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In his PhD. thesis ([7]), L. van den Dries studied the model theory of fields (more precisely domains) with
finitely many orderings and valuations where all open sets according to the topology defined by an order or a
valuation is globally dense according with all other orderings and valuations. Van den Dries proved that the
theory of these fields is companionable and that the theory ofthe companion is decidable (see also [8]).
In this paper we study the case where the fields are expanded with finitely many orderings and an independent
derivation. We show that the theory of these fields still admits a model companion in the languageL<,m

D =
{+,−, ·,D,<1, . . . ,<m,1,0}. We denote this model companion byCODFm and give a geometric axiomatization
of this theory which uses basic notions of algebraic geometry and some generalized open subsets which appear
naturally in this context. This axiomatization allows to recover (just by puttingm= 1) the one given in [4] for
the theoryCODF of closed ordered differential fields. Most of the technics we use here are already present in
[2] and [4].
Finally, we prove that it is possible to describe the completions ofCODFm and to obtain quantifier elimination
in a slightly enriched (infinite) language. This generalizes van den Dries’s results in the "derivation free" case.
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1 Preliminaries

1.1 The work of van den Dries

In order to make this paper as self-contained as possible, webriefly recall the results of [7].

Let m∈ N, am-ordered field M is a field equipped withm orderings<1, . . . ,<m.
Any such field is aL<,m-structure whereL<,m := {+, ·,−,<1, . . . ,<m,0,1}. We denote byOFm theL<,m-theory
of m-ordered fields.

Fact 1.1.1 ([7, Ch. II, Theorem (1.2)]): OFm has a model companion COFm whose models M satisfy:

(1) OFm;

(2) the orderings on M are pairwise independent1;

(3) for any irreducible f(X,Y) ∈ M[X,Y] and any a∈ M such that f(a,Y) changes sign on M w.r.t. to each
ordering, there exists(c,d) ∈ M2 with f(c,d) = 0.

The independence of the orderings leads to some interestingconsequences.
Let M be a model ofCOFm, a subsetU of Mk is m-open if U = U1∩ . . .∩Um where, for eachi ∈ {1, . . . ,m}, Ui

is a<i-open2 subset ofMk.

Fact 1.1.2 ([7, Ch. III,§1]): Any m-open subset of M is infinite. Furthermore, the m-opensubsets of M form
a new topologyτm on M. The basis ofτm is given by the subsets U1∩ . . .∩Um where each Ui is a basic<i-open
subset of M. This topology is Hausdorff and not discrete.

The author was supported by a FRIA grant during his PhD thesisat the University of Mons-Hainaut and is now supported by a MODNET
grant.

∗ e-mail: criviere@logique.jussieu.fr
1 This means that they induce different interval topologies on M.
2 A subset ofMk is <i-open if it is open for the topology induced by<i .
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In [7, Ch. II, Proposition (1.20)] van den Dries showed that,in the case wherem≥ 2, COFm is not complete
and is not the model completion ofOFm.
Nevertheless he gave a classification of the complete extensions ofCOFm that we shortly describe below.
For any fieldM, let alg(M) := {a∈ M | a is algebraic over the prime subfield ofM} and denote byM |= OFm,alg
the fact that there exists an extensionN |= COFm of M such thatM is algebraically closed inN. The theory
OFm,alg is first-order axiomatizable by a list of sentences asserting that each polynomial inM[X] with odd degree
has a root inM and that anya∈ M which is positive w.r.t. each ordering onM has a square root inM (see [7,
Ch. II, Lemma (2.6)]).

Fact 1.1.3 ([7, Ch. II, (2.8)]): Two models(M,<1, . . . ,<m) and(N, <̃1, . . . , <̃m) ofCOFm are L<,m-elementary
equivalent iff(alg(M),<1, . . . ,<m) and(alg(N), <̃1, . . . , <̃m) are L<,m-isomorphic3.

