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In his PhD. thesis [[I7]), L. van den Dries studied the modebtl of fields (more precisely domains) with
finitely many orderings and valuations where all open setsraling to the topology defined by an order or a
valuation is globally dense according with all other ordgs and valuations. Van den Dries proved that the
theory of these fields is companionable and that the theolyeofompanion is decidable (see also [8]).

In this paper we study the case where the fields are expandedimiely many orderings and an independent
derivation. We show that the theory of these fields still @adraimodel companion in the langualge P =
{+,-,-,D,<1,...,<m,1,0}. We denote this model companion DRy and give a geometric axiomatization
of this theory which uses basic notions of algebraic geoyreetd some generalized open subsets which appear
naturally in this context. This axiomatization allows ta@oger (just by puttingn = 1) the one given ir]4] for
the theoryCODF of closed ordered differential fields. Most of the technieswge here are already present in
[2] and [4].

Finally, we prove that it is possible to describe the coniptet of CODFy, and to obtain quantifier elimination
in a slightly enriched (infinite) language. This generaizan den Dries’s results in the "derivation free" case.

Copyright line will be provided by the publisher

1 Preliminaries

1.1 The work of van den Dries

In order to make this paper as self-contained as possibleriefy recall the results of[7].

Letme N, am-ordered field M is a field equipped witim orderings<s, ..., <m.
Any such field is &« ym-structure wheré . m:= {+,-,—,<1,...,<m,0,1}. We denote byOR, theL. n-theory
of mordered fields.

Fact 1.1.1 ([I4, Ch. Il, Theorem (1.2)} OFy has a model companion C@Rvhose models M satisfy:
(1) OFn;
(2) the orderings on M are pairwise indepencﬂsnt

(3) for any irreducible {X,Y) € M[X,Y] and any ac M such that fa,Y) changes sign on M w.rt. to each
ordering, there existéc,d) € M2 with f(c,d) = 0.
The independence of the orderings leads to some interesimgpquences.
Let M be a model oE£OFy, a subset) of MX is m-openif U =U;N...NUn where, for each e {1,...,m}, U;
is a<i-opefl subset oM.

Fact 1.1.2 ([IZ, Ch. I11,81]): Any m-open subset of M is infinite. Furthermore, the m-cpésets of M form
a new topologyrm on M. The basis ofy, is given by the subsets0... NUny, where each Uis a basic<j-open
subset of M. This topology is Hausdorff and not discrete.

The author was supported by a FRIA grant during his PhD tlesige University of Mons-Hainaut and is now supported by alWNET
grant.
* e-mail: criviere@logique.jussieu.fr
1 This means that they induce different interval topologied/o
2 Asubset oM is <j-openif it is open for the topology induced by;.
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In [IZ, Ch. II, Proposition (1.20)] van den Dries showed tlimthe case where > 2, CORy, is not complete
and is not the model completion Gf,.
Nevertheless he gave a classification of the complete artenefCOR;, that we shortly describe below.
For any fieldV, letalg(M) := {a< M | ais algebraic over the prime subfield df} and denote b = OF aig
the fact that there exists an extensidri= CORy, of M such thatM is algebraically closed ilN. The theory
OFnalg is first-order axiomatizable by a list of sentences assgttiat each polynomial iM[X] with odd degree
has a root irM and that anya € M which is positive w.r.t. each ordering & has a square root i (see [[7,
Ch. I, Lemma (2.6)]).

Fact 1.1.3 ([, Ch. I, (2.8)): Two modelgM, <1,...,<m) and(N,<1,...,<m) of COR,are L. n-elementary
equivalent iff(alg(M), <1,..., <m) and(alg(N), <1, ..., <m) are L. m-isomorphif.
In order to get a model completion f@F, (and hence quantifier elimination), van den Dries extentied t

theoryCOR,, by adding to the language new predicate symB@ls, ..k, ford > 2,1 < k; < d and, as defining
axioms, the following list:

VXt5e s X (W, ke (X155 Xa) & 3 /_\(¢d,lq (<i, Y, X1, Xd)))

where ¢q . (<i,Y,Xq,...,Xq) is a quantifier freel. m-formula such that, for any modéll of OF, and any
a,...,ad,b € M, dax (<i,b,ay,...,aq) holds iff b is thek'" root of Y4 +a; Y41 ... + a4 in the real clo-
sure ofM w.r.t. the ordering<;.

