-algebra S�� where S is a bounded nuclear Hilbert semigroup, a class of
algebras which we now proceed to define.

Definition 4.4 (Rivieccio, 2022a, Def. 4.5): A bounded nuclear Hilbert semigroup (nH-
semigroup for short) is an algebra S = 〈S; �, →, 0, 1〉 such that:

(i) 〈S; →, 0, 1〉 is a bounded Hilbert algebra.
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(ii) 〈S; �〉 is a commutative semigroup.
(iii) The operation � given by �x := x � x is a nucleus on 〈S; →, 0, 1〉 in the sense

of Definition 2.6.
(iv) x � y = x � (x → y).
(v) �x → (�y → z) = (x � y) → z.

(vi) x � 0 = 0.
(vii) x � 1 = �x.

The following example may provide some first intuition on nH-semigroups.

Example 4.5 (cf. Rivieccio, 2022a, Prop. 4.8): Let A be any algebra having a bounded
Hilbert algebra reduct 〈A; →, 0, 1〉. Define ¬x := x → 0 and x � y := ¬(x → ¬y). Then
the algebra 〈A; �, → 0, 1〉 is an nH-semigroup where �x = ¬¬x.

The twist-algebra construction for QNI-algebras is as follows.

Definition 4.6 (Rivieccio, 2022a, Def. 4.12): Let S = 〈S; �, →, 0, 1〉 be an nH-
semigroup. Define the algebra S�� = 〈S��; →, ∼, 0, 1〉 with universe:

S�� := {〈a1, a2〉 ∈ S × S : a2 = �a2, a1 � a2 = 0}
and operations given, for all 〈a1, a2〉, 〈b1, b2〉 ∈ S × S, by:

1 := 〈1, 0〉,

0 := 〈0, 1〉,

∼〈a1, a2〉 := 〈a2, �a1〉,

〈a1, a2〉 → 〈b1, b2〉 := 〈a1 → b1, a1 � b2〉.

A QNI twist-algebra over S is any subalgebra A ≤ S�� satisfying π1[A] = S.

As before, we write x � y instead of x → y = 1, and x ≡ y instead of x → y = y →
x = 1. We also let x � y := ∼(x → ∼ y). We observe that, for 〈a1, a2〉, 〈b1, b2〉 ∈ S��, we
have:

〈a1, a2〉 � 〈b1, b2〉 = 〈a1 � b1, a1 → b2〉.

The following results are Rivieccio (2022a, Prop. 4.15) and Rivieccio (2022a, Thm. 4.16).

Proposition 4.7: For every A = 〈A; →, ∼, 0, 1〉 ∈ QNI, the relation ≡ is compatible with
the operations → and �, and the quotient A�� := 〈A/≡; →, �, 0, 1〉 is an nH-semigroup.

Theorem 4.8 (Representation of QNI): Every algebra A ∈ QNI is isomorphic to a QNI
twist-algebra over the nH-semigroup A�� through the map ι : A → A/≡ × A/≡ given by
ι(a) := 〈[a], [∼ a]〉 for all a ∈ A.

We are now ready to investigate the interplay between the monoid operation ∗ and
the weak implication → in the framework of (subreducts of ) quasi-Nelson algebras; as
before, we first introduce the abstract equational definition for the class of algebras of
interest and then the twist-algebra construction.
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4.2. Quasi-Nelson pocrims

In this subsection we aim at characterising the {∗, →, ∼, 0, 1}-subreducts of quasi-
Nelson algebras; we shall call them quasi-Nelson pocrims (QNPs), for indeed, as we are
going to see, each QNP is a partially ordered commutative residuated integral monoid.
In the light of the previous sections, the class of QNPs will obviously consist of quasi-
Nelson monoids structurally enriched with a (weak) implication (Corollary 4.17). By
Proposition 2.11 we also know that it will correspond to the class of {∗, →, ⇒, ∼, 0, 1}-
subreducts of QN-algebras, and indeed also to the class of {∗, ⇒, 0}-subreducts (cf.
Proposition 4.19 below).

Recall from Blok and Raftery (1997) that a (commutative integral) pomonoid is a
structure 〈P; ≤; ∗, 1〉 such that:

(i) 〈P; ≤〉 is a partially ordered set having 1 as top element.
(ii) 〈P; ∗, 1〉 is a commutative monoid.

(iii) The order ≤ is compatible with the monoid operation (i.e. x ≤ z and y ≤ w
entail x ∗ y ≤ z ∗ w).

Observe that, for every quasi-Nelson monoid M = 〈M; ∗, ∼, 0, 1〉, the structure
〈M; ≤; ∗, 1〉 is a commutative integral pomonoid (on which the partial order ≤ is given
as in item (ii) of Definition 3.2).

A pocrim (partially ordered commutative residuated integral monoid) is a structure
〈P; ≤; ∗, ⇒, 1〉 such that:

(i) 〈P; ≤; ∗, 1〉 is a pomonoid.
(ii) The pair (∗, ⇒) is residuated, that is, x ∗ y ≤ z if and only if x ≤ y ⇒ z.

A pocrim is said to be n-potent when its monoid reduct is.

Definition 4.9: A quasi-Nelson pocrim (QNP) is an algebra A = 〈A; ∗, →, ∼, 0, 1〉 of type
〈2, 2, 1, 0, 0〉 such that:

(i) 〈A; ∗, 1〉 is a 3-potent commutative monoid (Definition 3.1).
(ii) 〈A; →, ∼, 0, 1〉 is a QNI-algebra (Definition 4.1).

(iii) The following identities are satisfied:
(1) (x ∗ y) → z = x → (y → z)
(2) x → (y ∗ z) ≡ (x → y) ∗ (x → z)
(3) ∼(x → y) ≡ ∼∼ x ∗ ∼ y
(4) ∼(x ∗ y) ≡ (x → ∼ y) ∗ (y → ∼ x).

It is convenient to leave for later (Proposition 4.19) a formal proof that quasi-Nelson
pocrims are actually pocrims in the sense of Blok and Raftery (1997). By definition,
quasi-Nelson pocrims form a variety, henceforth denoted by QNP. Using the twist rep-
resentation, one can easily check that the {∗, →, ∼, 0, 1}-reduct of every (quasi-)Nelson
algebra is indeed a member of QNP. As in the previous cases, other prominent exam-
ples can be found among the intuitionistic algebras. The proof of the following
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proposition, as well as any subsequent proof which has been omitted in this section,
can be found in the Appendix.

Proposition 4.10: Let S = 〈S; ∧, →, 0, 1〉 be a bounded implicative semilattice (as per
Definition 2.3) where the negation is given by ¬x := x → 0. Taking ∗ = ∧ and ∼ = ¬, we
have that S is a quasi-Nelson pocrim.

We now proceed to show that every quasi-Nelson pocrim may be represented as a
twist-algebra over an implicative semilattice enriched with a nucleus operator.

Definition 4.11: A bounded implicative semilattice with a nucleus is an algebra S =
〈S; ∧, →, �, 0, 1〉 such that:

(i) 〈S; ∧, →, 0, 1〉 is a bounded implicative semilattice;
(ii) � is a nucleus (Definition 2.6) on the bounded Hilbert algebra reduct

〈S; →, 0, 1〉.

The following example should help clarify the relationship among the new classes
of algebras introduced so far.

Example 4.12 (cf. Rivieccio, 2022a, Lemma 4.6): Let A be any algebra having a
reduct 〈A; ∧, →, �, 0, 1〉 that is a bounded implicative semilattice with a nucleus.
Define x ⇀ y := x → �y and x � y := �x ∧ �y. Then the algebra 〈A, ∧, ⇀, 0, 1〉 is
a ⇀-semilattice (Definition 3.7) and the algebra 〈A; �, → 0, 1〉 is an nH-semigroup
(Definition 4.4). In particular, by taking � to be the identity map, we have that 〈A, ∧,
→, 0, 1〉 is both a ⇀-semilattice and an nH-semigroup.

Proposition 4.7 extends to the class QNP as follows.

Lemma 4.13: For every A = 〈A; ∗, →, ∼, 0, 1〉 ∈ QNP, the relation ≡ is compatible with
∗ and the quotient A�� := 〈A/≡; ∗, →, �, 0, 1〉 is a bounded implicative semilattice with a
nucleus given by �[a] := [∼ ∼ a] for all a ∈ A.

The previous results suggest the following definition for twist-algebras.

Definition 4.14: Let S = 〈S; ∧, →, �, 0, 1〉 be an implicative semilattice with a nucleus.
Define the algebra S�� = 〈S��; ∗, →, ∼, 0, 1〉 with universe:

S�� := {〈a1, a2〉 ∈ S × S : a2 = �a2, a1 ∧ a2 = 0}

and operations given, for all 〈a1, a2〉, 〈b1, b2〉 ∈ S × S, by:

1 := 〈1, 0〉
0 := 〈0, 1〉

∼〈a1, a2〉 := 〈a2, �a1〉
〈a1, a2〉 ∗ 〈b1, b2〉 = 〈a1 ∧ b1, (a1 → b2) ∧ (b1 → a2)〉
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〈a1, a2〉 → 〈b1, b2〉 = 〈a1 → b1, �a1 ∧ b2〉.

A QNP twist-algebra over S is any subalgebra A ≤ S�� satisfying π1[A] = S.

Taking into account the computations performed for the twist-algebras considered
earlier, checking that the above-defined S�� is closed under the algebraic operations of
the twist-algebra is routine: regarding ∼ and ∗, see the proof just after Definition 3.14;
regarding →, see the proof following Rivieccio and Jansana (2021, Def. 26). We also
omit the proof of the following proposition, which (in the light of Proposition 3.15 and
Example 4.12) is a matter of straightforward computation.

Proposition 4.15: Every QNP twist-algebra is a quasi-Nelson pocrim.

Theorem 4.16 (Representation of QNP, I): Every A ∈ QNP is isomorphic to a QNP
twist-algebra over the implicative semilattice with a nucleus A�� (constructed accord-
ing to Lemma 4.13 and Definition 4.14) through the map ι : A → A�� × A�� given by
ι(a) := 〈[a], [∼ a]〉 for all a ∈ A. In other words, every A ∈ QNP is isomorphic to a QNP
twist-algebra over A��.

Proof: The injectivity of ι follows from the injectivity of the corresponding map on
QNI-algebras (Theorem 4.8). The requirement π1[ι[A]] = A�� is obviously satisfied.
Using the identity a → (∼ a → 0) = (a ∗ ∼ a) → 0 (item (iii).1 of Definition 4.9), it
is easy to check that [a] ∧ [∼ a] = [a ∗ ∼ a] = [0], as required by Definition 4.14. It
remains to check that ι is a homomorphism. Theorem 4.8 entails that ι preserves
the negation. This is anyway straightforward, for we have: ι(∼ a) = 〈[∼ a], [∼ ∼ a]〉 =
〈[∼ a], �[a]〉 = ∼〈[a], [∼ a]〉 = ∼ ι(a). As to the binary operations, we have:

ι(a ∗ b) = 〈[a ∗ b], [∼(a ∗ b)]〉
= 〈[a ∗ b], [(a → ∼ b) ∗ (b → ∼ a)]〉 by Definition 4.9(iii).4

= 〈[a] ∧ [b], ([a] → [∼ b]) ∧ ([b] → [∼ a])〉 by Lemma 4.13

= 〈[a], [∼ a]〉 ∗ 〈[b], [∼ b]〉
= ι(a) ∗ ι(b)

ι(a → b) = 〈[a → b], [∼(a → b)]〉
= 〈[a → b], [∼ ∼ a ∗ ∼ b]〉 by Definition 4.9(iii).3

= 〈[a] → [b], [∼ ∼ a] ∧ [∼ b]〉 by Lemma 4.13

= 〈[a] → [b], �[a] ∧ [∼ b]〉
= 〈[a], [∼ a]〉 → 〈[b], [∼ b]〉
= ι(a) → ι(b).

�

With Theorem 4.16 at our disposal, the following statements can be easily verified.
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Corollary 4.17: For every A = 〈A; ∗, →, ∼, 0, 1〉 ∈ QNP, the reduct 〈A; ∗, ∼, 0, 1〉 is a
quasi-Nelson monoid.

Proof: Let A ∈ QNP, which we view as a QNP twist-algebra A ≤ S�� with S =
〈S; ∧, →, �, 0, 1〉 an implicative semilattice with a nucleus. As we have seen
(Example 4.12), defining x ⇀ y := x → �y, we have that 〈S; ∧, ⇀, 0, 1〉 is a ⇀-
semilattice (Definition 3.7). In order to be able to view the reduct 〈A; ∗, ∼, 0, 1〉
as a QNM twist-algebra (as given in Definition 3.14), it suffices to verify that, for
all 〈a1, a2〉, 〈b1, b2〉 ∈ A, we have 〈a1 ∧ b1, (a1 → b2) ∧ (b1 → a2)〉 = 〈a1 ∧ b1, (a1 →
�b2) ∧ (b1 → �a2)〉. The latter follows from the requirements a2 = �a2 and b2 =
�b2 (in Definition 4.14). �

The following observation justifies the notation employed so far, in the sense that,
on any A ∈ QNP, the relation � can be equivalently defined by � := {〈a, b〉 ∈ A × A :
a → b = 1} or by � := {〈a, b〉 ∈ A × A : a2 ∗ b2 = a2}.

Corollary 4.18: Let A = 〈A; ∗, →, ∼, 0, 1〉 ∈ QNP and a, b ∈ A. The following are equiva-
lent:

(i) a → b = 1.
(ii) a2 = a2 ∗ b2.

Proof: It suffices to verify that, given a QNP twist-algebra A ≤ S�� and elements
〈a1, a2〉, 〈b1, b2〉 ∈ A, one has 〈a1, a2〉 → 〈b1, b2〉 = 〈1, 0〉 iff a1 ≤ b1 iff 〈a1, a2〉2 ∗
〈b1, b2〉2 = 〈a1, a2〉2. The latter equivalence has been shown in Proposition 3.15(ii).1,
and the former in Rivieccio (2022a). �

Notice that Corollary 4.18 entails that, on every A ∈ QNP, the partial order of the
QNI-algebra reduct of A coincides with the partial order of the quasi-Nelson monoid
reduct of A, as was to be expected.

For the purpose of the next proposition, let us abbreviate:

x ⇒∗ y := (x → y) ∗ ((x → y) → (∼ y → ∼ x)).

As the notation suggests, the above-introduced term provides an alternative way
to define the strong quasi-Nelson implication (cf. Proposition 2.11). This observation
entails, in particular, that the class of {∗, →, ∼}-subreducts of (quasi-)Nelson algebras
is term equivalent to the (in principle more expressive) class of {∗, ⇒, ∼}-subreducts.
As far as the author is aware, this was never remarked before in the literature on Nelson
logic.

The next proposition extends (Spinks & Veroff, 2008, Thm. 3.7) and (Spinks
& Veroff, 2008, Prop. 3.10) to our non-involutive setting.

Proposition 4.19: For every A = 〈A; ∗, →, ∼, 0, 1〉 ∈ QNP, we have that the algebra
〈A; ≤; ∗, ⇒∗, 1〉 is a 3-potent pocrim (hence, 〈A; ⇒∗, 1〉 is a (3-potent) BCK-algebra2).

It is easy to check (on a twist-algebra) that the weak implication and the nega-
tion can be defined, as in quasi-Nelson algebras, by x → y := x ⇒∗ (x ⇒∗ y) and
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¬x := x ⇒∗ 0. This means that QNP may be viewed (and could be axiomatized) as a
subvariety of bounded (3-potent) pocrims; this also allows one to import a number of
results from the general theory of pocrims (see e.g. Corollary 8.5 and the subsequent
remarks).

Problem 4.20: Consider the class of bounded (3-potent) pocrims satisfying:

(x2 ⇒ y) ∗ ((x2 ⇒ y)2 ⇒ ((∼ y)2 ⇒ ∼ x)) = x ⇒ y.

Is this class term equivalent to QNP?

Problem 4.21: Axiomatize the class of BCK-algebras that are the {⇒, 1}-subreducts
of quasi-Nelson pocrims, and the class of pocrims that are the {∗, ⇒, 1}-subreducts of
quasi-Nelson pocrims.

5. Adding meets: quasi-Nelson semihoops

5.1. Quasi-Nelson semihoops and their twist representation

In this section we bring one more connective of (quasi-)Nelson logic into the picture:
namely the (additive) conjunction, corresponding to the lattice meet on (quasi-)Nelson
algebras. We shall thus be looking at the {∗, ∧, →, ∼}-fragment of quasi-Nelson logic
and the corresponding subreducts of quasi-Nelson algebras. Let us begin with two
observations:

(1) The {∗, ∧, →, ∼}-fragment quasi-Nelson logic coincides with the {∧, →, ∼}-
fragment (as well as with the {∧, ⇒, ∼}-fragment), because the monoid operation ∗
can be introduced through the term:

x ∗ y := x ∧ y ∧ ∼((x → ∼ y) ∧ (y → ∼ x))

which can be more concisely rewritten as:

x ∗ y := x ∧ y ∧ ∼(x ⇒ ∼ y)

where, as usual,

x ⇒ y := (x → y) ∧ (∼ y → ∼ x).

(2) We further note that the present study is only interesting in a non-involutive set-
ting, because the {∧, →, ∼}-fragment of Nelson logic coincides with the full logic.
Indeed, the only missing connective (the disjunction ∨) can be defined through the
De Morgan law by x ∨ y := ∼(∼ x ∧ ∼ y). Since the disjunction is not definable in
the {∧, →, ∼}-fragment of intuitionistic logic, the term ∼(∼ x ∧ ∼ y) does not define
the disjunction (i.e. the lattice-theoretic join) of quasi-Nelson logic either, but rather
a ‘pseudo-disjunction’ which will nevertheless play an important role in the present
setting.

In this section, as in the previous ones, we shall proceed from an abstract equa-
tional definition of a class of algebras (quasi-Nelson semihoops) to the more concrete
twist representation. The main result towards which we shall proceed (Proposition 7.7
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and Corollary 7.8) states that quasi-Nelson semihoops (Definition 5.1) are precisely the
{∧, →, ∼}-subreducts of quasi-Nelson algebras.

Semihoops were introduced in Esteva et al. (2003, Def. 3.6) as the algebraic coun-
terpart of 0-free fragments of fuzzy logics. A semihoop can be defined as an algebra
〈A; ∧, ∗, ⇒, 1〉 of type 〈2, 2, 2, 0〉 such that:

(i) 〈A; ∧, 1〉 is a semilattice with order ≤ and 1 as top element.
(ii) 〈A; ≤; ∗, ⇒, 1〉 is a pocrim.

The preceding definition is slightly more informative than the original one, but eas-
ily seen to be equivalent. A hoop (Esteva et al., 2003, Remark 3.11) may be defined as a
semihoop 〈A; ∧, ∗, ⇒, 1〉 that satisfies the divisibility identity:

(iii) x ∧ y = x ∗ (x ⇒ y).

The meet is thus term definable on hoops, and is often omitted from the signature
(for further background on hoops, see Blok & Ferreirim, 1993, 2000).

From now on, we shall abbreviate:

x ⊕ y := ∼(∼ x ∧ ∼ y).

As hinted at earlier, the operation ⊕ should be viewed as a pseudo-join, interpreting a
generalised disjunction.

Definition 5.1: A quasi-Nelson semihoop (QNS) is an algebra

A = 〈A; ∧, ∗, →, ∼, 0, 1〉
of type 〈2, 2, 2, 1, 0, 0〉 such that:

(i) 〈A; ∗, →, ∼, 0, 1〉 is a quasi-Nelson pocrim (Definition 4.9).
(ii) 〈A; ∧, 0, 1〉 is a bounded semilattice whose partial order coincides with that of

the pocrim reduct of A.
(iii) The following identities are satisfied:

(1) x ⊕ y ≡ x2 ⊕ y2

(2) ∼∼(x ∧ y) = ∼∼ x ∧ ∼∼ y
(3) ∼∼∼ x = ∼ x
(4) ∼∼ x ∧ (y ⊕ z) = (x ∧ y) ⊕ (x ∧ z).

The class of all quasi-Nelson semihoops will be denoted by QNS. It is easy to ver-
ify that every member of QNS is, indeed, a semihoop in the terminology of Esteva
et al. (2003), though not necessarily a hoop (see Lemma 9.4, Corollary 9.5 and the sub-
sequent observations). As expected, the {∨}-free reduct of every quasi-Nelson algebra
is an example of a quasi-Nelson semihoop in the above sense. Thus, in particular, the
∨-free reduct of every Heyting algebra is a quasi-Nelson semihoop as well (on which ∗
and ∧ coincide).

The ‘De Morgan laws’ proved in items (ii) and (iii) of the next lemma suggest that
the operation ⊕ indeed plays the role of a pseudo-join.
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Lemma 5.2 (cf. Celani, 2007, Lemma 1.1): Every A ∈ QNS satisfies the following
identities:

(i) ∼(x ∧ y) = ∼(x ∧ ∼∼ y).
(ii) ∼(x ∧ y) = ∼ x ⊕ ∼ y.
(iii) ∼(x ⊕ y) = ∼ x ∧ ∼ y.
(iv) ∼∼ x = x ⊕ (x ∧ y).

Proof: Let all a, b ∈ A.
(i). We have:

∼(a ∧ b) = ∼ ∼∼(a ∧ b) by Definition 5.1(iii).3

= ∼(∼ ∼ a ∧ ∼ ∼ b) by Definition 5.1(iii).2

= ∼(∼ ∼ a ∧ ∼ ∼∼ ∼ b) by Definition 5.1(iii).3

= ∼(a ∧ ∼ ∼ b).

(ii) Using the commutativity of the meet semilattice operation and the preced-
ing item, we have ∼(a ∧ b) = ∼(a ∧ ∼∼ b) = ∼(∼∼ b ∧ a) = ∼(∼∼ b ∧ ∼∼ a) =
∼(∼ ∼ a ∧ ∼ ∼ b) = ∼ a ⊕ ∼ b.