In order to get a model completion forOFm (and hence quantifier elimination), van den Dries extended the
theoryCOFm by adding to the language new predicate symbolsWd,k1,...,km for d ≥ 2,1≤ ki ≤ d and, as defining
axioms, the following list:

∀X1, . . . ,Xd
(
Wd,k1,...,km(X1, . . . ,Xd) ⇔∃Y

∧

i

(ϕd,ki (<i ,Y,X1, . . . ,Xd))
)

whereϕd,ki (<i ,Y,X1, . . . ,Xd) is a quantifier freeL<,m-formula such that, for any modelM of OFm and any
a1, . . . ,ad,b ∈ M, ϕd,ki (<i ,b,a1, . . . ,ad) holds iff b is the ki

th root of Yd + a1Yd−1 + · · ·+ ad in the real clo-
sure ofM w.r.t. the ordering<i .
Let us denote byCOFm the theory obtained fromCOFm by adding this list of axioms and byL<,m the new
language with added predicate symbolsWd,k1,...,km.

Fact 1.1.4 ([7, Ch. II, (2.14)]): The theoryCOFm has quantifier elimination inL<,m.

1.2 Algebraic geometry and semi-generic points

We now give a list of definitions and results from algebraic geometry that we will need in the next section.
We consider here a fieldM of characteristic zero in a languageL extending the usual language of rings and we
assume thatM is equipped with a derivationD. We will also denote byLD the languageL∪{D} whereD is a
function symbol interpreted as the derivation. We finally fixa sufficiently saturated elementaryL-extensionN of
M and denote bỹN the algebraic closure ofN.
Let J be a prime ideal ofM[X1, . . . ,Xk], the set

V(J) := {ā∈ Ñk | ∀p∈ J, p(ā) = 0}

is called aM-variety of Ñk.
On the other hand, ifV is aM-variety the set

I(V) := {p∈ M[X1, . . . ,Xk] | p(ā) = 0 for all ā∈V(J)}

is a prime ideal ofM[X1, . . . ,Xk].
A tuple c̄ ∈ V is a M-generic point of V iff the transcendence degree ofM(c̄) overM is maximal among the
points ofV. In this case, we define thedimensionof V, dim(V), to be this transcendence degree.
Let nowV ⊆ Ñk be aM-variety and ¯a∈V. Thetorsor of V at ā is the set

τā(V) := {(v1, · · · ,vk) ∈ Ñk | pD(ā)+
k

∑
i=1

∂ p
∂Xi

(ā) ·vi = 0 for all p∈ I(V)},

wherepD is the polynomial ofM[X1, . . . ,Xk] obtained by taking the derivative of the coefficients ofp.
Thetorsor bundle of V is the set

τ(V) := {(ā, v̄) ∈ Ñ2k | ā∈V ∧ v̄∈ τā(V)}.

3 Note that we use the same notation for an ordering onM (resp.N) and for its restriction toalg(M) (resp.alg(N)).
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Remark that, sinceM[X1, . . . ,Xk] is a Noetherian ring, these two sets areM-definable (i.e. definable with param-
eters fromM) in the usual language of rings.
The following lemma is due to D. Pierce and A. Pillay. It is thekey point in all the constructions of geometric
axiomatizations for model complete theories of differential fields (see for example [5, 4, 2]).

Lemma 1.2.1
Let V⊆ Ñk be a M-variety and̄a∈ Ñk be a M-generic point of V .
For anyb̄∈ τā(V), let W⊆ τ(V) be the M-variety of which(ā, b̄) is a M-generic point.

Then there exist̄c∈ M(ā, b̄)
k

and a derivation D⋆ on M(ā, b̄) extending D such that D⋆(ā, b̄) = (b̄, c̄).

P r o o f. This lemma follows directly from Theorem (1.1) and Corollary (1.7) in [5].

We now recall a definition introduced in [4]:
Let ā = (a1, . . . ,ak) ∈ Ñk be aM-generic point of aM-varietyV and assume thatV has dimensionr. Without lost
of generality we can assume thata1, . . . ,ar are algebraically independent overM andar+1, . . . ,an are algebraic
overK(a1, . . . ,ar).
We then defineQi to be the polynomial obtained from a minimal polynomial ofar+i overM(a1, . . . ,ar+i−1) after
replacinga1, . . . ,ar+i−1 by the variablesX1, . . . ,Xr+i−1 and cancelling the denominators.
The set of theseQi are called a system ofcanonical semi-generators4 of V (associated to ¯a). Furthermore, we
say that a point̄b of V is semi-genericif for eachi ∈ {1, . . . ,k− r},

sQi (b̄) :=
∂Qi

∂Xr+i
(b̄) 6= 0 andH(Q1, . . . ,Qk−r)(b̄) 6= 0

whereH(Q1, . . . ,Qk−r) is the product of the dominant coefficients of eachQi when this latter is seen as a poly-
nomial inXr+i with coefficients inM[X1, . . . ,Xr+i−1].
Remark that the generic point ¯a above is semi-generic.

