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Abstract. This paper states and proves a precise sense in which, if all the mea-
surable properties of an ordinary quantum mechanical system are ultimately deriv-
able from position, then time in quantum mechanics can have no preferred direc-
tion. In particular, I show that when the position observable forms a complete set
of commuting observables, Galilei invariant quantum mechanics is guaranteed to
be time reversal invariant.

1. Introduction

There is some precedent for discussing the extent to which the configuration
of bodies in motion is sufficient to characterize the nature of matter. For example,
Robert Boyle thought that,

whereas those other philosophers give only a general and superficial
account of the phaenomena of nature... both the Cartesians and the
Atomists explicate the same phaenomena by little bodies variously
figured and moved (Boyle 1772, p.355).

Although this view has an interesting history in its own right, let me here simply
point out the useful resemblance it bears to certain descriptions of modern physics.
Namely, all the measurable properties of a substance have at times been described
in terms derivable entirely from the spatial positions of fundamental particles.

There seems to have been a particularly strong inclination toward this ontol-
ogy in the early days of quantum theory, before the electron’s spin was discovered.
The hydrogen atom was at the time characterized entirely by placement of electrons
in “orbit” around the nucleus. Indeed, Heisenberg later reported being “psycho-
logically” unprepared for Kronig’s proposal that the electron had internal spin not
reducible to changes in position, recalling that “I just said, ‘That is a very funny
idea and very interesting,’ but in some way I pushed it away” (AIP 1963).

I would like to point out one consequence of the “minimal ontology” preferred
by Heisenberg, which is perhaps unexpected. Namely, there seems to be a sense in
which, if the measurable properties of an ordinary quantum system are functions of
spatial position alone, then motion cannot develop in a preferred direction in time.
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If such a system can develop in time at all, the development can also occur in the
reverse temporal order.

In physical language, what I mean by a lack of a preferred temporal direction
is that quantum theory is time reversal invariant. The “minimal ontology” I have
in mind is one in which the position observable forms a complete set of commuting
observables. The claim that I will argue for, then, is that if position forms a complete
set of commuting observables, then ordinary (Galilei invariant) quantum theory
must be time reversal invariant.

My endeavor in what follows will be to state and prove a precise expression
of this claim. Section 2 sets out the basic quantum structures for the discussion,
including position in space, development in time, Galilei invariance, and the “min-
imal ontology” of a complete set of commuting observables. In Section 3, I discuss
the meaning of time reversal invariance, and state the theorem that captures the
claim above. Section 4 discusses how the proof of the theorem works in terms of
elementary quantum mechanics. Section 5 is the conclusion; a rigorous proof of the
theorem is given in the Appendix.

2. Basic Structures

2.1. Space and time. We will be discussing non-relativistic space and time, as
characterized by a big block. More precisely, the block is a 4-dimensional manifold
R4. To individuate space from time, we slice the block into a family of parallel hy-
persurfaces {Σt : t ∈ R}, in such a way that each surface Σt represents 3-dimensional
Euclidean space at some moment in time t.

The 3-dimensional spaces Σt are made up of regions. More precisely, a spatial
region ∆ ⊆ Σt for us will be any open set or countable union or intersection of
open sets – these are sometimes called the Borel sets. They can be assigned three
Cartesian coordinate axes, allowing us to label a point p in a spatial region as
p = (x, y, z). For convenience of exposition, let us restrict attention to a single one
of these axes. That is, let ∆ represent a (Borel) set of the real numbers R.

Now we turn to the quantum appropriation of these structures. In quantum
theory, the pure states (states of affairs, if one likes) are represented by rays in a
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Hilbert spaceH. This Hilbert space is a vector space, among other things1, which we
take to have a countably infinite basis set. But it is also a considerable abstraction
from the spacetime structure set out above. A connection must be made between
the two. This can be done in two steps: first, we connect H to space; then we
connect H to time.

We begin the first step by recognizing that, like a vector space, the Hilbert
space H contains subspaces. A projection operator projects each vector in H onto a
subspace ofH. The connection to the Euclidean spatial surface Σt can then be made
as follows: we take each spatial region ∆ ⊆ Σt and associate it with a projection
operator E∆ onto a subspace ofH. Since projection operators have eigenvalues 1 and
0, they have interpretive significance: we follow Mackey (1963) in taking them to
represent the true-or-false outcomes of physical experiments. In particular, we take
each spatial projection E∆ to represent the experiment, “a macroscopic detection
event occurred in the spatial region ∆” (Figure 1).

Figure 1. The projection operator E∆ has eigenvalue 1 when an exper-
imental detection occurs in the spatial region ∆ (left), and eigenvalue 0
when it does not (right).

This detection event may be a signal from a particle detector in some region
of the lab. Philosophers of quantum mechanics are also welcome to read “detection”
according to their favorite interpretation, so long as the basic experimental predic-
tions of quantum mechanics are retained. Namely, if the initial state of the system
is given by ψ ∈ H, then the probability of a detection in the region ∆ is given by
〈ψ,E∆ψ〉.

