
Comment on Ashtekar:
Generalization of Wigner’s Principle

Bryan W. Roberts
University of Southern California

www.usc.edu/bryanroberts

June 26, 2013

1. Introduction

My sincere thanks to Dr. Ashtekar for his note on the roads
to T -violation. This clarifies the situation a great deal. I have argued
that when you boil down existing techniques for testing time asymmet-
ric (T -violating) phenomena, you find that there are really just three
principles underpinning them: Curie’s principle, Kabir’s principle, and
Wigner’s Principle (Roberts 2013). But is there any sense in which
these principles really belong to quantum theory, or are they more
general than that?

As Dr. Ashtekar illustrates with great clarity, the former two
principles are significantly more general than quantum theory as we
currently know it. Just how general? We don’t need the dynamics to
be linear, let alone unitary. We don’t need a vector space or a super-
position principle. We don’t even need observables. Curie’s principle,
Dr. Ashtekar observes, follows from little more than the notion of a
bijection on a set of states. And Kabir’s principle can be formulated
with the addition of only the bare-bones notion of an “overlap map”
to capture some structural features of a transition probability. Both
principles are true in the very minimalist formalism that Ashtekar calls
general mechanics (Ashtekar 2013).

Curie’s Principle and Kabir’s Principle are the only techniques
that have led to successful tests for T -violation. So, these generaliza-
tions illustrate a sense in which our existing evidence for CP -violation
and for T -violation is extremely robust, since these principles obtain
in a variety of modifications of quantum theory.

But what about the third road to T -violation, Wigner’s prin-
ciple? My purpose in the remainder of this note is to illustrate how
Wigner’s Principle can be generalized as well.
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Figure 1. Time reversal invariance.

2. General Mechanics

Following Ashtekar (2013), let S be a set of states, and let S :
S → S be a bijection, which we interpret as implementing dynamical
evolution (like an S-matrix). It is helpful to think of ourselves as
having two copies of that set of states denoted by different indices, Si
(the “initial states”) and Sf (the “final states”), and write S : Si → Sf .
Accordingly, when it is appropriate, a single state σ ∈ S will be denoted
with different indices σi ∈ Si and σf ∈ Sf depending on which of the
two copies it is in.

We further define an overlap map O : S × S → R that is sym-
metric O(σ, ρ) = O(ρ, σ), providing a generalization of the quantum
mechanical notion of a transition probability |〈σ, ρ〉|2. Following the
index convention above, we denote this map by Oi when it operates on
Si × Si, and by Of when it operates on Of ×Of .

The time reversal operator in general mechanics is a one-to-one
mapping T : Si → Sf , and we interpret time reversal invariance to
mean that T−1S = S−1T . Equivalently, time reversal invariance says
that T−1ST−1S = I is the identity on S. This captures the essential
property of a time reversal invariant system that if we evolve a state,
time reverse it, evolve it again, and then time reverse it again, then
that is the same as if we had done nothing at all, as in Figure 1.

3. Degeneracy

In quantum theory, a degenerate eigenvector ψ of the Hamil-
tonian H is one that admits an eigenvector φ that is orthogonal to it
〈ψ, φ〉 = 0, but which has the same eigenvalue. Our central task in this
section is to find an appropriate definition of degeneracy for general
mechanics, since it is essential to the expression of Wigner’s Principle.

General mechanics so far does not have enough structure to
define degeneracy. We don’t have linearity, so we can’t talk about
eigenvalues on a linear space. But can we do so using the overlap map?
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To see that this is not enough, consider the special case of quan-
tum mechanics, where the overlap map is O(ψ, φ) = |〈ψ, φ〉|2. Let ϕ be
a normalized energy eigenvector, and hence an eigenvector of the uni-

tary evolution operator Ut = e−itH . Then |〈ϕ,Utϕ〉|2 =
∣∣〈ϕ, e−ithϕ〉∣∣2 =

1 for all eigenvalues h. And since Ut is unitary, |〈Utψ,Utφ〉|2 = |〈ψ, φ〉|
for all ψ, φ. Neither of these two calculations provides a way to distin-
guish eigenvectors with distinct eigenvalues. This suggests don’t yet
have enough information get at degeneracy. However, we can define
degeneracy with the help of a little extra structure.

3.1. Preliminary Definitions. Let me begin by introducing two def-
initions, making use only of the objects that have been introduced so
far.

• Equivalent States (≡). Two states σ, ρ ∈ S are equivalent (writ-
ten σ ≡ ρ) when O(σ, ξ) = O(ρ, ξ) for all ξ ∈ S.