2 m-ordered fields with a derivation

We now restrict ourselve to the case whereM is a m-ordered field equipped with a derivationD which does
not interact with the orderings. We denote byODFm the theory which consists of the axioms ofm-ordered
differential fields in the languageL<,m

D = {+,−, ·,D,<1, . . . ,<m,1,0}. We will denote this language byLD for
evident typographical convenience

(
L will denote the languageL<,m = {+,−, ·,<1, . . . ,<m,1,0} of m-ordered

rings
)
. As previously,N is a sufficiently saturated elementaryL-extension ofM andÑ is the algebraic closure of

N.

2.1 Geometric axiomatization for the model companion

We are now able to state the main result of this paper.

Theorem 2.1.1
The theory ODFm has a model companion, namely the theory CODFm of closed m-ordered differential fields.
This model companion is axiomatized as follows:
let (M,D) |= ODFm, M is a closed m-ordered differential field if

(1) M |= COFm;

(2) for every M-varieties V and W⊂ τ(V) such that W projects generically5 onto V, if U is a non-empty M-
definable m-open subset of W such that U|M contains a semi-generic point of W then U|M contains a point of
the form(ā,D(ā)).

Remark2.1.2. If m= 1 then we recover the geometric axiomatization ofCODF given in [4]. In fact, the proof
of points (A) and (B) below is a slight adaptation of the proofs of Proposition 1.6 and Theorem 1.7 in [4].

4 We use the name semi-generator because the ideal definingV is equal to
(Q1, . . . ,Qk−r ) : H(Q1, . . . ,Qk−r )

∞ := { f ∈ M[X1, . . . ,Xk] | ∃n∈ N H(Q1, . . . ,Qk−r )
n · f ∈ (Q1, . . . ,Qk−r )}.

5 This means that for anyM-generic point ¯c of V there existsd̄ ∈ Ñn such that(c̄, d̄) is aM-generic point ofW.
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In order to prove Theorem 2.1.1 we have to perform two tasks:
(A): to prove that any model ofODFm extends to a model ofCODFm;
(B): to prove thatCODFm is model complete.

To prove (A) we first introduce the following lemma. This result is a direct consequence of the saturation of
N and can be seen as a "multi-ordered" analogue of the claim appearing in the proof of [2, Lemma 3.5].

Lemma 2.1.3
For any l∈ N, there exist t1, . . . ,tl ∈ N which are infinitesimal over M w.r.t. to each orderings6 and algebraically
independent over M.

P r o o f. Remark first thatt1, . . . ,tl are infinitesimal overM iff they belong to eachM-definablem-open subset
of N containing 0.
Furthermore, any such basicm-open subset ofN is defined by aL-formula

ΘM(X) ≡
m∧

i=1

θi(X) where eachθi(X) defines a<i-open subset ofM.

Hence, we can consider the setF(X1, . . . ,Xl ) of all L-formulas:

f (X1, . . . ,Xl ) 6= 0∧
l∧

j=1

ΘM(Xj)

where f ranges overM[X1, . . . ,Xl ] andΘM(X) ranges over all the formulas defining a basicm-open subset ofM.
By the saturation ofN, it is sufficient to prove that each finite conjunction of formulas inF(X1, . . . ,Xl ) is satisfied
by a l -tuple of elements ofN.
Hence it suffices to prove that there existu1, . . . ,ul ∈ N such that

f (u1, . . . ,ul ) 6= 0∧
l∧

j=1

ΘM(u j)

where f (X1, . . . ,Xl ) ∈ M[X1, . . . ,Xl ] is a non-zero polynomial andΘM(Xj) defines am-open subset ofM.
We will proceed by induction onl . Let us remark first that ifl = 1, the result immediately follows from Fact 1.1.2
since any polynomialf (X) ∈ M[X] has finitely many roots inN.
Let nowu1, . . . ,ul−1 ∈ N be algebraically independent and infinitesimal overM and consider again a formula

f (X1, . . . ,Xl ) 6= 0∧
l∧

j=1

ΘM(Xj).