(As a technical aside to those more familiar with Dirac’s bra-ket notion: the
projection E∆ is sometimes shirked in favor of Dirac’s notation with |x〉〈x|. I avoid
the latter in this treatment, because the ket |x〉 = δ(x − x′) is not a well-defined
vector in the Hilbert space. By dealing with projections E∆ associated with a region
∆ instead of a point x, one avoids having to introduce the Dirac delta. This is helpful
for the level of mathematical rigor required in the next sections.)

This completes the first step: quantum mechanics can talk about spatial
position. In the second step, we need to talk about time.

For this, we recall that by slicing our spacetime into spatial surfaces Σt

indexed by t ∈ R, we introduced a time axis. This axis admits a natural notion

1A Hilbert space H is a vector space over the complex number field C, equipped with a definite
inner product 〈 · , · 〉 : H×H → C, with respect to which it is Cauchy complete. A Hilbert space
with a countable basis set is called separable.
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of “time development” or translation forward or backward in time, represented by
the group of real numbers under addition (R,+). Each t ∈ R in this group then
represents a time development for a duration t.

The connection to Hilbert space H is now made by assigning each t to an
operator Ut : H → H. We do this in a way that is strongly continuous2, in order
to preserve the assumption that systems evolve continuously in time. We also do
it in a way that preserves the addition law, UtUt′ = Ut+t′ . The assignment t 7→ Ut
is then called a strongly continuous representation of the group of time translations
on H. We interpret it to represent the translation of a pure state ψ ∈ H forward or
backward in time by a duration t (Figure 2).

(Now...)

(...Later)

(...Even Later)

Figure 2. The operators Ut represent time translation by a duration t.

Finally, we take each Ut in the representation to be a unitary operator, in that
〈Utψ,Utφ〉 = 〈ψ, φ〉 for all ψ, φ ∈ H. This is grounded in the assumption that the
practice of setting up a quantum experiment and predicting a probabilistic outcome
is time translation invariant ; experimental practice does not recognize any preferred
moment in time.

In summary, let H be a Hilbert space with a countably infinite basis set,
whose rays represent the pure quantum states of a system; let ∆ 7→ E∆ be a projec-
tion valued measure, from regions of space to the lattice of projections on H; and
let t 7→ Ut be a strongly continuous unitary representation of the time translation
group (R,+). The triple (H,∆ 7→ E∆, t 7→ Ut) contains the basic elements of a
quantum description of space and time. It will be the basic object of our analysis.

2.2. Position and velocity observables. The projection valued measure ∆ 7→
E∆ on regions of space uniquely defines3 a self-adjoint operator Q, which I will refer
to as the position observable associated with E∆, or simply the position observable.
Those familiar with the formalism will recognize this as the object standing in the

2A group of operators is strongly continuous if it is continuous in the Hilbert space norm, for
every vector in H. See (Blank et al. 2008, §3.1).

3In particular Q =
∫
R λdEλ, where Eλ is the projection associated with the set (−∞, λ), and

the
∫

is the Lebesgue-Stieltjes integral. See (Jauch 1968, esp. §4.3) for an introduction.
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canonical commutation relation,

(1) [Q,P ]ψ := (QP − PQ)ψ = iψ,

for all ψ in the common dense domain of Q and P . However, note that the triple
(H,∆ 7→ E∆, t 7→ Ut) does not presume the existence of a self-adjoint operator P
satisfying the canonical commutation relation. Nevertheless, we will now see that
this triple does allow us to construct an operator Q̇, which we may interpret as
“velocity,” using the given notions of position and time translation. In the next
section, we will then introduce assumptions that allow us to prove that there exists
a non-zero real number µ such that Q and µQ̇ satisfy the canonical commutation
relation (1).

To construct a velocity operator, we make use of our representation of time
translation t 7→ Ut. In the Heisenberg picture, Ut determines how each operator,
such as the position observable Q defined above, changes over time. In particular,
at an arbitrary time t, position changes over time as

Q(t) = UtQU−1
t ,

where we note that a unitary operator U has the property that U∗ = U−1. We will
think of “velocity” as the rate of change of this position observable with respect
to time, or d

dt
Q(t). Without loss of generality, we may consider this quantity at a

fixed moment in time t = 0; the velocity at an arbitrary time will then be given by
the time translation group Ut, just as the position observable was above. We thus
define the operator Q̇ := d

dt
Q(t)|t=0, to refer to the rate of change of the position

observable in time, evaluated at time t = 0.
To get a fix on the particular form of Q̇, recall now that Ut can always be

written Ut = eitH , for a unique self-adjoint operator H called the Hamiltonian4.
Then, since Q = Q(0) is independent of time, we have that

Q̇ : =
d

dt
Q(t)|t=0 =

d

dt

(
UtQU−1

t

)
|t=0

=

(
(
d

dt
eitH)(Qe−itH) + (eitH)Q(

d

dt
e−itH)

)
|t=0

= i(HeitHQ− eitHQH)e−itH |t=0

= i[H,Q].

where the second equality makes use of the chain rule, the third a formal derivative,
and the final one evaluates at t = 0. This Q̇ is a self-adjoint operator, which we may
check by observing that i∗ = −i and [H,Q]∗ = −[H,Q], and hence that Q̇∗ = Q̇. We
thus say that Q̇ = i[H,Q] is the velocity observable at time t = 0, or more simply
the velocity observable. It can be constructed whenever the triple (H,∆ 7→ E∆,Ut)
is available to us.