(iii). We have:

∼(a ⊕ b) = ∼∼(∼ a ∧ ∼ b)

= ∼∼∼ a ∧ ∼ ∼∼ b by Definition 5.1(iii).2

= ∼ a ∧ ∼ b. by Definition 5.1(iii).3

(iv). By Lemma 3.6(v), from a ∧ b ≤ a we obtain ∼ a ≤ ∼(a ∧ b). Then a ⊕ (a ∧ b) =
∼(∼ a ∧ ∼(a ∧ b)) = ∼∼ a, as required. �

Next we are going to prove that quasi-Nelson semihoops are representable as twist-
algebras over the class of implicative semilattice enriched with (a nucleus and) an
extra binary operation introduced below. As before, we overload the symbol ⊕ in the
following definition: notice that this new operation also realises a pseudo-join.

Definition 5.3: A ⊕-implicative semilattice is an algebra S = 〈S; ∧, ⊕, →, 0, 1〉 such
that:

(i) 〈S; ∧, →, �, 0, 1〉 is a bounded implicative semilattice with a nucleus given by
�x := x ⊕ x (Definition 4.11).

(ii) 〈S; ⊕〉 is a commutative semigroup.

The following identities are satisfied:

(iii) x ⊕ 1 = 1.
(iv) �x = x ⊕ 0 = x ⊕ (x ∧ y).
(v) x ≤ x ⊕ y = �x ⊕ �y.
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(vi) �x ∧ (y ⊕ z) = (x ∧ y) ⊕ (x ∧ z).

Example 5.4: Let 〈H; ∧, ∨, →, �, 0, 1〉 be a Heyting algebra with a nucleus. Then, upon
defining x ⊕ y := �(x ∨ y), the algebra 〈H; ∧, ⊕, →, 0, 1〉 is a ⊕-implicative semilattice.
Thus, in particular, every Heyting algebra may be viewed as a ⊕-implicative semilattice
where, taking the nucleus � to be the identity map, we have that ⊕ coincides with
the lattice join, whereas taking � to be the double negation map we have x ⊕ y =
¬(¬x ∧ ¬y).

The following lemma will be useful later on.

Lemma 5.5: Every ⊕-implicative semilattice S = 〈S; ∧, ⊕, →, 0, 1〉 satisfies the following
(quasi-)identities.

(i) If x ≤ z and y ≤ z, then x ⊕ y ≤ �z.
(ii) �(x ⊕ y) = x ⊕ y.
(iii) x → y ≤ (x ⊕ z) → (y ⊕ z).
(iv) ¬(x ⊕ y) = ¬x ∧ ¬y.

Proof: Let a, b, c, ∈ S.
(i). Assuming a ≤ c and b ≤ c, by Definition 5.3(iv) we have �c = c ⊕ (c ∧ a) = c ⊕

a = c ⊕ (c ∧ b) = c ⊕ b. Using the associativity and commutativity of ⊕, we then have
�c ⊕ �c = c ⊕ a ⊕ c ⊕ b = c ⊕ c ⊕ a ⊕ b. But c ⊕ c = �c and, similarly (using the
nucleus properties), �c ⊕ �c = ��c = �c. Hence, �c = a ⊕ b ⊕ �c, which entails
a ⊕ b ≤ �c by Definition 5.3(v).

(ii). Using the associativity and commutativity of ⊕, we have �(a ⊕ b) =
a ⊕ b ⊕ a ⊕ b = a ⊕ a ⊕ b ⊕ b = �a ⊕ �b. Then the required result follows from
Definition 5.3(v).

(iii). By Definition 5.3(v), we have a ∧ (a → b) = a ∧ b ≤ b ≤ b ⊕ c and c ∧ (a →
b) ≤ c ≤ b ⊕ c. From these two inequalities, using items (i) and (ii) in this lemma, we
have (a ∧ (a → b)) ⊕ (c ∧ (a → b)) ≤ �(b ⊕ c) = b ⊕ c. Using also Definition 5.3(vi),
we obtain (a ∧ (a → b)) ⊕ (c ∧ (a → b)) = �(a → b) ∧ (a ⊕ c) ≤ b ⊕ c. From the
latter, by residuation, we have �(a → b) ≤ (a ⊕ c) → (b ⊕ c), which immediately
entails us the desired result.

(iv). From a ≤ a ⊕ b (Definition 5.3(v)) and the pseudo-complement properties, we
have ¬(a ⊕ b) ≤ ¬a and, similarly, ¬(a ⊕ b) ≤ ¬b. Hence, by the meet semilattice
properties, ¬(a ⊕ b) ≤ ¬a ∧ ¬b. Regarding the other inequality, by the property of
the pseudo-complement, we have ¬a ∧ ¬b ≤ ¬(a ⊕ b) iff ¬a ∧ ¬b ∧ (a ⊕ b) = 0. By
Definition 5.3(vi) and the nucleus properties, we have ¬a ∧ ¬b ∧ (a ⊕ b) ≤ �(¬a ∧
¬b) ∧ (a ⊕ b) = (¬a ∧ ¬b ∧ a) ⊕ (¬a ∧ ¬b ∧ b) = (0 ∧ ¬b) ⊕ (¬a ∧ 0) = 0 ⊕ 0 =
�0 = 0, as required. �

We are now ready to introduce the class of twist-algebras that correspond to quasi-
Nelson semihoops.



84 U. RIVIECCIO

Definition 5.6: Let S = 〈S; ∧, ⊕, →, 0, 1〉 be a ⊕-implicative semilattice (Definition 5.3).
Define the algebra S�� = 〈S��; ∧, ∗, →, ∼, 0, 1〉 with universe:

S�� := {〈a1, a2〉 ∈ S × S : a2 = �a2, a1 ∧ a2 = 0}
and operations given, for all 〈a1, a2〉, 〈b1, b2〉 ∈ S × S, by:

1 := 〈1, 0〉,

0 := 〈0, 1〉,

∼〈a1, a2〉 := 〈a2, �a1〉,

〈a1, a2〉 ∧ 〈b1, b2〉 := 〈a1 ∧ b1, a2 ⊕ b2〉
〈a1, a2〉 ∗ 〈b1, b2〉 := 〈a1 ∧ b1, (a1 → b2) ∧ (b1 → a2)〉

〈a1, a2〉 → 〈b1, b2〉 := 〈a1 → b1, a1 ∧ b2〉.

A QNS twist-algebra over S is any subalgebra A ≤ S�� satisfying π1[A] = S.

Checking that the set S�� is closed under the above-operations is straightforward.
With regards to the ∧ operation, we need to show that, if 〈a1, a2〉, 〈b1, b2〉 ∈ S��,
then a1 ∧ b1 ∧ (a2 ⊕ b2) = 0 and �(a2 ⊕ b2) = a2 ⊕ b2. For the latter equality, see
Lemma 5.5(ii). As to the former, using Definition 5.3(vi), we have a1 ∧ b1 ∧ (a2 ⊕ b2) ≤
�(a1 ∧ b1) ∧ (a2 ⊕ b2) = (a1 ∧ b1 ∧ a2) ⊕ (a1 ∧ b1 ∧ b2) = (0 ∧ b1) ⊕ (a1 ∧ 0) = 0
⊕ 0 = �0 = 0, as desired.

The proof of the following proposition, as well as any subsequent proof which has
been omitted in this section, can be found in the Appendix.

Proposition 5.7: Every QNS twist-algebra A = 〈A; ∧, ∗, →, ∼, 0, 1〉 ≤ S�� is a quasi-
Nelson semihoop (Definition 5.1).

The twist-algebra construction highlights the formal similarity between the
component-wise definition of the pseudo-join operation ⊕ on quasi-Nelson semi-
hoops and that of the actual join on quasi-Nelson algebras (Definition 2.9). Indeed,
given a QNS twist-algebra A ≤ S�� and 〈a1, a2〉, 〈b1, b2〉 ∈ A, using Definition 5.3(v) and
the usual nucleus properties, we obtain:

〈a1, a2〉 ⊕ 〈b1, b2〉 = 〈�a1 ⊕ �b1, �(a2 ∧ b2)〉 = 〈a1 ⊕ b1, a2 ∧ b2〉.

As with the previous representations, given A ∈ QNS, we consider the quotient
〈A/≡; ∗, →, �, 0, 1〉, which is a bounded implicative semilattice with a nucleus
(Lemma 4.13). We enrich this algebra with the operation ⊕ given, for all a, b ∈ A, by
[a] ⊕ [b] = [a ⊕ b] = [∼(∼ a ∧ ∼ b)], which is well-defined by Definition 5.1(iii).1. Let
A�� := 〈A/≡; ∗, ⊕, →, �, 0, 1〉.

Proposition 5.8: For every A = 〈A; ∧, ∗, →, ∼, 0, 1〉 ∈ QNS, the algebra

A�� := 〈A/≡; ∗, ⊕, →, �, 0, 1〉
is a ⊕-implicative semilattice.
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Proof: By Lemma 4.13, it suffices to check that the operation ⊕ defined on A/≡
satisfies items (ii)–(vi) of Definition 5.3. Let then a, b, c ∈ A.

To show (ii), observe that the operation ⊕ on A is obviously commutative, and it is
also associative, for we have:

(a ⊕ b) ⊕ c = ∼(∼ ∼(∼ a ∧ ∼ b) ∧ ∼ c)

= ∼(∼ c ∧ ∼∼(∼ a ∧ ∼ b))

= ∼(∼ c ∧ ∼ a ∧ ∼ b) by Lemma 5.2(i)

= ∼(∼ a ∧ ∼ b ∧ ∼ c)

= ∼(∼ a ∧ ∼∼(∼ b ∧ ∼ c)) by Lemma 5.2(i)

= a ⊕ (b ⊕ c).

(iii). Recall that the {→, ∼, 0, 1}-reduct of A is a QNI-algebra and the {∗, ∼, 0, 1}-
reduct of A is a quasi-Nelson monoid (Corollary 4.17). Then we have ∼ 1 = 0, by
Definition 4.1(viii). Moreover, by Lemma 3.6(i), we have that 0 is the least element of
the reduct 〈A; ∧〉. Then a ⊕ 1 = ∼(∼ a ∧ ∼ 1) = ∼(∼ a ∧ 0) = ∼ 0 = 1 for all a ∈ A,
which immediately entails the desired result.

Regarding (iv), it suffices to observe that the semilattice properties immediately
give us a ⊕ 0 = ∼(∼ a ∧ ∼ 0) = ∼(∼ a ∧ 1) = ∼ ∼ a = ∼(∼ a ∧ ∼ a) = a ⊕ a, and
Lemma 5.2(iv) gives us ∼∼ a = a ⊕ (a ∧ b). Hence, in the quotient, we have �[a] =
[a ⊕ (a ∧ b)], as required.

Regarding (v), the equality a ⊕ b = �a ⊕ �b follows immediately from Definition
5.1(iii).4. As to the inequality a ≤ a ⊕ b, it is easy to check (e.g. on a QNM twist-algebra)
that the negation ∼ is order-reversing with respect to ≤. Then, from ∼ a ∧ ∼ b ≤
∼ a, we obtain ∼ ∼ a ≤ ∼(∼ a ∧ ∼ b) = a ⊕ b. On the quotient, this gives us �[a] ≤
[a ⊕ b]. The required result then follows from the observation that [a] ≤ �[a], which
holds true because � is a nucleus operator.

Finally, item (vi) is an immediate consequence of Definition 5.1(iii).4. �

Theorem 5.9 (Representation of QNS, I): Every A ∈ QNS is embeddable into (A��)��
(constructed according to Definition 5.6) through the map ι : A → A�� × A�� given by
ι(a) := 〈[a], [∼ a]〉 for all a ∈ A. In other words, every A ∈ QNS is isomorphic to a QNS
twist-algebra over A��.

Proof: By Theorem 4.16, we only need to verify that the map ι preserves the meet
operation of A. Let then a, b ∈ A. We have:

ι(a ∧ b) = 〈[a ∧ b], [∼(a ∧ b)]〉
= 〈[a ∧ b], [∼(a ∧ ∼∼ b)]〉 by Lemma 5.2(i)

= 〈[a ∧ b], [∼(∼ ∼ b ∧ a)]〉
= 〈[a ∧ b], [∼(∼ ∼ b ∧ ∼ ∼ a)]〉 by Lemma 5.2(i)

= 〈[a ∧ b], [∼(∼ ∼ a ∧ ∼ ∼ b)]〉
= 〈[a ∧ b], [∼ a ⊕ ∼ b]〉
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= 〈[a] ∧ [b], [∼ a] ⊕ [∼ b]〉
= 〈[a], [∼ a]〉 ∧ 〈[b], [∼ b]〉
= ι(a) ∧ ι(b).

�

6. Refining the representations

In this section we introduce more informative twist constructions for quasi-Nelson
monoids, pocrims and semihoops, which resemble and generalise the construction
for quasi-Nelson algebras considered in Proposition 2.12. In certain cases cases (QNP
and QNS) these refined constructions may be used to lift our representation results
to equivalences between suitably defined algebraic categories (cf. Section 10); in oth-
ers (QNM) we do no currently know whether the construction is sufficiently general
to obtain a representation (analogous to Theorem 2.14) for all the algebras in a given
class (cf. Problem 6.4).

6.1. QNM

Let M ∈ QNM be a quasi-Nelson monoid. Define:

A+ := {a ∈ A : ∼ a � a} = {a ∈ A : (∼ a)2 = (∼ a)2 ∗ a2}
and, for M ≤ S��, let ∇A := π1[A+].

Keep in mind that (by Corollary 3.11), for every ⇀-semilattice S = 〈S; ∧, ⇀, 0, 1〉, let-
ting ¬x := x ⇀ 0, we obtain a pseudo-complemented semilattice 〈S; ∧, ¬, 0, 1〉 with an
operator � given by �x := 1 ⇀ x which is a nucleus (in the sense of Definition 2.5).

Proposition 6.1 (cf. Proposition 2.13): Let M ≤ S�� be a quasi-Nelson monoid. Then:

(i) A+ = {〈a, 0〉 : 〈a, 0〉 ∈ A}.
(ii) For all a ∈ S, if ¬a = 0, then a ∈ ∇A (i.e. ∇A is non-empty and contains the set D(S)

of the dense elements of S).
(iii) For all a, b ∈ S, if a ∈ ∇A, then ¬¬a ∈ ∇A and b ⇀ a ∈ ∇A.
(iv) For all a, b ∈ S, if a, b ∈ ∇A, then a ∧ �b ∈ ∇A.

Proof: (i). Let 〈a1, a2〉 ∈ A+. Recall that, by Proposition 3.15(ii).1, we have ∼〈a1, a2〉�
〈a1, a2〉 if and only if a2 ≤ a1. In turn, from the latter we have 0 = a1 ∧ a2 = a2.
Conversely, if a2 = 0, then clearly a2 ≤ a1, so 〈a1, a2〉 = 〈a1, 0〉 ∈ A+.

(ii). Let a ∈ S be such that ¬a = 0, Consider an element b ∈ H such that 〈a, b〉 ∈ A.
Recalling that a ∧ b = 0, we have:

b ⇀ ¬a = b ⇀ (a ⇀ 0)

= (b ∧ a) ⇀ 0 Definition 3.7(ii)

= 0 ⇀ 0

= 1 Proposition 3.10(i)
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Hence, using Proposition 3.10(iv) and Definition 3.7(iv), we have b ≤ �¬a = �0 = 0.
We thus have 〈a, b〉 = 〈a, 0〉 ∈ A+, which means that a ∈ ∇A, as claimed.

(iii). Assume a ∈ ∇A, i.e. 〈a, 0〉 ∈ A+. Let us compute ∼(〈a, 0〉)2 ⇀ ∼〈a, 0〉 =
〈¬a, �a〉 ⇀ 〈0, �a〉 = 〈¬¬a, �¬a ∧ �a〉 = 〈¬¬a, �(¬a ∧ a)〉 = 〈¬¬a, �0〉 =
〈¬¬a, 0〉. Hence, ¬¬a ∈ ∇A, as claimed. Now, let b ∈ S. Then 〈b, c〉 ∈ A for some c ∈ S,
and we can compute 〈b, c〉 ⇀ 〈a, 0〉 = 〈b ⇀ a, �b ∧ 0〉 = 〈b ⇀ a, 0〉, which gives us
b ⇀ a ∈ ∇A, as claimed.

(iv). Assume 〈a, 0〉, 〈b, 0〉 ∈ A+. Let us compute 〈a, 0〉 ∗ (〈a, 0〉 ⇀ 〈b, 0〉) = 〈a, 0〉 ∗
〈a ⇀ b, 0〉 = 〈a ∧ (a ⇀ b), (a ⇀ 0) ∧ ((a ⇀ b) ⇀ 0)〉 = 〈a ∧ (a ⇀ b), ¬a ∧ ¬(a ⇀ b)〉
= 〈a ∧ (a ⇀ b), 0〉. = 〈a ∧ �b, 0〉 With regards to the first component, the last equality
holds by Definition 3.7(vi). With regards to the second, by the property of the pseudo-
complement, we have ¬a ∧ ¬(a ⇀ b) = 0 iff ¬(a ⇀ b) ≤ ¬¬a. The latter inequality,
in turn, follows from ¬a = a ⇀ 0 ≤ a ⇀ b and the fact that the pseudo-complement
is order-reversing. �

If we compare Proposition 6.1 with Proposition 2.13 (see also Proposition 6.6 below),
we see that the properties and structure of the set A+, and consequently those of
∇A, are determined by the algebraic operations available on A. In general, if A is not
an algebra in the full quasi-Nelson language, we cannot guarantee that ∇A is a lat-
tice filter of S, or even an increasing set. The properties stated in Proposition 6.1 are
nevertheless sufficient for introducing a set ∇ as a parameter in the twist-algebra con-
struction, in the spirit of Proposition 2.12. The proof of the following proposition, as
well as any subsequent proof which has been omitted in this section, can be found in
the Appendix.

Proposition 6.2: Let S = 〈S; ∧, ⇀, 0, 1〉 be a ⇀-semilattice, and let ∇ ⊆ S be a non-
empty set satisfying items (iii) and (iv) of Proposition 6.1. Then the set:

Tw(S, ∇) := {〈a1, a2〉 ∈ S�� : ¬a1 ⇀ ¬¬a2 ∈ ∇},

with operations given by Definition 3.14, is the universe of a QNM twist-algebra over S.

The construction described in the preceding proposition can be used to produce
examples of quasi-Nelson monoids which are interesting in the sense that they will not,
in general, be reducts of quasi-Nelson algebras (the same will apply to Proposition 6.7,
which concerns richer fragments of the quasi-Nelson language).

By comparing Propositions 6.2 and 2.12, one notices that the two definitions of
the universe of the twist-algebra differ in that the latter employs the join operation
of the underlying Heyting algebra while the former employs the negation and the
implication-like operator. This is on the one hand a necessity, for we are looking at
factor algebras that need not have a join operation at all; on the other hand, it is
not difficult to show that a dense filter ∇ of a Heyting algebra H satisfies (for all ele-
ments a, b ∈ H) the following property: ¬a → ¬¬b ∈ ∇ if and only if a ∨ b ∈ ∇ (if
and only if ¬a → b ∈ ∇). Thus Proposition 6.2 (together with its analogue Proposi-
tion 6.7, which shall be established later) truly is a generalisation of Proposition 2.12;
while the definition employed in the latter is the standard one for Nelson algebras (and
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N4-lattices), the one introduced in the former obviously has the advantage of being
independent of the existence of the join operation on the factor algebras.

A definition similar to the one appearing in Proposition 6.2 features in the twist rep-
resentation given in Busaniche and Cignoli (2014) for a class of residuated lattices there
dubbed Kalman lattices, which are extensively investigated also in the more recent
papers (Aglianò & Marcos, 2022a, 2022a; Busaniche et al., 2022). The factor algebras
considered in Busaniche and Cignoli (2014); Busaniche et al. (2022) are more general
than ours, but the twist construction for (subreducts of ) quasi-Nelson algebras can-
not be viewed as a special case of any of the above, because the negation is always
assumed to be involutive throughout (Aglianò & Marcos, 2022a, 2022a; Busaniche
& Cignoli, 2014; Busaniche et al., 2022). Note also that the Kalman construction of
Aglianò and Marcos (2022a, 2022a) may be regarded as the paraconsistent compan-
ion of the one used in Busaniche et al. (2022) for Nelson algebras, for the former results
from dropping the condition corresponding (in e.g. our Definition 2.9) to a1 ∧ a2 = 0.

Proposition 6.3: For every quasi-Nelson monoid M ≤ S��, M ⊆ Tw(S, ∇A).

Proof: Given 〈a1, a2〉 ∈ A, we have:

¬(〈a1, a2〉2) ⇀ ∼〈a1, a2〉 = 〈¬a1, �a1〉 ⇀ 〈a2, �a1〉
= 〈¬a1 ⇀ a2, �¬a1 ∧ �a1〉
= 〈¬a1 ⇀ a2, �(¬a1 ∧ a1)〉
= 〈¬a1 ⇀ a2, �0〉
= 〈¬a1 ⇀ a2, 0〉 ∈ A.

Thus ¬a1 ⇀ a2 ∈ ∇A. Since ¬¬(¬a1 ⇀ a2) = ¬a1 ⇀ ¬¬a2 (Proposition 3.10.x),
we can use Proposition 6.1(iii) to obtain ¬a1 ⇀ ¬¬a2 ∈ ∇A. Hence, 〈a1, a2〉 ∈
Tw(S, ∇). �

Problem 6.4: Can Proposition 6.3 be sharpened so as to establish the equality M =
Tw(S, ∇A)? (Cf. Proposition 6.8).