If
∀X1, . . . ,Xl ∈ ΘM(N) f (X1, . . . ,Xl ) = 0

then, by the inductive hypothesis,f (v1, . . . ,vl−1,Xl ) ≡ 0 for anyv1, . . . ,vl−1 ∈ ΘM(M). Therefore, sinceN is an
elementary extension ofM

M |= ∀X1, . . . ,Xl−1
( l−1∧

j=1

ΘM(Xj) →
d∧

i=1

fi(X1, . . . ,Xl−1) = 0
)

where f = ∑d
i=1 fiXl

i for some positive integerd.
Using again the inductive hypothesis, we can deduce thatfi ≡ 0 for anyi ∈ {1, . . . ,d}.
It follows that f ≡ 0, a contradiction.

This result allows us to state the following slight adaptation of [7, Ch. II, Lemma 1.10].

6 In the sequel we will simply say that an element is infinitesimal overM to denote that it is infinitesimal overM w.r.t. each orderings.
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Corollary 2.1.4
Let M |= OFm, f(X̄,Y) ∈ M[X̄,Y] be irreducible and̄a∈ Ml be such that f(ā,Y) changes signs on M w.r.t. each
ordering of M.
Then there exist a m-ordered field̄M extending M and a root(c̄,d) ∈ M̄ of f such that:

. c̄ is infinitesimally close (component by component) toā;

. the components of̄c are algebraically independent over M.

P r o o f. Lett1, . . . ,tl ∈ N be given by Lemma 2.1.3 and put, for anyj ∈ {1, . . . , l}, c j = a j + t j . Note that the
orderings onM extend to the fieldM(c1, . . . ,cl ).
Sincet1, . . . ,tl are infinitesimal overM, f (c̄,Y) changes sign onM(c̄) w.r.t. each ordering ofM(c̄). Hence, by
the intermediate value property for real closed fields, it has a root in them different (one for each ordering) real
closures ofM(c̄).
Since f is irreducible inM(c̄)[Y], the ideal( f (c̄,Y)) is real and then that we can extend any ordering ofM(c̄) to
an ordering on the fieldM(c̄)[Y]/( f (c̄,Y)) = M̄.
Just putd ≡Ymod( f (c̄,Y)) to get the desired conclusion.

P r o o f. of (A):
Let (M,D) |= ODFm. By [7, Ch. I, Lemmas 1.8 and 1.10] and the extension theorem for derivation [3, Ch. X,
section 7, Theorem 7], we can assume thatM is a model ofCOFm.
Let V,W,U be as in the hypothesis of Theorem 2.1.1 and assume thatV (resp.W) has dimensionr (resp.r +s).
Let Q1, . . . ,Qn−r ,Qn+1, . . . ,Q2n−s be a system of canonical generators ofW such thatQ1, · · · ,Qn−r is a system of
canonical generators ofV.
By hypothesis,U |M contains a semi-generic point(ā, b̄) of W.
Consider now the following Taylorian development:

Q1(a1, . . . ,ar ,ar+1 + ε) = Q1(a1, . . . ,ar+1)︸ ︷︷ ︸
=0

+sQ1(a1, . . . ,ar+1)︸ ︷︷ ︸
6=0

·ε +o(ε).

