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Varieties of interlaced bilattices

Félix Bou, Ramon Jansana, and Umberto Rivieccio

Abstract. The paper contains some algebraic results on several varieties of algebras
having an (interlaced) bilattice reduct. Some of these algebras have already been
studied in the literature (for instance bilattices with conflation, introduced by M. Fit-
ting), while others arose from the algebraic study of O. Arieli and A. Avron’s bilattice
logics developed in the third author’s PhD dissertation. We extend the representation
theorem for bounded interlaced bilattices (proved, among others, by A. Avron) to un-
bounded bilattices and prove analogous representation theorems for the other classes
of bilattices considered. We use these results to establish categorical equivalences
between these structures and well-known varieties of lattices.

1. Introduction

Bilattices are algebraic structures introduced in 1988 by Matthew Ginsberg

[10] as a uniform framework for inference in Artificial Intelligence. Since then

they have found a variety of applications, sometimes in quite different areas

from the original one. The interest in bilattices comes thus from different

contexts: among others, computer science and A.I. (see especially the works

of Ginsberg, Arieli and Avron), logic programming (Fitting), lattice theory

and algebra [11, 12, 17] and, more recently, algebraic logic [4, 16]. An up-to-

date review of the applications of this formalism and also of the motivation

behind its study can be found in the dissertation [16].

This work contributes to the study of bilattices from an algebraic point of

view, along the line initiated by [2, 11]. We consider various classes of algebras

having a bilattice reduct, focusing on the relationship between these algebras

and some well-known varieties of lattices. The novelty and the main interest

of our approach lies, in our opinion, in the fact that this relationship can be

exploited to obtain several results on bilattices by simply “translating” results

that are known to hold for some related classes of lattices. Moreover, as we

shall see, this strategy also suggests a natural way to introduce new classes of

bilattices starting from their lattice counterparts.
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The paper is organized as follows. The next section contains the basic

definitions on bilattices. Section 3 presents the representation theorem for in-

terlaced bilattices, a result which plays a key role in our approach. In Section

4 we introduce some structures obtained by expanding the bilattice language,

prove analogous representation theorems for these algebras, and define trans-

lations that provide a way to relate them to some known classes of lattices.

These results are exploited in Section 5 to establish categorical equivalences

between the categories associated with the classes of bilattices considered and

those associated with the corresponding classes of lattices.

2. Bilattices

The terminology concerning bilattices is not uniform. Following [2], we

reserve the name “bilattice” for the algebras that are sometimes called “bilat-

tices with negation”, while when there is no negation we use the term “pre-

bilattice”.

Definition 2.1. A pre-bilattice is an algebra B = 〈B,∧,∨,⊗,⊕〉 such that

〈B,∧,∨〉 and 〈B,⊗,⊕〉 are both lattices.

The order associated with the lattice 〈B,∧,∨〉, sometimes called the truth

lattice or t-lattice, is denoted by ≤t and is called the truth order, while the

order ≤k associated with 〈B,⊗,⊕〉, sometimes called the knowledge lattice or

k-lattice, is the knowledge order.

Usually in the literature it is required that the two lattices be complete or at

least bounded, but here, for the sake of generality, none of these assumptions

is made. The minimum and maximum element of the lattice 〈B,∧,∨〉, in case

they exist, will be denoted, respectively, by f and t. Similarly, ⊥ and � will

refer to the minimum and maximum of 〈B,⊗,⊕〉, when they exist.

Of course the interest in pre-bilattices increases when there is some connec-

tion between the two orders. One way of establishing such a connection is to

impose certain monotonicity properties on the lattice connectives, as in the

following definition, due to Fitting [7].

A pre-bilattice B = 〈B,∧,∨,⊗,⊕〉 is interlaced whenever each one of the

four operations {∧,∨,⊗,⊕} is monotonic with respect to both orders ≤t and

≤k. That is, when the following quasi-equations hold:

x ≤t y ⇒ x ⊗ z ≤t y ⊗ z, x ≤t y ⇒ x ⊕ z ≤t y ⊕ z,

x ≤k y ⇒ x ∧ z ≤k y ∧ z, x ≤k y ⇒ x ∨ z ≤k y ∨ z.

As usual, the inequality x ≤t y is an abbreviation for the identity x ∧ y ≈ x

and similarly x ≤k y stands for x ⊗ y ≈ x.

Pre-bilattices form a variety, axiomatized by the lattice identities for the

two lattices. In [2, 17] it is proved that the class of interlaced pre-bilattices is

also a variety, axiomatized by the identities for pre-bilattices plus the following
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ones:

(x ∧ y) ⊗ z ≤t y ⊗ z, (x ∧ y) ⊕ z ≤t y ⊕ z,

(x ⊗ y) ∧ z ≤k y ∧ z, (x ⊗ y) ∨ z ≤k y ∨ z.

From an algebraic viewpoint, the variety of interlaced pre-bilattices is per-

haps the most interesting subclass of pre-bilattices. Its interest comes mainly

from the fact that any interlaced pre-bilattice can be represented as a special

product of two lattices. This result is well known for bounded pre-bilattices,

and it has been more recently generalized to the unbounded case [12, 4].

The interlacing conditions may be strengthened through the following def-

inition, due to Ginsberg [10]. A pre-bilattice is distributive when all possible

distributive laws concerning the four lattice operations, i.e., all identities of

the following form, hold:

x ◦ (y • z) ≈ (x ◦ y) • (x ◦ z) for every ◦, • ∈ {∧,∨,⊗,⊕}.

The class of distributive pre-bilattices is a proper subvariety of interlaced pre-

bilattices.

A second way of relating the two lattice orders of a pre-bilattice is by ex-

panding the algebraic language with a unary operator. This is the method

originally used by Ginsberg to introduce bilattices.

Definition 2.2. A bilattice is an algebra B = 〈B,∧,∨,⊗,⊕,¬〉 such that the

reduct 〈B,∧,∨,⊗,⊕〉 is a pre-bilattice and the negation ¬ is a unary operation

such that, for every a, b ∈ B,

(neg 1) if a ≤t b, then ¬b ≤t ¬a,

(neg 2) if a ≤k b, then ¬a ≤k ¬b,

(neg 3) a = ¬¬a.

The interlacing and distributivity properties extend to bilattices in the ob-

vious way. We say that a bilattice is interlaced (respectively, distributive)

when its pre-bilattice reduct is interlaced (resp., distributive).

The following equations (which we call De Morgan laws) hold in any bilat-

tice:

¬(x ∧ y) ≈ ¬x ∨ ¬y, ¬(x ∨ y) ≈ ¬x ∧ ¬y,

¬(x ⊗ y) ≈ ¬x ⊗ ¬y, ¬(x ⊕ y) ≈ ¬x ⊕ ¬y.

Moreover, if the bilattice is bounded, then ¬� = �, ¬⊥ = ⊥, ¬t = f and

¬f = t.

So, if a bilattice B = 〈B,∧,∨,⊗,⊕,¬〉 is distributive, or at least the reduct

〈B,∧,∨〉 is a distributive lattice, then 〈B,∧,∨,¬〉 is a De Morgan lattice. It

is also easy to check that the four De Morgan laws imply that the negation

operator satisfies (neg 1) and (neg 2). It follows that the class of bilattices is

a variety. We denote by IntBiLat and DBiLat the classes of interlaced bilattices

and distributive bilattices, which are also varieties. Clearly DBiLat ⊆ IntBiLat,

and this inclusion is strict.
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Figure 1. Some examples of (pre-)bilattices

Figure 1 shows the double Hasse diagrams of some of the best-known (pre-)

bilattices. They should be read as follows: a ≤t b if there is a path from a

to b which goes uniformly from left to right, while a ≤k b if there is a path

from a to b which goes uniformly from the bottom to the top. The four lattice

operations are thus uniquely determined by the diagram, while negation, if

there is one, corresponds to reflection along the vertical axis connecting ⊥ and

�. It is then clear that all the pre-bilattices shown in Figure 1 can be endowed

with a negation in a unique way and turned in this way into bilattices. When

no confusion is likely to arise, we will use the same name to denote a concrete

pre-bilattice and its associated bilattice; the names used in the diagrams are

by now more or less standard in the literature.

The smallest non-trivial bilattice, FOUR, has a fundamental role among

bilattices, both from an algebraic and a logical point of view. FOUR is dis-

tributive and, as a bilattice, it is a simple algebra. It is in fact, up to isomor-

phism, the only subdirectly irreducible distributive bilattice (this was proved

for the bounded case in [11], then generalized in [4] to the unbounded).

3. Representation theorems

The representation theorem for interlaced (pre-)bilattices has a key role

in our approach to the study of bilattices. In order to state this result, we

introduce the following construction, due to Fitting [7].

Let L1 = 〈L1,�1,�1〉 and L2 = 〈L2,�2,�2〉 be lattices with associated

orders ≤1 and ≤2. The product pre-bilattice L1 � L2 = 〈L1 × L2,∧,∨,⊗,⊕〉

is defined as follows. For all 〈a1, a2〉 , 〈b1, b2〉 ∈ L1 × L2,

〈a1, a2〉 ∧ 〈b1, b2〉 := 〈a1 �1 b1, a2 �2 b2〉 ,

〈a1, a2〉 ∨ 〈b1, b2〉 := 〈a1 �1 b1, a2 �2 b2〉 ,

〈a1, a2〉 ⊗ 〈b1, b2〉 := 〈a1 �1 b1, a2 �2 b2〉 ,

〈a1, a2〉 ⊕ 〈b1, b2〉 := 〈a1 �1 b1, a2 �2 b2〉 .
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L1 � L2 is always an interlaced pre-bilattice, and it is distributive if and

only if both L1 and L2 are distributive lattices. From the definition it follows

immediately that

〈a1, a2〉 ≤k 〈b1, b2〉 iff a1 ≤1 b1 and a2 ≤2 b2,

〈a1, a2〉 ≤t 〈b1, b2〉 iff a1 ≤1 b1 and a2 ≥2 b2.