6.2. QNP and QNS

As for the algebras in the full quasi-Nelson language (and in contrast to the case of
quasi-Nelson monoids discussed in the preceding subsection), also for quasi-Nelson
pocrims and semihoops we can indeed refine the result of Theorem 5.9, obtaining an
analogue of the representation of quasi-Nelson algebras given in Theorem 2.14. We
now proceed towards these results (Theorems 6.9 and 6.10).

The following lemma, which applies to all the intuitionistic factor algebras whose
language includes the relevant operations, will be quite helpful in simplifying our
computations.

Lemma 6.5 (cf. Rivieccio, 2022a, Lemma 4.7): Let H be an algebra having a reduct
〈H; →, �, 0, 1〉 that is a bounded Hilbert algebra with a nucleus. Letting ¬x := x → 0, the
following identities are satisfied:
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(i) x → ¬¬x = 1.
(ii) ¬¬¬x = ¬x.
(iii) x → ¬y = y → ¬x.
(iv) ¬x = ¬�x = �¬x.
(v) ¬¬(x → y) = x → ¬¬y.

Given an algebra A having a QNI-algebra reduct, we define: A+ := {a ∈ A : ∼ a � a}
and, for a twist-algebra A ≤ S��, we let ∇A := π1[A+].

Proposition 6.6 (cf. Prop. 6.1): Let A ≤ S�� be a twist-algebra having a QNI-algebra
reduct. Then:

(i) A+ = {〈a, 0〉 : 〈a, 0〉 ∈ A}.
(ii) For all a ∈ S, if ¬a = 0, then a ∈ ∇A (i.e. ∇A contains the set D(S) of the dense

elements of S; see Proposition 2.13(ii)).
(iii) For all a, b ∈ S, if a ∈ ∇A, then ¬¬a ∈ ∇A and b → a ∈ ∇A.
(iv) If A has a quasi-Nelson pocrim reduct, then ∇A is closed under finite meets and

satisfies the following condition: for all a ∈ S, if ¬¬a ∈ ∇A, then a ∈ ∇A.
(v) If A is a quasi-Nelson algebra, then ∇A is a lattice filter.

Proposition 6.7 (cf. Prop. 6.2): Let S = 〈S; �, →, 0, 1〉 be an nH-semigroup and
∇ ⊆ S.

(i) If ∇ satisfies item Proposition 6.6(iii), then the set:

Tw(S, ∇) := {〈a1, a2〉 ∈ S�� : ¬a1 → ¬¬a2 ∈ ∇}

is the universe of a QNI twist-algebra 〈Tw(S, ∇); →, ∼, 0, 1〉 with operations given
by Definition 4.6.

(ii) If S is a bounded implicative semilattice with a nucleus and ∇ further satis-
fies Proposition 6.6(iv), then Tw(S, ∇) is closed under the operation ∗ (given by
Definition 4.14), so 〈Tw(S, ∇); ∗, →, ∼, 0, 1〉 ∈ QNP.

(iii) If S is a ⊕-implicative semilattice and ∇ further satisfies Proposition 6.6(iv), then
Tw(S, ∇) is closed under the operation ∧ (given by Definition 5.6), therefore we
have 〈Tw(S, ∇); ∗, ∧, →, ∼, 0, 1〉 ∈ QNS.

(iv) If S is a Heyting algebra with a nucleus and ∇ is a lattice filter that satisfies Proposi-
tion 6.6(ii), then Tw(S, ∇) is closed under the operation ∨ (given by Definition 2.9),
so 〈Tw(S, ∇); ∗, ∧, ∨, ⇒, ∼, 0, 1〉 is a quasi-Nelson algebra.

As noted earlier about quasi-Nelson monoids, the constructions described in the
preceding proposition can be employed to produce examples of QNI-algebras and
quasi-Nelson semihoops and pocrims which will not, in general, be reducts of quasi-
Nelson algebras. Furthermore, we are now ready to prove an analogue of Proposi-
tion 2.13 for QNM and QNS.

Proposition 6.8 (cf. Prop. 6.3): Let A ≤ S�� be a twist-algebra.
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(i) If A is a QNI-algebra, then A ⊆ Tw(S, ∇).
(ii) If A is a quasi-Nelson pocrim or a quasi-Nelson semihoop, then A = Tw(S, ∇).

As hinted at earlier, the proof of preceding proposition entails that, in the case of
quasi-Nelson semihoops, the set Tw(S, ∇) could have been equivalently defined as:

Tw(S, ∇) := {〈a1, a2〉 ∈ S�� : ¬a1 → a2 ∈ ∇}.

Joining Propositions 6.6, 6.7 and 6.8, we obtain the announced refinement of the
representation results for quasi-Nelson pocrims and semihoops.

Theorem 6.9 (Representation of QNP, II): Every quasi-Nelson pocrim A is isomorphic
to a QNP twist-algebra Tw(A��, ∇A), constructed according to Proposition 6.7, through the
map ι given by ι(a) = 〈[a], [∼ a]〉 for all a ∈ A.

Theorem 6.10 (Representation of QNS, II): Every quasi-Nelson semihoop A is iso-
morphic to the QNS twist-algebra Tw(A��, ∇A), constructed according to Proposition 6.7,
through the map ι given by ι(a) = 〈[a], [∼ a]〉 for all a ∈ A.

We close the section by highlighting a few open questions that have emerged so
far.

Problem 6.11 (cf. Problem 6.4): Can the representation of Theorem 6.10 be extended
to the other classes of algebras considered in the previous sections, namely QNM and
QNI?

As observed at the beginning of the section, quasi-Nelson semihoops could be pre-
sented in the language {∧, ∗, ⇒, 0, 1} of bounded semihoops, or even in the language
{∧, ⇒, 0, 1}, which are rich enough to formulate the Nelson identity. This leads to the
following conjecture.

Problem 6.12: Does QNS (viewed as a class of algebras in the language of bounded
semihoops) coincide with the class of bounded (3-potent) semihoops that satisfy the
identity (Nelson)?

A distinct, perhaps harder question is that of characterising the negation-free
subreducts of quasi-Nelson semihoops.

Problem 6.13: Axiomatize the class of semihoops that are the {∧, ∗, ⇒, 1}-subreducts
of quasi-Nelson semihoops.

7. Completions and embeddings

In this section we finally verify that the classes of algebras we have been dealing with
so far (quasi-Nelson monoids, quasi-Nelson pocrims and quasi-Nelson semihoops)
indeed correspond to (respectively) the classes of {∗, ∼}-, {∗, →, ∼}- and {∧, ∗, →, ∼}-
subreducts of quasi-Nelson algebras. To this end we are going to apply a uniform proof
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strategy, showing that every quasi-Nelson monoid (pocrim, semihoop) embeds into a
quasi-Nelson algebra.

Given a (say) quasi-Nelson monoid M, we will first show that the quotient algebra
M�� embeds into a Heyting algebra with a nucleus H (say, by a map e : M�� → H), and
then verify that embedding e may be lifted to a map e�� : (M��)�� → (H)�� between the
corresponding twist-algebras which is also an embedding. The same strategy allowed
us to establish the corresponding result for QNI algebras in Rivieccio (2022a, Cor. 4.19)

We have seen with Example 4.12 that, given a bounded implicative semilattice with
a nucleus 〈A; ∧, →, �, 0, 1〉, one can obtain a ⇀-semilattice (Definition 3.7) by let-
ting x ⇀ y := x → �y. Thus, one can consider bounded implicative semilattices with
nuclei as algebras in this enriched language 〈A; ∧, →, ⇀, �, 0, 1〉, with the operation
⇀ canonically defined as above (in such a case, one can also omit the nucleus from
the signature, for it is definable by �x := 1 ⇀ x). Our next aim is to show that every
⇀-semilattice S = 〈S; ∧, ⇀, 0, 1〉 can be embedded into an algebra 〈A; ∧, →, ⇀, 0, 1〉
of this type by a map that preserves all the operations of S.

Recall that a semilattice 〈A; ∧, 0, 1〉 is complete when the meet of every subset B ⊆ A
(denoted

∧
B) exists in A. Given an implicative semilattice 〈A; ∧, →, 0, 1〉 and b ∈ A,

we shall consider the operation �b : A → A given by �ba := (a → b) → b for every
a ∈ A.

Lemma 7.1: Let S = 〈S; ∧, ⇀, 0, 1〉 be a ⇀-semilattice (with nucleus �) and let A =
〈A; ∧, →, 0, 1〉 be a complete implicative semilattice. Suppose 〈S; ∧, 0, 1〉 ≤ 〈A; ∧, 0, 1〉, i.e.
suppose that the {∧, 0, 1}-reduct of S is (isomorphic to) a subalgebra of the corresponding
reduct of A. Then:

(i) S � x ⇀ y = �x → �y = x → �y.
(ii) Letting �′a := ∧{��ba : b ∈ S} for all a ∈ A, we have that 〈A; ∧, →, �′, 0, 1〉 is a

bounded implicative semilattice with a nucleus (Definition 4.11) and that �′ agrees
with � on S.

Proof: (i). Let us prove the first equality first. By Definitions 3.7(vi) and 2.5(ii), we have
�a ∧ (a ⇀ b) = �(a ∧ b) = �a ∧ �b ≤ �b. From �a ∧ (a ⇀ b) ≤ �b, by residua-
tion, we obtain a ⇀ b ≤ �a → �b. For the converse inequality, using the properties
of the intuitionistic implication, we have (�a → �b) ∧ �a = �b ∧ �a ≤ �b. Then,
by Definition 3.7(vii), we obtain �a → �b ≤ a ⇀ b.

As to the second equality, recall that the intuitionistic implication is order-
reversing in the first argument. Then a ≤ �a entails �a → �b ≤ a → �b. To
show a → �b ≤ �a → �b, observe that, using the properties of the nucleus,
we have �a ∧ (a → �b) ≤ �a ∧ �(a → �b) = �(a ∧ (a → �b)) = �(a ∧ �b) =
�a ∧ ��b = �a ∧ �b ≤ �b. Thus �a ∧ (a → �b) ≤ �b, which gives us a → �b ≤
�a → �b by residuation.

(ii). Recall from Macnab (1976, Lemma 2.5) that each �b satisfies all the proper-
ties postulated in Definition 2.6, except perhaps (i). Moreover, the definition of �′a
allows us to apply (Macnab, 1976, Thm. 2.8 (ii)) to conclude that �′a also satisfies all
items in Definition 2.6, except perhaps (i). But the latter is easily seen to be satisfied,
for �′0 ≤ ��00 = �00 = 0. Hence, �′ is a nucleus in the sense of Definition 2.6. It
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remains to show that � and �′ agree on S. Let then a, b ∈ S. On the one hand, by item
(i) above, we have a → �b = �a → �b. From the latter, by residuation, we obtain
�a ≤ (a → �b) → �b. Thus �a ≤ �′a. To show �′a ≤ �a, it suffices to observe that
a ≤ �a entails �a = 1 → �a = (a → �a) → �a. �

It is well known that every (bounded) meet semilattice 〈S; ∧, 0, 1〉 is embeddable
into a complete implicative semilattice (for instance, into the lattice of down-sets of
〈S; ∧, 0, 1〉, which is a complete Heyting algebra). Thus, given a ⇀-semilattice S =
〈S; ∧, ⇀, 0, 1〉, we can view the reduct 〈S; ∧, 0, 1〉 as a subalgebra of the →-free reduct
of some complete implicative semilattice 〈A; ∧, →, 0, 1〉, and apply Lemma 7.1(ii) to
extend the operation ⇀ to A. Hence, we reach the following result.

Proposition 7.2: Every ⇀-semilattice embeds into a complete implicative semilattice
with a nucleus.

The following is an easy consequence of the preceding proposition.

Proposition 7.3: Every quasi-Nelson monoid (Definition 3.2) embeds into a quasi-Nelson
pocrim (Definition 4.9)

Proof: Let M = 〈M; ∗, ∼M, 0M, 1M〉 be a quasi-Nelson monoid. By the twist repre-
sentation (Theorem 3.18), we can assume M ≤ S�� for some ⇀-semilattice S =
〈S; ∧S, ⇀S, 0S, 1S〉. By Proposition 7.2, there is an embedding e : S → A of S into a (com-
plete) implicative semilattice with a nucleus A = 〈A; ∧A, →A, ⇀A, �A, 0A, 1A〉. It is then
easy to verify that the map e�� : S × S → A × A given by e��〈a1, a2〉 := 〈e(a1), e(a2)〉
for all a1, a2 ∈ S (we write e��〈a1, a2〉 instead of e��(〈a1, a2〉) to improve legibility) is an
embedding of M into the quasi-Nelson pocrim A�� = 〈A��; ∗, →, ∼, 0, 1〉 constructed
according to Definition 4.14. Regarding the monoid operation, we have, in particular
(recall that, by Definition 3.14, �Sa2 = a2 and �Sb2 = b2):

e��(〈a1, a2〉 ∗M 〈b1, b2〉)
= e��(〈a1 ∧S a2, (a1 ⇀S b1) ∧S (b1 ⇀S a2)〉)
= 〈e(a1 ∧S a2), e((a1 ⇀S b2) ∧S (b1 ⇀S a2))〉)
= 〈e(a1) ∧A e(a2), (e(a1) ⇀A e(b2)) ∧A (e(b1) ⇀A e(a2))〉
= 〈e(a1) ∧A e(a2), (e(a1) →A �Ae(b2)) ∧A (e(b1) →A �Ae(a2))〉
= 〈e(a1) ∧A e(a2), (e(a1) →A e(�Sb2)) ∧A (e(b1) →A e(�Sa2))〉
= 〈e(a1) ∧A e(a2), (e(a1) →A e(b2)) ∧A (e(b1) →A e(a2))〉
= 〈e(a1), e(a2)〉 ∗A�� 〈e(b1), e(b2)〉
= e��〈a1, a2〉 ∗A�� e��〈b1, b2〉. �

We next show that, in turn, every quasi-Nelson pocrim can be embedded into
a quasi-Nelson algebra. For this, we only need the following result and the well-
known fact that every implicative semilattice embeds into a Heyting algebra (see e.g.
Balbes, 1969, Thm. 5.3).



JOURNAL OF APPLIED NON-CLASSICAL LOGICS 93

Lemma 7.4 (Macnab, 1976, Thm. 13.15): Let 〈S; ∧, →, �, 0, 1〉 a bounded implica-
tive semilattice with a nucleus and let 〈A; ∧, ∨, →, 0, 1〉 be a complete Heyting algebra.
Suppose 〈S; ∧, →, 0, 1〉 ≤ 〈A; ∧, →, 0, 1〉. Letting, for all a ∈ A,

�′a :=
∧

{��ba : b ∈ S},

we have that 〈A; ∧, ∨, →, �′, 0, 1〉 is nuclear Heyting algebra and �′ agrees with � on S.

Using Lemma 7.4, it is straightforward to mimic the proof of Proposition 7.3; in
this case we rely on the observation that every implicative meet semilattice can be
embedded into a complete Heyting algebra.

Proposition 7.5: Every quasi-Nelson pocrim (Definition 4.9) embeds into a quasi-Nelson
algebra (Definition 2.8).

Our next and last goal for this section is to establish an analogue of Proposition 7.5
for quasi-Nelson semihoops. We shall need the following lemma.

Lemma 7.6: Let S = 〈S; ∧, ⊕, →, 0, 1〉 be a ⊕-implicative semilattice (Definition 5.3) with
nucleus �, and let 〈H; ∧, ∨, →, 0, 1〉 be a complete Heyting algebra. Suppose 〈S; ∧, →
, 0, 1〉 ≤ 〈A; ∧, →, 0, 1〉. Then, defining �′ according to Lemma 7.4, we have a ⊕ b =
�′(a ∨ b) for all a, b ∈ S, and �′ agrees with � on S.

Proof: Recall that 〈H; ∧, ∨, →, �′, 0, 1〉 is a nuclear Heyting algebra by Lemma 7.4. It is
then easy to check that the operation ⊕′ given by x ⊕′ y := �′(x ∨ y) satisfies all the
properties required by Definition 5.3, turning 〈H; ∧, ⊕′, →, 0, 1〉 into a ⊕-implicative
semilattice. It remains to prove that ⊕ and ⊕′ agree on S. To show that

a ⊕ b ≤ �′(a ∨ b) =
∧

{��c(a ∨ b) : c ∈ S}

we proceed as follows. We observe that, for every c ∈ S, we have a ≤ ��c(a ∨
b) = ((a ∨ b) → �c) → �c. Indeed, by the properties of Heyting algebras, we
have ((a ∨ b) → �c) → �c = ((a → �c) ∧ (b → �c)) → �c. Thus, by residua-
tion, a ≤ ((a ∨ b) → �c) → �c is equivalent to (a → �c) ∧ (b → �c) ∧ a ≤ �c,
and the latter holds true because (a → �c) ∧ (b → �c) ∧ a = a ∧ �c ∧ (b →
�c) = a ∧ �c. Hence, a ≤ ((a → �c) ∧ (b → �c)) → �c and, similarly, b ≤ ((a →
�c) ∧ (b → �c)) → �c. Since ((a → �c) ∧ (b → �c)) → �c ∈ S, we may apply
Lemma 5.5(i) to conclude a ⊕ b ≤ �(((a → �c) ∧ (b → �c)) → �c) = �(((a ∨
b) → �c) → �c) = ((a ∨ b) → �c) → �c, where the last equality holds because
every nucleus satisfies �(x → �y) = x → �y (Macnab, 1976, Lemma 13.8 (ii)). Thus,
we have a ⊕ b ≤ ��c(a ∨ b) for every c ∈ S, which entails a ⊕ b ≤ �′(a ∨ b), as
required.

For the converse inequality, it suffices to show that a ⊕ b ∈ {��c(a ∨ b) : c ∈
S}, that is, a ⊕ b = ((a ∨ b) → �(a ⊕ b)) → �(a ⊕ b). To see this, observe that
Definition 5.3(v) and nucleus properties entail a ≤ �a ≤ �(a ⊕ b) and, similarly, b ≤
�(a ⊕ b). Hence, (a ∨ b) → �(a ⊕ b) = (a → �(a ⊕ b)) ∧ (b → �(a ⊕ b)) = 1. The
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latter gives us ((a ∨ b) → �(a ⊕ b)) → �(a ⊕ b) = 1 → �(a ⊕ b) = �(a ⊕ b). But
�(a ⊕ b) = a ⊕ b, by Lemma 5.5(ii). Hence, the required result follows. �

As before, one can use Lemma 7.6, to mimic the proof of Proposition 7.3, obtaining
the following result.

Proposition 7.7: Every quasi-Nelson semihoop (Definition 5.1) embeds into a quasi-
Nelson algebra (Definition 2.8).

We are finally in a position to join together our main results: the classes of alge-
bras introduced in the previous sections do indeed characterise the corresponding
fragments of quasi-Nelson algebras.

Corollary 7.8: The classes QNM, QNP and QNS are precisely (respectively) the {∗, ∼}-, the
{∗, →, ∼}- and the {∧, ∗, →, ∼}-subreducts of quasi-Nelson algebras.

Let us stress that the preceding result cannot possibly be sharpened by saying that
every (say) quasi-Nelson monoid is the reduct of a quasi-Nelson algebra. This follows
from the results presented in Section 6. Consider, for instance, S ∈ QNM and let ∇ ⊆ S
be a set that satisfies items (iii) and (iv) of Proposition 6.1 but is not a lattice filter. Then,
by Proposition 6.2, the set Tw(S, ∇) is the universe of a quasi-Nelson monoid which
(by Proposition 2.13) is not the reduct of any quasi-Nelson algebra. A similar reasoning
(using Proposition 6.7) applies to quasi-Nelson QNP and QNS as well.

8. Congruence properties

In this section we try and obtain some information on the congruence lattices of the
new classes of algebras we have been dealing with. As we shall see, the twist con-
struction will prove very helpful in this endeavour too, allowing us to establish a link (a
lattice isomorphism) between the congruences of a twist-algebra A and those of the
corresponding intuitionistic algebra A��.

We begin with a lemma that applies to all the factor algebras in our twist represen-
tations.

Lemma 8.1: Let H be an algebra having a Hilbert algebra reduct 〈H; →〉 with an operator
� satisfying a → b ≤ �a → �b for all a, b ∈ H (in particular, every nucleus satisfies this).
Let θ be a congruence of the reduct 〈H; →〉. Then θ is also a congruence of 〈H; →, �〉.

Proof: We shall use the following observation:

θ = {〈a, b〉 ∈ H × H : 〈a → b, 1〉, 〈b → a, 1〉 ∈ θ}.

As shown in Rivieccio and Jansana (2021, Lemma 36), the property holds for every
algebra having a Hilbert algebra reduct and for every congruence θ of 〈H; →〉.

Let 〈a, b〉 ∈ θ . Then 〈a → b, 1〉 ∈ θ , and also

〈(a → b) → (�a → �b), 1 → (�a → �b)〉 = 〈1, �a → �b〉 ∈ θ .

In a similar way we obtain 〈1, �b → �a〉 ∈ θ . Then, 〈�a, �b〉 ∈ θ , as required. �
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Proposition 8.2 (Rivieccio, 2022a, Prop. 4.14): For every nH-semigroup S =
〈S; �, →, 0, 1〉, we have Con(S) = Con(〈S; →〉).

As observed in Example 4.12, every bounded implicative semilattice 〈S; ∧, →
, 0, 1〉 may be viewed as an nH-semigroup (on which � = ∧). Thus, Proposition 8.2
also applies to congruences of bounded implicative semilattices (see e.g. Celani
& Jansana, 2012). That is, for every bounded implicative semilattice 〈S; ∧, →, 0, 1〉, we
have Con(〈S, ∧, →〉) = Con(〈S, →〉).

The proof of the following proposition, as well as any subsequent proof which has
been omitted in this section, can be found in the Appendix.

Proposition 8.3: For every ⊕-implicative semilattice S = 〈S; ∧, ⊕, →, 0, 1〉, we have
Con(S) = Con(〈S; →〉).