Let (η1, . . . ,ηm) be the sign of the elementsQ1(a1, . . . ,ar+1) of M, i.e. eachηi is the sign ofsQ1(a1, . . . ,ar+1)
w.r.t. <i .
Remark thatQ1(a1, . . . ,ar ,ar+1 + ε) takes the sign ofsQ1(a0, . . . ,ar+1) · ε and henceQ1(a0, . . . ,ar ,ar+1 + ε)
changes sign onM for each orderings, following the sign ofε.
By Lemma 2.1.4, we can find a root(c1, . . . ,cr ,cr+1) of Q1 in a m-ordered extension ofM such thatc1 −
a1, . . . ,cr −ar are infinitesimal overM andc1, . . . ,cr are algebraically independent overM. Remark that, since
polynomials are continuous w.r.t. each order topology,cr+1 is infinitesimally close toar+1.
Repeating the same argument recursively first on eachar+i and then on eachbs+ j

(
for any i ∈ {1, . . . ,n− r} and

any j ∈ {1, . . . ,n−s}
)
, we find for eachi (resp. eachj) an elementci (resp.d j ) in a m-ordered extension ofM

such that
Qi(c1, · · · ,cr+i−1,cr+i) = 0

(
resp.Qn+ j(c̄,d1, · · · ,ds+ j−1,ds+ j) = 0

)

andcr+i (resp.ds+ j ) is infinitesimally close toar+i (resp.bs+ j ) in M.
Let c̄ = (c1, . . . ,cn) and d̄ = (d1, . . . ,dn). Then(c̄, d̄) ∈ N belongs to them-open setU and furthermore, the
algebraic independence oft1, . . . ,tr ,u1, . . . ,us ensure that it is a generic point ofW.
By Lemma 1.2.1, the derivationD onM extends to a derivationD∗ onM(c̄, d̄) with D∗(c̄) = d̄.
Using a transfinite induction and the saturation ofN, one can build an extension ofM which is a model of
CODFm.

It remains now to prove the model completeness ofCODFm.
For this we use theRobinson’s test(see [7, Ch.I, (2.17)]) and the problem reduces to showing that any model of
CODFm is an existentially closedm-ordered field.

P r o o f. of (B):
Let (M,D) be a model ofCODFm and consider an extension̄M of M which is a model ofODFm. We keep the
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same notationD for the derivation onM and for its extension tōM.
Let ā⊂ M̄ andϕ(X̄) be a quantifier freeLD-formula such that

M̄ |= ϕ(ā).

Remark thatϕ(X̄) can be interpreted as theLD-formula

ϕL(X̄0, X̄1, . . . , X̄r)∧ X̄1 = D(X̄0)∧ . . .∧ X̄r = D(X̄r−1)

whereϕL is aL-formula.
DefineφL(X̄,Ȳ) to be the followingL-formula:

φL(X̄,Ȳ) ≡ ϕL(X̄0, X̄1, . . . , X̄r−1,Ȳr−1)∧ X̄1 = Ȳ0∧ . . .∧ X̄r−1 = Ȳr−2.

Let
c̄ = (ā,D(ā), . . . ,Dr−1(ā)),

V = V(I(c̄)) and W = V(I(c̄,D(c̄)))

(so thatW projects generically ontoV).
Sinceϕ(X̄) is a quantifier freeLD-formula, the set defined byφL in M is a finite union of subsets which are the
intersection of aM-variety and aM-definablem-open set.
More precisely,

φL(X̄,Ȳ) ≡
∨(∧

h

fh(X̄,Ȳ) = 0

︸ ︷︷ ︸
defines aM-variety

∧
m∧

i=1

(
l i∧

j=1

gi j (X̄,Ȳ) > 0)

︸ ︷︷ ︸
defines a<i -open set

)
.

Let M̂ be a model ofCOFm extendingM̄ (M̂ exists sinceCOFm is the model companion ofOFm). The semi-
generic point(c̄,D(c̄)) of W belongs to one of them-open sets defined byφL. Let us denote this latter byU .
SinceM andM̂ are models of the model complete theoryCOFm, there exists a semi-generic point(d̄, ē) of W in
U |M.
Furthermore, sinceM |= CODFm, there exists̄b⊂ M such that

M |= φL(b̄,D(b̄))

and then
M |= φ(b̄0)

whereb̄0 is the initial sub-tuple of̄b whose length is equal to the length of ¯a.

We end this section with two easy applications of the axiomatization ofCODFm. Again, these results general-
ize well-known facts forCODF (see [6, Ch. 2]).