4This fact follows from Stone’s theorem (Blank et al. 2008, Thm. 5.9.2).
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2.3. Galilei Invariance. Ordinary, low-relative-velocity quantum mechanics is Galilei
invariant. For us, the experimental significance of this will be the following. Sup-
pose two particle physics experiments are performed in different laboratories, and
that the only difference between them is that they were set up in different spatial
locations. One may assume that these two experiments will produce the same result;
this expresses the fact that particle physics is invariant under spatial translations.
Similarly, suppose the two experiments are performed at different constant veloci-
ties, but are otherwise identical. For example, one experiment might take place on
a boat traveling with uniform speed, while the other takes place on shore. These
two experiments will again produce the same results. This expresses the fact that
particle physics is invariant under velocity boosts. In particular, in the present case
of ordinary quantum mechanics, these are the Galilei boosts. The two assump-
tions of invariance under spatial translations and Galilei boosts will be referred to
collectively as Galilei invariance.

Let us formulate this condition precisely for one of our spatial surfaces Σt.
To simplify calculations, we choose the t = 0 slice Σ0, since the particular surface
in question is irrelevant. Begin by using the triple (H,∆ 7→ E∆, t 7→ Ut) to define
a position observable Q and a velocity observable Q̇ as above. We may now take
spatial translation by a length a ∈ R to have the effect of “translating” the position
observable Q 7→ Q + aI, while leaving velocity fixed Q̇ 7→ Q̇. Although these
“translations” are in fact acting on self-adjoint operators, the terminology is justified
by the fact that the mapping translates the spectrum (and thus the measurable
values) corresponding to the position observable Q. Indeed, one can check5 that the
mapping Q 7→ Q + aI is in fact implemented by the mapping E∆ 7→ E∆−a on the
spatial projections as defined in Section 2.1; that is, the projection assigned to a
spatial region ∆ is mapped to the projection assigned to the spatial region ∆ − a,
which is literally a translation of the first by a vector a.

Similarly, we can take a change in velocity by b ∈ R to have the effect of
boosting the velocity observable Q̇ 7→ Q̇ + bI, while fixing position6 Q 7→ Q. We
thus arrive at the following.

Definition 1 (Galilei invariance). The structure (H,∆ 7→ E∆, t 7→ Ut) is Galilei
invariant only if there exist two strongly continuous one-parameter unitary repre-
sentations Sa (translations) and Rb (boosts) of the additive group of real numbers,

5To verify, consider how E∆ 7→ E∆−a effects the position observable Q, defined as Q :=
∫
R λdEλ.

By the functional calculus,
∫
R f(λ)dEλ = f(Q) for any Borel function f . So, E∆ 7→ E∆−a has the

effect of mapping Q 7→
∫
R λdEλ−a =

∫
R(λ+ a)dEλ = Q+ aI, where the first equality substitutes

λ+ a for λ, and the second follows from the functional calculus.
6Since we normally think of a Galilei boost as transforming a displacement x to x + vt, it is

clear that boosts can in general have a similar effect on the position observable Q(t); however, we
will simplify calculations without loss of generality by choosing to consider only the Σ0 time slice,
on which boosts have no effect on position.
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such that

SaQS
−1
a = Q+ aI SaQ̇S

−1
a = Q̇

RbQR
−1
b = Q RbQ̇R

−1
b = Q̇+ bI

for all a, b ∈ R.

It may be worth highlighting the significance of taking Sa and Rb to be
unitary. Roughly speaking, this captures the assumption that, when an observer in
a lab predicts the outcome of an experiment, that prediction will be independent of
both the position of the lab in space and its velocity.

Here is a way to make this reasoning concrete. Suppose we set up an experi-
mental apparatus, which measures a physical quantity represented by the self-adjoint
operator A. Suppose the initial state of the experiment is described by the vector
ψ. Then the expectation value for the experiment is given by the inner product,
〈ψ,Aψ〉. Now, suppose another researcher sets up the same experimental apparatus,
but in a lab at a different spatial location. That researcher’s apparatus will measure
the translated observable7 SaAS

−1
a , and the initial state will be described by the

translated vector Saψ. The expectation value for the translated experiment is thus

〈Saψ, (SaAS−1
a )Saψ〉 = 〈Saψ, SaAψ〉 = 〈(S∗aSa)ψ,Aψ〉,

where the first equality follows because S−1
a Sa = I, and the second from the def-

inition of the adjoint operation (∗). Similarly, given a researcher performing the
experiment at a different uniform velocity, the expectation value will be

〈Rbψ, (RbAR
−1
b )Rbψ〉 = 〈Rbψ,RbAψ〉 = 〈(R∗bRb)ψ,Aψ〉.

Galilei invariance is meant to capture the assumption that all three of these predic-
tions will agree. This will occur just in case (S∗aSa) = (R∗bRb) = I is the identity
operator, which holds just in case Sa and Rb are unitary8. So, we take these operators
to be unitary in the definition of Galilei invariance.

The reader familiar with quantum theory may recognize that in fact, Defini-
tion 1 expresses that for any a, b ∈ R, the pairs of operators (Q, Q̇), (Q+aI, Q̇) and
(Q, Q̇+bI) are all unitarily equivalent, meaning that each is related to the other by a
single unitary transformation. However, it should be emphasized that this definition
of Galilei invariance does not imply the stronger condition that the Hamiltonian H
commute with translations Sa and boosts Rb.