If L1 and L2 are isomorphic, then it is possible to define a negation in

L1 � L2, and we speak of the product bilattice instead of the product pre-

bilattice. If h : L1
∼= L2 is an isomorphism, then the negation is defined as

¬〈a1, a2〉 := 〈h−1(a2), h(a1)〉.

In particular, if L1 = L2, the definition gives ¬〈a1, a2〉 := 〈a2, a1〉.

The product pre-bilattice construction can be regarded as a special case of

direct product. In fact, any lattice L = 〈L,�,�〉 can be seen as a degenerate

pre-bilattice in at least four different ways. We can consider the following

algebras:

L++ = 〈L,�,�,�,�〉, L+− = 〈L,�,�,�,�〉,

L−+ = 〈L,�,�,�,�〉, L−− = 〈L,�,�,�,�〉.

The first superscript, + or −, says whether we are taking as t-order the same

order as in the original lattice or the dual one; the second superscript refers to

the same for the k-order. Using this notation, it is easy to see that the product

pre-bilattice L1 � L2 coincides with the direct product L++
1

× L−+
2

. On the

other hand, the product bilattice cannot be regarded as a direct product, and

in general the factor lattice need not have a negation.

The following results were proved by Avron [2] for bounded (pre-)bilattices,

then generalized in [12, 4] to the unbounded case:

Theorem 3.1 (Representation of pre-bilattices). A pre-bilattice B is inter-

laced if and only if there exist two lattices L1 and L2 such that B ∼= L1 �L2.

Moreover, B is distributive if and only if both L1 and L2 are distributive lat-

tices.

The idea of the proof in [4], that differs essentially from all the proofs that

can be found in the literature on bounded bilattices (and also from that in [12]),

is the following. Given an interlaced pre-bilattice B = 〈B,∧,∨,⊗,⊕〉, define

two relations ∼1 and ∼2 as follows:

∼1 = {〈a, b〉 ∈ B × B : a ∨ b = a ⊗ b},

∼2 = {〈a, b〉 ∈ B × B : a ∧ b = a ⊗ b}.

Verify that the above relations are congruences of B (thus, in particular, they

are compatible with ⊗ and ⊕) and prove that, setting L1 = 〈B,⊗,⊕〉/∼1

and L2 = 〈B,⊗,⊕〉/∼2, we have ιB : B ∼= L1 � L2, with the isomorphism ιB
defined, for all a ∈ B, as ιB(a) = 〈[a]1, [a]2〉, where [a]1 and [a]2 denote the

equivalence classes of a modulo, respectively, ∼1 and ∼2.
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As a corollary of the representation theorem, we obtain a characterization

of the congruences of any interlaced pre-bilattice B ∼= L1 � L2: we have

(i) 〈Con(B),⊆〉 ∼= 〈Con(L1),⊆〉 × 〈Con(L2),⊆〉,

(ii) Con(B) = Con(〈B,∧,∨〉) = Con(〈B,⊗,⊕〉).

The representation theorem for bilattices can be regarded as a special case

of the former one:

Theorem 3.2 (Representation of bilattices). A bilattice B is interlaced if and

only if there is a lattice L such that B is isomorphic to L � L. Moreover, B

is distributive if and only if L is a distributive lattice.

As to the congruences, we have Con(L � L) ∼= Con(L). This result is very

important, as it allows us to characterize the subdirectly irreducible members

of IntBiLat as those that can be obtained as a product bilattice of a subdirectly

irreducible lattice. This implies that the only subdirectly irreducible distribu-

tive bilattice is FOUR, being isomorphic to the bilattice product 2�2, where

2 denotes the two-element lattice. Therefore, we conclude that the variety

DBiLat is generated by FOUR.

Among the corollaries of Theorem 3.2, let us cite the fact that an interlaced

pre-bilattice is distributive if and only if its t-lattice (or, equivalently, its k-

lattice) reduct is distributive.

Let us note that in the case of bilattices we can exploit the negation oper-

ator to obtain an alternative and straightforward proof of the representation

theorem [4, 16]. We describe the constructions involved, as they will be used

in the next sections.

Given a bilattice B, we consider the set Reg(B) = {a ∈ B : a = ¬a} of

regular elements, i.e., the fixed points of the negation operator. It is easy to

see that Reg(B) is closed under ⊗ and ⊕, hence is the universe of a sublattice

of the k-lattice of B. Now, to every a ∈ B we associate a regular element

according to the following definition:

reg(a) := (a ∨ (a ⊗ ¬a)) ⊕ ¬(a ∨ (a ⊗ ¬a)).

It can be easily checked that, for any interlaced bilattice B, the following

properties hold [4]:

(i) reg(a) = (a ∧ (a ⊕ ¬a)) ⊗ ¬(a ∧ (a ⊕ ¬a)),

(ii) a ∈ Reg(B) iff a = reg(a) iff a = reg(b) for some b ∈ B,

(iii) reg(a ⊗ b) = reg(reg(a) ⊗ reg(b)) = reg(a) ⊗ reg(b) = reg(a ∧ b),

(iv) reg(a ⊕ b) = reg(reg(a) ⊕ reg(b)) = reg(a) ⊕ reg(b) = reg(a ∨ b).

Using the previous properties, it is not difficult to prove that

B ∼= 〈Reg(B),⊗,⊕〉 � 〈Reg(B),⊗,⊕〉.

The isomorphism is ιB : B → Reg(B) × Reg(B) defined, for all a ∈ B, as

ιB(a) := 〈reg(a), reg(¬a)〉. The inverse map ι−1
B

: Reg(B) × Reg(B) → B is
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defined, for all a, b ∈ Reg(B), as

ι−1
B

(〈a, b〉) := (a ⊗ (a ∨ b)) ⊕ (b ⊗ (a ∧ b)).

Note that this implies that B is generated by the set Reg(B).

In any product bilattice L � L, the regular elements are those of the form

〈a, a〉 for some a ∈ L. Given a1, a2 ∈ L, we have that reg(〈a1, a2〉) = 〈a1, a1〉,

so ιB(〈a1, a2〉) = 〈〈a1, a1〉, 〈a2, a2〉〉. Conversely, for any a1, a2 ∈ L, we have

ι−1
B

(〈〈a1, a1〉, 〈a2, a2〉〉) = 〈a1, a2〉.

Let us state a property concerning congruences that will be useful in the

next section:

Proposition 3.3. Let B be any interlaced bilattice and θ ∈ Con(B). Then,

for all a, b ∈ B:

〈a, b〉 ∈ θ iff 〈reg(a), reg(b)〉, 〈reg(¬a), reg(¬b)〉 ∈ θ.

Proof. Recalling the definition of a regular element, it is easy to see that

〈a, b〉 ∈ θ implies 〈reg(a), reg(b)〉 ∈ θ and 〈reg(¬a), reg(¬b)〉 ∈ θ. Taking the

definition of ι−1
B

into account, the converse is also easy. We have that, for all

a ∈ B:

a = (reg(a) ⊗ (reg(a) ∨ reg(¬a))) ⊕ (reg(¬a) ⊗ (reg(a) ∧ reg(¬a))). �

Note that this last property is independent of the language considered, as

long as the algebra has an interlaced bilattice reduct: hence it will also hold

for the classes of algebras obtained through language expansions that we are

going to introduce in the next section.

4. Language expansions

The algebraic signature considered in the previous sections has been ex-

panded in various ways and for different purposes in the literature on bilat-

tices. In this section we are interested in proving that for some of the algebras

thus obtained one can obtain representation theorems analogous to the one

described in the previous section.

4.1. Bilattices with conflation. The first expansion we shall consider, due

to Fitting [8], consists in adding an operator that behaves as a dual of the

bilattice negation, called conflation.

Definition 4.1. An algebra B = 〈B,∧,∨,⊗,⊕,¬,−〉 is called a bilattice

with conflation if the reduct 〈B,∧,∨,⊗,⊕,¬〉 is a bilattice and the confla-

tion − : B → B is an operation satisfying, for all a, b ∈ B,

(conf 1) if a ≤k b, then −b ≤k −a,

(conf 2) if a ≤t b, then −a ≤t −b,

(conf 3) a = −−a.
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We say that B is commutative if it also satisfies the equation: ¬−x ≈ −¬x.

If a bilattice with conflation is distributive, or at least the k-lattice of B is

distributive, then the reduct 〈B,⊗,⊕,−〉 is a De Morgan lattice. The class of

bilattices with conflation is a variety, axiomatized by the equations defining

bilattices together with (conf 3) and the following ones:

−(x ⊗ y) ≈ −x ⊕−y, −(x ⊕ y) ≈ −x ⊗−y,

−(x ∧ y) ≈ −x ∧ −y, −(x ∨ y) ≈ −x ∨ −y.

Adding the appropriate equations to a presentation of this class, we may

define the varieties of interlaced (distributive) bilattices with conflation and

commutative (interlaced, distributive) bilattices with conflation.

In order to obtain a representation theorem for bilattices with conflation, we

introduce the following construction, also due to Fitting. Let L = 〈L,�,�, ′〉

be an involutive lattice, i.e., an algebra such that the reduct 〈L,�,�〉 is a

lattice and the operation ′ : A → A satisfies that, for all a, b ∈ A,

(inv 1) if a ≤ b, then b′ ≤ a′,

(inv 2) a = a′′.