Let us denote byCOF, the theory obtained frol@OR, by adding this list of axioms and by n the new

Fact1.1.4 ([[Z, Ch. Il, (2.14)): The theoryCORy has quantifier elimination i m.

1.2 Algebraic geometry and semi-generic points

We now give a list of definitions and results from algebraiometry that we will need in the next section.

We consider here a fielsll of characteristic zero in a languafjextending the usual language of rings and we
assume tha is equipped with a derivatioD. We will also denote by.P the languagé U {D} whereD is a
function symbol interpreted as the derivation. We finallydigufficiently saturated elementdryextensiorN of

M and denote by the algebraic closure di.

LetJ be a prime ideal oM[X,..., Xy, the set

V() :={aeN¥|vpeJ, p(@ =0}

is called aM-variety of N,
On the other hand, ¥ is aM-variety the set

[(V):={peM[X,....,X] | p(@ =0forallaeV(J)}

is a prime ideal oM[Xy, ..., X].

A tuple c € V is aM-generic point of V iff the transcendence degree ldfc) over M is maximal among the
points ofV. In this case, we define tltBmensionof V, dim(V), to be this transcendence degree.

Let nowV C NX be aM-variety andae V. Thetorsor of V atais the set

Ta(V) == {(v, - i) € N¥| pD@fig—)Z(é) vi=0forallpel(V)},

wherepP is the polynomial oM[Xy,...,X,] obtained by taking the derivative of the coefficientgpof
Thetorsor bundle of V is the set
(V) :={(@aVv) e N¥*|aeVAve 15(V)}.
3 Note that we use the same notation for an orderiniylainesp.N) and for its restriction talg(M) (resp.alg(N)).
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Remark that, sinc®[Xy, ..., Xy] is a Noetherian ring, these two sets Mealefinable (i.e. definable with param-
eters fromM) in the usual language of rings.

The following lemma is due to D. Pierce and A. Pillay. It is #®y point in all the constructions of geometric
axiomatizations for model complete theories of differakfields (see for examplgl[Bl 4, 2]).

Lemma 1.2.1
LetV C N¥ be a M-variety and € N be a M-generic point of V.
For anyb € 13(V), let W C 7(V) be the M-variety of whicka, b) is a M-generic point.
Then there exist € M(a, b)k and a derivation D on M(a,b) extending D such thatDa, b) = (b, c).

Proof. This lemma follows directly from Theorem (1.1) and@tary (1.7) in [5]. O

We now recall a definition introduced inl [4]:
Leta= (ay,...,ax) € Nk be aM-generic point of a-varietyV and assume that has dimension. Without lost
of generality we can assume ttet ..., a, are algebraically independent owdranda,, 1,...,a, are algebraic
overK(a,...,ar).
We then defin&); to be the polynomial obtained from a minimal polynomiabef; overM(ay,...,ai_1) after
replacingay, ..., a,i_1 by the variableX, ..., X .j_1 and cancelling the denominators.
The set of thes€); are called a system @fnonical semi-generatoﬂ;ofv (associated t@). Furthermore, we
say that a poinb of V is semi-genericf for eachi € {1,... k—r},

So (b) := a‘;(ii (b) £ 0 andH (Qy, ..., Qx_r)(b) #£0

whereH (Qq,...,Qk_r) is the product of the dominant coefficients of e&ghwhen this latter is seen as a poly-
nomial inX; i with coefficients inM[Xy, ..., X 4i_1].
Remark that the generic poiaiabove is semi-generic.

2 m-ordered fields with a derivation

We now restrict ourselve to the case whétes a m-ordered field equipped with a derivati@ which does
not interact with the orderings. We denote ®pF,, the theory which consists of the axioms mfordered
differential fields in the Ianguag:h—:g,mD ={+,—,-,D,<1,...,<m,1,0}. We will denote this language P for
evident typographical convenienéb will denote the language. m = {+,—,,<1,...,<m, 1,0} of mordered
rings). As previouslyN is a sufficiently saturated elementdrextension oM andN is the algebraic closure of
N.