In quantum mechanics, two vectors related by a complex unit
represent the same state, ψ = eiθφ. This is equivalent1 to the
statement that |〈ψ, ξ〉|2 = |〈φ, ξ〉|2 for all ξ ∈ H. So, since
O(ψ, ξ) = |〈ψ, ξ〉|2 in the special case of quantum theory, our
definition is the natural generalization of the idea ψ and φ rep-
resent the same state.
• Stationary States. A state σ ∈ S is stationary when Sσ ≡ σ,

where S : Si → Sf is the dynamical evolution operator.
In quantum theory, a state ψ ∈ H is stationary if Utψ =

eiθψ. Expressed in general mechanics with the dynamics S,
this just says that Sψ and ψ are equivalent states, according to
our definition above.

3.2. Additional Structure. We must now introduce a new structure,

which I will call the pre-overlap map
p

O. It is a mapping
p

O : S×S → C,
which is taken to be compatible with both the dynamical evolution
operator S and the time reversal operator T ,

p

O(Sσ, Sρ) =
p

O(σ, ρ)
p

O(Tσ, Tρ) =
p

O(ρ, σ),

1Proof: (⇒) This direction is obvious. (⇐) Suppose |〈ψ, ξ〉|2 = |〈φ, ξ〉|2 for
all ξ ∈ H. Thus the complex numbers 〈ψ, ξ〉 and 〈φ, ξ〉 have the same length,
and so are related by a rotation of the complex plane. This means that for each
ξ ∈ H, there exists some e−iθ such that 〈ψ, ξ〉 = e−iθ〈φ, ξ〉 = 〈eiθφ, ξ〉, and hence
〈ψ− eiθφ, ξ〉 = 0. In particular, 〈ψ− eiθφ, ψ− eiθφ〉 = 0. Therefore, since the inner
product 〈·, ·〉 is positive definite, ψ − eiθφ = 0, and so ψ = eiθφ as claimed.
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for all σ, ρ ∈ S. This structure is thus analogous to the inner product
〈·, ·〉 in quantum theory, but lacks much of its structure.

Our use for the pre-overlap map is to define an analogue of two
states having “the same energy eigenvalues.” In generalized mechanics,
we take this to be the statement that for stationary states σ and ρ,

p

O(σ, Sσ) =
p

O(ρ, Sρ).

Again, consider the quantum analogue 〈σ,Utσ〉 = 〈ρ,Utρ〉, where σ
and ρ are vectors in a Hilbert space and Ut = e−itH . Since ψ and φ are
assumed to be stationary and normalized,

〈σ,Utσ〉 = 〈ρ,Utρ〉 =⇒ e−ith = e−ith
′
,

where Utσ = e−ithσ and Utρ = e−ith
′
ρ. This implies that σ and ρ have

the same energy eigenvalues, h = h′.
With this in mind, we can define what it means for a stationary

state σ in general mechanics to be non-degenerate. In quantum theory,
non-degeneracy is the property that σ and ρ have the same energy
eigenvalues only if σ = eiθρ. In general mechanics, this amounts to the
following.

Definition. A stationary state σ ∈ S is non-degenerate if for every

stationary state ρ,
p

O(σ, Sσ) =
p

O(ρ, Sρ) only if σ ≡ ρ. Otherwise, σ is
called degenerate.

4. Generalization of Wigner’s Principle

With the definitions above, we now have a simple statement of
Wigner’s Principle.

Generalized Wigner’s Principle. Suppose there exists a stationary
state σ ∈ S such that both of the following are true:

(1) σ is non-degenerate; and
(2) Tσ 6≡ σ.

Then we have T -violation, in that TS−1 6= ST−1.

Proof. We prove the contrapositive statement: assume TS−1 = ST−1.
Let σ be stationary, Sσi = σf , and define ρ by the relations, ρf := Tσi,
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ρi := T−1σf . Then,
p

Of (σf , Sσi) =
p

Oi(T−1Sσi, T−1σf ) Compatibility of T

=
p

Oi(S−1Tσi, T−1σf ) Time reversal invariance

=
p

Oi(S−1ρf , ρi) Definition of ρ

=
p

Of (SS−1ρf , Sρi) Compatibility of S

=
p

Of (ρf , Sρi).
Suppose (1) is true, and σ is non-degenerate. Then by this calculation,
σ ≡ ρ. Since ρ = Tσ, this implies that (2) fails. Suppose instead that
(2) is true, and Tσ 6≡ σ. Then σ 6≡ ρ, and (1) fails. �

5. Discussion

Ashtekar (2013) showed that Curie’s Principle is the most gen-
eral of the three roads to T -violation, requiring only a minimal amount
of structure involving bijections on sets, while Kabir’s Principle requires
the addition of an overlap map. We have now seen that Wigner’s Prin-
ciple requires the addition of an overlap map plus a pre-overlap map.
The three roads thus require successfully more structure. Nevertheless,
casting them in Ashtekar’s general framework shows that they are all
surprisingly robust, much more so than was understood by Roberts
(2013).
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