Proposition 8.4 (Rivieccio & Jansana, 2021, Thm. 6, Prop. 37): For every A ∈ QNI,
one has Con(A) ∼= Con(A��) via the mutually inverse maps (.)�� and (.)�� defined, for all
θ ∈ Con(A) and η ∈ Con(A��), as follows:

θ�� := {〈[a], [b]〉 ∈ A/≡ × A/≡ : 〈a → c, b → c〉 ∈ θ forallc ∈ A}.
η�� := {〈a, b〉 ∈ A × A : 〈[a], [b]〉, 〈[∼ a], [∼ b]〉 ∈ η}.

Hence (by Proposition 8.2), we have Con(A) ∼= Con(〈A/≡; →, 1〉), where 〈A/≡;
→, 1〉 is the Hilbert algebra reduct of A�� (cf. Proposition 4.7).

Since the lattice of congruences of every Hilbert algebra is distributive (Celani
et al., 2009, p. 477), Proposition 8.4 entails that the variety QNI is congruence-
distributive as well. The latter property (being characterisable by a Maltsev term) is
preserved by language expansions. Thus, we have the following.

Corollary 8.5 (cf. Rivieccio & Jansana, 2021, Cor. 38): The varieties QNI, QNP and QNS
are congruence-distributive.

Since QNP is a variety of 3-potent pocrims (Proposition 4.19), the preceding
result on QNP could also be derived from Blok and Raftery (1997). Indeed, Blok
and Raftery (1997, Ex. IV) further implies that QNP is 3-permutable, and Blok
and Raftery (1997, Prop. 3.1 (iv)) that QNP is 1-regular; regarding the congruence
extension property, see Proposition 8.14 below. By contrast, the congruence lattices
of QNM do not satisfy distributivity, nor indeed any non-trivial lattice identity. This fol-
lows from the observation that the same holds for pseudo-complemented semilattices
(Sankappanavar (1979, Cor. 4.14)), which may be viewed as a subvariety of QNM (see
Proposition 3.4).

Proposition 8.6: For every A ∈ QNP, we have Con(A) ∼= Con(A��) via the maps (.)�� and
(.)�� defined in Proposition 8.4.

Proof: In the light of Proposition 8.4, it suffices to show that η�� ∈ Con(A) for
all η ∈ Con(A��) and θ�� ∈ Con(A��) for all θ ∈ Con(A). Regarding the latter, recall
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that, from our earlier observations and Lemma 8.1, we have Con(〈A/≡; ∧, →, �〉) =
Con(〈A/≡; →, �〉) = Con(〈A/≡; →〉). Then θ�� ∈ Con(A��) simply holds by Proposi-
tion 8.4. To show η�� ∈ Con(A), it suffices to verify that η�� is compatible with the
monoid operation.

Let then a, b ∈ A be such that 〈a, b〉 ∈ η��. We shall write [a], [b] etc. for the
elements of A�� instead of a/≡, b/≡ etc. By assumption, 〈[a], [b]〉, 〈[∼ a], [∼ b]〉 ∈
η. Let c ∈ A. From 〈[a], [b]〉 ∈ η we have 〈[a] ∧ [c], [b] ∧ [c]〉 = 〈[a ∗ c], [b ∗ c]〉 ∈
η. Also from 〈[a], [b]〉 ∈ η we have 〈[a] → [∼ c], [b] → [∼ c]〉 = 〈[a → ∼ c], [b →
∼ c]〉 ∈ η. Likewise, 〈[∼ a], [∼ b]〉 ∈ η gives us 〈[c] → [∼ a], [c] → [∼ b]〉 = 〈[c →
∼ a], [c → ∼ b]〉 ∈ η. Then 〈[a → ∼ c] ∧ [c → ∼ a], [b → ∼ c] ∧ [c → ∼ b]〉 = 〈[(a →
∼ c) ∗ (c → ∼ a)], [(b → ∼ c) ∗ (c → ∼ b)]〉 ∈ η. Observe that 〈[(a → ∼ c) ∗ (c →
∼ a)], [(b → ∼ c) ∗ (c → ∼ b)]〉 = 〈[∼(a ∗ c)], [∼(b ∗ c)]〉, by Definition 4.9(iii).4. We
have thus 〈[a ∗ c], [b ∗ c]〉, 〈[∼(a ∗ c)], [∼(b ∗ c)]〉 ∈ η, i.e. 〈a ∗ c, b ∗ c〉 ∈ η��. Since the
monoid operation is commutative, this entails η�� ∈ Con(A). �

Proposition 8.7: For every A ∈ QNS, we have Con(A) ∼= Con(A��) via the maps (.)�� and
(.)�� defined in Proposition 8.4.

The preceding propositions imply, for instance, that every algebra A ∈ QNP ∪ QNS
is subdirectly irreducible (resp. simple) if and only if A�� (viewed as either an implica-
tive semilattice or as a Hilbert algebra) is subdirectly irreducible (resp. simple). The
following is also an immediate consequence.

Corollary 8.8: For every A = 〈A; ∗, →, ∼, 0, 1〉 ∈ QNP ∪ QNS, we have Con(A) =
Con(〈A; →, ∼〉).

Given an algebra A with a partial order ≤ and maximum 1, we shall say that an
element c ∈ A is the penultimate element of A if c �= 1 and, for all a ∈ A such that a < 1,
it holds that a ≤ c.

Lemma 8.9 (Rivieccio, 2022a, Thm. 4.23): An algebra A ∈ QNI is subdirectly irre-
ducible if and only if the order ≤ on A has a penultimate element.

Lemma 8.9 and Corollary 8.8 give us the following.

Corollary 8.10: An algebra A ∈ QNP ∪ QNS is subdirectly irreducible if and only if the
order ≤ on A has a penultimate element.

Recall from earlier the term:

q(x, y, z) := (x → y) → ((y → x) → ((∼ x → ∼ y) → ((∼ y → ∼ x) → z))).

Proposition 8.11 (Rivieccio & Jansana, 2021, Cor. 34): The term q(x, y, z) is a (com-
mutative, non-regular) ternary deduction term for QNI-algebras in the sense of Blok
and Pigozzi (1994). Hence, the variety QNI has equationally definable principal congru-
ences and the strong congruence extension property (Blok & Pigozzi, 1994, Thm. 2.12).
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Proposition 8.6 suggests that q(x, y, z) may be a ternary deduction term for
QNP as well. We give a direct proof of this below. To this end, observe that, by
Definition 4.9(iii).1, instead of the term q(x, y, z) we can equivalently use the following
one, which is easier to handle in computations:

r(x, y, z) := ((x → y) ∗ (y → x) ∗ (∼ x → ∼ y) ∗ (∼ y → ∼ x)) → z.

Lemma 8.12: Every A ∈ QNP satisfies the following identities:

(i) r(x, x, y) = y.
(ii) r(x, y, x) = r(x, y, y).
(iii) r(x, y, ∼ z) = r(x, y, ∼ r(x, y, z)).
(iv) r(x, y, z → w) = r(x, y, r(x, y, z) → r(x, y, w)).
(v) r(x, y, z ∗ w) = r(x, y, r(x, y, z) ∗ r(x, y, w)).

Lemma 8.13: Every A ∈ QNS satisfies the following identity:

r(x, y, z ∧ w) = r(x, y, r(x, y, z) ∧ r(x, y, w)).

Proof: As before, we let α := (a1 → b1) ∧ (b1 → a1) ∧ (a2 → b2) ∧ (b2 → a2). Then

r(a, b, c) ∧ r(a, b, d) = 〈(α → c1) ∧ (α → d1), (�α ∧ c2) ⊕ (�α ∧ d2)〉,

which, using Definition 5.3(vi) as well as Definition 2.5(i) and the properties of the
Heyting implication, we can reduce to 〈α → (c1 ∧ d1), �α ∧ (c2 ⊕ d2)〉.

The first component of r(a, b, r(a, b, c) ∧ r(a, b, d)) is thus:

α → (α → (c1 ∧ d1)) = α → (c1 ∧ d1)

and the second is �α ∧ �α ∧ (c2 ⊕ d2) = �α ∧ (c2 ⊕ d2). Since we have

r(a, b, c ∧ d) = 〈α → (c1 ∧ d1), �α ∧ (c2 ⊕ d2)〉,

the desired result follows. �

The preceding lemmas immediately give us the following result (cf. Blok
& Raftery, 1997, Thm. 4.2).

Proposition 8.14 (cf. Rivieccio & Jansana, 2021, Cor. 34): The term r(x, y, z), or equiv-
alently q(x, y, z), is a (commutative, non-regular) ternary deduction term for QNP as well
as for QNS. Hence, the varieties QNP and QNS have equationally definable principal
congruences and the strong congruence extension property (Blok & Pigozzi, 1994, Thm.
2.12).

Problem 8.15: The variety of quasi-Nelson algebras (as a subvariety of residuated lat-
tices) is congruence-permutable, with Maltsev term ((x ⇒ y) ⇒ z) ∧ ((z ⇒ y) ⇒ x).
The same term witnesses the congruence-permutability of the variety QNS and of the
variety of implicative semilattices (Blok et al., 1984, p. 367). On the other hand, since



98 U. RIVIECCIO

Hilbert algebras are not congruence-permutable (Blok et al., 1984, p. 368), the class
QNI cannot be congruence-permutable either (cf. Example 4.3). The same holds for
QNM. Indeed, as observed earlier, the congruence lattices of members of QNM do not
satisfy any non-trivial lattice identity: in particular, QNM is not congruence-modular,
which entails that it cannot be congruence-permutable (Burris & Sankappanavar, 1981,
Thm. II.5.10). We have seen that QNP has 3-permutable congruences, but the above
considerations leave the following question open: is QNP congruence-permutable?

Problem 8.16: It was shown in Rivieccio and Spinks (2020) that quasi-Nelson algebras
can be characterised as the class of (0, 1)-congruence orderable commutative integral
bounded residuated lattices (see Rivieccio & Spinks, 2020 for the relevant definitions).
Similar questions may be asked concerning quasi-Nelson pocrims and semihoops,
namely: is QNP precisely the class of (0, 1)-congruence orderable bounded pocrims? Is
QNS precisely the class of (0, 1)-congruence orderable bounded semihoops? We notice
that the lemmas leading to the characterisation of quasi-Nelson algebras obtained in
Rivieccio and Spinks (2020) rely essentially on the presence of certain operations in the
language, especially the lattice join, and therefore do not seem to be easily adaptable
to the case of pocrims and semihoops.

9. Subvarieties

In the preceding sections, we have often mentioned and used the observation that any
pseudo-complemented semilattice may be viewed as a quasi-Nelson monoid (Propo-
sition 3.4); similarly, any bounded Hilbert algebra may be viewed as a QNI-algebra
(Example 4.3), every bounded implicative semilattice is an example of a quasi-Nelson
pocrim (Proposition 4.10), and every Heyting algebra is a quasi-Nelson semihoop
(Example 5.4). It is therefore natural to ask (if and) how the above-mentioned classes of
algebras can be obtained as subvarieties of QNM, QNI, QNP and QNS. For QNI, some of
these questions have been settled in Rivieccio (2022a), from which we cite a few results
below.

Proposition 9.1 (Rivieccio, 2022a, Prop. 4.26): Let A = 〈A; →, ∼, 0, 1〉 ≤ S�� be a QNI
twist-algebra, with S = 〈S; �, →, 0, 1〉 an nH-semigroup.

(i) A � ∼∼ x → x = 1 iff A � ∼ ∼ x = x iff A � x = 1 � x (i.e. 1 is the neutral
element for � on the left) iff A � (x � x) → x = 1 iff S � �x → x = 1 iff
S � �x = x (i.e. � is the identity map) iff the natural order of the Hilbert algebra
reduct of S forms a bounded meet-semilattice with � as meet.

(ii) A � (∼ ∼ x → ∼ ∼ y) → ∼∼(x → y) = 1 iff A � ∼∼ x → ∼∼ y = ∼∼(x →
y) iff S � (�x → �y) → �(x → y) = 1 iff S � �x → �y = �(x → y).

(iii) The operation � is commutative iff S ∼= A via the map a �→ 〈a, a → 0〉 for all
a ∈ S, iff A is a bounded Hilbert algebra.

(iv) A � x = x � x (i.e. the operation � is idempotent) iff A � x = x � 1 (i.e. 1 is the
neutral element for � on the right) iff A � (∼ x → ∼ y) → (y → x) = 1 iff A �
∼ x → ∼ y = y → x iff A is a Boolean algebra (on which � is the meet) iff S is a
Boolean algebra and S ∼= A via the map a �→ 〈a, a → 0〉 for all a ∈ S.
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(v) A � ((x → y) → x) → x = 1 iff S is a Boolean algebra.

We write x � y instead of x2 = x2 ∗ y2, and we let ¬x := ∼(x ∗ x). This notation is
justified by the observation that every QN-algebra satisfies x → 0 = ∼(x ∗ x).

The proof of the following proposition, as well as any subsequent proof which has
been omitted in this section, can be found in the Appendix.

Proposition 9.2: Let M = 〈M; ∗, ∼, 0, 1〉 ≤ S�� be a QNM twist-algebra, with S =
〈S; ∧, ⇀, 0, 1〉 a ⇀-semilattice.

(i) M � ∼∼ x = x (i.e. M is the subreduct of a Nelson algebra) iff S � �x = x (i.e.
� is the identity map) iff S = 〈S, ∧, ⇀, 0, 1〉 is a bounded implicative semilattice
(with ⇀ as implication).

(ii) M � x = x ∗ x (i.e. ∗ is a semilattice operation) iff 〈S; ∧, ¬, 0, 1〉 ∼= M via the map
a �→ 〈a, ¬a〉 for all a ∈ S iff M is a pseudo-complemented semilattice.

(iii) M � ∼∼ x = x ∗ x iff M is a Boolean algebra (with ∗ as meet and ∼ as Boolean
complement) iff S is a Boolean algebra and 〈S; ∧, ¬, 0, 1〉 ∼= M via the map a �→
〈a, ¬a〉 for all a ∈ S.

(iv) M � (x ⇀ 0) ⇀ 0 � x iff S is a Boolean algebra (with ⇀ as implication).
(v) M � (¬∼ x)2 ≤ ¬¬x iff ¬a1 = ¬¬a2 for all 〈a1, a2〉 ∈ M (i.e. M is normal in the

terminology of Goranko (1985)).

The correspondences stated in Propositions 9.1 and 9.2 extend to the classes QNP
and QNS in the obvious way. Moreover, with a richer language at our disposal, we can
formulate more properties and establish further correspondences. Recall from Font
et al. (1984) that a Wajsberg algebra is an algebra 〈A; ⇒, ∼, 1〉 that satisfies the following
identities:

(w1) 1 ⇒ x = x.
(w2) (x ⇒ y) ⇒ ((y ⇒ z) ⇒ (x ⇒ z)) = 1.
(w3) (x ⇒ y) ⇒ y = (y ⇒ x) ⇒ x.
(w4) (∼ x ⇒ ∼ y) ⇒ (y ⇒ x) = 1.

Wajsberg algebras (also known as MV-algebras when presented in an alternative
language) are the algebraic counterpart of infinite-valued Łukasiewicz logic. Interpret-
ing the operations ⇒, ∼ and 1 as, respectively, the strong implication, the negation
and the top element of the partial order, it can be easily verified that every sub-
reduct of a quasi-Nelson algebra satisfies (w1) and (w2) but not necessarily (w3) or
(w4); Nelson algebras further satisfy (w4) but not necessarily (w3). It is well known that
the subvariety of Nelson algebras defined by (w3) coincides with the class of three-
valued Wajsberg algebras; this is the algebraic counterpart of the observation that
the least common extension of of Nelson logic and infinite-valued Łukasiewicz logic
is three-valued Łukasiewicz logic (see e.g. Vakarelov, 1977, Thm. 11). The first item
of Proposition 9.3 below shows that the result of requiring a quasi-Nelson pocrim to
satisfy (w3) yields a similar result, that is, also in the non-involutive setting we obtain
three-valued Wajsberg algebras.
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The identity considered in the second item of Proposition 9.3 corresponds, in the
setting of residuated lattices, to one of the possible formulations of the prelinear-
ity property (see Rivieccio & Flaminio, 2022; Rivieccio et al., 2020 for an extensive
study of prelinearity in the quasi-Nelson context). When the algebraic language
includes the lattice join, prelinearity is usually expressed by the less opaque identity
(x → y) ∨ (y → x) = 1. Classes of algebras satisfying prelinearity are of special inter-
est in fuzzy logics, and are particularly easy to work with, because each prelinear
algebra is well known to be representable as a subdirect product of linearly ordered
algebras. In the quasi-Nelson setting we could alternatively formulate the prelinearity
property, for instance, through the identity:

(x ⇒ y) ⇒ z ≤ ((y ⇒ x) ⇒ z) ⇒ z

which uses the strong rather than the weak quasi-Nelson implication. It turns out, how-
ever, that both options are equivalent (see Rivieccio et al., 2020; it is easy to see that the
same proof works in the non-involutive setting as well).

Proposition 9.3: Let A = 〈A; ∗, →, ∼, 0, 1〉 ≤ S�� ∈ QNP, with S = 〈S; ∧, →, �, 0, 1〉 an
implicative semilattice with a nucleus.

(i) A � (x → y) → y = (y → x) → x iff 〈S; ∧, →, 0, 1〉 is a Boolean algebra (on
which � is the identity map) iff 〈A; ⇒, ∼, 1〉 is a (three-valued) Wajsberg algebra
iff A � (x ⇒ y) ⇒ y = (y ⇒ x) ⇒ x.

(ii) A � (x → y) → z �((y → x) → z) → z iff 〈S; ∧, →, 0, 1〉 is a Gödel algebra.3

Proof: (i). It is clear that A � (x → y) → y = (y → x) → x if and only if S �
(x → y) → y = (y → x) → x. Observe that, if the latter identity holds, then we can
instantiate it as (x → 0) → 0 = (0 → x) → x. Since (0 → x) → x = x holds on every
implicative semilattice (or Hilbert algebra), we conclude that S satisfies ¬¬x = x.
Hence, 〈S; ∧, →, 0, 1〉 is a Boolean algebra on which x ∨ y := ¬(¬x ∧ ¬y) and, as
observed earlier, the nucleus � is necessarily the identity map.

This shows that the first two statements in item (i) are equivalent. The equivalence
between the second statement and the third is well known from the literature on
Nelson logic. It is also clear that the third statement implies the fourth.

To conclude the proof, assume A � (x ⇒ y) ⇒ y = (y ⇒ x) ⇒ x. Then A is involu-
tive, for we have ∼ ∼ a = (a ⇒ 0) ⇒ 0 = (0 ⇒ a) ⇒ a = 1 ⇒ a = a for all a ∈ A. This
means that A is the subreduct of a Nelson algebra, and A satisfies all four identities (w1)
–(w4) which define Wajsberg algebras. Hence, 〈A; ⇒, ∼, 1〉 is a (three-valued) Wajsberg
algebra, as required.

(ii). It is clear that A � (x → y) → z �((y → x) → z) → z if and only if S �
((x → y) → z) → (((y → x) → z) → z) = 1. The latter means that 〈S; ∧, →, 0, 1〉 is
a bounded Gödel hoop, i.e. a Gödel algebra (where the join is defined by x ∨ y :=
((x → y) → y) ∧ ((y → x) → x) Aglianò et al., 2007, Thm. 1.7). �

In the next lemma we look at conditions for a quasi-Nelson pocrim to have a
hoop (hence a meet semilattice) reduct. As the lemma illustrates, the latter amounts
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to imposing that the nucleus be the maximal one on the underlying implicative
semilattice.

Lemma 9.4: Let A = 〈A; ∗, →, ∼, 0, 1〉 ≤ S�� ∈ QNP, with S = 〈S; ∧, →, �, 0, 1〉 an
implicative semilattice with a nucleus. The following conditions are equivalent:

(i) A � x ∗ (x ⇒ y) = y ∗ (y ⇒ x).
(ii) A � x ∗ (x ⇒ ∼ x) = ∼ x ∗ (∼ x ⇒ x).
(iii) A � ¬¬x � ∼ ∼ x.
(iv) S � �x = ¬¬x.

Corollary 9.5: Let A = 〈A; ∗, →, ∼, 0, 1〉 ≤ S�� ∈ QNP, with S = 〈S; ∧, →, �, 0, 1〉 an
implicative semilattice with a nucleus. Assume A is involutive, i.e. A � ∼ ∼ x = x. The
following conditions are equivalent:

(i) Any of the statements in Proposition 9.3(i) holds.
(ii) A � x ∗ (x ⇒ y) = y ∗ (y ⇒ x).

Proof: It is clear that (i) entails S � �x = ¬¬x, which gives us (ii) by Lemma 9.4. For
the converse, recall that A is involutive if and only if � is the identity map on S. Then,
assuming (ii), we have S � x = ¬¬x, by Lemma 9.4. We conclude that S is Boolean, as
required. �

We have observed right after Definition 5.1 that a quasi-Nelson semihoop A need
not be a hoop. Indeed, more precisely, A is a hoop if and only if (any of ) the condi-
tions in Lemma 9.4 are satisfied; and Corollary 9.5 tells us that a quasi-Nelson semihoop
that is not a hoop can be obtained by considering the reduct of a Nelson algebra con-
structed as a twist-algebra over any non-Boolean Heyting algebra. We formalise these
as well as a few other interesting observations in the next and last proposition (we omit
the proof, which is analogous to the previous ones).

Proposition 9.6: Let A = 〈A; ∧, ∗, →, ∼, 0, 1〉 ≤ S�� be an algebra in QNS, with S =
〈S; ∧, ⊕, →, 0, 1〉 a ⊕-implicative semilattice.

(i) A � ∼∼ x = x iff 〈A; ∧, ⊕, →, ∼, 0, 1〉 is a Nelson algebra (⊕ being the lattice join)
iff the operation ⊕ is idempotent on S (hence, ⊕ is a join on S and � is the identity
map) iff 〈S; ∧, ⊕, 0, 1〉 is a bounded (distributive) lattice.