2.1 Geometric axiomatization for the model companion

We are now able to state the main result of this paper.
Theorem 2.1.1
The theory ODR; has a model companion, namely the theory C@DFclosed m-ordered differential fields.
This model companion is axiomatized as follows:
let (M,D) = ODFRy, M is a closed m-ordered differential field if

(1) M = COFRp;
(2) for every M-varieties V and Wt 7(V) such that W projects genericﬂlymto V, if U is a non-empty M-
definable m-open subset of W such thdifkontains a semi-generic point of W thenly contains a point of
the form(a,D(a)).
Remark2.1.2 If m= 1 then we recover the geometric axiomatizatio®©@DF given in [4]. In fact, the proof
of points (A) and (B) below is a slight adaptation of the psof Proposition 1.6 and Theorem 1.7 i [4].

4 \We use the name semi-generator because the ideal definggqual to
Q1+, Qer) tH(Qq, ., Quer)® = {f € MXy,... . X [3n €N H(Qq,...,Qur)" F € (Q,..., Qur) -

This means that for any-generic pointof V there existsl € N such that(c,d) is aM-generic point ofV.
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In order to prove TheorelZ1.1 we have to perform two tasks:
(A): to prove that any model ddDF;, extends to a model @ODFRy;
(B): to prove thatCODF;, is model complete.

To prove (A) we first introduce the following lemma. This ritss a direct consequence of the saturation of
N and can be seen as a "multi-ordered" analogue of the claieeainyg in the proof of 2, Lemma 3.5].

Lemma 2.1.3
For any | € N, there exist{, ...,tj € N which are infinitesimal over M w.r.t. to each orderiﬂgmd algebraically
independent over M.

Proof. Remarkfirstthdt,...,t are infinitesimal oveM iff they belong to eaciM-definablemopen subset
of N containing 0.
Furthermore, any such basieopen subset dfl is defined by d.-formula

m
Om(X) = /\ 6, (X) where eacl} (X) defines a<j-open subset df1.
i=1

Hence, we can consider the §€iXy,...,X) of all L-formulas:

f(Xl,...,X|) 750/\ /\@M(Xj)

=1

wheref ranges oveM([Xy,...,X] and®yu (X) ranges over all the formulas defining a basiopen subset dfl.
By the saturation oN, it is sufficient to prove that each finite conjunction of faras inF (Xy, ..., X)) is satisfied
by al-tuple of elements oN.

Hence it suffices to prove that there exist. .. ,u; € N such that

I
f(ug,...,u) #0A /\@M(Uj)

=1

wheref(Xq,...,X) € M[Xy,...,X] is a non-zero polynomial ar@y (X;) defines an-open subset dff.

We will proceed by induction oh Let us remark first that if = 1, the result immediately follows from F4ctTl1.2
since any polynomiaf (X) € M[X] has finitely many roots il.

Let nowus,...,u_1 € N be algebraically independent and infinitesimal dvieand consider again a formula

I
f(X1,...,X)#OA /\OM(XJ)'

j=1

VX1, % € Om(N) F(Xq,..., %) =0

then, by the inductive hypothesitvi,...,vi_1,X) = 0 for anyvy,...,vi_1 € ©u(M). Therefore, sincél is an
elementary extension &

-1 d
M =YX, X1 (A OmX)) — A fi(Xe,....%i-1) =0)
j=1 i=1

wheref = y4 | fiX for some positive integed.
Using again the inductive hypothesis, we can deduceftha® for anyi € {1,...,d}.
It follows that f = 0, a contradiction. O

This result allows us to state the following slight adamatf [4, Ch. I, Lemma 1.10].

6 Inthe sequel we will simply say that an element is infinitedimverM to denote that it is infinitesimal ové w.r.t. each orderings.
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Corollary 2.1.4 _
Let M = OFy, f(X,Y) € M[X,Y] be irreducible andxc M' be such that a,Y) changes signs on M w.r.t. each
ordering of M. _ _
Then there exist a m-ordered fidWlextending M and a rodc,d) € M of f such that:

. cis infinitesimally close (component by componen§;to

. the components afare algebraically independent over M.