7If this seems strange, consider for example the experiment that checks if a particle is in a
certain spatial region ∆. The operator representing this experiment is the spatial projection
E∆. To characterize the same experiment in a different spatial region, we do not use the same
projection E∆, but rather the translated one SaE∆S

−1
a , which corresponds to a particle detection

in the translated spatial region ∆− a.
8This makes use of the fact that if 〈ψ,Aψ〉 = 〈ψ,Bψ〉 for all ψ ∈ H, then A = B (Messiah 1999,

Thm. 1, §XV.2). Note also that both unitary and antiunitary operators have the property that
U∗U = I. But since t 7→ Ut is taken to be a strongly continuous representation of (R,+), the only
possibility is then that each Ut be unitary (Blank et al. 2008, p.354).
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2.4. A minimal ontology. Roughly speaking, we would now like to characterize
the condition that in a given spatial slice Σt, all the observables under consideration
are “derived entirely from” the position observable. For example, one might notice
that composing the position observable with itself gives rise to a new self-adjoint
operator, which maps a vector ψ in the domain of Q to Q2ψ = (Q ◦ Q)ψ. This
operator is different than the position observable. Nevertheless, it is in an obvious
sense a “derived entirely” from it. A similar status holds of any polynomial in Q,
such as

Q2 +Q+ 41.

In fact, we need not even restrict ourselves to polynomials; any continuous function9

of Q is a self-adjoint operator, and the set of all such operators forms an algebra,
which we denote AQ. It is called the algebra generated by Q. In an important sense,
the algebra AQ captures the class of operators that are “derived entirely from” the
position observable.

This algebra can now be used to describe the central restriction of interest
to us: that all measurable properties of an ordinary quantum system are derivable
entirely from position. Those measurable properties can in general be completely
characterized by a set of “simultaneously measurable observables,” meaning a set
of self-adjoint linear operators on H that all commute10. Suppose we presume that
the position observable Q is in that set, and so will commute with all the other
simultaneously measurable observables. In order to now express that all the other
simultaneously measurable observables can be “derived entirely from position,” we
need only assert that everything that commutes with Q is in the algebra AQ. This
property commonly goes under the following title.

Definition 2 (Complete Set of Commuting Observables). A self-adjoint operator Q
forms a complete set of commuting observables if for every (closed11) linear operator
A, if AQ = QA, then A is in the algebra AQ of functions of Q.

As a technical note relevant for the proof at the end of this paper, let me
briefly mention an important consequence of Q forming a complete set of commuting
observables. First, let {Q}′ be the commutant of Q, meaning the set of bounded
linear operators that commute with Q. Let {Q}′′ be the extended bicommutant,
meaning the set of closed linear operators such that commute with {Q}′ on their
common domain. Then a generalization of von Neumann’s famous bicommutant

9Let f : R→ C be a Borel function that is defined almost everywhere on the spectral measure
∆ 7→ E∆. Then f defines a function of Q =

∫
R λdEλ, given by f(Q) :=

∫
R f(λ)dEλ; see (Blank

et al. 2008, §5.5).
10Earman (2008, §5) points out that the existence of such a set can be viewed as a sine qua non

in the description of a quantum system.
11Closure is a technical requirement guaranteeing A will be sufficiently well-behaved. An oper-

ator A is closed if, whenever a sequence ψi in the domain of A is such that ψi → ψ and Aψi → φ,
then it follows that ψ is in the domain of A, and Aψ = φ. Closed operators are continuous on
their domain, but need not be bounded.
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theorem states that {Q}′′ = AQ (Blank et al. 2008, Theorem 5.5.6); that is, the
Borel functions of Q are precisely the elements of the bicommutant of Q. So, one
consequence of Q being a complete set of commuting observables is that {Q}′ ⊆
{Q}′′. Another way of saying this is that, since AQ is commutative, AQ is not a
sub-algebra of any closed commutative algebra; that is, AQ is maximal abelian.

3. Time reversal invariance

We now have a handle on a what a “minimal ontology” means in ordinary,
Galilei invariant quantum mechanics: it is an ontology in which the position ob-
servable Q forms a complete set of commuting observables. The main claim of this
paper is now, in rough terms, that such quantum systems always admit an opera-
tor T such that T -reversal invariance holds – and, in addition, that this T can be
reasonably interpreted as ‘time reversal.’

Here is how this rough terminology is made precise. First, for T -reversal
invariance, we adopt the standard definition:

(i) For any bijection T : H → H, we say that the structure (H, t 7→ Ut) is
T -reversal invariant just in case TUtT−1 = U−t, for all t ∈ R.

As one might expect, a system is T -reversal invariant if the group of time translations
“reverses sign” under the operation T .

In the discussion of the next section, we will make use of a few other state-
ments of time reversal invariance, which are equivalent whenever T is antiunitary,
meaning that 〈Tψ, Tφ〉 = 〈ψ, φ〉∗ for all ψ, φ ∈ H. In particular, if the bijection
T : H → H is antiunitary, then the following statements can be shown12 to be
equivalent:

• (H, t 7→ Ut) is T -reversal invariant in the sense of (i).