Given an involutive lattice L = 〈L,�,�, ′〉, we denote by L � L the bilat-

tice with conflation whose bilattice reduct is the product bilattice 〈L,�,�〉 �

〈L,�,�〉 defined above and where the conflation is defined, for all a, b ∈ L, as

−〈a, b〉 = 〈b′, a′〉. It can be easily checked that L � L is always an interlaced

bilattice with conflation; in addition, it is commutative.

Conversely, given a commutative interlaced bilattice with conflation B, we

have that the set Reg(B) is closed under conflation; this implies that the alge-

bra 〈Reg(B),⊗,⊕,−〉 is an involutive lattice. The following result was proved

by Fitting [8] for the case of bounded distributive bilattices, then generalized

in [16] to unbounded interlaced bilattices.

Theorem 4.2 (Representation of bilattices with conflation). Let B be a com-

mutative interlaced bilattice with conflation. Then:

(i) Reg(B) is closed under conflation, so 〈Reg(B),⊗,⊕,−〉 is an involutive

lattice,

(ii) reg(−a) = − reg(¬a) for all a ∈ B,

(iii) B ∼= 〈Reg(B),⊗,⊕,−〉 � 〈Reg(B),⊗,⊕,−〉.

Proof. (i): Using commutativity, we have that, for every a ∈ Reg(B), ¬−a =

−¬ a = −a, i.e., −a ∈ Reg(B).

(ii): Recall that, for any a ∈ B, we have reg(a) = (a ∧ (a ⊕ ¬a)) ⊗ ¬(a ∧

(a ⊕ ¬a)). Applying De Morgan laws and commutativity, we have
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− reg(¬a) = −((¬a ∧ (a ⊕ ¬a)) ⊗ ¬(¬a ∧ (a ⊕ ¬a)))

= −(¬(a ∨ (a ⊕ ¬a)) ⊗ (a ∨ (a ⊕ ¬a)))

= −¬(a ∨ (a ⊕ ¬a)) ⊕−(a ∨ (a ⊕ ¬a))

= ¬−(a ∨ (a ⊕ ¬a)) ⊕−(a ∨ (a ⊕ ¬a))

= ¬(−a ∨ −(a ⊕ ¬a)) ⊕ (−a ∨ −(a ⊕ ¬a))

= ¬(−a ∨ (−a ⊗−¬a)) ⊕ (−a ∨ (−a ⊗−¬a))

= ¬(−a ∨ (−a ⊗ ¬−a)) ⊕ (−a ∨ (−a ⊗ ¬−a))

= reg(−a).

(iii) Since 〈Reg(B),⊗,⊕,−〉 is a lattice with involution, we can construct

the bilattice with conflation 〈Reg(B),⊗,⊕,−〉 � 〈Reg(B),⊗,⊕,−〉 as defined

above. We know that 〈B,∧,∨,⊗,⊕,¬〉 ∼= 〈Reg(B),⊗,⊕〉�〈Reg(B),⊗,⊕〉 via

the map ιB : B → Reg(B) × Reg(B) defined as ιB(a) = 〈reg(a), reg(¬a)〉. We

shall prove that ιB also preserves conflation, i.e., that ιB(−a) = −ιB(a). This

is easy, for using (ii) and commutativity, we have

ιB(−a) = 〈reg(−a), reg(¬−a)〉 = 〈− reg(¬−−a),− reg(¬−¬−a)〉

= 〈− reg(¬a),− reg(¬¬−−a)〉 = 〈− reg(¬a),− reg(a)〉

= −(〈reg(a), reg(¬a)〉) = −ιB(a). �

As in the case of bilattices, the previous result allows us to obtain some

information on the congruences:

Theorem 4.3. For any commutative interlaced bilattice with conflation B =

〈B,∧,∨,⊗,⊕,¬,−〉, it holds that 〈Con(B),⊆〉 ∼= 〈Con(〈Reg(B),⊗,⊕,−〉),⊆〉.

Proof. The isomorphism is given by the map

H : Con(B) → Con(〈Reg(B),⊗,⊕,−〉)

defined, for all θ ∈ Con(B), as H(θ) = θ ∩ (Reg(B) × Reg(B)).

Clearly H(θ) ∈ Con(〈Reg(B),⊗,⊕,−〉). It is also easy to see that H is

order-preserving, for θ1 ⊆ θ2 implies

θ1 ∩ (Reg(B) × Reg(B)) ⊆ θ2 ∩ (Reg(B) × Reg(B)).

To see that it is order-reflecting, assume H(θ1) ⊆ H(θ2) and 〈a, b〉 ∈ θ1. By

Proposition 3.3 we have 〈reg(a), reg(b)〉 ∈ θ1 and 〈reg(¬a), reg(¬b)〉 ∈ θ1. So

the assumptions imply 〈reg(a), reg(b)〉 ∈ θ2 and 〈reg(¬a), reg(¬b)〉 ∈ θ2, so,

applying again Proposition 3.3, we obtain 〈a, b〉 ∈ θ2. This proves that H is

an order embedding. To see that it is onto, we will show that its inverse is

H−1 : Con(〈Reg(B),⊗,⊕,−〉) → Con(B)

defined, for all θ ∈ Con(〈Reg(B),⊗,⊕,−〉), as follows:

〈a, b〉 ∈ H−1(θ) iff 〈reg(a), reg(b)〉 ∈ θ and 〈reg(¬a), reg(¬b)〉 ∈ θ.
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Clearly H−1(θ) is an equivalence relation and, as noted in the previous section,

reg(a ∧ b) = reg(a ⊗ b) = reg(a) ⊗ reg(b),

reg(a ∨ b) = reg(a ⊕ b) = reg(a) ⊕ reg(b).

It is then clear that H−1(θ) is compatible with all the lattice operations of both

orders, as well as with negation. As to conflation, assume 〈a, b〉 ∈ H−1(θ), i.e.,

〈reg(a), reg(b)〉 ∈ θ and 〈reg(¬a), reg(¬b)〉 ∈ θ. From the latter, applying

Theorem 4.2 (ii), we obtain 〈− reg(¬−¬a),− reg(¬−¬b)〉 ∈ θ. Now, using

commutativity and the fact that θ is compatible with conflation, we conclude

that 〈reg(−a), reg(−b)〉 ∈ θ. A similar reasoning shows that 〈reg(a), reg(b)〉 ∈

θ implies 〈reg(¬−a), reg(¬−b)〉 ∈ θ. Hence 〈−a,−b〉 ∈ H−1(θ). Finally, it

follows immediately from the definitions that H(H−1(θ)) = θ. �

From the previous result we may obtain more information on commutative

distributive bilattices with conflation. In fact, for any algebra L � L in this

variety, we have that L is a De Morgan lattice. It is known [9] that the only

subdirectly irreducible De Morgan lattices are the four-element non-linear one

M4, which is the {∧,∨,¬}-reduct of the bilattice FOUR, the two-element

chain B2 and the three-element chain K3. Thus we have the following:

Theorem 4.4. The only subdirectly irreducible commutative distributive bi-

lattices with conflation are B2 �B2, K3 �K3 and M4 �M4. Moreover, the

variety of commutative distributive bilattices with conflation is generated by

M4 � M4.

Proof. It follows from Theorem 4.3 that the only subdirectly irreducible com-

mutative distributive bilattices with conflation are M4 � M4, K3 � K3 and

B2�B2. Therefore, these algebras generate the variety, and indeed M4�M4

alone generates it, for it is easy to see that K3�K3 and B2�B2 are isomorphic

to subalgebras of M4 � M4. �

An easy consequence of the previous results is that, as happens with De

Morgan lattices, the variety of commutative distributive bilattices with con-

flation has exactly two proper subvarieties, namely the variety generated by

K3 �K3, which we call Kleene bilattices with conflation (KBiLatCon) and the

one generated by B2 � B2, that we call, following [1], classical bilattices with

conflation (CBiLatCon). It is easy to provide an equational presentation for

these varieties:

Theorem 4.5. The variety of Kleene bilattices with conflation is axiomatized

by the identities defining commutative distributive bilattices with conflation

plus either of the following two:

(x ∧ ¬−x) ∧ (y ∨ ¬−y) ≈ (x ∧ ¬−x),

(x ⊗ ¬−x) ⊗ (y ⊕ ¬−y) ≈ (x ⊗ ¬−x).
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Proof. It is known [9] that the variety of Kleene lattices L = 〈L,�,�, ′〉 is gen-

erated by K3 and axiomatized by the identities for De Morgan lattices plus

the following: (x�x′)� (y�y′) ≈ (x�x′). It is easy to check that if a commu-

tative distributive bilattice with conflation L�L satisfies either one of the two

above equations, then L = 〈L,�,�, ′〉 satisfies (x � x′) � (y � y′) ≈ (x � x′).

For instance, using the first equation, we have that for any a1, a2, b1, b2 ∈ L:

〈a1, a2〉 ∧ ¬−〈a1, a2〉 = 〈a1, a2〉 ∧ 〈a′

1, a
′

2〉 = 〈a1 � a′

1, a2 � a′

2〉

≤t 〈b1 � b′1, b2 � b′2〉 = 〈b1, b2〉 ∨ 〈b′1, b
′

2〉

= 〈b1, b2〉 ∨ ¬−〈b1, b2〉.

That is, a1 � a′

1 ≤ b1 � b′1 and a2 � a′

2 ≥ b2 � b′2. Hence L is a Kleene lattice.

Conversely, for any Kleene lattice L, the bilattice with conflation L � L will

satisfy both of the above equations. �

Theorem 4.6. The variety of classical bilattices with conflation is axiomatized

by the identities defining commutative distributive bilattices with conflation

plus any of the following ones:

x ∧ (y ∨ ¬−y) ≈ x, x ⊗ (y ⊕ ¬−y) ≈ x,

x ∨ (y ∧ ¬−y) ≈ x, x ⊕ (y ⊗ ¬−y) ≈ x.