Proof. Letts,...,t € N be given by LemmBZ211.3 and put, for apg¢ {1,...,1}, ¢j = aj +t;. Note that the
orderings orM extend to the field(cy,..., ).
Sincety,...,t are infinitesimal oveM, f(c,Y) changes sign oM(c) w.r.t. each ordering o (c). Hence, by
the intermediate value property for real closed fields, & &aoot in them different (one for each ordering) real
closures oM(c).
Sincef is irreducible inM(c)[Y], the ideal(f(c,Y)) is real and then that we can extend any orderiniy¢f) to
an ordering on the fiel(c)[Y]/(f(c,Y)) = M.
Just pud = Ymod f(C,Y)) to get the desired conclusion. O

Proof. of (A):
Let (M,D) = ODRy. By [[4, Ch. I, Lemmas 1.8 and 1.10] and the extension theommdédrivation [3, Ch. X,
section 7, Theorem 7], we can assume flas a model ofCOFR;,.
LetV,W,U be as in the hypothesis of TheorEm 2 1.1 and assum¥ tfrasp.W) has dimension (resp.r + ).
LetQq,...,Qn-r,Qnt1,---,Qon_sbe a system of canonical generator¥\b$uch thaQq, - -- ,Qn_r is a system of
canonical generators df. _
By hypothesisl |v contains a semi-generic poif#, b) of W.
Consider now the following Taylorian development:

Ql(ala s 7afaa|’+1+ S) = Ql(a17 s aal’+1) +%1(a17 ce aal’+1) €+ 0(8)-
=0 #0

Let (N1,...,Nm) be the sign of the elemesy, (a1,...,a-11) of M, i.e. eachn; is the sign ofsg, (a1,...,ar11)
w.r.t. <.

Remark thatQi(as,...,ar,a,4+1+ €) takes the sign ofg, (ao,...,ar41) - € and hence(ag,...,ar, 811+ &)
changes sign o for each orderings, following the sign ef

By LemmalZTH, we can find a ro¢ty,...,c,cr+1) of Qp in a mordered extension ol such thatc; —
ai,...,C — & are infinitesimal oveM andc;, ..., are algebraically independent owdr Remark that, since
polynomials are continuous w.r.t. each order topolagy; is infinitesimally close t@, 1.

Repeating the same argument recursively first on eaghand then on eachs | (for anyi € {1,...,n—r} and
anyj € {L...,n—s}), we find for each (resp. eaclj) an element; (resp.d;) in am-ordered extension dl
such that

Qi (Cla e aCr+i71,Cr+i) =0 (resp-QnH (C_7d17 e 7dSH'*17dS—H-) = O)

andc i (resp.dsyj) is infinitesimally close t@, i (resp.bsyj) in M.

Let ¢ = (cq,...,Cn) @andd = (dy,...,dn). Then(c,d) € N belongs to them-open seU and furthermore, the
algebraic independenceff.. . t,us,...,Us ensure that it is a generic point\df. _

By LemmaL.ZI1, the derivatidd on M extends to a derivatiobd* on M(c,d) with D*(c) = d.

Using a transfinite induction and the saturationNbfone can build an extension & which is a model of
CODFHy. O

It remains now to prove the model completenesSODFR;,.
For this we use th®obinson’s test(seel[f, Ch.l, (2.17)]) and the problem reduces to showiatighy model of
CODHy is an existentially closedhtordered field.

Proof. of (B): _
Let (M,D) be a model of£ODFR,, and consider an extensidh of M which is a model oODRy,. We keep the
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same notatio for the derivation oM and for its extension tv.
Letac M and¢ (X ) be a quantifier freeP-formula such that

M = ¢(a).

Remark thatp (X) can be interpreted as th€-formula

¢|_(X0,X1,...,Xr)AX1: D(Xo)/\...AXr = D(Xr,l)

whereg, is aL-formula.
Define@_(X,Y) to be the following_-formula:

AXY) = oL (Xo, X, X1, Y ) AX = Yo A A1 = Yo
Let
c=(a,D(a),...,D" (a)),
=V(I(c)) and W =V(I(c,D(c)))

(so thatw projects generically ontd).

Since¢ (X) is a quantifier fred.°-formula, the set defined by in M is a finite union of subsets which are the
intersection of aM-variety and aM-definablem-open set.