(ii) A � x ∧ y = x ∗ y iff A is a bounded implicative semilattice iff

〈S; ∧, →, ¬, 0, 1〉 ∼= 〈A; ∧, →, ∼, 0, 1〉
via the map a �→ 〈a, ¬a〉 for all a ∈ S.

(iii) A � x ∧ y = x ∗ (x ⇒ y) iff any of the conditions of Lemma 9.4 applies.

10. Future work

We have presented a first algebraic study of certain fragments of (quasi-)Nelson logic,
most of which had never been considered in the literature so far. Several further
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topics of potential interest remain to be explored. Besides the numbered Problems
mentioned in the previous sections, we list a few ideas below.

1. As we have seen with Theorem 2.14, the twist representation of quasi-Nelson
algebras associates, to each quasi-Nelson algebra A, a pair 〈H, ∇〉 such that H is a
Heyting algebra with a nucleus and ∇ ⊆ H is a dense lattice filter of H. Since each
pair 〈H, ∇〉 determines a unique twist-algebra, this establishes a one-to-one corre-
spondence which can be easily formulated as a categorical equivalence between two
naturally associated algebra-based categories (for details as well as potential appli-
cations of such an equivalence, see e.g. Rivieccio et al., 2020). We have established
with Theorems 6.9 and 6.10 that, similarly to the algebras in the full language, every
quasi-Nelson pocrim (or quasi-Nelson semihoop) may be represented as a pair 〈S, ∇〉
such that S is a bounded (⊕-)implicative semilattice with a nucleus and ∇ ⊆ S is a
special subset of S. By contrast, the representations obtained so far for quasi-Nelson
monoids (Theorem 3.18) and for QNI-algebras (Theorem 4.8) only allow us to associate
a family of distinct algebras to a given factor algebra S, namely, all the twist-algebras
over S; such a correspondence can also be formulated categorically, and results in an
adjunction rather than an equivalence.4 The reason for this is that the representation
of algebras as pairs (such as 〈H, ∇〉 or 〈S, ∇〉) relies heavily on the presence of certain
operations in the algebraic language (the monoid opreation and the implication in the
case of quasi-Nelson algebras, pocrims and semihoops, the meet, the join and the two
negations in the case of the {∧, ∨, ∼, ¬}-subreducts considered in Rivieccio, 2020a and
Sendlewski, 1991. As mentioned in Problems 6.4 and 6.11, it is therefore an open ques-
tion whether the representations of quasi-Nelson monoids and QNI-algebras can be
refined by adding further structure to the twist factors, thus obtaining a one-to-one
correspondence similar to the one we have for quasi-Nelson algebras.

2. Can the techniques employed in the present paper be successfully applied
to obtain characterisations of other fragments of quasi-Nelson logic/algebras? Pre-
vious experience suggests that we may be optimistic with regards to certain frag-
ments, for instance the ones corresponding to the {∗, ∧, ∼}-, the {∗, ∨, ∼}- and the
{∨, →, ∼}-subreducts of quasi-Nelson algebras. Other fragments, unfortunately, seem
to lie beyond the scope of our current techniques, either because the language is too
weak to express the key properties of quasi-Nelson algebras or because the relevant
operations do not behave well with respect to the twist construction. Examples of the
former kind are the negation-less fragments (including e.g. the {⇒}-fragment, which is
of obvious logical significance; see also the Problems 4.21 and 6.13 mentioned earlier);
an example of the latter is the {⇒, ∼}-fragment.

3. Although in the present paper we have not dealt with logical systems as such,
most of our results have a straightforward logical interpretation. The classes QNP and
QNS (as well as the subvarieties mentioned in Section 9), in particular, are obviously
the algebraic counterparts of algebraizable logical systems. We leave for a future pub-
lication the study of these systems, as well as the investigation of their relations with
other (fragments of ) substructural logics.

4. The recent paper by Busaniche et al. (2022) introduces a very general twist con-
struction based on the notion of Nelson conucleus, which allows one to obtain virtually
all the known examples in the literature as special cases. The main idea is that the var-
ious twist representations may be obtained uniformly by employing a unary function
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that realises, on every algebra, a special interior operator (a conucleus). In many of
the known cases, the conucleus is term definable from the basic algebraic opera-
tions (for instance on Nelson algebras it may be given by the map x �→ x ∗ x), but
(Busaniche et al., 2022) consider in general enriched algebras where the conucleus
is explicitly added as primitive. This approach is extended to quasi-Nelson and other
non-necessarily involutive algebras in Busaniche and Rivieccio (202x) , suggesting that
it might be successfully applied also to the setting of subreducts considered in the
present paper.

5. As we have seen, some of the twist constructions introduced in the present paper
involve, as factors, algebras that have never been previously considered in the litera-
ture as such (⇀-semilattices, nH-semigroups, ⊕-implicative semilattices). This may be
seen as a downside of our approach, for one of the main advantages of twist repre-
sentations is that they allow one to work with fairly well-known factor algebras (e.g.
Heyting algebras) instead of (e.g.) the more exotic Nelson algebras. On the other hand,
the new classes of algebras introduced here turn out to be easy to handle, for they
may be viewed as ‘term definable subreducts’ of Heyting algebras expanded with a
modal operator (the latter, known as nuclear Heyting algebras, have been extensively
investigated in different contexts since at least the dissertation by Macnab (1976)).
The present study suggests that these subreducts of nuclear Heyting algebras may
also have an independent interest as objects of algebraic investigation; in fact we have
already started pursuing this line of research (Celani & Rivieccio, 202x).

Notes

1. In the papers (Rivieccio & Spinks, 2019, 2020), QN-algebras are also called quasi-Nelson
residuated lattices: the two terms refer to the two presentations (using either the strong
or the weak implication as primitive) of the ‘same’ class of algebras. In the present
paper we shall refrain from employing the term ‘quasi-Nelson residuated lattices’ and the
alternative abstract presentation appearing in Rivieccio and Spinks (2019) and Rivieccio
and Spinks (2020).

2. BCK-algebras are the algebraic counterpart of Meredith’s BCK-logic. In the literature one
can find two alternative definitions (one dual to the other) of BCK-algebras; for a compar-
ison with (quasi-)Nelson algebras it is best to work with the definition given e.g. in Spinks
and Veroff (2008, pp. 331–332).

3. Gödel algebras are precisely the prelinear Heyting algebras, i.e. those satisfying (x → y) ∨
(y → x) = 1.

4. Results of this kind for algebras related to Nelson logic are established e.g. in Busaniche
and Cignoli (2014, Sec. 4) and Rivieccio (2010, Ch. 5).
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Appendix. Proofs

Proof of Proposition 3.4: Let us take a look at the requirements postulated by Definition 3.2.
Regarding (i), we certainly have that 〈S, ∧, 1〉 is a 3-potent monoid. Regarding (ii), observe
that � = ≤, the latter being the semilattice order on S. Using this observation and the prop-
erties of the pseudo-complement, it is easy to verify items (iii).1–(iii).3 and (iii).6–(iii).9. Since
x ⇀ y = ¬(x ∧ ¬y), items (iii).4 and (iii).5 have been already verified in the proof of Proposi-
tion 3.9. Finally, item (iii).10 translates as ¬(a ∧ b) = ¬(a ∧ ¬¬b) ∧ ¬(b ∧ ¬¬a), which is an
easy consequence of the properties of pseudo-complemented semilattices listed earlier (in
particular, (8) and (11) from Sankappanavar (1979, p. 305)). �

Proof of Lemma 3.6: Let a, b, c ∈ M.
(i). From Definition 3.2(iii).1 and the commutativity of ∗, we have ∼ a ∗ a = a ∗ ∼ a ≤ a.

Also, from Definition 3.2(iii).6 and ∼ a ≤ ∼ a we have ∼ a ∗ a = 0. Thus 0 ≤ a for all a ∈ M.
To show a ≤ 1, we use Definition 3.2(ii) and check that a � 1 and ∼ 1 � ∼ a. As to the for-
mer, by definition of � we have a � 1 iff a2 ∗ 12 = a2 which follows easily from the monoid
properties. Regarding ∼ 1 � ∼ a, we have ∼ 1 = 0 by Definition 3.2(iii).8. By definition of �
we have 0 � ∼ a iff 02 = 02 ∗ (∼ a)2. The desired result then follows from the observation that
0 ∗ b = 0 for all b ∈ M (recall that 0 is the least element in the ≤ order, and that item (iii).1 entails
0 ∗ b ≤ 0).

(ii). By Definition 3.2(iii).6 we have ∼ a ≤ ∼ a iff ∼ a ∗ a = 0. Thus by commutativity of ∗ we
also have a ∗ ∼ a = 0.

(iii). By Definition 3.2(iii).6 we have a ≤ ∼∼ a iff a ∗ ∼ a = 0, which we have proven in the
preceding item.

(iv). Assume a � b, i.e. a2 = a2 ∗ b2. Using Definition 3.2(iii).9, we have (∼∼ a)2 = ∼ ∼(a2) =
∼∼(a2 ∗ b2) = ∼∼(a2) ∗ ∼∼(b2) = (∼∼ a)2 ∗ (∼∼ b)2. Hence, ∼ ∼ a � ∼ ∼ b. Also, by the
commutativity of ∗ and 3-potency, we have a2 ∗ (a ∗ b)2 = a2 ∗ a2 ∗ b2 = a2 ∗ b2 = a2. Hence,
a � a ∗ b.

(v). Assuming a ≤ b, we have a � b and ∼ b �∼ a. By the preceding item, from a � b we
obtain ∼∼ a � ∼ ∼ b. Hence, ∼ b ≤ ∼ a, as required.

(vi). Recall that b ⇀ a = ∼(b2 ∗ ∼ a). By Definition 3.2(iii).1 (and the commutativity of ∗), we
have b2 ∗ ∼ a ≤ ∼ a. Thus, we can apply the preceding item to obtain ∼∼ a ≤ ∼(b2 ∗ ∼ a). The
result then follows from the inequality a ≤ ∼∼ a, which we have shown in item (iii) above.

(vii). Assume a � ∼ b, that is a2 ∗ (∼ b)2 = a2. By Definition 3.2(iii).1, we have a2 ∗ (∼ b)2 =
(a2 ∗ ∼ b) ∗ ∼ b ≤ ∼ b. Thus a2 ≤ ∼ b. By Definition 3.2(iii).7, we have ∼ b = ∼ ∼∼ b and so
a2 ≤ ∼ ∼∼ b. By Definition 3.2(iii).6, we have a2 ≤ ∼ ∼∼ b iff a2 ∗ ∼ ∼ b = 0. Then, using
Definition 3.2(iii).8, we conclude 1 = ∼ 0 = ∼(a2 ∗ ∼∼ b) = a → ∼ b, as required.

Conversely, assume a → ∼ b = ∼(a2 ∗ ∼∼ b) = 1. Notice that a2 ∗ (∼ b)2 ≤ a2 always
holds (Definition 3.2(iii).1) so it suffices to show a2 ≤ a2 ∗ (∼ b)2. From ∼(a2 ∗ ∼∼ b) =
1 we have ∼∼(a2 ∗ ∼∼ b) = ∼ 1 = 0, the last equality holding by Definition 3.2(iii).8. By
item (iii) above we have a2 ∗ ∼ ∼ b ≤ ∼ ∼(a2 ∗ ∼∼ b) = 0 and so a2 ∗ ∼∼ b = 0. Then
we can use Definition 3.2(iii).6 to obtain a2 ≤ ∼ ∼∼ b = ∼ b, the last equality holding by
Definition 3.2(iii).7. From a2 ≤ ∼ b, using 3-potency, we have a2 ∗ a2 = a2 ≤ ∼ b ∗ ∼ b =
(∼ b)2. Similarly, using Definition 3.2(iii).2, from a2 ≤ (∼ b)2 we obtain a2 ∗ a2 = a2 ≤ a2 ∗
(∼ b)2.

(viii). Assuming a ∗ b � ∼ c, we can use the preceding item to obtain (a ∗ b) ⇀ ∼ c = 1. By
Definition 3.2(iii).4 (and the commutativity of ∗) we have 1 = (a ∗ b) ⇀ ∼ c = (b ∗ a) ⇀ ∼ c =
b ⇀ (a ⇀ ∼ c). Recall that a ⇀ ∼ c = ∼(a2 ∗ ∼∼ c). Then, letting a′ = b and b′ = (a2 ∗ ∼∼ c),
we have a′ ⇀ ∼ b′ = 1. Then we can apply the preceding item again to conclude b = a′ �
∼ b′ = a ⇀ ∼ c, as required.

Conversely, assume b � a ⇀ ∼ c. Reasoning as before, we can the preceding item to obtain
b ⇀ (a ⇀ ∼ c) = 1. By Definition 3.2(iii).4 (and the commutativity of ∗), we have 1 = b ⇀ (a ⇀

∼ c) = (b ∗ a) ⇀ ∼ c = (a ∗ b) ⇀ ∼ c. Then, again the preceding item, we obtain a ∗ b � ∼ c,
as required.
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(ix). We have:

∼∼ a ⇀ ∼∼ b = ∼(∼∼ a ∗ ∼ ∼ a ∗ ∼∼∼ b)

= ∼(∼∼ a ∗ ∼ ∼(a ∗ ∼ b)) by Definition 3.2(iii).9

= ∼∼∼(a ∗ a ∗ ∼ b) by Definition 3.2(iii).9

= ∼(a ∗ a ∗ ∼ b) by Definition 3.2(iii).7

= a ⇀ b.

Since ∼ b = ∼∼∼ b, the last passage also easily entails a ⇀ b = a ⇀ ∼∼ b.
(x). We have:

∼(a ∗ b) = ∼∼ ∼(a ∗ b) by Definition 3.2(iii).7

= ∼(∼∼ a ∗ ∼∼ b) by Definition 3.2(iii).9

= ∼(∼∼ a ∗ ∼ ∼ ∼ ∼ b) by Definition 3.2(iii).7

= ∼∼ ∼(a ∗ ∼∼ b) by Definition 3.2(iii).9

= ∼(a ∗ ∼∼ b). by Definition 3.2(iii).7

�

Proof of Proposition 3.9: We proceed to verify that items (ii)–(viii) of Definition 3.7 are satisfied.
Let a, b, c ∈ P.

(ii). Using (11) and (8), we have a ⇀ (b ⇀ c) = ¬(a ∧ ¬¬(b ∧ ¬c)) = ¬(a ∧ ¬¬b ∧
¬¬¬c) = ¬(a ∧ b ∧ ¬c) = (a ∧ b) ⇀ c.

(iii). Let us compute a ⇀ (b ∧ c) = ¬(a ∧ ¬(b ∧ c)) and (a ⇀ b) ∧ (a ⇀ c) = ¬(a ∧ ¬b) ∧
¬(a ∧ ¬c). Observe that, by (6), from b ∧ c ≤ b we have ¬b ≤ ¬(b ∧ c), so a ∧ ¬b ≤ a ∧
¬(b ∧ c) by the semilattice properties. Hence, again by (6), we have ¬(a ∧ ¬(b ∧ c)) ≤ ¬(a ∧
¬b). A similar reasoning shows that ¬(a ∧ ¬(b ∧ c)) ≤ ¬(a ∧ ¬c). Hence, ¬(a ∧ ¬(b ∧ c)) ≤
¬(a ∧ ¬b) ∧ ¬(a ∧ ¬c). To show the other inequality, we resort to the property of the
pseudo-complement. We have ¬(a ∧ ¬b) ∧ ¬(a ∧ ¬c) ≤ ¬(a ∧ ¬(b ∧ c)) iff a ∧ ¬(b ∧ c) ∧
¬(a ∧ ¬b) ∧ ¬(a ∧ ¬c) = 0. Using (2) and (11), we have a ∧ ¬(b ∧ c) ∧ ¬(a ∧ ¬b) ∧ ¬(a ∧
¬c) = a ∧ ¬(b ∧ c) ∧ ¬¬b ∧ ¬¬c = a ∧ ¬(b ∧ c) ∧ ¬¬(b ∧ c). The result then follows from
the observation that d ∧ ¬d = 0 holds on every pseudo-complemented semilattice, for one has
a ∧ ¬(b ∧ c) ∧ ¬¬(b ∧ c) = a ∧ 0 = 0.

(iv). Since ¬¬0 = 0 by (4), it suffices to compute �0 = ¬(1 ∧ ¬0) = ¬¬0 = 0.
(v). Observe that �a = 1 ⇀ a = ¬(1 ∧ ¬a) = ¬¬a. Then the result follows from the identity

(5), i.e. x ≤ ¬¬x.
(vi). Using (11) and (2), we have �(a ∧ b) = ¬¬(a ∧ b) = ¬¬a ∧ ¬¬b == ¬¬a ∧ ¬(a ∧

¬b) = �a ∧ (a ⇀ b).
(vii). Using the property of the pseudo-complement and (8), we have a ≤ ¬(b ∧ ¬c) = b ⇀

c iff a ∧ b ∧ ¬c = 0 iff a ∧ ¬c ≤ ¬b = ¬¬¬b iff a ∧ ¬c ∧ ¬¬b = 0 iff a ∧ ¬¬b = a ∧ �b ≤
�c = ¬¬c.

(viii). Let us compute �a ⇀ �b = ¬¬a ⇀ ¬¬b = ¬(¬¬a ∧ ¬¬¬b). Using (11) and (8), we
have ¬(¬¬a ∧ ¬¬¬b) = ¬¬¬(a ∧ ¬b) = ¬(a ∧ ¬b) = a ⇀ b, as required. �

Proof of Proposition 3.10: Let a, b, c ∈ S.
(i). Since 1 ∧ a ≤ �a, we may apply Definition 3.7(vii) to obtain 1 ≤ a ⇀ a.
(ii). If a ≤ b, then using Definition 3.7(iii) we have

c → a = c → (a ∧ b) = (c → a) ∧ (c → b).

So, c → a ≤ c → b.
(iii). Assume a ≤ b, so a = a ∧ b. Observe that:

(b → c) ∧ a = (b → c) ∧ a ∧ b
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= b ∧ �c ∧ a by Definition 3.7(vi)

= �c ∧ a

≤ �c.

Then, by Definition 3.7(vii), we obtain b → c ≤ a → c.
(iv). If 1 ≤ a ⇀ b, then 1 ∧ a = a ≤ �b Definition 3.7(vii). Conversely, if a ≤ �b, then

Definition 3.7(vii) gives us 1 ≤ a ⇀ �b. But, using Definition 3.7(viii) and the nucleus properties,
we have a ⇀ �b = �a ⇀ ��b = �a ⇀ �b = a ⇀ b, as required (see also item (vii) below).

(v). Observe that a ∧ b ≤ c entails a ∧ b ≤ �c. Then we may apply Definition 3.7(vii) to obtain
a ≤ b ⇀ c.

(vi). The ‘only if’ part follows from the preceding item. Conversely, assume a ≤ b ⇀ 0. Then
a ∧ b ≤ �0 = 0 (by Definition 3.7(vii)).

(vii). Using Definition 3.7(viii) and the properties of the nucleus, we have �a ⇀ b =
��a ⇀ �b = �a ⇀ �b = a ⇀ b. Similarly, a ⇀ �b = �a ⇀ ��b = �a ⇀ �b = a ⇀ b. To
conclude the proof, it suffices to show that a ⇀ b = �(a ⇀ b). The inequality a ⇀ b ≤ �(a ⇀

b) holds because � is a nucleus. To show that �(a ⇀ b) ≤ a ⇀ b, we begin by noticing that,
using Definition 3.7(vi) and the nucleus properties, we have �(a ⇀ b) ∧ a ≤ �(a ⇀ b) ∧ �a =
�((a ⇀ b) ∧ a) = �(a ∧ �b) = �a ∧ ��b = �a ∧ �b ≤ �b. From �(a ⇀ b) ∧ a ≤ �b, by
Definition 3.7(vii), we obtain �(a ⇀ b) ≤ a ⇀ b, as required.

(viii). We have seen with item (vi) that ¬ is a pseudo-complement operation (Corollary 3.11),
hence we can rely on the general properties of pseudo-complements stated earlier. Keeping this
in mind, observe that a ≤ �a we have ¬�a ≤ ¬a. Also by item (vi), the inequality ¬a ≤ ¬�a
is equivalent to �a ∧ ¬a = 0, and the latter holds true because, by the nucleus properties, we
have �a ∧ ¬a ≤ �a ∧ �¬a = �(a ∧ ¬a) = �0 = 0. Hence, ¬a = ¬�a.

Similarly to the preceding case, we have ¬a ≤ �¬a simply as a consequence of x ≤ �x. The
other inequality, �¬a ≤ ¬a, is equivalent to �¬a ∧ a = 0, which holds true because �¬a ∧
a ≤ �¬a ∧ �a = �(¬a ∧ a) = �0 = 0. Hence, �¬a = ¬a, concluding our proof.

(ix). By item (vi) above, we have a ⇀ ¬b ≤ ¬(a ∧ b) iff a ∧ b ∧ (a ⇀ ¬b) = 0. The latter
equality holds because, using Definition 3.7(vi) and the nucleus properties, we have a ∧ b ∧
(a ⇀ ¬b) = b ∧ a ∧ �¬b ≤ �b ∧ a ∧ �¬b = a ∧ �(b ∧ ¬b) = a ∧ �0 = a ∧ 0 = 0.

The other inequality, ¬(a ∧ b) ≤ a ⇀ ¬b, is equivalent (by Definition 3.7(vii)) to a ∧ ¬(a ∧
b) ≤ �¬b. By item (viii) above, the latter can be rewritten as a ∧ ¬(a ∧ b) ≤ ¬b, which is
equivalent to the (obviously true) equality b ∧ a ∧ ¬(a ∧ b) = 0.