Corollary 2.1.5
Let M |= CODFm, then

(i) for any(n1, . . . ,nk) ∈ Nk, the(n1, . . . ,nk)-jet-space of Mk

J(n1,...,nk)(M) := {(x1,D(x1), . . . ,D
n1(x1), . . . ,xk,D(xk), . . . ,D

nk(xk)) | (x1, . . . ,xn) ∈ Mk}

is dense in M(n1+1)+···+(nk+1) w.r.t. the topologyτm introduced in Fact 1.1.2;

(ii) the subfield M0 := {x∈ M | D(x) = 0} is dense in M w.r.t.τm.

P r o o f.

Copyright line will be provided by the publisher



mlq header will be provided by the publisher 9

(i) The proof faithfully follows the proof of [2, Theorem 4.2], we include it for the sake of completeness.
SinceJ(n1,...,nk)

(M) = Jn1(M)×·· · ×Jnk(M) and density is preserved by direct products of topological spaces it
is sufficient to prove that, for any positive integern≥ 0, the(n)-jet-space ofM is dense inMn+1.
LetU be aM-definablem-open subset ofMn+1 and consider the differential polynomialf (X) = Dn+1(X) whose
separant is equal to the constant polynomial 1.
Consider also the followingM-varieties:

{
V := V((0)) = Ñn+1

W := {(x̄, ȳ) | f (x0, . . . ,xn,yn) = 0∧y0 = x1∧ . . .∧yn−1 = xn}

Remark thatW projects generically overV.
The setŨ := {(uo, . . . ,un,u1, . . . ,un,0) | (uo, . . . ,un) ∈ U} is aM-definablem-open subset ofW and each point
of Ũ is semi-generic forW. By Theorem 2.1.1, there exists a differential point(u,D(u), . . . ,Dn(u)) in U .
This proves the density of the jet-spaces.

(ii) AssumeU is am-open subset ofM and letŨ := U ×M.
Consider theM-varietiesV := Ñ andW := {(x0,x1) ∈ M2 | x1 = 0}. Remark thatW projects generically onV
and thatŨ ∩W is a non-emptym-open subset ofW which contains semi-generic points ofW.
By Theorem 2.1.1, there exists a point(u,D(u)) in Ũ ∩W. In other words, there existsu∈U such thatD(u) = 0.
This proves that anym-open subset ofM contains an element ofM0.

Remark2.1.6. The construction of some kind of "natural" or "canonical" model of the model companion of a
given theory of differential fields is a longstanding open problem.
In fact, even for the theory of differentially closed fields or for CODF, such models are not known.
In this latter case, as well as in the case ofCODFm, the results of density stated above implies very strong
conditions on the models. As an example, it must exist in these models arbitrarily large constants (even w.r.t. to
each orderings in the case ofCODFm). In particular this shows that fields of germs of functions overR (or Hardy
fields) are not models ofCODF; or of CODFm if we want to consider the asymptotic behaviour of real functions
in several different points (e.g. in−∞ and+∞).

2.2 Completions ofCODFm and quantifier elimination

We now show how to generalize Facts 1.1.3 and 1.1.4 to the caseof CODFm.
First, let us remark that for anyM |= CODFm, alg(M) is a differential field equipped with the trivial derivation
D0 : x 7→ 0 and that this latter is the only possible derivation onalg(M).
Hence,alg(M) is a model of the theoryODFm,alg ≡ ODFm∪OFm,alg.

Lemma 2.2.1
The theory ODFm,alg has the amalgamation property.

P r o o f. The proof is similar to the one of [7, Ch. II, Corollary(2.7)].
Let (M,D),(M1,D1),(M2,D2) |= ODFm,alg be such that there exist twoLD-embeddings(M,D) → (M1,D1) and
(M,D) → (M2,D2). M is identified with a subfield ofM1 andM2 via these embeddings.
SinceM is algebraically closed inM1 andM2, these two fields can beL-embedded in a common field extension
L in such a way thatM1 andM2 are linearly disjoint overM.
By [7, Ch. II, Lemma (2.5)],M1 andM2 have a commonm-ordered extension overM (namely the fieldM1M2

which is the smallest subfield ofL containing bothM1 andM2).
SinceM1 andM2 are linearly disjoint overM, we can extend the derivationsD1 andD2 to a common derivation
D∗ onM1M2.