More precisely,

@ (X9) =/ (ABGK) -0 KAg.JiV 0).

defines aM-variety defines a<j-open set

Let M be a model of2OR, extendingM (M exists sinceCOFRy, is the model companion dFy). The semi-
generic poin{c,D(C)) of W belongs to one of theropen sets defined by . Let us denote this latter Hy.
SinceM andM are models of the model complete the@®Fy, there exists a semi-generic pojdt e) of W in
U [y-

Furthermore, sinc®! = CODRy, there existd C M such that

M k= @.(b,D(b))

and then 3
M = ¢(bo)

whereby is the initial sub-tuple ob whose length is equal to the lengthaf O

We end this section with two easy applications of the axidmation of CODFy,. Again, these results general-
ize well-known facts foCODF (seel[6, Ch. 2]).

Corollary 2.1.5
Let M = CODFy, then

(i) forany(ny,...,ny) € NK the(ny,...,ny)-jet-space of M
Jng...ng (M) == {(x,D(X1),...,D™(X1), .., X, D(Xc), ..., D™(%)) | (Xq,...,%n) € MK}

is dense in NIt D++(Nt1) w rt. the topologyry introduced in FacET112;
(i) the subfield M:={x< M | D(x) = 0} is dense in M w.r.try.

Proof.
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(i) The proof faithfully follows the proof ofi[2, Theorem 4,2ve include it for the sake of completeness.
Sinced(p,.,...n) (M) = Jn; (M) x -+ x Jn (M) and density is preserved by direct products of topologipatss it
is sufficient to prove that, for any positive integer 0, the(n)-jet-space oM is dense ifv"*+2,

LetU be aM-definablem-open subset di1"** and consider the differential polynomiX) = D"**(X) whose
separant is equal to the constant polynomial 1.
Consider also the followinlyl-varieties:

{ V :=V((0)) = N1
W:={(Xy) | f(X0,---;%n,¥n) =0AYo=X1 A...AYn_1=Xn}

Remark thatW projects generically over.

The setU := {(Ug,--.,Un,U1,...,Un,0) | (Ug,...,un) € U} is aM-definablem-open subset dfV and each point
of U is semi-generic fow. By TheoreniZ.1]1, there exists a differential pdintD(u),...,D"(u)) in U.

This proves the density of the jet-spaces.

(i) AssumeU is am-open subset dfl and letU := U x M.
Consider theM-varietiesV := N andW := {(xo,%1) € M? | x; = 0}. Remark thaW projects generically ok
and thatd NW is a non-emptyn-open subset 8 which contains semi-generic points\of
By TheorenfZ 11, there exists a pofatD(u)) in U NW. In other words, there existsc U such thaD(u) = 0.
This proves that angn-open subset dfl contains an element &p. O

Remark2.1.6 The construction of some kind of "natural” or "canonical"dabof the model companion of a
given theory of differential fields is a longstanding opealgem.

In fact, even for the theory of differentially closed fieldsfor CODF, such models are not known.

In this latter case, as well as in the caseG#DFy,, the results of density stated above implies very strong
conditions on the models. As an example, it must exist ingmesdels arbitrarily large constants (even w.r.t. to
each orderings in the case@ODFy). In particular this shows that fields of germs of functiomsidR (or Hardy
fields) are not models @ODF; or of CODF, if we want to consider the asymptotic behaviour of real fiore

in several different points (e.g. inco and+).

2.2 Completions ofCODR, and quantifier elimination

We now show how to generalize FaEfs1l1.3and1l.1.4 to theof&&@DFx,.

First, let us remark that for anyl = CODFRy, alg(M) is a differential field equipped with the trivial derivation
Do : x+— 0 and that this latter is the only possible derivatiorabg(M).

Hence,alg(M) is a model of the theor@DFy, 519 = ODFyn U OFp a1g.

Lemma 2.2.1
The theory ODF aig has the amalgamation property.