(x). By item (ix) above, we have a ⇀ ¬¬b = ¬(a ∧ ¬b). Thus, it suffices to show that ¬(a ∧
¬b) = ¬¬(a ⇀ b).

We first tackle the inequality ¬(a ∧ ¬b) ≤ ¬¬(a ⇀ b). Observe that ¬a ≤ a ⇀ b. Indeed,
by Definition 3.7(vii), the latter inequality is equivalent to a ∧ ¬a ≤ �b, which does hold
because a ∧ ¬a = 0. From ¬a ≤ a ⇀ b, by the properties of the pseudo-complement (¬ is
order-reversing), we obtain ¬(a ⇀ b) ≤ ¬¬a. A similar reasoning allows us to establish that
¬(a ⇀ b) ≤ ¬b. Indeed, b ≤ a ⇀ b holds because it is equivalent (again by Definition 3.7(vii))
to b ∧ a ≤ �b, which is certainly true. From b ≤ a ⇀ b we obtain ¬(a ⇀ b) ≤ ¬b. Then, by the
semilattice properties, we have ¬(a ⇀ b) ≤ ¬¬a ∧ ¬b. Observe that, by the properties of the
pseudo-complement stated earlier, we have ¬¬a ∧ ¬b = ¬¬a ∧ ¬¬¬b = ¬¬(a ∧ ¬b). Hence,
¬(a ⇀ b) ≤ ¬¬(a ∧ ¬b), which gives us ¬¬¬(a ∧ ¬b) = ¬(a ∧ ¬b) ≤ ¬¬(a ⇀ b), as desired.

The other inequality, ¬¬(a ⇀ b) ≤ ¬(a ∧ ¬b), can be obtained by establishing a ∧ ¬b ≤
¬(a ⇀ b). By item (vi) above, the latter is equivalent to (a ⇀ b) ∧ a ∧ ¬b = 0. To see that the
latter equality holds, we use Definition 3.7(vi) and the nucleus properties to compute (a ⇀ b) ∧
a ∧ ¬b = a ∧ �b ∧ ¬b ≤ a ∧ �b ∧ �¬b = a ∧ �(b ∧ ¬b) = a ∧ �0 = a ∧ 0 = 0.

(xi). By symmetry, it suffices to show that a ⇀ ¬b ≤ b ⇀ ¬a. By Definition 3.7(vii), we
have a ⇀ ¬b ≤ b ⇀ ¬a iff b ∧ (a ⇀ ¬b) ≤ �¬a = ¬a (the latter equality holding by item
(viii) above) iff (by the property of the pseudo-complement) a ∧ b ∧ (a ⇀ ¬b) ≤ 0. The latter
inequality holds because, Definition 3.7(vi) and item (viii) above, we have a ∧ b ∧ (a ⇀ ¬b) =
a ∧ �¬b ∧ b = a ∧ ¬b ∧ b = a ∧ 0 = 0. �
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Proof of Proposition 3.15: Throughout the proof we let a = 〈a1, a2〉, b = 〈b1, b2〉 etc.
(i). To check associativity, observe that we only need to worry about the sec-

ond components of (〈a1, a2〉 ∗ 〈b1, b2〉) ∗ 〈c1, c2〉 and 〈a1, a2〉 ∗ (〈b1, b2〉 ∗ 〈c1, c2〉). These
are, respectively, ((a1 ∧ b1) ⇀ c2) ∧ (c1 ⇀ ((a1 ⇀ b2) ∧ (b1 ⇀ a2))) and (a1 ⇀ ((b1 ⇀ c2) ∧
(c1 ⇀ b2))) ∧ ((b1 ∧ c1) ⇀ a2). We have:

((a1 ∧ b1) ⇀ c2) ∧ (c1 ⇀ ((a1 ⇀ b2) ∧ (b1 ⇀ a2)))

= (a1 ⇀ (b1 ⇀ c2)) ∧ (c1 ⇀ ((a1 ⇀ b2) ∧ (b1 ⇀ a2))) by Definition 3.7(ii)

= (a1 ⇀ (b1 ⇀ c2)) ∧ (c1 ⇀ (a1 ⇀ b2)) ∧ (c1 ⇀ (b1 ⇀ a2)) by Definition 3.7(iii)

= (a1 ⇀ (b1 ⇀ c2)) ∧ (a1 ⇀ (c1 ⇀ b2)) ∧ (c1 ⇀ (b1 ⇀ a2)) by Definition 3.7(ii)

= (a1 ⇀ (b1 ⇀ c2)) ∧ (a1 ⇀ (c1 ⇀ b2)) ∧ ((b1 ∧ c1) ⇀ a2) by Definition 3.7(ii)

= (a1 ⇀ ((b1 ⇀ c2) ∧ (c1 ⇀ b2))) ∧ ((b1 ∧ c1) ⇀ a2). by Definition 3.7(iii)

The commutativity of ∗ follows directly from the commutativity of ∧. Let us check
that 〈1, 0〉 is the neutral element. Recall that, for all 〈a1, a2〉 ∈ A, we have 1 ⇀ a2 =
�a2 = a2. Moreover, from �a1 ∧ a2 = �(a1 ∧ a2) = �0 = 0, using items (vii) and (viii) of
Definition 3.7, we obtain a2 ≤ �a1 ⇀ �0 = a1 ⇀ 0. Hence, 〈a1, a2〉 ∗ 〈1, 0〉 = 〈a1 ∧ 1, (a1 ⇀

0) ∧ (1 ⇀ a2)〉 = 〈a1, (a1 ⇀ 0) ∧ a2〉 = 〈a1, a2〉, as required. To check 3-potency, recall that
〈a1, a2〉 ∗ 〈a1, a2〉 = 〈a1, a1 ⇀ 0〉. Then 〈a1, a2〉 ∗ 〈a1, a2〉 ∗ 〈a1, a2〉 = 〈a1, a2〉 ∗ 〈a1, a1 ⇀ 0〉 =
〈a1, a1 ⇀ (a1 ⇀ 0)〉 = 〈a1, (a1 ∧ a1) ⇀ 0〉 = 〈a1, a1 ⇀ 0〉.

(ii).1. Recall that 〈a1, a2〉2 = 〈a1, a1 ⇀ 0〉. Using Definition 3.7(ii), we have 〈a1, a2〉2 ∗
〈b1, b2〉2 = 〈a1 ∧ b1, (a1 ⇀ (b1 ⇀ 0)) ∧ (b1 ⇀ (a1 ⇀ 0))〉 = 〈a1 ∧ b1, (a1 ∧ b1) ⇀ 0〉, which
immediately gives us the ‘only if’ part. Conversely, assuming a1 ∧ b1 = a1, we have 〈a1, a2〉2 ∗
〈b1, b2〉2〈a1 ∧ b1, (a1 ∧ b1) ⇀ 0〉 = 〈a1, a1 ⇀ 0〉 = 〈a1, a2〉2, as required.

(iii).2. It is clear that 〈a1, a2〉 ∗ 〈b1, b2〉�〈a1, a2〉. We also have ∼〈a1, a2〉 = 〈a2, �a1〉�〈(a1 ⇀

b2) ∧ (b1 ⇀ a2), �(a1 ∧ b1)〉 = ∼(〈a1, a2〉 ∗ 〈b1, b2〉) because of the following reasoning. On
the one hand, a2 ≤ b1 ⇀ a2 follows easily from Definition 3.7(vii). On the other hand, by Propo-
sition 3.10(vi), from a1 ∧ a2 = 0 we obtain a2 ≤ a1 ⇀ 0 ≤ a1 ⇀ b2. Thus, a2 ≤ (a1 ⇀ b2) ∧
(b1 ⇀ a2), as required.

(ii).3. Assume 〈a1, a2〉 ≤ 〈b1, b2〉, i.e. a1 ≤ b1 and b2 ≤ a2. From the former, we have a1 ∧ c1 ≤
b1 ∧ c1. It remains to show that (b1 ⇀ c2) ∧ (c1 ⇀ b2) ≤ (a1 ⇀ c2) ∧ (c1 ⇀ a2). By Proposi-
tion 3.10(i), from b2 ≤ a2 we obtain c1 ⇀ b2 ≤ c1 ⇀ a2. By Proposition 3.10(ii), from a1 ≤
b1 we obtain b1 → c2 ≤ a1 → c2. Hence, (b1 ⇀ c2) ∧ (c1 ⇀ b2) ≤ (a1 ⇀ c2) ∧ (c1 ⇀ a2), as
required.

(ii).4. Follows immediately from the component-wise definition of ⇀.
(ii).5. Let us compute:

(〈a1, a2〉 ∗ 〈b1, b2〉) → 〈c1, c2〉 = 〈(a1 ∧ b1) ⇀ c1, �(a1 ∧ b1) ∧ c2〉
= 〈a1 ⇀ (b1 ⇀ c1), �a1 ∧ �b1 ∧ c2〉
= 〈a1, a2〉 → (〈b1, b2〉 → 〈c1, c2〉)

(ii).6. We are only concerned with the first components of 〈a1, a2〉 ⇀ (〈b1, b2〉 ∗ 〈c1, c2〉) and
(〈a1, a2〉 ⇀ 〈b1, b2〉) ∗ (〈a1, a2〉 ⇀ 〈c1, c2〉). These are, respectively, a1 ⇀ (b1 ∧ c1) and (a1 ⇀

b1) ∧ (a1 → c1). The result then follows from Definition 3.7(iii).
(ii).7. Assume 〈a1, a2〉 ≤ 〈b2, �b1〉 = ∼〈b1, b2〉. Then a1 ≤ b2 and �b1 ≤ a2. From the for-

mer we have a1 ∧ b1 ≤ b1 ∧ b2 = 0; from the latter, by items (iv) and (vii) of Proposition 3.10,
we obtain �b1 ⇀ a2 = b1 ⇀ a2 = 1. Hence, 〈a1, a2〉 ∗ 〈b1, b2〉 = 〈a1 ∧ b1, (a1 ⇀ b2) ∧ (b1 ⇀

a2)〉 = 〈0, 1〉. Conversely, assume the latter holds. From a1 ⇀ b2 = 1, by Proposition 3.10(iv),
we have a1 ≤ �b2 = b2. By the same token, from b1 ⇀ a2 = 1 we have �b1 ≤ a2, as required.

Items (ii).8 and (ii).9 follow easily from the nucleus properties of �.
(ii).10. It suffices to verify that the first components of ∼∼(〈a1, a2〉 ∗ 〈b1, b2〉) and

∼∼〈a1, a2〉 ∗ ∼∼〈b1, b2〉 are equal, and this follows easily from the observation that � pre-
serves finite meets.
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(ii).11. We are only concerned with the first components of ∼(〈a1, a2〉 ∗ 〈b1, b2〉) and
(〈a1, a2〉 ⇀ ∼〈b1, b2〉) ∗ (〈b1, b2〉 ⇀ ∼〈a1, a2〉), which are easily seen to be equal. �

Proof of Proposition 3.17: Proposition 3.5 implies that the quotient 〈M/≡, ∗, ⇀, 0, 1〉 is indeed
well-defined. To show that ∗ is a semilattice operation on M/≡, it suffices to show idempotency,
i.e. that [a] ∗ [a] = [a] for all a ∈ M. This easily follows from 3-potency, for one has [a] ∗ [a] =
[a ∗ a] = [a] if and only if (a ∗ a)2 = a2. That [1] is the top element of M/≡ follows from the
identity a ∗ 1 = a, which holds on every monoid. To show that [0] is the least element (i.e. that
[0] ∗ [a] = [0 ∗ a] = [0] for all a ∈ M) we reason as follows. On the one hand we have 0 ∗ a ≤ 0
by Definition 3.2(iii) (i). Thus, in particular, 0 ∗ a � 0. On the other hand, as shown earlier, 0 is the
bottom element of the order ≤. This entails 0 ≤ a and, a fortiori, 0 � a. Hence, [0 ∗ a] = [0], as
required. Thus 〈M/≡, ∗, 0, 1〉 is a bounded semilattice.

Let us now show the last claim. Let a, b ∈ M. By definition of �, we have a � b iff a2 ∗ b2 = a2.
Since a2 ∗ b2 = (a ∗ b)2, this means that [a ∗ b] = [a] ∗ [b] = [a], i.e. [a] ≤ [b].

Keeping the above in mind, we proceed to show that the remaining properties of
Definition 3.7 are satisfied.

(ii). Follows immediately from Definition 3.2(iii).4.
(iii). Follows immediately from Definition 3.2(iii).5.
(iv). It suffices to show 1 ⇀ 0 � 0. This is easy, for we have ∼(12 ∗ ∼ 0) = ∼∼ 0 = ∼ 1 = 0.
(v). Observe that 1 ⇀ a = ∼(12 ∗ ∼ a) = ∼∼ a. Thus, we need to show that a � ∼ ∼ a and

∼ ∼ ∼ a � ∼ a. The latter follows from Definition 3.2(iii).7. Regarding the former, recall that a ≤
∼∼ a by Lemma 3.6(iii). Hence, a ≤ ∼∼ a, as required.

(vi). Let us compute a ∗ (1 ⇀ b) = a ∗ ∼∼ b and a ∗ (a ⇀ b) = a ∗ ∼(a2 ∗ ∼ b). We have
seen in the proof of Lemma 3.6(vi) that ∼ ∼ b ≤ ∼(a2 ∗ ∼ b). Then, by Definition 3.2(iii).2,
we have a ∗ ∼∼ b ≤ a ∗ ∼(a2 ∗ ∼ b), which entails a ∗ ∼∼ b � a ∗ ∼(a2 ∗ ∼ b). To show that
a ∗ ∼(a2 ∗ ∼ b) � a ∗ ∼∼ b, we begin by observing that a ∗ ∼(a2 ∗ ∼ b) � ∼ ∼ b. Indeed, by
Lemma 3.6(ix), we have ∼(a2 ∗ ∼ b) = a ⇀ b � a ⇀ ∼∼ b. Then, by Lemma 3.6(viii), from
∼(a2 ∗ ∼ b) � a ⇀ ∼∼ b we obtain a ∗ ∼(a2 ∗ ∼ b)� ∼ ∼ b. Observe that 3-potency entails x ∗
y � y, so, in particular, a ∗ ∼(a2 ∗ ∼ b) � a. Then, by Lemma 3.6(iv), from a ∗ ∼(a2 ∗ ∼ b) � ∼ ∼ b
we have a ∗ ∼(a2 ∗ ∼ b) � a ∗ ∼(a2 ∗ ∼ b) ∗ ∼∼ b � a ∗ ∼∼ b, as required.

(vii). Assume [a] ≤ [b] ⇀ [c]. Then, a � b ⇀ c = b ⇀ ∼ ∼ c (by item (ix) of Lemma 3.6). We
can then apply Lemma 3.6(viii) to obtain a ∗ b ∼∼ c = � 1 ⇀ c. Then [a] ∧ [b] ≤ [1] ⇀ [c], as
required. Conversely, assuming [a] ∧ [b] ≤ [1] ⇀ [c], we have a ∗ b � ∼ ∼ c. Then, by items (viii)
and (ix) of Lemma 3.6, we obtain a � b ⇀ ∼ ∼ c = b ⇀ c. Hence [a] ≤ [b] ⇀ [c], as required.

(viii). Using Definition 3.2(iii).7 and (iii).9, it suffices to compute (1 ⇀ a) ⇀ (1 ⇀ b) =
∼∼ a ⇀ ∼∼ b = ∼(∼∼ a ∗ ∼∼ a ∗ ∼ ∼∼ b) = ∼∼∼(a ∗ a ∗ ∼ b) = ∼(a ∗ a ∗ ∼ b) =
a ⇀ b. �

Proof of Proposition 4.10: Let S = 〈S; ∧, →, 0, 1〉 be a bounded implicative semilattice. Then
〈S; ∧, 1〉 is certainly 3-potent commutative monoid, and we have seen with Example 4.3 that
〈S; →, ∼, 0, 1〉 is a QNI-algebra. Thus, items (i) and (ii) of Definition 4.9 are satisfied. The equalities
corresponding to items (iii).1 and (iii).2 are well known to hold on every implicative semilattice.
To verify the remaining ones, let a, b ∈ S.

(iii).3. To show that ¬(a → b) ≤ ¬¬a ∧ ¬b, we verify that ¬(a → b) ≤ ¬¬a and ¬(a →
b) ≤ ¬b. Recall that every bounded implicative semilattice (or indeed every pseudo-
complemented semilattice) satisfies x ∧ ¬x = 0 and x ≤ ¬¬x. By residuation, from 0 = a ∧
¬a ≤ b we have ¬a ≤ a → b ≤ ¬¬(a → b). Also by residuation, from ¬a ≤ ¬¬(a → b) we
have ¬a ∧ ¬(a → b) = 0, and from the latter ¬(a → b) ≤ ¬¬a. By a similar reasoning, from
b ≤ a → b ≤ ¬¬(a → b) we have b ∧ ¬(a → b) = 0 and, from the latter, ¬(a → b) ≤ ¬b.
It remains to show ¬¬a ∧ ¬b ≤ ¬(a → b). We shall use the identities x ∧ (x → y) = x ∧ y
and ¬¬¬x = ¬x, which hold on every bounded implicative semilattice. Using the former, we
have a ∧ (a → b) ∧ ¬b = a ∧ b ∧ ¬b = a ∧ 0 = 0. By residuation, from a ∧ (a → b) ∧ ¬b = 0
we obtain (a → b) ∧ ¬b ≤ ¬a = ¬¬¬a. From the latter, again by residuation, we have (a →
b) ∧ ¬¬a ∧ ¬b = 0, which gives us ¬¬a ∧ ¬b ≤ ¬(a → b), as required.
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(iii).4. To show that ¬(a ∧ b) ≤ (a → ¬b) ∧ (b → ¬a), it suffices, by symmetry, to verify
that ¬(a ∧ b) ≤ a → ¬b. For this, it suffices to observe that, by residuation, we have ¬(a ∧
b) ≤ a → ¬b iff a ∧ ¬(a ∧ b) ≤ ¬b iff b ∧ a ∧ ¬(a ∧ b) = 0. To show (a → ¬b) ∧ (b → ¬a) ≤
¬(a ∧ b), observe that a ∧ b ∧ (a → ¬b) ∧ (b → ¬a) = a ∧ ¬b ∧ b ∧ ¬a = 0. From a ∧ b ∧
(a → ¬b) ∧ (b → ¬a) = 0, by residuation, we have (a → ¬b) ∧ (b → ¬a) ≤ ¬(a ∧ b), as
required. �

Proof of Lemma 4.13: By the above-mentioned results, it suffices to verify that:

(i) ≡ is compatible with the monoid operation,
(ii) the quotient 〈A/≡; ∗, 0, 1〉 is a bounded semilattice,

(iii) the pair (∗, →) is residuated on A/≡,
(iv) the above-defined � is a nucleus on the semilattice 〈A/≡; ∗, 0, 1〉.

(i). We shall rely on the properties of QNI-algebras listed in Lemma 4.2. Assume a ≡ b for some
a, b ∈ A. Thus, in particular, a → b = 1. We have:

(a ∗ c) → (b ∗ c) ≡ ((a ∗ c) → b) ∗ ((a ∗ c) → c) by Definition 4.9(iii).2

= ((c ∗ a) → b) ∗ (a → (c → c)) by Definition 4.9(i) and (iii).1

= (c → (a → b)) ∗ (a → (c → c)) by Definition 4.9(iii).1

= (c → 1) ∗ (a → 1)) x → x = 1

= 1 ∗ 1 x → 1 = 1

= 1 by Definition 4.9(i).

Thus, (a ∗ c) → (b ∗ c) ≡ 1, which (by item (iii) of Lemma 4.2) entails (a ∗ c) → (b ∗ c) = 1.
Hence, (a ∗ c) �(b ∗ c). A similar reasoning shows that (b ∗ c) �(a ∗ c), so a ∗ c ≡ b ∗ c. This
observation (and the commutativity of ∗) immediately entail that ≡ is compatible with the
monoid operation.

(ii). Obviously 〈A/≡; ∗, 1〉 is a monoid. Idempotency follows from the following computations.
On the one hand, we have (a ∗ a) → a = a → (a → a) = a → 1 = 1 by Definition 4.9(iii).1.
On the other hand, a → (a ∗ a) ≡ (a → a) ∗ (a → a) = 1 ∗ 1 = 1. Hence, a → (a ∗ a) = 1,
and a ≡ a ∗ a. Thus 〈A/≡; ∗〉 is a semilattice with greatest element 1. Further observe that,
by Definition 4.9(iii).1, we have (a ∗ 0) → 0 = a → (0 → 0) = a → 1 = 1 and 0 → (a ∗ 0) ≡
(0 → a) ∗ (0 → 0) = 1 ∗ 1 = 1. Thus a ∗ 0 ≡ 0, i.e. 0 is the least element of the semilattice
〈A/≡; ∗〉.

(iii). Observe that, denoting by ≤ the semilattice order of 〈A/≡; ∗〉, we have a � b iff a/≡ ≤
b/≡, for all a, b ∈ A. Indeed, a/≡ ≤ b/≡, by definition, means that a ∗ b ≡ a. If the latter
holds, then a → b = 1 ∗ (a → b) = (a → a) ∗ (a → b) ≡ a → (a ∗ b) = 1. Hence, a → b = 1,
i.e. a � b. Conversely, if the latter holds, we have a → (a ∗ b) ≡ (a → a) ∗ (a → b) = 1 ∗ 1 = 1,
so a � a ∗ b. Since a ∗ b � a always holds (because (a ∗ b) → a = b → (a → a) = b → 1 = 1),
we have a ≡ a ∗ b, as claimed.

Now, in order to show that (∗, →) form a residuated pair on A/≡, we need to check that
a/≡ ∗ b/≡ ≤ c/≡ iff a/≡ ≤ b/≡ → c/≡, for all a, b, c ∈ A. In the light of the preceding consid-
erations, this amounts to showing that a ∗ b � c iff a � b → c, which is an easy consequence of
Definition 4.9(iii).1.