Proof. Similar to the proof of the previous theorem. The variety of Boolean

algebras L = 〈L,�,�, ′〉 is generated by B2 and axiomatized by the identi-

ties for De Morgan lattices plus either of the following: x � (y � y′) ≈ x or

x � (y � y′) ≈ x. Again, if a commutative distributive bilattice with confla-

tion L � L satisfies any of the above equations, then L = 〈L,�,�, ′〉 satisfies

x� (y � y′) ≈ x and x� (y � y′) ≈ x. For instance, using the first equation, we

have that for any a1, a2, b1, b2 ∈ L:

〈a1, a2〉 ≤t 〈b1 � b′1, b2 � b′2〉 = 〈b1, b2〉 ∨ 〈b′1, b
′

2〉 = 〈b1, b2〉 ∨ ¬−〈b1, b2〉.

That is, a1 ≤ b1 � b′1 and a2 ≥ b2 � b′2. So L is a Boolean algebra. Conversely,

for any Boolean algebra L, the bilattice with conflation L� L will satisfy the

above equations. �

4.2. Brouwerian bilattices. The second way of expanding the bilattice lan-

guage that we are going to consider consists in adding a binary connective that

plays (on a logical level) the role of an implication. These enriched algebras

arose from the study developed in [16] of the algebraic models of the “logic of

logical bilattices” introduced by Arieli and Avron [1].

Definition 4.7. A Brouwerian bilattice is an algebra B = 〈B,∧,∨,⊗,⊕,⊃,¬〉

such that 〈B,∧,∨,⊗,⊕,¬〉 is a bilattice and the following equations are sat-

isfied:

(B1) (x ⊃ x) ⊃ y ≈ y,

(B2) x ⊃ (y ⊃ z) ≈ (x ∧ y) ⊃ z ≈ (x ⊗ y) ⊃ z,
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(B3) (x ∨ y) ⊃ z ≈ (x ⊃ z) ∧ (y ⊃ z) ≈ (x ⊕ y) ⊃ z,

(B4) x ∧ ((x ⊃ y) ⊃ (x ⊗ y)) ≈ x,

(B5) ¬(x ⊃ y) ⊃ z ≈ (x ∧ ¬y) ⊃ z.

Brouwerian bilattices obviously form a variety, denoted BrBiLat. An inter-

esting subclass of Brouwerian bilattices is the variety of implicative bilattices,

defined as the Brouwerian bilattices that additionally satisfy the following

equation:

((x ⊃ y) ⊃ x) ⊃ x ≈ x ⊃ x.

This class was introduced and studied in [16], where it is proved that im-

plicative bilattices are the equivalent algebraic semantics (in the sense of [3])

of Arieli and Avron’s logic of logical bilattices with implication. Brouwerian

bilattices can be considered a natural generalization of the implicative ones,

and the relation between the two classes is analogous, as we will see below, to

the relation between (generalized) Heyting algebras and (generalized) Boolean

algebras.

Our next aim is to prove a representation theorem for Brouwerian bilattices

analogous to the ones stated above for bilattices and bilattices with conflation.

In the following propositions we prove some facts about Brouwerian bilattices

that will be needed to obtain this result. In order to simplify the notation, we

use the following abbreviations: for any element a of a Brouwerian bilattice,

we use �(a) to denote the element (a ⊃ a) ⊕ ¬(a ⊃ a) and we write E(a)

instead of the expression a = a ⊃ a.

Proposition 4.8. Let B be a Brouwerian bilattice. For all a, b, c ∈ B:

(i) if a = b ⊃ b, then a ⊃ c = c and E(a),

(ii) a ≤t b ⊃ a,

(iii) E(a ⊃ (b ⊃ a)),

(iv) �(a) = ¬�(a),

(v) �(a) ⊃ b = b,

(vi) E(a ⊃ �(b)),

(vii) E(a ⊃ b) if and only if a ≤t a ⊗ b,

(viii) if E(a ⊃ b) and E(¬b ⊃ ¬a), then a ≤t b,

(ix) if E(a ⊃ b) and E(¬a ⊃ ¬b), then a ≤k b,

(x) �(a) ≤t b if and only if E(b),

(xi) �(a) = �(b),

(xii) a ≤k �(a),

(xiii) a ≤t b if and only if �(c) ≤t a ⊃ b and �(c) ≤t ¬b ⊃ ¬a,

(xiv) a ≤k b if and only if �(c) ≤t a ⊃ b and �(c) ≤t ¬a ⊃ ¬b.

Proof. (i) By (B1) we have (b ⊃ b) ⊃ c = c and E(b ⊃ b), so the result

immediately follows.
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(ii) Using (B1) and (B3) we have that, for all a, b, c ∈ B,

a ∧ (b ⊃ a) = ((c ⊃ c) ⊃ a) ∧ (b ⊃ a) = ((c ⊃ c) ∨ b) ⊃ a

= (c ⊃ c) ⊃ (((c ⊃ c) ∨ b) ⊃ a) = ((c ⊃ c) ∧ ((c ⊃ c) ∨ b)) ⊃ a

= (c ⊃ c) ⊃ a = a.

(iii) Notice that (ii) implies a ≤t b ⊃ a ≤t a ⊃ (b ⊃ a). Then, using (B2),

we have

(a ⊃ (b ⊃ a)) ⊃ (a ⊃ (b ⊃ a)) = ((a ⊃ (b ⊃ a)) ∧ a) ⊃ (b ⊃ a)

= a ⊃ (b ⊃ a).

(iv) Immediate, using the properties of the bilattice negation.

(v) By (B3) we have �(a) ⊃ b = ((a ⊃ a) ⊃ b) ∧ (¬(a ⊃ a) ⊃ b). By (B1)

and (ii) we have

((a ⊃ a) ⊃ b) ∧ (¬(a ⊃ a) ⊃ b) = b ∧ (¬(a ⊃ a) ⊃ b) = b.

(vi) By (v) we have a ⊃ �(b) = �(b) ⊃ (a ⊃ �(b)). Then the result follows

from (iii).

(vii) Assume E(a ⊃ b). Then, by (B4) and (i), we have

a ≤t (a ⊃ b) ⊃ (a ⊗ b) = a ⊗ b.

Conversely, assume a ≤t a ⊗ b, i.e., a = a ∧ (a ⊗ b). Applying (B2) several

times, we have

(a ∧ (a ⊗ b)) ⊃ b = (a ⊗ b) ⊃ (a ⊃ b) = (a ∧ b) ⊃ (a ⊃ b)

= (a ∧ b) ⊃ b = b ⊃ (a ⊃ b).

Then the result follows by (iii).

(viii) Assume E(a ⊃ b) and E(¬b ⊃ ¬a). Then, using (vi), we obtain

a ≤t a⊗ b and ¬b ≤t ¬b⊗¬a. By the properties of the bilattice negation, this

implies b = ¬¬b ≥t ¬(¬b ⊗ ¬a) = a ⊗ b. Hence a ≤t a ⊗ b ≤t b, so the result

immediately follows.

(ix) Assume E(a ⊃ b) and E(¬a ⊃ ¬b). Reasoning as in (vii), we obtain

a ≤t a ⊗ b and a ≥t a ⊗ b. Hence a = a ⊗ b, i.e., a ≤k b.

(x) Assume �(a) ≤t b. Then we have

b ⊃ b = (b ∨ �(a)) ⊃ b from the assumption

= (b ⊃ b) ∧ (�(a) ⊃ b) by (B3)

= (b ⊃ b) ∧ b by (v)

= b by (ii).

Conversely, assume E(b). Then by (v) we have E(�(a) ⊃ b). On the

other hand, by (iv) we have ¬b ⊃ ¬�(a) = ¬b ⊃ �(a), so by (vi) we obtain

E(¬b ⊃ �(a)). Hence, applying (viii), we have �(a) ≤t b.

(xi) By symmetry it is sufficient to show that �(a) ≤t �(b), i.e., using (viii),

that E(�(a) ⊃ �(b)) and E(¬�(b) ⊃ ¬�(a)). By (iv) we have �(a) = ¬�(a)
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for any a ∈ B, so it will be enough to check that E(�(a) ⊃ �(b)). By (v) we

have �(a) ⊃ �(b) = �(b), so the result immediately follows.

(xii) By (ix), it is enough to prove that E(a ⊃ �(a)) and E(¬a ⊃ ¬�(a)).

The first one has been proved in (vi), while the second one follows from (iv),

since ¬�(a) = �(a).

(xiii) The leftwards implication follows from (viii). Conversely, assume

a ≤t b, which implies ¬b ≤t ¬a. Then a ∧ b = a, so by (B2) we have

a ⊃ b = (a ∧ b) ⊃ b = a ⊃ (b ⊃ a). Then, applying (iii) and (x), we ob-

tain the desired result. The same reasoning shows that ¬b ⊃ ¬a ≥t �(c),

hence (a ⊃ b) ∧ (¬b ⊃ ¬a) ≥t �(c).

(xiv) Similar to the previous case, as we can use (B2) to show that a ≤k b

implies a ⊃ b = (a ⊗ b) ⊃ b = a ⊃ (b ⊃ a) and so on. �

From Proposition 4.8 (xi) it follows that �(a) = (a ⊃ a)⊕¬(a ⊃ a) defines

an algebraic constant in every B ∈ BrBiLat. Moreover, by (xii), this constant is

the top element of the k-order. So we denote it just by �. Using this notation,

let us state some more arithmetical properties of Brouwerian bilattices.

The following result is of particular interest to our approach:

Proposition 4.9. Let B = 〈B,∧,∨,⊗,⊕,⊃,¬〉 be a Brouwerian bilattice.