12The equivalence of the second and third points was pointed out by Earman (2002, p.248).
The equivalence of the first and the third is established as follows. Write TUtT−1 = TeitHT−1 in
its Taylor expansion,

TeitHT−1 = T (I + (itH) + (1/2!)(itH)2 + · · · )T−1

= I + T (itH)T−1 + (1/2!)T (itH)2T−1 + · · ·
= I + T (itH)T−1 + (1/2!)(T (itH)T−1)2 + · · ·

= eT (itH)T−1

,

where the penultimate equality follows from the fact that T−1T = I. We assumed T is antiunitary,
and all antiunitary operators are antilinear, meaning that they conjugate complex numbers. So,

TeitHT−1 = eT (itH)T−1

= e−itTHT
−1

. Thus, if the third point holds and THT−1 = H, then
TeitHT−1 = e−itH and we have the first point. Conversely, if the first point holds and TeitHT−1 =

e−itH , then e−itH = TeitHT−1 = e−itTHT
−1

. But the since both H and THT−1 are self-adjoint,
and Stone’s theorem guarantees U−t has a unique self-adjoint generator, it follows that THT−1 =
H, and we have the third point.
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• If ψ(t) = Utψ (where Ut = eitH and ψ ∈ H) is a solution to the Schrödinger
equation i(d/dt)ψ(t) = Hψ(t), then Tψ(−t) is also a solution to the Schrödinger
equation with the same Hamiltonian H.
• [T,H]ψ = 0, for all ψ in the domain of H (and where Ut = eitH).

We have a definition of time reversal invariance. Now, characterizing when
an operator T can be reasonably interpreted as “time reversal” is more subtle. Note
that we have at our disposal little more than a spatial position observableQ, together
with the velocity observable Q̇, defined as the rate of change Q̇ := d

dt
Q(t)|t=0. Time

reversal in this context is standardly taken to be an antiunitary operator, which
preserves states of affairs when applied twice, and which reverses velocities while
preserving positions.

This latter claim is made somewhat plausible by our intuitions about films
running in reverse. For example, reversing a film of a ball rolling down an inclined
plane leads to a depiction in which the directions of velocities are reversed, while all
the same positions occur, although they occur in the reverse order. However, a more
rigorous justification of the standard definition of time reversal is also possible, as
I have shown elsewhere, although I do not have space to discuss that justification
here13. Instead, I will simply summarize the standard requirements on an adequate
“time reversal” operator T as follows.

(ii) T is faithful in that it preserves positions and reverses velocities; TQT−1ψ =
Qψ for all ψ ∈ DQ, and TQ̇T−1φ = −Q̇φ for all φ ∈ DQ̇.

(iii) T : H → H is antiunitary in that 〈Tψ, Tφ〉 = 〈ψ, φ〉∗, for all ψ, φ ∈ H.
(iv) T is an involution in that T 2 = cI for some c ∈ Cunit. In other words, T is

a ‘reversal,’ in that applying it twice brings us back to where we started (up
to an arbitrary phase factor).

A system is said to be time reversal invariant if there exists a bijection T : H → H
satisfying T -reversal invariance (i), in addition to the adequacy conditions (ii)-(iv).

With this characterization of the meaning of time reversal invariance in place,
we may now turn to our central result.

13In particular, we will show in the course of proving the T -theorem that, given our assumptions
of Galilei invariance and that Q is a CSCO, Q and µQ̇ satisfy the canonical commutation relation.
The argument development in my “Three Myths about Time Reversal in Quantum Mechanics”
may then be used to argue that time reversal has the effects Q 7→ Q and Q̇ 7→ −Q̇, as it is
standardly viewed. Note that this is not the case on the “non-standard” view of time reversal
discussed by Albert (2000, p.11), Callender (2000, §V), and Maudlin (2007, §4.2). Advocates of
the non-standard view may substitute their preferred name for what I am calling “time reversal”;
for example, Callender calls it “Wigner time reversal.”

http://www.pitt.edu/~bwr6/research/RobertsB_TimeReversal.pdf
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Theorem (T Theorem). Suppose (H,∆ 7→ E∆, t 7→ Ut) is Galilei invariant, and
that the self-adjoint operator Q associated with ∆ 7→ E∆ forms a complete set of
commuting observables. Then there exists a bijection T : H → H such that the
following hold.

(i) (T -reversal invariance) TUtT−1 = U−t;
(ii) (faithfulness) TQT−1 = Q and TQ̇T−1 = −Q̇;

(iii) (antiunitarity) T is antiunitary;
(iv) (involution) T 2 = cI for some c ∈ Cunit;

Moreover, this T is unique up to an arbitrary constant.

The force of the result is that in Galilei invariant quantum theory, if all
measurable properties are derivable from position, then time reversal invariance
is guaranteed. Equivalently, if one believes that there is a preferred direction of
time the level of fundamental quantum interactions, and hence that time reversal
invariance fails, then there must be measurable properties that are not functions of
the spatial position observable Q.

4. Discussion of the Proof

At first glance, the T Theorem may seem mysterious. How is the connection
established between a claim about which measurable properties are available, and
a claim about time reversal invariance? In this section, I would like to discuss the
central factors that establish this connection.