Proof. The proofis similar to the one @i [7, Ch. I, Corollg&:.7)].
Let (M, D), (M1,D1),(Mp, D) = ODFnaig be such that there exist twd-embeddinggM, D) — (My,D1) and
(M,D) — (M2,D>). M is identified with a subfield of1; andM, via these embeddings.
SinceM is algebraically closed iM; andM,, these two fields can He.embedded in a common field extension
% in such a way thavl; andMj are linearly disjoint oveM.
By [IZL Ch. Il, Lemma (2.5)]M1 andM, have a commom-ordered extension ovédl (namely the fieldvi;M,
which is the smallest subfield & containing bothvi; andMy).
SinceM; andM;, are linearly disjoint oveM, we can extend the derivatiolg andD, to a common derivation
D* onM1Mo. O

The previous lemma leads to the following theorem:

Theorem 2.2.2
Let (M1,Dm,,<1...,<m) and(Mz,Dw,,<1,...,<m) be two models of COLQ¥
Then these twol-structures are P-elementary equivalent iff

(alg(M1),Dg,<1...,<m) = (alg(M2), Do, %1, U %m)
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Note that, as in FadEL1l.3, we used the notatign(resp. <;) for the orderings induced by Mresp. M) on
alg(My) (resp. algMy)).
Again the proof is extremely similar to the proof of FRCB.ih [[7].

Proof. In order to simplify the notations we will denote bly the LD—structure(Ml, Dwm;,<1...,<m) and
by alg(M;) theLP-structure(alg(M1),Do, <1 ..., <m) (and similarly forM, andalg(M,)).

. Assume thaalg(M; )=, palg(My) so that we can identify these ti&-structures.
By LemmeZZ11 and since any model@®DF;, is a model ofODFy 414, there exists a common extensiéfof
M1 andM, which is a model 0ODFy, 4.
By TheorenfZ.111, we can assume tl¥at= CODF;, and then, sinc€EODFR,, is model completeM; < ¢ and
My < Z.
It follows thatM;=, o Ma.

. Assume now thatl;=, oM, and consider the set oP-sentences
S:= CODFRyUDiag(M;) U Diag(My)

whereDiag(M;) denotes the set of all atomic and negation of atdmisentences which are truelf (i = 1,2).
SinceM;=,pMy, each finite fragment dbis satisfied inM; (and inMy). By compactness, there exist$ = S
and we can considé; andM, asLP-substructures ofZ.

SinceCODF;, is model completeyl; andM are elementariP-substructure ofZ and then

alg(M;) = alg(.¥) andalg(M;) = alg(.%).
Hencealg(M1)= palg(M,). O

Consider now the extensidr® of the languagé.® by the new predicate symbol¥y i, .k, and letCODRy
be theLP-theoryCODFR, UCORy.
We want to show thaE ODF,, admits quantifier elimination ihD.
For this, according td]1, Ch. 4, Lemma 12], we have to proa¢@©DF; is model complete and th@€ODFRy,)y
has the amalgamation property.
Remark that sinc€EODR;, is an extension by definition &@ODFRy, it is still model complete and then it suffices
to prove the following lemma:

Lemma 2.2.3
The theory(CODHRy)y has the amalgamation property.

Proof. Let(M,D),(M1,D1),(My,Dy) be three models (EODF,)y such that there exist twid’-embeddings
01:(M,D) — (Mp,D;) andoy : (M,D) — (M3, D5).
Let ODFy alg := ODFpaigU (CODRy)y and remark that

(ODFm,alg)v = (CODFm)V-
For any modeR of (CODRy)y, define
A:={ac A|ais algebraic ovef)(A)}

whereA is a model ofCODFR, extgndingA.
By [IZ, Ch. Il, Lemma (2.13) (ii)] A is a prime extension ok and is a model 0ODF, 5.
Henceog; ando; inducel-embeddings

61:I\7I—>M1and62:l\7l—>l\ﬁ2.

Furthermore, sincMN(respM}, I\7I~2) is an algebraic extension & (resp.My,My), D (resp.D1, D) extends to
an unique derivatio® (resp.D1,D2) onM (resp.M1, My).
Henced; andé; areLP-embeddings of models @DF;, 5/
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But, by [4, Ch. I, Lemma (2.13) (i)], each model ©DF, 54 has an unique expansion to a modeOiFy, ag.-
It follows, from LemmdZZI1, thaDDFy, 54 has the amalgamation property. Hence, there exists a nigdl
ODFalg SUch thati; andM, LP-embeds intoZ overM.

This gives ug P-embeddings oM; andM, overM in .# which is a model of CODFy)y. O

We can then conclude with the following theorem:
Theorem 2.2.4

The theoryCODR, has quantifier elimination i.D.
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