Then the reduct 〈B,∧,∨,⊗,⊕,¬〉 is an interlaced bilattice.

Proof. Let a, b ∈ B be such that a ≤t b. To see that a ⊗ c ≤t b ⊗ c and

a ⊕ c ≤t b ⊕ c for all c ∈ B, using Proposition 4.8 (viii) and (x), we will prove

that (a⊗ c) ⊃ (b⊗ c) ≥t �, ¬(b⊗ c) ⊃ ¬(a⊗ c) ≥t �, (a⊕ c) ⊃ (b⊕ c) ≥t �

and ¬(b ⊕ c) ⊃ ¬(a ⊕ c) ≥t �.

As to the first, using (B2) and Proposition 4.8 (xiv), we have

(a ⊗ c) ⊃ (b ⊗ c) = ((a ∧ b) ⊗ c) ⊃ (b ⊗ c) = (a ⊗ b ⊗ c) ⊃ (b ⊗ c) ≥t �

and, applying De Morgan laws and Proposition 4.8 (ii),

¬(b ⊗ c) ⊃ ¬(a ⊗ c) = (¬b ⊗ ¬c) ⊃ (¬a ⊗ ¬c) = (¬(a ∨ b) ⊗ ¬c) ⊃ (¬a ⊗ ¬c)

= ((¬a ∧ ¬b) ⊗ ¬c) ⊃ (¬a ⊗ ¬c)

= (¬a ⊗ ¬b ⊗ ¬c) ⊃ (¬a ⊗ ¬c) ≥t �.

As to the second, using (B3), (B2) and Proposition 4.8 (ii) and (xiv), we

have

(a ⊕ c) ⊃ (b ⊕ c) = (a ⊃ (b ⊕ c)) ∧ (c ⊃ (b ⊕ c))

= ((a ∧ b) ⊃ (b ⊕ c)) ∧ (c ⊃ (b ⊕ c))

= (a ⊃ (b ⊃ (b ⊕ c))) ∧ (c ⊃ (b ⊕ c)) ≥t �,

where the last inequality holds because, by Proposition 4.8 (xiv), b ≤k b ⊕ c

implies b ⊃ (b ⊕ c) ≥t � and similarly c ≤k b ⊕ c implies c ⊃ (b ⊕ c) ≥t �.
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Applying also De Morgan laws, we have

¬(b ⊕ c) ⊃ ¬(a ⊕ c) = (¬b ⊕ ¬c) ⊃ (¬a ⊕ ¬c)

= (¬b ⊃ (¬a ⊕ ¬c)) ∧ (¬c ⊃ (¬a ⊕ ¬c))

= (¬(a ∨ b) ⊃ (¬a ⊕ ¬c)) ∧ (¬c ⊃ (¬a ⊕ ¬c))

= ((¬a ∧ ¬b) ⊃ (¬a ⊕ ¬c)) ∧ (¬c ⊃ (¬a ⊕ ¬c))

= (¬b ⊃ (¬a ⊃ (¬a ⊕ ¬c))) ∧ (¬c ⊃ (¬a ⊕ ¬c))

= ((¬b ⊗ ¬a) ⊃ (¬a ⊕ ¬c)) ∧ (¬c ⊃ (¬a ⊕ ¬c)) ≥t �,

because ¬b ⊗ ¬a ≤k ¬a ⊕ ¬c and ¬c ≤k ¬a ⊕ ¬c, which imply

� ≤t (¬b ⊗ ¬a) ⊃ (¬a ⊕ ¬c) and � ≤t ¬c ⊃ (¬a ⊕ ¬c).

Now assume a ≤k b. To see that a∧ c ≤k b∧ c, we will prove that (a∧ c) ⊃

(b ∧ c) ≥t � and ¬(a ∧ c) ⊃ ¬(b ∧ c) ≥t �. Then using Proposition 4.8 (xiv)

we will obtain the desired conclusion.

As to the former, using (B2) and Proposition 4.8 (xiii), we have

(a ∧ c) ⊃ (b ∧ c) = ((a ⊗ b) ∧ c) ⊃ (b ∧ c) = (a ∧ b ∧ c) ⊃ (b ∧ c) ≥t �.

As to the latter, using De Morgan laws and (B3), we have

¬(a ∧ c) ⊃ ¬(b ∧ c) = (¬a ∨ ¬c) ⊃ (¬b ∨ ¬c)

= (¬a ⊃ (¬b ∨ ¬c)) ∧ (¬c ⊃ (¬b ∨ ¬c)).

Since ¬c ≤t ¬b∨¬c, by Proposition 4.8 (xiii) we have that � ≤t ¬c ⊃ (¬b∨¬c).

It will then suffice to show that � ≤t ¬a ⊃ (¬b∨¬c) and the result will follow

by the monotonicity of ∧ with respect to ≤t. Using the assumption that

a ≤k b, De Morgan laws and (B3), we have

¬a ⊃ (¬b ∨ ¬c) = ¬(a ⊗ b) ⊃ (¬b ∨ ¬c) = (¬a ⊗ ¬b) ⊃ (¬b ∨ ¬c)

= ¬a ⊃ (¬b ⊃ (¬b ∨ ¬c)) = (¬a ∧ ¬b) ⊃ (¬b ∨ ¬c) ≥t �,

where the last inequality follows from Proposition 4.8 (xiii) and the fact that

¬a ∧ ¬b ≤t ¬b ∨ ¬c.

To see that a ∨ c ≤k b ∨ c, note that a ≤k b if and only if ¬a ≤k ¬b.

Applying what we have just proved, we have ¬a∧¬c ≤k ¬b∧¬c and, therefore,

¬(¬a ∧ ¬c) ≤k ¬(¬b ∧ ¬c). Now, using De Morgan laws, we have a ∨ c =

¬(¬a ∧ ¬c) ≤k ¬(¬b ∧ ¬c) = b ∨ c. �

Proposition 4.9 implies that the bilattice reduct of any Brouwerian bilattice

B can be represented as a product bilattice L�L. Moreover, since B has a top

element with respect to ≤k, L will have a maximum element. Now, in order

to obtain a full representation, we introduce the product Brouwerian bilattice

construction, which is a slight modification of the product bilattice.

Let L = 〈L,�,�, \, 1〉 be a Brouwerian lattice, i.e., an algebra such that

〈L,�,�, 1〉 is a lattice with maximum element 1 and the following residuation

condition is satisfied: for all a, b, c ∈ L, a � b ≤ c if and only if b ≤ a\c.

These algebras are also called generalized Heyting algebras [5], Brouwerian
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algebras [6], implicative lattices [13] or relatively pseudo-complemented lattices

[15]. Note also that some authors call “Brouwerian lattices” structures that

are dual to those defined above.

It is known that the lattice reduct of any Brouwerian lattice is distributive.

We recall some arithmetical properties of these algebras that we will need (see

[15] for all proofs).

Proposition 4.10. Let L = 〈L,�,�, \, 1〉 be a Brouwerian lattice. Then, for

all a, b, c ∈ L:

(i) a ≤ b if and only if a\b = 1,

(ii) 1\a = a,

(iii) (a � b)\c = a\(b\c),

(iv) a\(b � c) = (a\b) � (a\c),

(v) a ≤ (b\a),

(vi) (a\b)\a ≤ (a\b)\b,

(vii) (a � b)\c = (a\c) � (b\c),

(viii) a\(b\c) = (a\b)\(a\c) = (a � b)\c,

(ix) a � (b\c) = (a � b)\(a � c).

Given a Brouwerian lattice L = 〈L,�,�, \, 1〉, we denote by L � L the

algebra 〈L × L,∧,∨,⊗,⊕,⊃,¬〉 whose bilattice reduct is the usual product

bilattice 〈L,�,�〉 � 〈L,�,�〉 and where the operation ⊃ is defined, for all

a1, a2, b1, b2 ∈ L, as

〈a1, a2〉 ⊃ 〈b1, b2〉 = 〈a1\b1, a1 � b2〉.

The next result shows that L�L is indeed a Brouwerian bilattice. The prod-

uct Brouwerian bilattice construction is very similar to the “twist-structure”

used in [13, 14] to represent the algebras there called N4-lattices, which provide

an algebraic semantics for paraconsistent Nelson’s logic, as special products of

two copies of a Brouwerian lattice. In fact, it can be proved that N4-lattices

coincide with the {∧,∨,⊃,¬}-subreducts of Brouwerian bilattices.

Proposition 4.11. Let L = 〈L,�,�, \, 1〉 be a Brouwerian lattice. Then the

product L � L is a Brouwerian bilattice.

Proof. Using the properties stated in Proposition 4.10, we will show that L�L

satisfies equations (B1) to (B5) of Definition 4.7. Let a1, a2, b1, b2, c1, c2 ∈ L.

Then:

(B1) (〈a1, a2〉 ⊃ 〈a1, a2〉) ⊃ 〈b1, b2〉 = 〈1, a1 � a2〉 ⊃ 〈b1, b2〉

= 〈1\b1, 1 � b2〉 = 〈b1, b2〉.

(B2) 〈a1, a2〉 ⊃ (〈b1, b2〉 ⊃ 〈c1, c2〉) = 〈a1\(b1\c1), a1 � b1 � c2〉

= 〈(a1 � b1)\c1, a1 � b1 � c2〉 = (〈a1, a2〉 ∧ 〈b1, b2〉) ⊃ 〈c1, c2〉

= (〈a1, a2〉 ⊗ 〈b1, b2〉) ⊃ 〈c1, c2〉.
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(B3) (〈a1,a2〉 ∨ 〈b1, b2〉) ⊃ 〈c1, c2〉 = 〈(a1 � b1)\c1, (a1 � b1) � c2〉

= (〈a1, a2〉 ⊕ 〈b1, b2〉) ⊃ 〈c1, c2〉 = 〈(a1\c1) � (b1\c1), (a1 � b1) � c2〉

= (〈a1, a2〉 ⊃ 〈c1, c2〉) ∧ (〈b1, b2〉 ⊃ 〈c1, c2〉).