The previous lemma leads to the following theorem:

Theorem 2.2.2
Let (M1,DM1 ,<1 . . . ,<m) and(M2,DM2, <̃1, . . . , <̃m) be two models of CODFm.
Then these two LD-structures are LD-elementary equivalent iff

(alg(M1),D0,<1 . . . ,<m) ∼=LD (alg(M2),D0, <̃1, . . . , <̃m).
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Note that, as in Fact 1.1.3, we used the notation<i (resp. <̃i ) for the orderings induced by M1 (resp. M2) on
alg(M1) (resp. alg(M2)).

Again the proof is extremely similar to the proof of Fact 1.1.3 in [7].

P r o o f. In order to simplify the notations we will denote byM1 theLD-structure(M1,DM1,<1 . . . ,<m) and
by alg(M1) theLD-structure(alg(M1),D0,<1 . . . ,<m) (and similarly forM2 andalg(M2)).

. Assume thatalg(M1)∼=LDalg(M2) so that we can identify these twoLD-structures.
By Lemma 2.2.1 and since any model ofCODFm is a model ofODFm,alg, there exists a common extensionL of
M1 andM2 which is a model ofODFm,alg.
By Theorem 2.1.1, we can assume thatL |= CODFm and then, sinceCODFm is model complete,M1 � L and
M2 � L .
It follows thatM1≡LDM2.

. Assume now thatM1≡LDM2 and consider the set ofLD-sentences

S:= CODFm∪Diag(M1)∪Diag(M2)

whereDiag(Mi) denotes the set of all atomic and negation of atomicLD-sentences which are true inMi (i = 1,2).
SinceM1≡LDM2, each finite fragment ofS is satisfied inM1 (and inM2). By compactness, there existsL |= S
and we can considerM1 andM2 asLD-substructures ofL .
SinceCODFm is model complete,M1 andM2 are elementaryLD-substructure ofL and then

alg(M1) = alg(L ) andalg(M2) = alg(L ).

Hencealg(M1)∼=LDalg(M2).

Consider now the extensionLD of the languageLD by the new predicate symbolsWd,k1,...,km and letCODFm

be theLD-theoryCODFm∪COFm.
We want to show thatCODFm admits quantifier elimination inLD.
For this, according to [1, Ch. 4, Lemma 12], we have to prove thatCODFm is model complete and that(CODFm)∀
has the amalgamation property.
Remark that sinceCODFm is an extension by definition ofCODFm it is still model complete and then it suffices
to prove the following lemma:

Lemma 2.2.3
The theory(CODFm)∀ has the amalgamation property.

P r o o f. Let(M,D),(M1,D1),(M2,D2) be three models of(CODFm)∀ such that there exist twoLD-embeddings
σ1 : (M,D) → (M1,D1) andσ2 : (M,D) → (M2,D2).
Let ODFm,alg := ODFm,alg∪ (CODFm)∀ and remark that

(ODFm,alg)∀ = (CODFm)∀.

For any modelA of (CODFm)∀, define

Ã := {a∈ Ā | a is algebraic overQ(A)}

whereĀ is a model ofCODFm extendingA.
By [7, Ch. II, Lemma (2.13) (ii)],Ã is a prime extension ofA and is a model ofODFm,alg.
Henceσ1 andσ2 induceL̄-embeddings

σ̃1 : M̃ → M̃1 andσ̃2 : M̃ → M̃2.

Furthermore, sincẽM (resp.M̃1,M̃2) is an algebraic extension ofM (resp.M1,M2), D (resp.D1,D2) extends to
an unique derivatioñD (resp.D̃1,D̃2) on M̃ (resp.M̃1,M̃2).
Henceσ̃1 andσ̃2 areLD-embeddings of models ofODFm,alg.
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But, by [7, Ch. II, Lemma (2.13) (i)], each model ofODFm,alg has an unique expansion to a model ofODFm,alg.
It follows, from Lemma 2.2.1, thatODFm,alg has the amalgamation property. Hence, there exists a modelL of
ODFm,alg such thatM̃1 andM̃2 LD-embeds intoL overM̃.
This gives usLD-embeddings ofM1 andM2 overM in L which is a model of(CODFm)∀.

We can then conclude with the following theorem:

Theorem 2.2.4
The theoryCODFm has quantifier elimination inLD.
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