In the next subsections, I will briefly comment on how some T -violating
systems can be prohibited through the requirement of Galilei invariance premise, and
then how more can be prohibited by the requirement that Q forms a complete set of
commuting observables. I will then sketch an overview of the argument underpinning
the T Theorem; a complete statement of the proof is found in the Appendix.

4.1. The significance of Galilei invariance. Without Galilei invariance, nothing
prevents the existence of a Hamiltonian of the form,

H = Q̇.

With this Hamiltonian, T -reversal invariance will always fail if T satisfies the ade-
quacy conditions set out above. In particular, a time reversal operator T satisfying
the faithfulness condition TQ̇T−1 = −Q̇ cannot be such that THT−1 = H, so long
as H = Q̇. As we noted in the previous section, the failure of THT−1 = H is
equivalent to the failure of time reversal invariance TUtT−1 = U−t.

However, note that invariance under Galilei boosts also fails when H = Q̇.
To verify, recall our definition Q̇ := i[H,Q] from the first section. Substituting
H = Q̇ then allows one to write,

(2) Q̇ = i[Q̇, Q].
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Given this equation, there cannot exist a group Rb that “boosts velocity while fixing
position,” in that RbQ̇R

−1
b = Q̇+b and RbQR

−1
b = Q. This can be seen immediately

by surrounding both sides of this equation with Rb and R−1
b , and noticing that this

fixes the operator on the right hand side but not on the left14. Such a group thus
cannot exist here, because it would contradict Equation (2).

The important point now is that if we require Galilei invariance of our quan-
tum systems, then the Hamiltonian H = Q̇ is not allowed. We will of course need
a more general argument than this. However, the example gives an idea of how
Galilei invariance prohibits some of the Hamiltonians for which time reversal invari-
ance fails.

4.2. The significance of Q forming a CSCO. Let S be a set of commuting self-
adjoint operators that completely describes the measurable properties of a quantum
system, and let one of those operators be Q. If Q did not form a complete set
of commuting observables, then there could be another observable σ in S that is
not a function of Q. Suppose such an operator σ changes sign under time reversal
TσT−1 = −σ (as for example the “intrinsic angular momentum” or “spin” observ-
able does). This is possible independently of how T transforms Q, because σ is by
assumption not a function of Q.

This operator σ can now enter into a Hamiltonian in a way that violates time
reversal invariance. Consider the Hamiltonian,

H =
µ

2
Q̇2 + σ.

Then time reversal invariance fails, since THT−1 = (µ/2)Q̇2 − σ 6= H. This illus-
trates how self-adjoint operators that commute with Q, but are not functions of Q,
can lead to violations of T -reversal invariance15. Requiring that Q be a complete
set of commuting observables prohibits the existence of this example.

These examples are not intended to provide a general result, but only to give
some insight into how the premises of the T Theorem are relevant. To develop an
idea of how the general result is obtained, let us now turn the proof itself.

4.3. Overview of the proof. The strategy of the T Theorem is to first establish
how its two premises, that Galilei invariance holds, and that Q is a complete set of
commuting observables, turn out to severely restrict the form that the Hamiltonian
H can take. In fact, these premises imply that H can only take the form,

H =
µ

2
Q̇2 + v(Q),

14The explicit calculation: Rbi[Q̇,Q]R−1
b = i[RbQ̇R

−1
b , Q] = i[Q̇+ bI,Q] = i[Q̇,Q], so the right

hand side is fixed. On the other hand, RbQ̇R
−1
b = Q̇+ bI, so the left hand side is not.

15Indeed, suppose we assume not only that σ commutes with Q, but also that σ is unaffected
by spatial translations (Sa) or velocity boosts (Rb): SaσS

−1
a = RbσR

−1
b = σ. Then the example

seems to be perfectly compatible with Galilei invariance, in spite of failing to be time reversal
invariant.
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where µ is a non-zero real number, and v(Q) is a function of Q alone. This Hamil-
tonian is in effect the “standard” one, which is the sum of a kinetic energy term
µ
2
Q̇2 and a potential function v(Q). Having shown that H must be of this form, the

proof of the T theorem then proceeds to choose T to be the usual time reversal op-
erator found in textbooks on this topic, and show that it uniqely satisfies conditions
(i)-(iv).

The first step of the proof, which restricts the form of the Hamiltonian H,
is a slight adaptation of a lemma due to Jauch (1968, §13-4). Our statement of the
lemma is not as strong as Jauch’s original claim, but is sufficient for our purposes16.

Lemma (Jauch). Suppose (H,∆ 7→ E∆, t 7→ Ut) is Galilei invariant, and that the
self-adjoint operator Q associated with ∆ 7→ E∆ forms a complete set of commuting

observables. Then (H, eibQ, eiaµQ̇) is an irreducible unitary representation of the
canonical commutation relations in Weyl form, and Ut = eitH , where

Hψ =
µ

2
Q̇2ψ + v(Q)ψ

for some non-zero real number µ, some Borel function v, and for all ψ in the domain
of H.

A proof of Jauch’s lemma is given in the Appendix. The central result of
interest is the restricted form of the Hamiltonian mentioned before, as the sum of a
kinetic energy term µ

2
Q̇2 and a potential term v(Q) in position alone.

For readers not familiar with the Weyl form of the canonical commutation
relation, it is here the statement that

(3) eiaµQ̇eibQ = eiabeibQeiaµQ̇.