(B4) (〈a1,a2〉 ⊃ 〈b1, b2〉) ⊃ (〈a1, a2〉 ⊗ 〈b1, b2〉)

= 〈(a1\b1)\(a1 � b1), (a1\b1) � a2 � b2〉

= 〈((a1\b1)\a1) � ((a1\b1)\b1), (a1\b1) � a2 � b2〉

= 〈(a1\b1)\a1, (a1\b1) � a2 � b2〉 ≥t 〈a1, a2〉.

(B5) ¬(〈a1, a2〉 ⊃ 〈b1, b2〉) ⊃ 〈c1, c2〉 = 〈a1 � b2, a1\b1〉 ⊃ 〈c1, c2〉

= 〈(a1 � b2)\c1, a1 � b2 � c2〉 = (〈a1, a2〉 ∧ ¬〈b1, b2〉) ⊃ 〈c1, c2〉. �

Given a Brouwerian bilattice B = 〈B,∧,∨,⊗,⊕,⊃,¬〉, consider the algebra

〈Reg(B),⊗,⊕, \〉, where 〈Reg(B),⊗,⊕〉 is defined as before and the operation

\ : Reg(B) × Reg(B) → Reg(B) is defined, for all a, b ∈ Reg(B), as

a\b = reg(a ⊃ b).

As shown in [4], in any interlaced bilattice the relation

{〈a, b〉 ∈ B × B : reg(a) = reg(b)}

is a congruence of the reduct 〈B,∧,∨,⊗,⊕〉, and it is not difficult to prove

that it is also compatible with the operation ⊃. Since reg(a) = reg(reg(a)) for

all a ∈ B, it is also easy to conclude that, for all a, b ∈ B,

a\b = reg(a ⊃ b) = reg(reg(a) ⊃ reg(b)) = reg(reg(a) ⊃ b) = reg(a ⊃ reg(b)).

In the following proofs we will sometimes use this fact without notice. Our

next aim is to show that 〈Reg(B),⊗,⊕, \〉 is indeed a Brouwerian lattice.

Proposition 4.12. Let B = 〈B,∧,∨,⊗,⊕,⊃,¬〉 be a Brouwerian bilattice

and a, b, c ∈ Reg(B). Then:

(i) a ≤k b if and only if a\b = �,

(ii) a ⊗ b ≤k c if and only if a ≤k b\c.

Proof. (i) Recalling that the reduct 〈B,∧,∨,⊗,⊕,¬〉 is interlaced, it is easy

to see that, for all a ∈ B, it holds that a ≥t � if and only if reg(a) = �. The

rightwards implication is easy: applying the definition of reg, one can check

that reg(a ∨ �) = reg(�) = �. As to the converse, we may use the fact that,

as we have seen in the proof of Proposition 3.3, for all a ∈ B,

a = (reg(a) ⊗ (reg(a) ∨ reg(¬a))) ⊕ (reg(¬a) ⊗ (reg(a) ∧ reg(¬a))).

Applying the assumption that reg(a) = �, we have

a = (�⊗ (� ∨ reg(¬a))) ⊕ (reg(¬a) ⊗ (� ∧ reg(¬a)))

= (� ∨ reg(¬a)) ⊕ (reg(¬a) ⊗ (� ∧ reg(¬a)))

= (� ∨ reg(¬a)) ⊕ reg(¬a) = � ∨ reg(¬a) ≥t �.



132 F. Bou, R. Jansana, and U. Rivieccio Algebra Univers.

The last two equalities hold because, by the interlacing conditions, reg(¬a) ≤k

� ∧ reg(¬a) and reg(¬a) ≤k � ∨ reg(¬a).

Now, assuming a ≤k b, by Proposition 4.8 (xiv) we have a ⊃ b ≥t �,

therefore a\b = reg(a ⊃ b) = �. Conversely, if reg(a ⊃ b) = �, then a ⊃ b ≥t

�. By Proposition 4.8 (vii), this implies a ≤t a ⊗ b and, since a, b ∈ Reg(B),

also ¬a = a ≥t a ⊗ b = ¬(a ⊗ b). Hence a = a ⊗ b, i.e., a ≤k b.

(ii) Note that, for all a, b, c ∈ Reg(B), it holds that (a ⊗ b)\c = a\(b\c).

This is so because, by (B2), we have

a\(b\c) = reg(a ⊃ reg(b ⊃ c)) = reg(a ⊃ (b ⊃ c)

= reg((a ⊗ b) ⊃ c) = reg((a ⊗ b)\c).

Now, using (i), the proof is straightforward. Assume that a ⊗ b ≤k c. Then

(a ⊗ b)\c = a\(b\c) = � and this implies a ≤k b\c. The converse implication

is also immediate. �

We are now able to prove a representation theorem for Brouwerian bilattices:

Theorem 4.13 (Representation of Brouwerian bilattices). For any Brouwe-

rian bilattice B = 〈B,∧,∨,⊗,⊕,⊃,¬〉:

(i) 〈Reg(B),⊗,⊕, \〉 is a Brouwerian lattice,

(ii) B ∼= 〈Reg(B),⊗,⊕, \〉 � 〈Reg(B),⊗,⊕, \〉,

(iii) 〈Con(B),⊆〉 ∼= 〈Con(〈Reg(B),⊗,⊕, \〉),⊆〉.

Proof. (i) Follows from the fact that 〈Reg(B),⊗,⊕〉 is a lattice, together with

Proposition 4.12 (ii).

(ii) Let us denote by ⊃∗ the implication defined in 〈Reg(B),⊗,⊕, \〉 �

〈Reg(B),⊗,⊕, \〉 as before, that is, for all a1, a2, b1, b2 ∈ Reg(B),

〈a1, a2〉 ⊃
∗ 〈b1, b2〉 = 〈reg(a1 ⊃ b1), a1 ⊗ b2〉.

The isomorphism is given by the map ιB : B → Reg(B) × Reg(B) defined as

before, i.e., for all a ∈ B, ιB(a) = 〈reg(a), reg(¬a)〉. We know that ιB is a

bijection and an isomorphism between the two bilattice reducts, so we just

need to check that, for all a, b ∈ B,

ιB(a ⊃ b) = 〈reg(a ⊃ b), reg(¬(a ⊃ b))〉

= 〈reg(a), reg(¬a)〉 ⊃∗ 〈reg(b), reg(¬b)〉

= 〈reg(reg(a) ⊃ reg(b)), reg(a) ⊗ reg(¬b)〉 = ιB(a) ⊃∗ ιB(b).

This amounts to proving that reg(a ⊃ b) = reg(reg(a) ⊃ reg(b)) and

reg(¬(a ⊃ b)) = reg(a) ⊗ reg(¬b) = reg(a ⊗ ¬b) = reg(a ∧ ¬b).

The first one is immediate. As to the second, notice that, using (B5), it is

easy to prove that ¬(a ⊃ b) ⊃ (a ∧ ¬b) ≥t � and (a ∧ ¬b) ⊃ ¬(a ⊃ b) ≥t �.

By Proposition 4.12 (i), this implies that reg(¬(a ⊃ b)) ≤k reg(a ∧ ¬b) and

reg(a ∧ ¬b) ≤k reg(¬(a ⊃ b)) and this completes the proof.



 Varieties of interlaced bilattices 133

(iii) Following the proof of Proposition 3.3, we show that the isomorphism

is given by the map

H : Con(B) → Con(〈Reg(B),⊗,⊕, \〉)

defined, for all θ ∈ Con(B), as

H(θ) = θ ∩ (Reg(B) × Reg(B)).

From the proof of Proposition 3.3 it follows that H is well defined and that it

is an order embedding. Its inverse is

H−1 : Con(〈Reg(B),⊗,⊕, \〉) → Con(B)

defined, for all θ ∈ Con(〈Reg(B),⊗,⊕,−〉), as follows:

〈a, b〉 ∈ H−1(θ) iff 〈reg(a), reg(b)〉 ∈ θ and 〈reg(¬a), reg(¬b)〉 ∈ θ.

We have proved that H−1(θ) is an equivalence relation compatible with all the

lattice operations of both orders as well as with negation. As to compatibility

with the operation ⊃, assume 〈a, b〉, 〈c, d〉 ∈ H−1(θ), that is, 〈reg(a), reg(b)〉,

〈reg(¬a), reg(¬b)〉, 〈reg(c), reg(d)〉, 〈reg(¬c), reg(¬d)〉 ∈ θ. By the assumptions

we have

〈reg(reg(a) ⊃ reg(c)), reg(reg(b) ⊃ reg(d))〉 ∈ θ.

We have seen in (ii) that reg(a ⊃ b) = reg(reg(a) ⊃ reg(b)) and reg(¬(a ⊃ b)) =

reg(a ⊗ ¬b) for all a, b ∈ B. From this we easily obtain

〈reg(a ⊃ c), reg(b ⊃ d)〉, 〈reg(¬(a ⊃ c)), reg(¬(b ⊃ d))〉 ∈ θ

and this completes the proof. �

As in the case of bilattices with conflation, the subvarieties of Brouwerian

lattices correspond to subvarieties of Brouwerian bilattices. This can be shown

in general by defining translations between equations in the two signatures.

Let T be the set of terms in the language {∧,∨,⊗,⊕,⊃,¬,−}. For any

term ϕ ∈ T , define

reg(ϕ) := (ϕ ∨ (ϕ ⊗ ¬ϕ)) ⊕ ¬(ϕ ∨ (ϕ ⊗ ¬ϕ)).