(iv). By Rivieccio (2022a, Prop. 4.15), the above-defined operation � is a nucleus on
the bounded Hilbert algebra 〈A/≡; →, 0, 1〉. By the preceding item, the natural order on
〈A/≡; →, 0, 1〉 coincides with the semilattice order of 〈A/≡; ∗〉. This immediately entails that
the � satisfies items (i), (iii) and (iv) of Definition 2.5. Regarding item (iv), the inequal-
ity �(x ∧ y) ≤ �x ∧ �y holds because � is monotonic. As to the other inequality, using
the identities (x ∗ y) → z = x → (y → z) and x → �y = �x → �y (see Rivieccio, 2022a,
Lemma 4.4), we can obtain (�x ∗ �y) → �(x ∗ y) = �x → (�y → �(x ∗ y)) = x → (y →
�(x ∗ y)) = (x ∗ y) → �(x ∗ y). Then Definition 2.5(iv) entails the required result. �
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Proof of Proposition 4.19: Corollary 4.17 entails that 〈A; ≤; ∗, 1〉 is a commutative integral
pomonoid. It remains to check that the pair (∗, ⇒∗) is residuated. This follows from the obser-
vation that ⇒ is given (on twist-algebras) as the strong implication of quasi-Nelson algebras
Proposition 2.11.

Indeed, relying on Theorem 4.16, we consider a QNP twist-algebra A ≤ S�� and elements
a = 〈a1, a2〉, b = 〈b1, b2〉, c = 〈c1, c2〉 ∈ A. Suppose 〈a1, a2〉 ∗ 〈b1, b2〉 = 〈a1 ∧ b1, (a1 → b2) ∧
(b1 → a2)〉 ≤ 〈c1, c2〉, i.e. a1 ∧ b1 ≤ c1 and c2 ≤ a1 → b2, b1 → a2. From the former, by resid-
uation (of → w.r.t ∧), we have a1 ≤ b1 → c1. From the latter, also by residuation, we have
a1 ≤ c2 → b2. Thus a1 ≤ (b1 → c1) ∧ (c2 → b2). Likewise, from c2 ≤ b1 → a2 we have b1 ∧
c2 ≤ a2. Observe that, using the identity x → �y = �x → �y (item (iv) after Definition 2.6) and
the requirement �a2 = a2, we have �b1 → a2 = �b1 → �a2 = b1 → �a2 = b1 → a2. Thus,
from c2 ≤ b1 → a2 = �b1 → a2, by residuation we obtain �b1 ∧ c2 ≤ a2. Hence, 〈a1, a2〉 ≤
〈(b1 → c1) ∧ (c2 → b2), �b1 ∧ c2〉 = 〈b1, b2〉 ⇒ 〈c1, c2〉. The converse implication (from a ≤
b ⇒ c to a ∗ b ≤ c) can be easily established through a similar reasoning. �

Proof of Proposition 5.7: The first item of Definition 5.1 is satisfied by construction. We proceed
to check (ii).

Let us first verify that 〈A, ∧, 0, 1〉 is a bounded semilattice. The commutativity and associativity
of ∧ are consequences of Definition 5.3(ii). Let a = 〈a1, a2〉, b = 〈b1, b2〉, c = 〈c1, c2〉 ∈ A. Idem-
potency is easy: we have 〈a1, a2〉 ∧ 〈a1, a2〉 = 〈a1 ∧ a1, a2 ⊕ a2〉 = 〈a1, �a2〉 = 〈a1, a2〉. As for
the bounds, by Definition 5.3(iii), we have 〈a1, a2〉 ∧ 〈0, 1〉 = 〈a1 ∧ 0, a2 ⊕ 1〉 = 〈0, 1〉. Similarly,
using Definition 5.3(iv), we obtain 〈a1, a2〉 ∧ 〈1, 0〉 = 〈a1 ∧ 1, a2 ⊕ 0〉 = 〈a1, �a2〉 = 〈a1, a2〉.

To conclude the proof of (ii), let ≤ be the order of the pocrim reduct of A. Let a = 〈a1, a2〉,
b = 〈b1, b2〉 ∈ A be such that 〈a1, a2〉 ≤ 〈b1, b2〉. Then, a1 ≤ b1 and b2 ≤ a2. The former gives
us a1 = a1 ∧ b1. Also, by Definition 5.3(iii), we have and a2 = �a2 = a2 ⊕ (a2 ∧ b2) = a2 ⊕ b2.
Hence, a = a ∧ b. Conversely, assume the latter holds, i.e. a1 = a1 ∧ b1 and a2 = a2 ⊕ b2. The
former immediately gives us a1 ≤ b1. From the latter, using Definition 5.3(iv), we obtain b2 =
�b2 ≤ b2 ⊕ a2 = a2 ⊕ b2 = a2. Hence, 〈a1, a2〉 ≤ 〈b1, b2〉.

Let us now look at the conditions in item (iii) of Definition 5.1. The component-wise definition
〈a1, a2〉 ⊕ 〈b1, b2〉 = 〈a1 ⊕ b1, a2 ∧ b2〉 immediately entails that (iii).1 is satisfied. Item (iii).2 fol-
lows easily from the observation that the nucleus preserves binary meets. Item (iii).3 easily
follows from the nucleus properties (item (i) of Definition 2.5) and the requirement that �a2 =
a2 for all 〈a1, a2〉 ∈ A. Finally, Item (iii).4 is easily proved using Definition 5.3(vi). �

Proof of Proposition 6.2: Observe that 1 ∈ ∇ . Indeed, since ∇ is non-empty, let a ∈ ∇ . Then
Propositions 6.1(iii) and 3.10(i) give us a ⇀ a = 1 ∈ ∇ . We further claim that 〈a, ¬a〉 ∈ Tw(S, ∇)

for all a ∈ S. Indeed, we have �¬a = ¬a (by Proposition 3.10(viii)) and a ∧ ¬a = 0 by the
property of the pseudo-complement. Furthermore, recalling again Proposition 3.10(i), we have
¬a ⇀ ¬¬¬a = ¬a ⇀ ¬a = 1 ∈ ∇ . Hence π1[Tw(S, ∇)] = S, as required by Definition 3.14. For
the rest of the proof, assume 〈a1, a2〉, 〈b1, b2〉 ∈ Tw(S, ∇), so a1 ∧ a2 = b1 ∧ b2 = 0 and ¬a1 ⇀

¬¬a2, ¬b1 ⇀ ¬¬b2 ∈ ∇ . Let us show that Tw(S, ∇) is closed under the QNM twist-algebra oper-
ations. The case of the constants is easy, for we have ¬1 ⇀ ¬¬0 = 0 ⇀ 0 = 1 = ¬0 ⇀ ¬¬1 =
1 ⇀ 1.

(∼). To show that ∼〈a1, a2〉 = 〈a2, �a1〉 ∈ Tw(S, ∇), recall that ¬a1 ⇀ ¬¬a2 = ¬a2 ⇀

¬¬a1 (Proposition 3.10.xi) and ¬�a1 = ¬a1 (Proposition 3.10 (viii)). Then, ¬a2 ⇀ ¬¬�a1 =
¬a2 ⇀ ¬¬a1 = ¬a1 ⇀ ¬¬a2 ∈ ∇ , as required.

(∗). We need to check that ¬(a1 ∧ b1) ⇀ ¬¬((a1 ⇀ b2) ∧ (b1 ⇀ a2)) ∈ ∇ . Using the prop-
erties of the pseudo-complement, we have:

¬(a1 ∧ b1) ⇀ ¬¬((a1 ⇀ b2) ∧ (b1 ⇀ a2))

= (a1 ⇀ ¬b1) ⇀ (¬¬(a1 ⇀ b2) ∧ ¬¬(b1 ⇀ a2))

= (a1 ⇀ ¬b1) ⇀ ((a1 ⇀ ¬¬b2) ∧ (b1 ⇀ ¬¬a2)) by Proposition 3.10(x)

= ((a1 ⇀ ¬b1) ⇀ (a1 ⇀ ¬¬b2)) ∧ ((a1 ⇀ ¬b1) ⇀ (b1 ⇀ ¬¬a2)) by Definition 3.7(iii)
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= (((a1 ⇀ ¬b1) ∧ a1) → ¬¬b2) ∧ (((b1 ⇀ ¬a1) ∧ b1) ⇀ ¬¬a2) by Definition 3.7(ii)

= ((�¬b1 ∧ a1) → ¬¬b2) ∧ ((�¬a1 ∧ b1) ⇀ ¬¬a2) by Definition 3.7(vi)

= ((a1 ∧ ¬b1) ⇀ ¬¬b2) ∧ ((b1 ∧ ¬a1) ⇀ ¬¬a2) by Proposition 3.10(viii)

= (a1 ⇀ (¬b1 ⇀ ¬¬b2)) ∧ (b1 ⇀ (¬a1 ⇀ ¬¬a2)) by Definition 3.7(ii).

Now observe that a1 ⇀ (¬b1 ⇀ ¬¬b2) ∈ ∇ and b1 ⇀ (¬a1 ⇀ ¬¬a2) ∈ ∇ follow from the
assumptions together with the property stated in Proposition 6.1(iii). Then, using Proposi-
tion 6.1(iv), we can obtain (a1 ⇀ (¬b1 ⇀ ¬¬b2)) ∧ �(b1 ⇀ (¬a1 ⇀ ¬¬a2)) ∈ ∇ . To conclude
the proof, it suffices to observe that �(b1 ⇀ (¬a1 ⇀ ¬¬a2)) = b1 ⇀ (¬a1 ⇀ ¬¬a2) by Propo-
sition 3.10(vii). �

Proof of Lemma 6.5: The only items not proved in Rivieccio (2022a, Lemma 4.7) are (iv) and (v).
(iv). Given a ∈ H, observe that from a ≤ �a we have ¬�a ≤ ¬a. As to the inequality ¬a ≤

¬�a, recalling that �x → �y = x → �y and �0 = 0, we have ¬a → ¬�a = ¬a → (�a →
0) = ¬a → (�a → �0) = ¬a → (a → �0) = ¬a → (a → 0) = ¬a → ¬a = 1.

Similarly to the preceding case, we have ¬a ≤ �¬a simply because x ≤ �x. As to the
inequality �¬a ≤ ¬a, we have �¬a → ¬a = �¬a → (a → 0) = a → (�¬a → 0) = a →
(�¬a → �0) = a → (¬a → �0) = a → (¬a → 0) = ¬a → (a → 0) = ¬a → ¬a = 1, as
required.

(v). Let a, b ∈ H. To establish the inequality ¬¬(a → b) ≤ a → ¬¬b, we compute:

¬¬(a → b) → (a → ¬¬b) = a → (¬¬(a → b) → ¬¬b) x → (y → z) = y → (x → z)

= a → (¬b → ¬¬¬(a → b)) item (iii)

= a → (¬b → ¬(a → b)) item (ii)

= a → ((a → b) → ¬¬b) item (iii)

= (a → b) → (a → ¬¬b) x → (y → z) = y → (x → z)

= (a → (b → ¬¬b) x → (y → z) = (x → y) → (x → z)

= a → 1 item (i)

= 1.

To establish the inequality a → ¬¬b ≤ ¬¬(a → b), let us begin by observing that ¬a = a →
0 ≤ a → b entails ¬(a → b) ≤ ¬¬a and b ≤ a → b entails ¬(a → b) ≤ ¬b. Thus, letting c :=
¬(a → b), we have that c ≤ ¬¬a and c ≤ ¬b. We claim that these two inequalities entail c →
¬(a → ¬¬b) = 1. Indeed, we have:

c → ¬(a → ¬¬b)

= c → ¬(¬b → ¬a) item (iii)

= c → ((¬b → ¬a) → 0)

= (c → (¬b → ¬a)) → (c → 0) x → (y → z) = (x → y) → (x → z)

= ((c → ¬b) → (c → ¬a)) → (c → 0) x → (y → z) = (x → y) → (x → z)

= (1 → (c → ¬a)) → (c → 0) c ≤ ¬b

= (c → ¬a) → (c → 0) x = 1 → x

= c → (¬a → 0) x → (y → z) = (x → y) → (x → z)

= c → ¬¬a

= 1 c ≤ ¬¬a.

Thus we have:

(a → ¬¬b) → ¬¬(a → b) = ¬(a → b) → ¬(a → ¬¬b) item (iii)
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= c → ¬(a → ¬¬b)

= 1

which gives us a → ¬¬b ≤ ¬¬(a → b), as desired. �

Proof of Proposition 6.6: (i). Assuming ∼〈a1, a2〉�〈a1, a2〉, we have 〈1, 0〉 = ∼〈a1, a2〉 →
〈a1, a2〉 = 〈a2, �a1〉 → 〈a1, a2〉 = 〈a2 → a1, a2 � a2〉 = 〈a2 → a1, �a2〉 = 〈a2 → a1, a2〉.
Hence, a2 = 0. For the converse, observe that ∼〈a, 0〉 → 〈a, 0〉 = 〈0, �a〉 → 〈a, 0〉 = 〈0 →
a, 0 � 0〉 = 〈1, 0〉. Hence, ∼〈a1, a2〉�〈a1, a2〉, as required.

(ii). Let a ∈ S be such that ¬a = 0, Consider an element b ∈ S such that 〈a, b〉 ∈ A. Recalling
that a � b = 0, we have:

b → ¬a = �b → (a → 0) �b = b

= �b → (a → �0) �0 = 0

= �b → (�a → 0) x → �y = �x → �y

= (b � a) → 0 Definition 4.4(v)

= 0 → 0 a � b = 0

= 1.

Hence, b ≤ ¬a = 0, entailing b = 0. Then 〈a, b〉 = 〈a, 0〉 ∈ A+, which means that a ∈ ∇A, as
required.

(iii). Assume a ∈ ∇A, i.e. 〈a, 0〉 ∈ A+. Let us compute (〈a, 0〉 → 〈0, 1〉) → ∼〈a, 0〉 =
〈¬a, �a〉 → 〈0, �a〉 = 〈¬¬a, �¬a � �a〉 = 〈¬¬a, 0〉. The latter equality holds because, by Riv-
ieccio (2022a, Lemma 4.9 (i)) and items (iv) and (vi) of Definition 4.4, we have �¬a � �a = ¬a �
a = (a → 0) � a = a � 0 = 0. Hence, ¬¬a ∈ ∇A, as claimed. Now, let b ∈ S. Then 〈b, c〉 ∈ A for
some c ∈ S, and (using Definition 4.4(vi)) we can compute 〈b, c〉 → 〈a, 0〉 = 〈b → a, b � 0〉 =
〈b → a, 0〉, which gives us b → a ∈ ∇A, as claimed.

(iv). Assume 〈a, 0〉, 〈b, 0〉 ∈ A+. Then 〈a, 0〉 ∗ (〈a, 0〉 → 〈b, 0〉) = 〈a ∧ (a → b), (a → 0) ∧
¬(a → b)〉 = 〈a ∧ b, 0〉 ∈ A+, as required. Note that (a → 0) ∧ ¬(a → b) = 0 holds because it
is equivalent, by the property of the pseudo-complement, to ¬(a → b) ≤ ¬(a → 0), which in
turn follows from the pseudo-complement properties and the observation that a → 0 ≤ a →
b.

Now assume ¬¬a ∈ ∇A, so 〈¬¬a, 0〉 ∈ A+. Notice that ¬¬a → a ∈ D(S) ⊆ ∇A. Indeed,
using items (ii) and (v) of Lemma 6.5, we have ¬(¬¬a → a) = ¬¬¬(¬¬a → a) = ¬(¬¬a →
¬¬a) = ¬1 = 0. As we have seen in item (ii), this entails ¬¬a → a ∈ ∇A, so 〈¬¬a →
a, 0〉 ∈ A+. Hence, 〈¬¬a, 0〉 ∗ 〈¬¬a → a, 0〉 = 〈¬¬a ∧ (¬¬a → a), ¬¬¬a ∧ ¬(¬¬a → a)〉 =
〈¬¬a ∧ a, ¬a ∧ ¬(¬¬a → a)〉 = 〈a, 0〉 ∈ A+. Regarding the second component, the last equal-
ity is justified by the following reasoning. By the property of the pseudo-complement, we have
¬a ∧ ¬(¬¬a → a) = 0 iff ¬a ≤ ¬¬(¬¬a → a). The latter holds because, by Lemma 6.5(v), we
have ¬¬(¬¬a → a) = ¬¬a → ¬¬a = 1.

(v). Taking the previous observations into account, it suffices to verify that ∇A is a ≤-
increasing set. For this, assume a ∈ ∇A (so 〈a, 0〉 ∈ A+) and a ≤ b for some b ∈ S. Letting c ∈ S be
such that 〈b, c〉 ∈ A, we have 〈a, 0〉 ∨ 〈b, c〉 = 〈a ∨ b, 0 ∧ c〉 = 〈b, 0〉, which immediately implies
the required result. �

Proof of Proposition 6.7: (i). Observe that 〈a, ¬a〉 ∈ Tw(S, ∇) for all a ∈ S. Indeed, we have
�¬a = ¬a (Lemma 6.5(iv)) and, by items (iv) and (vi) of Definition 4.4, a � ¬a = a � (a → 0) =
a � 0 = 0 and (using Lemma 6.5(ii)) ¬a → ¬¬¬a = ¬a → ¬a = 1 ∈ ∇ . Hence π1[Tw(S, ∇)] =
S, as required by Definition 4.6. For the rest of the proof, assume 〈a1, a2〉, 〈b1, b2〉 ∈ Tw(S, ∇),
so a1 � a2 = b1 � b2 = 0 and ¬a1 → ¬¬a2, ¬b1 → ¬¬b2 ∈ ∇ . Let us show that Tw(S, ∇) is
closed under the QNI twist-algebra operations. The case of the constants is easy, for we have
¬0 → ¬¬1 = 0 → 1 = 1 = ¬1 → ¬¬0 = 0 → 0.
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(∼). To show that ∼〈a1, a2〉 = 〈a2, �a1〉 ∈ Tw(S, ∇), recall that ¬a1 → ¬¬a2 = ¬a2 →
¬¬a1 (Lemma 6.5(iii)) and ¬�a1 = ¬a1 (Lemma 6.5(iv)). Then, ¬a2 → ¬¬�a1 = ¬a2 →
¬¬a1 = ¬a1 → ¬¬a2 ∈ ∇ , as required.

(→). We need to show that ¬(a1 → b1) → ¬¬(a1 � b2) ∈ ∇ . Using the identities x →
¬y = y → ¬x, and ¬¬(x → y) = x → ¬¬y, we have ¬(a1 → b1) → ¬¬(a1 � b2) = ¬(a1 �
b2) → ¬¬(a1 → b1) = ¬(a1 � b2) → (a1 → ¬¬b1) = (a1 → ¬b2) → (a1 → ¬¬b1). The
last equality holds because, using Definition 4.4, we have ¬(a1 � b2) = (a1 � b2) → 0 =
�a1 → (�b2 → 0) = �a1 → (b2 → 0) = �a1 → ¬b2 = �a1 → �¬b2 = a1 → �¬b2 =
a1 → ¬b2. Resuming our computation, we have ¬(a1 → b1) → ¬¬(a1 � b2) = (a1 →
¬b2) → (a1 → ¬¬b1) = a1 → (¬b2 → ¬¬b1) = a1 → (¬b1 → ¬¬b2). Since ¬b1 → ¬¬b2
∈ ∇ by assumption, the required result follows from item (iii) of Proposition 6.6.

(ii). We need to check that ¬(a1 ∧ b1) → ¬¬((a1 → b2) ∧ (b1 → a2)) ∈ ∇ . We have:

¬(a1 ∧ b1) → ¬¬((a1 → b2) ∧ (b1 → a2))

= (a1 → ¬b1) → (¬¬(a1 → b2) ∧ ¬¬(b1 → a2))

= (a1 → ¬b1) → ((a1 → ¬¬b2) ∧ (b1 → ¬¬a2))

= ((a1 → ¬b1) → (a1 → ¬¬b2)) ∧ ((a1 → ¬b1) → (b1 → ¬¬a2))

= (a1 → (¬b1 → ¬¬b2)) ∧ ((b1 → ¬a1) → (b1 → ¬¬a2))

= (a1 → (¬b1 → ¬¬b2)) ∧ (b1 → (¬a1 → ¬¬a2))

= ((a1 ∧ ¬b1) → ¬¬b2) ∧ ((b1 ∧ ¬a1) → ¬¬a2).

At this point, taking a := a1, b := ¬¬b2, c := ¬¬a2 and d := b1, we can rewrite our initial
assumptions as follows: ¬a → c, ¬d → b ∈ ∇ . Then Proposition 6.6(iii) gives us d → (¬a →
c) = (¬a ∧ d) → c, a → (¬d → b) = (a ∧ ¬d) → b ∈ ∇ , so we can apply Proposition 6.6(iv)
to obtain the required result.

(iii). We need to show that ¬(a1 ∧ b1) → ¬¬(a2 ⊕ b2) ∈ ∇ . Using Lemmas 6.5(iii) and 5.5(iv),
we compute:

¬(a1 ∧ b1) → ¬¬(a2 ⊕ b2) = ¬(a2 ⊕ b2) → ¬¬(a1 ∧ b1)

= (¬a2 ∧ ¬b2) → (¬¬a1 ∧ ¬¬b1)

= ((¬a2 ∧ ¬b2) → ¬¬a1) ∧ ((¬a2 ∧ ¬b2) → ¬¬b1).

Since we have assumed ∇ to be closed under finite meets, it suffices to verify that (¬a2 ∧
¬b2) → ¬¬a1, (¬a2 ∧ ¬b2) → ¬¬b1 ∈ ∇ . Since (¬a2 ∧ ¬b2) → ¬¬a1 = ¬b2 → (¬a2 →
¬¬a1) = ¬b2 → (¬a1 → ¬¬a2), the result follows from the assumption ¬a1 → ¬¬a2 ∈ ∇
together with item (iii) of Proposition 6.6. A similar reasoning shows that (¬a2 ∧ ¬b2) →
¬¬b1 ∈ ∇ .