This equation is appealing to mathematicians, in dealing only with bounded oper-
ators. It also turns out to imply17 the “standard” commutation relation,

(4) [Q, µQ̇]ψ = iψ.

The main work in proving the lemma goes into showing that these commutation
relations follow from our assumptions. This requires a bit of representation theory,
which is difficult to describe in simple terms; the result is given in full rigor in
the proof at the end of this paper. However, once Equation (4) is in hand, it is
instructive to see how the restricted form of the Hamiltonian H falls out almost
immediately. Here is how that remaining part runs.

16Jauch over-optimistically sought to prove that a related result guarantees minimal electro-
magnetic coupling. This part of the argument has been criticized by Kraus (1980) and by Brown
and Holland (1999), and is unnecessary in the present context.

17This follows quickly from the fact that Qψ = lim
α→0

1

iα
(eiaQ − I)ψ given any ψ for which the

limit exists, and similarly for Q̇ψ; see (Jauch 1968, p.199).
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First, as a direct consequence of Equation (4), one may notice18 that

(5) i[
µ

2
Q̇2, Q]ψ = Q̇ψ.

This commutation relation differs only in the first term from the one appearing in
the definition of Q̇:

(6) i[H,Q]ψ = Q̇ψ.

So, subtracting Equation (5) from Equation (6), and using the linearity of the
commutator bracket, we find that

(7) [H − µ

2
Q̇2, Q]ψ = 0.

Now comes the real significance of the assumption that Q forms a complete set of
commuting observables. By our definition, this means that whenever an operator
commutes with Q, that operator is in fact function of Q (Definition 2). Precisely
because of this fact, Equation (7) implies that H − (µ/2)Q̇2 is a function of Q. Call
that function v(Q). Then we have our result: H − (µ/2)Q̇2 = v(Q), or

H =
µ

2
Q̇2 + v(Q).

On the other hand, if Q did not form a complete commuting set, then the function v
might include some self-adjoint operators other than Q, and time reversal invariance
would not be guaranteed.

Completing the proof of the T Theorem is now a simple matter. Roughly
speaking, we may choose the “standard” time reversal operator T with respect to the
representation of the commutation relations we constructed withQ and µQ̇. Namely,
we take T to be an antiunitary conjugation operator19 K in this representation.
This operator conjugation operator satisfies the adequacy conditions (ii)-(iv), and
in particular reverses the sign of Q̇, while acting identically on Q. The former
implies that TQ̇2T−1 = (TQ̇T−1)2 = (−Q̇)2 = Q̇2, while the latter implies that
Tv(Q)T−1 = v(Q). It follows that THT−1 = H, which establishes time reversal
invariance.

I hope this helps the reader have some (admittedly rough) idea as to why
the T Theorem holds. The proof may be found in full detail in the Appendix.

18This is less mysterious if one has in mind that whenever [Q,P ] = i, the commutator bracket
behaves like a derivative operator. For example, if Pn = P ◦ P ◦ · · · ◦ P (n times), then one can
check that [Q,Pn] = i(n − 1)P (n−1). Thus when (1/2)P 2, one has that [Q, (1/2)P 2] = iP . Now,

suppose we have that [Q,µQ̇] = i as in Equation (4). Then [Q, (1/2)(µQ̇)2] = i(µQ̇). Multiplying

both sides by −i/µ, we now have the stated result that i[(µ/2)Q̇2, Q] = Q̇.
19Messiah (1999, §XV.5) provides an overview of conjugation operators in a representation.
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5. Conclusion

Those whose basic ontological commitments include only position have a new
commitment to contend with: if the ontology of Galilean quantum theory is derived
entirely from the position observable, then time reversal invariance is guaranteed.
As it turns out, this kind of result is not unique to quantum theory: one can prove
a related theorem in classical Hamiltonian mechanics (Roberts 2011). This sug-
gests a fairly robust sense in which a minimal ontology prohibits time asymmetric
phenomena. The result may also raise new issues in the interpretation of quantum
mechanics. For example, one may wonder how the de Broglie-Bohm interpretation
of quantum mechanics can account for time asymmetric phenomena, given that this
interpretation takes spatial position to be the only measurable property that a par-
ticle can have. It seems that if time asymmetric phenomena are to be accounted for,
then this interpretation cannot identify “position” in its ontology with the spectrum
of the position observable Q. Otherwise, to say that all measurable properties are
functions of position would prohibit the possibility of time asymmetry.

I do not wish to take a position on the interpretation of quantum mechan-
ics in light of this result. What I would like to commit to is the claim that in
Galilei invariant quantum theory, it is no accident that time asymmetric systems
admit measurable properties that are not a function of position. Such properties
are absolutely essential to the phenomenon of time asymmetry.

6. Appendix

Lemma (Jauch). Suppose (H,∆ 7→ E∆, t 7→ Ut) is Galilei invariant, and that the
self-adjoint operator Q associated with ∆ 7→ E∆ forms a complete set of commuting

observables. Then (H, eibQ, eiaµQ̇) is an irreducible unitary representation of the
canonical commutation relations in Weyl form, and Ut = eitH , where

Hψ =
µ

2
Q̇2ψ + v(Q)ψ

for some non-zero real number µ, some Borel function v, and for all ψ in the domain
of H.