Let us also define ∼ϕ := ¬−ϕ. Now, let S be the set of terms in the language

{�,�, \, ′, 0, 1} and let ϕ(�,�, \, ′, 0, 1) be a term of S. We define a translation

τ : S → T as follows:

τ(ϕ(�,�, \, ′, 0, 1)) := reg(ϕ(⊗,⊕,⊃,∼,⊥,�))

where ϕ(⊗,⊕,⊃,∼,⊥,�) is obtained from ϕ(�,�, \, ′, 0, 1) by replacing all

occurrences of �,�, \, ′, 0, 1 respectively by occurrences of ⊗,⊕,⊃,∼,⊥,�.

It is easy to check that, given a Brouwerian (or an involutive) lattice L with

associated Brouwerian bilattice (commutative bilattice with conflation) L�L,

we have that, for any equation ϕ ≈ ψ where ϕ,ψ ∈ S, it holds that L � ϕ ≈ ψ

if and only if L � L � τ(ϕ) ≈ τ(ψ).
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Conversely, drawing inspiration from the representation theorems stated

above, we may define inductively a translation ρ : T → S × S as follows. For

any variable x ∈ T and terms ϕ,ψ ∈ T :

ρ(x) := 〈x1, x2〉,

ρ(¬ϕ) := 〈ϕ2, ϕ1〉,

ρ(−ϕ) := 〈ϕ′

2, ϕ
′

1〉,

ρ(ϕ ∧ ψ) := 〈ϕ1 � ψ1, ϕ2 � ψ2〉,

ρ(ϕ ∨ ψ) := 〈ϕ1 � ψ1, ϕ2 � ψ2〉,

ρ(ϕ ⊗ ψ) := 〈ϕ1 � ψ1, ϕ2 � ψ2〉,

ρ(ϕ ⊕ ψ) := 〈ϕ1 � ψ1, ϕ2 � ψ2〉,

ρ(ϕ ⊃ ψ) := 〈ϕ1\ψ1, ϕ1 � ψ2〉,

where for any formula ϕ we use the convention to refer by ϕ1 to the first

member of the pair ρ(ϕ) and by ϕ2 to the second member, so that ρ(ϕ) =

〈ϕ1, ϕ2〉. It is then easy to check that, for any equation ϕ ≈ ψ with ϕ,ψ ∈ T ,

it holds that L � L � ϕ ≈ ψ if and only if L � ϕ1 ≈ ψ1 and L � ϕ2 ≈ ψ2,

where ρ(ϕ) = 〈ϕ1, ϕ2〉 and ρ(ψ) = 〈ψ1, ψ2〉.

The translations defined above translate equations into equations preserving

satisfiability. It is not difficult to convince oneself that quasi-equations are also

preserved, as both translations are defined term-wise. This implies that the

sub-quasi-varieties of Brouwerian bilattices (commutative interlaced bilattices

with conflation) are in one-to-one correspondence with the sub-quasi-varieties

of Brouwerian lattices (involutive lattices).

5. Categorical equivalences

The representation theorems known since the 1990s for bounded interlaced

and bounded distributive (pre-)bilattices have been used in [11] to establish

categorical equivalences between a number of categories of bounded bilattices

and of bounded lattices [11, Theorems 10 and 13, Corollaries 11 and 14]. The

aim of this section is to exploit the new representation theorems obtained

above (corresponding to unbounded bilattices, bilattices with conflation and

Brouwerian bilattices) to obtain new categorical equivalences. Most of the

results stated in this section can also be found in the dissertation [16] together

with further categorical results not discussed here (for instance on categories

corresponding to subreducts of Brouwerian bilattices).

The main categories considered in this section are listed in Table 1: in-

terlaced pre-bilattices (IntPreBiLat), interlaced bilattices (IntBiLat), commu-

tative interlaced bilattices with conflation (BiLatCon), Brouwerian bilattices

(BrBiLat), lattices (Lat), involutive lattices (InvLat) and Brouwerian lattices

(BrLat).
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Subsection Lattices Bilattices

5.1 Lat × Lat IntPreBiLat

5.1 Lat IntBiLat

5.2 InvLat BiLatCon

5.3 BrLat BrBiLat

Table 1. Categorical equivalences

Note that, except for Lat × Lat, the product category of Lat with itself,

each of the above categories corresponds to a variety of bilattices or lattices

(maybe enriched with additional operations) and the morphisms are the al-

gebraic homomorphisms in the corresponding algebraic signature. It follows

that all sub-varieties of these varieties correspond to full subcategories. The

exception Lat×Lat can be seen as the direct product of Lat with itself, both at

the level of objects and of morphisms, so its objects are pairs of lattices and its

morphisms are pairs of algebraic homomorphisms. We follow the convention

of using the same acronym to denote a variety and its associated category,

but for the category we use bold. So Lat is the category corresponding to

the variety Lat of lattices and so on. We also write Mor(C) to refer to the

morphisms of the category C.

In this section we prove that each of the four categories of bilattices given

in Table 1 is categorically equivalent to the category of lattices listed on the

same row of the table. Since categorical equivalences are obviously extended

to full subcategories, we will obtain that for each sub-(quasi-)variety of Lat,

InvLat and BrLat there is an equivalent (quasi-)variety of interlaced bilattices

(maybe enriched with additional operations).

For the sake of clarity, we give the proof of each one of these equivalences in

a separate subsection. However, in all four cases the functors that allow us to

prove the equivalence are defined essentially in the same way. Thus we will use

the results obtained in the first subsection in order to shorten the subsequent

proofs.

5.1. Lattices. Our next aim is to prove that the categories IntPreBiLat and

Lat×Lat are naturally equivalent, and also that IntBiLat and Lat are naturally

equivalent.

Let us first consider the case of pre-bilattices. If L1 and L2 are lattices, let

B(〈L1,L2〉) denote the interlaced pre-bilattice L1 � L2. Conversely, given an

interlaced pre-bilattice B, let L2(B) = 〈〈B,⊗,⊕〉/∼1, 〈B,⊗,⊕〉/∼2〉, where ∼1

and ∼2 are defined as in Section 3. By Theorem 3.1, there is an isomorphism

ιB : B ∼= B(L2(B)) defined, for all a ∈ B, as

ιB(a) = 〈[a]1, [a]2〉. (5.1)

It is also easy to see that, given a pair of lattices L1 and L2, in the product

category Lat × Lat there is an isomorphism 〈νL1
, νL2

〉 between 〈L1,L2〉 and
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L2(B(〈L1,L2〉)), where νL1
: L1

∼= 〈B,⊗,⊕〉/∼1 and νL2
: L2

∼= 〈B,⊗,⊕〉/∼2

are defined, for all 〈a1, a2〉 ∈ L1 × L2, as

νL1
(a1) = [〈a1, a2〉]1 and νL2

(a2) = [〈a1, a2〉]2. (5.2)

Note that the definition of νL1
(a1) is independent of the element a2, for it holds

that [〈a1, a2〉]1 = [〈a1, b〉]1 for any b ∈ L2, and similarly [〈a1, a2〉]2 = [〈b, a2〉]2
for any b ∈ L2.

In order to establish a categorical equivalence, we define two functors,

F : Lat × Lat → IntPreBiLat and G : IntPreBiLat → Lat × Lat,

as follows. For all 〈L1,L2〉 ∈ Lat× Lat, let F (〈L1,L2〉) = B(〈L1,L2〉). For all

〈L1,L2〉, 〈M1,M2〉 ∈ Lat × Lat and for all

〈h1, h2〉 : 〈L1,L2〉 → 〈M1,M2〉 ∈ Mor(Lat × Lat),

let F (〈h1, h2〉) : B(〈L1,L2〉) → B(〈M1,M2〉), for all 〈a1, a2〉 ∈ B(〈L1,L2〉), be

given by

F (〈h1, h2〉)(〈a1, a2〉) = 〈h1(a1), h2(a2)〉.

It is not difficult to check that F is indeed a functor. The functor G is defined,

for all B ∈ IntPreBiLat, as G(B) = L2(B). For all B,C ∈ IntPreBiLat and

k : B → C ∈ Mor(IntPreBiLat), let G(k) : L2(B) → L2(C) be defined as

G(k) = 〈G(k)1, G(k)2〉, where G(k)1([a]1) = [k(a)]1 and G(k)2([b]2) = [k(b)]2
for all 〈[a]1, [b]2〉 ∈ L2(B).

Using [4, Proposition 3.6], it is easy to check that a ∼1 b implies k(a) ∼1 k(b)

for any a, b ∈ B and any homomorphism k : B → C. The same holds for ∼2.

Thus, the above definition is sound.

Denoting by IC the identity functor on a given category C, we are now able

to prove the following analogue of [11, Theorem 10]:

Theorem 5.1. The families ι : IIntBiLat → FG and ν : ILat×Lat → GF of mor-

phisms defined in (5.1) and (5.2) are natural isomorphisms, therefore the cat-

egories Lat × Lat and IntPreBiLat are naturally equivalent.

Proof. Let ι, ν, F,G be defined as above. Assume

〈h1, h2〉 : 〈L1,L2〉 → 〈M1,M2〉 ∈ Mor(Lat × Lat)

and 〈a1, a2〉 ∈ L1×L2. We have to prove that the following diagram commutes:

〈L1,L2〉
〈νL1

, νL2
〉

��

〈h1, h2〉

��

G(F (〈L1,L2〉))

G(F (〈h1, h2〉))

��

〈M1,M2〉
〈νM1

, νM2
〉

�� G(F (〈M1,M2〉))
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Applying our definitions, we have

G(F (〈h1, h2〉)) · 〈νL1
, νL2

〉(〈a1, a2〉)

= G(F (〈h1, h2〉))〈[〈a1, a2〉]1, [〈a1, a2〉]2〉

= 〈[F (〈h1, h2〉)(〈a1, a2〉)]1, [F (〈h1, h2〉)(〈a1, a2〉)]2〉

= 〈[〈h1(a1), h2(a2)〉]1, [〈h1(a1), h2(a2)〉]2〉

= 〈[〈h1(a1), h2(a2)〉]1, [〈h1(a1), h2(a2)〉]2〉

= 〈νM1
, νM2

〉(〈h1(a1), h2(a2)〉)

= 〈νM1
, νM2

〉 · 〈h1, h2〉(〈a1, a2〉).