(iv). Assuming ∇ is a lattice filter, we need to show that ¬(a1 ∨ b1) → ¬¬(a2 ∧ b2) ∈
∇ . We compute ¬(a1 ∨ b1) → ¬¬(a2 ∧ b2) = (¬a1 ∧ ¬b1) → (¬¬a2 ∧ ¬¬b2) = ((¬a1 ∧
¬b1) → ¬¬a2) ∧ ((¬a1 ∧ ¬b1) → ¬¬b2). From the assumption that ¬a1 → ¬¬a2 ∈ ∇ and
the inequality ¬a1 → ¬¬a2 ≤ (¬a1 ∧ ¬b1) → ¬¬a2, we have (¬a1 ∧ ¬b1) → ¬¬a2 ∈ ∇ .
Similarly, using the assumption that ¬b1 → ¬¬b2 ∈ ∇ , we conclude that (¬a1 ∧ ¬b1) →
¬¬b2 ∈ ∇ as well. Hence, ((¬a1 ∧ ¬b1) → ¬¬a2) ∧ ((¬a1 ∧ ¬b1) → ¬¬b2) = ¬(a1 ∨ b1) →
¬¬(a2 ∧ b2) ∈ ∇ , as required. �

Proof of Proposition 6.8: (i). Given 〈a1, a2〉 ∈ A, we have:

(〈a1, a2〉 → 〈0, 1〉) → ∼〈a1, a2〉 = 〈¬a1, �a1〉 → 〈a2, �a1〉
= 〈¬a1 → a2, �¬a1 ∧ �a1〉
= 〈¬a1 → a2, �(¬a1 ∧ a1)〉
= 〈¬a1 → a2, �0〉
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= 〈¬a1 → a2, 0〉 ∈ A.

Thus ¬a1 → a2 ∈ ∇A. Since ¬¬(¬a1 → a2) = ¬a1 → ¬¬a2 (Lemma 6.5(vi)), we can use
Proposition 6.6(iii) to obtain ¬a1 → ¬¬a2 ∈ ∇A. Hence, 〈a1, a2〉 ∈ Tw(S, ∇).

(ii). Assume 〈a1, a2〉 ∈ Tw(S, ∇), i.e. 〈a1, a2〉 ∈ S�� and ¬a1 → ¬¬a2 ∈ ∇A. We claim that the
latter entails ¬a2 → a1 ∈ ∇A. To see this, observe that, using items (iii) and (v) of Lemma 6.5,
we have ¬a1 → ¬¬a2 = ¬a2 → ¬¬a1 = ¬¬(¬a2 → a1) ∈ ∇A. By Proposition 6.6(iv), the lat-
ter gives us ¬a2 → a1 ∈ ∇A. Hence, 〈¬a2 → a1, 0〉 ∈ A+ ⊆ A. Further notice that, since a2 ∈ S,
there is b ∈ S such that 〈a2, b〉 ∈ A. Then 〈a2, b〉 → 〈0, 1〉 = 〈¬a2, �a2〉 = 〈¬a2, a2〉 ∈ A as well.
We therefore have:

〈¬a2 → a1, 0〉 ∗ 〈¬a2, a2〉 = 〈(¬a2 → a1) ∧ ¬a2, ((¬a2 → a1) → a2) ∧ (¬a2 → 0)〉
= 〈a1 ∧ ¬a2, a2〉
= 〈a1, a2〉 ∈ A.

The equality a1 ∧ ¬a2 = a1 follows from the observation that, since a1 ∧ a2 = 0, by the prop-
erty of the pseudo-complement we have a1 ≤ ¬a2. To justify ((¬a2 → a1) → a2) ∧ (¬a2 →
0) = a2, observe that the inequality a2 ≤ ((¬a2 → a1) → a2) ∧ (¬a2 → 0) follows from a2 ≤
(¬a2 → a1) → a2 and a2 ≤ ¬¬a2. On the other hand, by residuation, we have ((¬a2 →
a1) → a2) ∧ (¬a2 → 0) ≤ a2 iff (¬a2 → a1) → a2 ≤ (¬a2 → 0) → a2, and the latter inequal-
ity holds because ¬a2 → 0 ≤ ¬a2 → a1. �

Proof of Proposition 8.3: As we have noted, Con(〈S, ∧, →〉) = Con(〈S, →〉). It will thus suffice
to check that every congruence θ ∈ Con(〈S, ∧, →〉) is compatible with the ⊕ operation. Let us
preliminary observe that, for all a, b ∈ S, we have that 〈a → b, 1〉, 〈b → a, 1〉 ∈ θ entail 〈a, b〉 ∈
θ . Indeed, from 〈a → b, 1〉, 〈b → a, 1〉 ∈ θ we have 〈(a → b) ∧ (b → a), 1〉 ∈ θ and 〈((a →
b) ∧ (b → a)) → a, 1 → a〉 = 〈((a → b) ∧ (b → a)) → a, a〉 ∈ θ . Similarly we obtain 〈((a →
b) ∧ (b → a)) → b, 1 → b〉 = 〈((a → b) ∧ (b → a)) → b, b〉 ∈ θ . But the equality ((a → b) ∧
(b → a)) → a = ((a → b) ∧ (b → a)) → b holds on any implicative semilattice, giving us
〈a, b〉 ∈ θ by transitivity. Keeping this in mind, assume 〈a, b〉 ∈ θ . Then 〈a → b, 1〉, 〈b → a, 1〉 ∈
θ . By Lemma 5.5(iii), we have 〈(a ⊕ c) → (b ⊕ c), 1〉, 〈(b ⊕ c) → (a ⊕ c), 1〉 ∈ θ for all c ∈ S. This,
as observed, gives us 〈a ⊕ c, b ⊕ c〉 ∈ θ . Since ⊕ is commutative, this is sufficient to establish the
claimed result. �

Proof of Proposition 8.7: The proof is analogous but even easier than that of Proposition 8.6.
Let us show that η�� ∈ Con(A) for all η ∈ Con(A��) and θ�� ∈ Con(A��) for all θ ∈ Con(A).
Regarding the latter, recall that, from our earlier observations and Proposition 8.3, we have
Con(〈A/≡, ∧, ⊕, →〉) = Con(〈A/≡, →〉). Then θ�� ∈ Con(A��) simply holds by Proposition 8.4.
To show η�� ∈ Con(A), it suffices to verify that η�� is compatible with the meet.

Let then a, b ∈ A be such that 〈a, b〉 ∈ η��. As before, we shall write [a], [b] etc. for the ele-
ments of A��. By assumption, 〈[a], [b]〉, 〈[∼ a], [∼ b]〉 ∈ η. Let c ∈ A. From 〈[a], [b]〉 ∈ η we have
〈[a] ∧ [c], [b] ∧ [c]〉 = 〈[a ∧ c], [b ∧ c]〉 ∈ η. From 〈[∼ a], [∼ b]〉 ∈ η, using Lemma 5.2(ii) we obtain
〈[∼ a] ⊕ [∼ c], [∼ b] ⊕ [∼ c]〉 = 〈[∼ a ⊕ ∼ c], [∼ b ⊕ ∼ c]〉 = 〈[∼(a ∧ c)], [∼(b ∧ c)]〉 ∈ η. Hence,
〈[a ∧ c], [b ∧ c]〉, 〈[∼(a ∧ c)], [∼(b ∧ c)]〉 ∈ η, i.e. 〈a ∧ c, b ∧ c〉 ∈ η��. Since the meet is commu-
tative, this entails η�� ∈ Con(A). �

Proof of Lemma 8.12: Taking into the account the equivalence of r(x, y, z) and q(x, y, z), one
realises that items (i)–(iv) have been established in Rivieccio and Jansana (2021, Lemma 33). Let
us verify (v). By Theorem 4.16, assume A ≤ S��, and let a = 〈a1, a2〉, b = 〈b1, b2〉 etc. To improve
readability, we shall also abbreviate α := (a1 → b1) ∧ (b1 → a1) ∧ (a2 → b2) ∧ (b2 → a2).
Then r(a, b, c) ∗ r(a, b, d) gives us the following:

〈(α → c1) ∧ (α → d1), ((α → c1) → (�α ∧ d2)) ∧ ((α → d1) → (�α ∧ c2))〉.

The first component of r(a, b, r(a, b, c) ∗ r(a, b, d)) is thus:

α → ((α → c1) ∧ (α → d1))
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and the second is:

�α ∧ ((α → c1) → (�α ∧ d2)) ∧ ((α → d1) → (�α ∧ c2)).

On the other hand we have:

r(a, b, c ∗ d) = 〈α → (c1 ∧ d1), �α ∧ (c1 → d2) ∧ (d1 → c2)〉.

Equality of the first components is easily established: using the properties of the intuitionistic
implication, we have α → ((α → c1) ∧ (α → d1)) = α → (α → (c1 ∧ d1)) = α → (c1 ∧ d1).

Regarding the second component, we have: �α ∧ ((α → c1) → (�α ∧ d2)) ∧ ((α →
d1) → (�α ∧ c2)) = �α ∧ ((α → c1) → �α) ∧ ((α → c1) → d2) ∧ ((α → d1) → �α) ∧
((α → d1) → c2) = �α ∧ ((α → c1) → d2) ∧ ((α → d1) → c2). Observe that �α ∧ ((α →
c1) → d2) ∧ ((α → d1) → c2) ≤ �α ∧ (c1 → d2) ∧ (d1 → c2) simply because the implica-
tion is order-reversing in the first argument. Thus, it suffices to show �α ∧ (c1 → d2) ∧
(d1 → c2) ≤ �α ∧ ((α → c1) → d2) ∧ ((α → d1) → c2) or, equivalently, �α ∧ (c1 → d2) ∧
(d1 → c2) ≤ ((α → c1) → d2) ∧ ((α → d1) → c2). Let us show �α ∧ (c1 → d2) ∧ (d1 →
c2) ≤ (α → c1) → d2. By residuation, the latter is equivalent to (α → c1) ∧ �α ∧ (c1 → d2) ∧
(d1 → c2) ≤ d2. The result then is a consequence of the following (in)equalities:

(α → c1) ∧ �α ∧ (c1 → d2) ∧ (d1 → c2)

≤ �(α → c1) ∧ �α ∧ (c1 → d2) x ≤ �x

= �((α → c1) ∧ α) ∧ (c1 → d2) �(x ∧ y) = �x ∧ �y

= �(c1 ∧ α) ∧ (c1 → d2) x ∧ y = x ∧ (x → y)

= �c1 ∧ �α ∧ (c1 → �d2) x ∧ y = x ∧ (x → y)

= �c1 ∧ �α ∧ (�c1 → �d2) x → �y = �x → �y

= �c1 ∧ �α ∧ �d2 = �c1 ∧ �α ∧ d2 ≤ d2.

A similar reasoning allows us to establish �α ∧ (c1 → d2) ∧ (d1 → c2) ≤ (α → d1) → c2, thus
concluding our proof. �

Proof of Proposition 9.2: (i). It is easy to see that M satisfies ∼ ∼ x = x if and only if the map �
is the identity on S. The second equivalence is an immediate consequence of Proposition 3.8.

(ii). Obviously, on every (pseudo-complemented) semilattice, it holds that x = x ∗ x and
≡ is the identity relation (so 〈S, ∧, ¬, 0, 1〉 ∼= M). For the other implications, assume M satis-
fies x = x ∗ x. Then ∗ is a semilattice operation and, by Definition 3.2(iii).6, the negation ∼ is
the corresponding pseudo-complement. Furthermore, recall that 〈a1, a2〉 ∗ 〈a1, a2〉 = 〈a1, ¬a1〉.
Then every element of M is of the form 〈a1, ¬a1〉 for some a1 ∈ S. This entails that the map
a �→ 〈a, ¬a〉 is bijective, and it is easy to see that it preserves the algebraic operations of
〈S, ∧, ¬, 0, 1〉.

(iii). Obviously every Boolean algebra satisfies ∼∼ x = x ∗ x. Conversely assume M satisfies
∼∼ x = x ∗ x. This means that, for all 〈a1, a2〉 ∈ M, we have 〈�a1, a2〉 = 〈a1, ¬a1〉. As we have
seen in item (i) above, a1 = �a1 entails that M is involutive. Likewise, by item (ii), from a2 = ¬a1
we conclude that 〈S, ∧, ¬, 0, 1〉 ∼= M via the map a �→ 〈a, ¬a〉. So M is a pseudo-complemented
semilattice and, as observed earlier, any involutive pseudo-complemented semilattice is a
Boolean algebra.

(iv). It is easy to check that M satisfies (x ⇀ 0) ⇀ 0 � x if and only if S satisfies ¬¬x ≤ x.
Then, by Corollary 3.13, 〈S, ∧, ⇀, 0, 1〉 is a Boolean algebra, which (as observed in Subsec-
tion 2.2) entails that � is the identity map. Thus, in particular, M satisfies item (i) as well (i.e.
it is involutive). �

Proof of Lemma 9.4: It is clear that (i) entails (ii). Regarding the latter, we claim that (ii) is
equivalent to the following property: ¬a1 → a2 = ¬a2 → �a1 for all 〈a1, a2〉 ∈ A.
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To see this, let us preliminarily compute 〈a1, a2〉 ⇒ ∼〈a1, a2〉 = 〈(a1 → a2) ∧ (�a1 →
a2), �a1 ∧ �a1〉 = 〈¬a1 ∧ (�a1 → �a2), �a1〉 = 〈¬a1 ∧ (a1 → a2), �a1〉 = 〈¬a1 ∧ ¬a1,
�a1〉 = 〈¬a1, �a1〉 and ∼〈a1, a2〉 ⇒ 〈a1, a2〉 = 〈(a2 → a1) ∧ (a2 → �a1), �a2 ∧ a2〉 =
〈(a2 → a1) ∧ (a2 → �a1), a2〉 = 〈¬a2 ∧ ¬a2, a2〉 = 〈¬a2, a2〉. At this point we can more easily
compute 〈a1, a2〉 ∗ (〈a1, a2〉 ⇒ ∼〈a1, a2〉) = 〈a1, a2〉 ∗ 〈¬a1, �a1〉 = 〈a1 ∧ ¬a1, (a1 → �a1) ∧
(¬a1 → a2)〉 = 〈0, 1 ∧ (¬a1 → a2)〉 = 〈0, ¬a1 → a2〉 and ∼〈a1, a2〉 ∗ (∼〈a1, a2〉 ⇒ 〈a1, a2〉) =
∼〈a1, a2〉 ∗ 〈¬a2, a2〉 = 〈a2 ∧ ¬a2, (a2 → a2) ∧ (¬a2 → �a1)〉 = 〈0, 1 ∧ (¬a2 → �a1)〉 =
〈0, ¬a2 → �a1〉. Thus, A � x ∗ (x ⇒ ∼ x) = ∼ x ∗ (∼ x ⇒ x) if and only if ¬a1 → a2 = ¬a2 →
�a1 for all 〈a1, a2〉 ∈ A, as claimed.

Now, assume (ii), and let 〈a1, a2〉 ∈ A. Since 〈a1, a2〉2 = 〈a1, ¬a1〉, we can instantiate the
equality ¬a1 → a2 = ¬a2 → �a1 obtaining ¬a1 → ¬a1 = 1 = ¬¬a1 → �a1. Thus, ¬¬a1 ≤
�a1. This gives us 〈¬¬a1 → �a1, �¬¬a1 ∧ a2〉 = ¬¬〈a1, a2〉 → ∼∼〈a1, a2〉 = 〈1, 0〉, obtain-
ing (iii).

By the preceding computations, it is clear that (iii) entails S � ¬¬x ≤ �x. Since the inequality
S � �x ≤ ¬¬x holds generally, we have (iv).

To conclude the proof, let us show that (iv) entails (i).
Assuming (iv), let us compute: 〈a1, a2〉 ∗ (〈a1, a2〉 ⇒ 〈b1, b2〉) = 〈a1 ∧ (a1 → b1) ∧ (b2 →

a2), (a1 → (�a1 ∧ b2)) ∧ (((a1 → b1) ∧ (b2 → a2)) → a2)〉 = 〈a1 ∧ b1 ∧ (b2 → a2),
(a1 → b2) ∧ (((a1 → b1) ∧ (b2 → a2)) → a2)〉 = 〈a1 ∧ b1, (a1 → b2) ∧ (((a1 → b1) ∧ (b2 →
a2)) → a2)〉. In the last passage we have used the following observation: from the
requirement b1 ∧ b2 = 0 ≤ a2, by residuation, we have b1 ≤ b2 → a2. Thus, by symmetry,
we have 〈b1, b2〉 ∗ (〈b1, b2〉 ⇒ 〈a1, a2〉) = 〈b1 ∧ a1, (b1 → a2) ∧ (((b1 → a1) ∧ (a2 → b2)) →
b2)〉. The first components are thus equal. Regarding the second ones, it suffices to
show e.g. that (a1 → b2) ∧ (((a1 → b1) ∧ (b2 → a2)) → a2) ≤ (b1 → a2) ∧ (((b1 → a1) ∧
(a2 → b2)) → b2). The latter, in turn, can be split into the two inequalities (a1 → b2) ∧
(((a1 → b1) ∧ (b2 → a2)) → a2) ≤ b1 → a2 and (a1 → b2) ∧ (((a1 → b1) ∧ (b2 → a2)) →
a2) ≤ ((b1 → a1) ∧ (a2 → b2)) → b2. The former holds generally. Indeed, by residuation,
we have (a1 → b2) ∧ (((a1 → b1) ∧ (b2 → a2)) → a2) ≤ b1 → a2 iff ((a1 → b1) ∧ (b2 →
a2)) → a2 ≤ ((a1 → b2) ∧ b1) → a2. Since the implication is order-reversing in the first argu-
ment, it suffices to verify that (a1 → b2) ∧ b1 ≤ (a1 → b1) ∧ (b2 → a2), or equivalently the two
inequalities (a1 → b2) ∧ b1 ≤ a1 → b1 and (a1 → b2) ∧ b1 ≤ b2 → a2. The former is clear.
The latter is equivalent, by residuation, to b2 ∧ (a1 → b2) ∧ b1 ≤ a2, which follows from the
requirement b1 ∧ b2 = 0. It thus remains to verify:

(a1 → b2) ∧ (((a1 → b1) ∧ (b2 → a2)) → a2) ≤ ((b1 → a1) ∧ (a2 → b2)) → b2

which is equivalent, by residuation, to:

(b1 → a1) ∧ (a2 → b2) ∧ (a1 → b2) ∧ (((a1 → b1) ∧ (b2 → a2)) → a2) ≤ b2.

By assumption, b2 = �b2 = ¬¬b2. Thus the preceding inequality can be rewritten as:

(b1 → a1) ∧ (a2 → ¬¬b2) ∧ (a1 → ¬¬b2) ∧ (((a1 → b1) ∧ (b2 → a2)) → a2) ≤ ¬¬b2

which is equivalent, by residuation, to the following one:

¬b2 ∧ (b1 → a1) ∧ (a2 → ¬¬b2) ∧ (a1 → ¬¬b2) ∧ (((a1 → b1) ∧ (b2 → a2)) → a2) = 0.

Using the identity x → ¬y = y → ¬x (which is valid on all bounded implicative semilattices),
we can further rewrite the left-hand side of the preceding equality as follows:

¬b2 ∧ (b1 → a1) ∧ (¬b2 → ¬a2) ∧ (¬b2 → ¬a1) ∧ (((a1 → b1) ∧ (b2 → a2)) → a2)

and, using the identity x ∧ y = x ∧ (x → y), we further obtain:

¬b2 ∧ ¬a2 ∧ ¬a1 ∧ (b1 → a1) ∧ (((a1 → b1) ∧ (b2 → a2)) → a2).

By residuation, we have

¬b2 ∧ ¬a2 ∧ ¬a1 ∧ (b1 → a1) ∧ (((a1 → b1) ∧ (b2 → a2)) → a2) ≤ 0
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iff

¬b2 ∧ ¬a1 ∧ (b1 → a1) ∧ (((a1 → b1) ∧ (b2 → a2)) → a2) ≤ ¬¬a2

iff (using also a2 = �a2 = ¬¬a2)

((a1 → b1) ∧ (b2 → a2)) → ¬¬a2 ≤ (¬b2 ∧ ¬a1 ∧ (b1 → a1)) → ¬¬a2.

Thus, it suffices to verify the inequality ¬b2 ∧ ¬a1 ∧ (b1 → a1) ≤ (a1 → b1) ∧ (b2 → a2) or,
equivalently, the two inequalities ¬b2 ∧ ¬a1 ∧ (b1 → a1) ≤ a1 → b1 and ¬b2 ∧ ¬a1 ∧ (b1 →
a1) ≤ b2 → a2. Both are easy: indeed, by the monotonicity of the implication (in the second
argument), we have ¬a1 = a1 → 0 ≤ a1 → b1 and ¬b2 = b2 → 0 ≤ b2 → a2. This concludes
our proof. �


	1. Introduction
	2. Preliminaries
	2.1. Subreducts of Heyting algebras
	2.2. Nuclei
	2.3. Quasi-Nelson algebras and their twist representation

	3. The {*, }-fragment: quasi-Nelson monoids
	3.1. Quasi-Nelson monoids
	3.2. Twist-algebras over -semilattices

	4. Adding implication(s): quasi-Nelson pocrims
	4.1. QNI-algebras
	4.2. Quasi-Nelson pocrims

	5. Adding meets: quasi-Nelson semihoops
	5.1. Quasi-Nelson semihoops and their twist representation

	6. Refining the representations
	6.1. QNM
	6.2. QNP and QNS

	7. Completions and embeddings
	8. Congruence properties
	9. Subvarieties
	10. Future work
	Notes
	ORCID
	Funding
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [493.483 703.304]
>> setpagedevice