Assume now k : B → C ∈ Mor(IntPreBiLat) and a ∈ B. We have to prove

that the following diagram commutes:

B
ιB

��

k

��

F (G(B))

F (G(k))

��

C ιC
�� F (G(C))

Applying again the definitions, we obtain

F (G(k)) · ιB(a) = F (G(k))〈[a]1, [a]2〉 = 〈[k(a)]1, [k(a)]2〉 = ιC · k(a).

We have thus proved that ι and ν are natural transformations. Since, as we

have noted, ιB : B → F (G(B)) and νL : L → G(F (L)) are isomorphisms, we

conclude that ι and ν are natural isomorphisms. �

Let us now consider the case of bilattices. As we have seen above, in the

presence of negation we can establish an isomorphism between a bilattice B

and the product bilattice L�L where L = 〈Reg(B),⊗,⊕〉. Given an interlaced

bilattice B, we may then set L(B) = 〈Reg(B),⊗,⊕〉. Conversely, given a

lattice L, we denote by B(L) the interlaced bilattice L�L. The isomorphism

ιB : B ∼= B(L(B)) is then defined, for all a ∈ B, as

ιB(a) = 〈reg(a), reg(¬a)〉. (5.3)

Given a lattice L, we have an isomorphism νL : L ∼= L(B(L)) given, for all

a ∈ L, by

νL(a) = 〈a, a〉. (5.4)

We now define the functors F : Lat → IntBiLat and G : IntBiLat → Lat as

follows. For every L ∈ Lat, set F (L) = B(L), and for all h : L → M ∈

Mor(Lat), F (h) : B(L) → B(M) is given, for all a, b ∈ B(L), by F (h)(〈a, b〉) =

〈h(a), h(b)〉. Note that F preserves injections and surjections, i.e., if h : L →

M is injective (surjective), then so is F (h) : B(L) → B(M). For any B ∈
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IntBiLat, we set G(B) = L(B), and for every B,C ∈ IntBiLat and k : B → C ∈

Mor(IntBiLat), the functor G(k) : L(B) → L(C) is defined as G(k)(a) = k(a).

We are now able to state an analogue of [11, Theorem 13].

Theorem 5.2. The families ι : IIntBiLat → FG and ν : ILat → GF of mor-

phisms defined in (5.3) and (5.4) are natural isomorphisms, therefore the cat-

egories Lat and IntBiLat are naturally equivalent.

Proof. Let ι, ν, F,G be defined as above. Assume h : L → M ∈ Mor(Lat) for

some L,M ∈ Lat and a ∈ L. We have to prove that the following diagram

commutes:

L
νL

��

h

��

G(F (L))

G(F (h))

��

M νM

�� G(F (M))

Applying our definitions, we have

G(F (h)) · νL(a) = G(F (h))(〈a, a〉) = F (h)(〈a, a〉)

= 〈h(a), h(a)〉 = νM · h(a).

Let now k : B → C ∈ Mor(Lat) for some B,C ∈ IntBiLat and a ∈ B. We

have to show that the following diagram commutes:

B
ιB

��

k

��

F (G(B))

F (G(k))

��

C ιC
�� F (G(C))

In order to see this, recall that reg(a) = (a ∨ (a ⊗ ¬a)) ⊕ ¬(a ∨ (a ⊗ ¬a)). It

is then obvious that k(reg(a)) = reg(k(a)) and k(reg(¬a)) = reg(¬k(a)). We

may now apply our definitions to obtain

F (G(k)) · ιB(a) = F (G(k))〈reg(a), reg(¬a)〉 = 〈k(reg(a)), k(reg(¬a))〉

= 〈reg(k(a)), reg(¬k(a))〉 = ιC · k(a).

Thus we obtained that ι and ν are natural transformations. Since, as we

have observed, ιB : B → F (G(B)) and νL : L → G(F (L)) are isomorphisms,

we conclude that ι and ν are natural isomorphisms. �
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5.2. Involutive lattices. Our aim is to prove that the category InvLat of

involutive lattices is naturally equivalent to the category BiLatCon of commu-

tative interlaced bilattices with conflation. The situation is analogous to the

previous case.

Let B = 〈B,∧,∨,⊗,⊕,¬,−〉 be a commutative interlaced bilattice with

conflation. We define L(B) := 〈Reg(B),⊗,⊕,−〉. Conversely, for any involu-

tive lattice L, we denote by B(L) the commutative interlaced bilattice with

conflation L� L. By Theorem 4.2, there is an isomorphism ιB : B ∼= B(L(B))

defined as before:

ιB(a) = 〈reg(a), reg(¬a)〉. (5.5)

Also, given an involutive lattice L, we have an isomorphism νL : L ∼= L(B(L))

given, for all a ∈ L, by

νL(a) = 〈a, a〉. (5.6)

The functors F : InvLat → BiLatCon and G : BiLatCon → InvLat are also

defined as in the case of bilattices. For every L ∈ InvLat, F (L) = B(L), and

for all h : L → M ∈ Mor(InvLat), F (h) : B(L) → B(M) is given, for all a, b ∈

B(L), by F (h)(〈a, b〉) = 〈h(a), h(b)〉. For any B ∈ BiLatCon, we set G(B) =

L(B) and for every B,C ∈ BiLatCon and k : B → C ∈ Mor(BiLatCon), the

functor G(k) : L(B) → L(C) is defined as G(k)(a) = k(a).

We have then the following:

Theorem 5.3. The families ι : IBiLatCon → FG and ν : IInvLat → GF of mor-

phisms defined in (5.5) and (5.6) are natural isomorphisms, therefore the cat-

egories InvLat and BiLatCon are naturally equivalent.

Proof. Similar to the one of Theorem 5.2. �

5.3. Brouwerian lattices. We are going to prove that the category BrLat of

Brouwerian lattices is naturally equivalent to the category BrBiLat of Brouw-

erian bilattices. This case is also analogous to the previous ones.

Given a Brouwerian bilattice B = 〈B,∧,∨,⊗,⊕,⊃,¬〉, we define L(B) :=

〈Reg(B),⊗,⊕, \〉, where the operation \ is defined as in Section 4.2. Con-

versely, for any Brouwerian lattice L, we denote by B(L) the Brouwerian bi-

lattice L � L. By Theorem 4.13, there is an isomorphism ιB : B ∼= B(L(B))

defined as before:

ιB(a) = 〈reg(a), reg(¬a)〉. (5.7)

Also, given a Brouwerian lattice L, we have an isomorphism νL : L ∼= L(B(L))

given, for all a ∈ L, by

νL(a) = 〈a, a〉. (5.8)

The functors F : BrLat → BrBiLat and G : BrBiLat → BrLat are also defined

as in the case of bilattices. For every L ∈ BrLat, F (L) = B(L), and for all

h : L → M ∈ Mor(BrLat), F (h) : B(L) → B(M) is given, for all a, b ∈ B(L),

by F (h)(〈a, b〉) = 〈h(a), h(b)〉. For any B ∈ BrBiLat, we set G(B) = L(B)
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and for every B,C ∈ BrBiLat and k : B → C ∈ Mor(BrBiLat), the functor

G(k) : L(B) → L(C) is defined as G(k)(a) = k(a).

We have then the following:

Theorem 5.4. The families ι : IBrBiLat → FG and ν : IBrLat → GF of mor-

phisms defined in (5.7) and (5.8) are natural isomorphisms. Hence, the cate-

gories BrLat and BrBiLat are naturally equivalent.

Proof. Similar to those of Theorems 5.2 and 5.3. �

5.4. Subcategories. As observed above, the equivalences proved in the pre-

vious sections extend to full subcategories of the above-mentioned categories

which have as objects algebras belonging to sub-quasivarieties of Lat, InvLat,

IntPreBiLat and so on. In this way we obtain the equivalences shown in Table 2.

Lattices DLat × DLat DPreBiLat Bilattices

DLat DBiLat

Involutive DMLat DBiLatCon Bilattices

lattices KLat KBiLatCon with conflation

BA CBiLatCon

Brouwerian GenBA ImpBiLat Brouwerian

lattices bilattices

Table 2. Equivalences between some subcategories

On the left column we have distributive lattices (DLat) as a subcategory

of lattices, De Morgan lattices (DMLat), Kleene lattices (KLat) and Boolean

algebras (BA) as subcategories of involutive lattices, and the 0-free subreducts

of Boolean algebras, usually called generalized Boolean algebras (GenBA), as a

subcategory of Brouwerian lattices. On the right column we have: one subcate-

gory of interlaced bilattices, i.e., distributive bilattices (DBiLat); subcategories

of commutative interlaced bilattices with conflation, i.e., distributive bilattices

with conflation (DBiLatCon), Kleene bilattices with conflation (KBiLatCon)

and classical bilattices with conflation (CBiLatCon), and one subcategory of

Brouwerian bilattices, namely implicative bilattices (ImpBiLat).

Notice that, as mentioned above, these equivalence results imply that we

could define categories of bilattices that are equivalent to any of the cate-

gories associated with sub-quasi-varieties of Brouwerian lattices (for instance,

all varieties corresponding to super-intuitionistic logics).
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