Proof. Define Q and Q̇ as above, and recall our definition of Galilei invariance:

SaQS
−1
a = Q+ aI SaQ̇S

−1
a = Q̇

RbQR
−1
b = Q RbQ̇R

−1
b = Q̇+ bI

where we note that the unbounded operators Q and Q̇ act only on their respective
domains of definition in H. The essential observation of this proof is that Galilei
invariance implies the existence of three representations of the Weyl form of the
canonical commutation relations:

(i) Sae
ibQS∗a = eiabeibQ

(ii) Rbe
iaQ̇R∗b = eiabeiaQ̇
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(iii) SaR
∗
bS
∗
a = eiµabR∗b

where µ is a fixed non-zero real number. Representations (i) and (ii) follow imme-
diately from our expression of Galilei invariance; we simply exponentiate Q and Q̇,
and recognize that the unitary operators acting on them may be pulled up into the
exponential.

Representation (iii) is somewhat more subtle, being constructed from the fact
that the unitary representations Sa and Rb are each defined to be a representation
of R, and thus together provide a projective representation of the real plane R×R.
In particular, it is part of the definition and Sa and Rb that

(8) SaSb = Sa+b, R∗aR
∗
b = R∗a+b.

Hence, the mapping (a, b) 7→ (Sa, R
∗
b) is a homomorphism from the vectors v = (a, b)

of R×R into the pairs of unitary operators. This means that the group (Sa, R
∗
b) is

a projective representation of the plane (R×R,+) under vector addition. Since the
latter group is abelian and hence satisfies (a, 0) + (0, b) − (a, 0) = (0, b), it follows
that the same group properties will hold in the projective representation up to a
phase factor eif(a,b):

SaR
∗
bS
∗
a = eif(a,b)R∗b

for some f(a, b) ∈ R. Moreover, it is known that the representation may always be
chosen such that f(a, b) = µab (Blank et al. 2008, §10 Problem 15). Thus we have
the representation expressed in (iii): SaR

∗
bS
∗
a = eiµabR∗b .

With a bit of work, (i), (ii) and (iii) can now be shown to imply that Q and
µQ̇ satisfy the canonical commutation relation. Showing this involves three steps.

First, we note that the representation expressed in (ii) implies that eiµabR∗b =

eiaµQ̇R∗be
−iaµQ̇. Plugging this result into (iii), we find that eiaµQ̇R∗be

−iaµQ̇ = SaR
∗
bS
∗
a,

and hence that

(9) R∗b/µ(S∗ae
iaµQ̇) = (S∗ae

iaµQ̇)R∗b/µ.

where we have substituted b/µ in for b, recognizing that the equation holds for any
real value of b.

Keeping Equation (9) in mind, we now proceed to the second step, which is
to show that Rb/µ is a constant multiple of eiaQ. This draws on the fact that repre-
sentation (i) contains a term eiaQ for which Q forms a complete set of commuting
observables, which implies that the representation is irreducible (Blank et al. 2008,
Ex. 6.7.2e). We apply the irreducibility of representation (i) as follows. Rewrite
(iii) as

SaRb/µS
∗
a = e−iabRb/µ.

We know from (i) that Sae
ibQS∗a = eiabeibQ. So, multiplying the left sides of these

two equations as well as the right sides, we see that

(SaRb/µS
∗
a)(Sae

ibQS∗a) = e−iabeiab(Rb/µe
ibQ),
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and so since S∗aSa = e−iabeiab = I, we have that

Sa(Rb/µe
ibQ)S∗a = (Rb/µe

ibQ)

This says that the operator Rb/µe
ibQ commutes with Sa. But the same operator also

commutes with eibQ, since

Rb/µe
ibQR∗b/µ = eib(Rb/µQR

∗
b/µ

) = eibQ.

Schur’s lemma (Blank et al. 2008, Thm. 6.7.1) establishes that multiples of the
identity are the only operators that commute with both terms in an irreducible
representation. So, since Rb/µe

ibQ commutes with both Sa and eiaQ, we may write
Rb/µe

ibQ = cI, which implies that

R∗b/µ =
1

c
eibQ

as claimed.
The third step now substitutes this R∗b/µ into Equation (9), to get that

1

c
eibQ(S∗ae

iaµQ̇) = (S∗ae
iaµQ̇)

1

c
eibQ,

or equivalently,

eiaµQ̇eiaQ = (Sae
iaQS∗a)e

iaµQ̇.

Applying (i) to the right-hand side of this equation, we finally see that eiaµQ̇eiaQ =

eiabeibQeiaµQ̇, which is the desired representation of the commutation relations in
Weyl form. It is irreducible for the same reason that representation (i) is, namely
because Q forms a complete set of commuting observables (Blank et al. 2008, Ex.
6.7.2e).

It is now straightforward to determine the form of Ut in this representa-
tion. First, we note that Ut = eitH for a unique self-adjoint H by Stone’s theorem.
Moreover, the canonical commutation relation in Weyl form implies the “standard”
commutation relation [Q, µQ̇]ψ = iψ, for all ψ in the common dense domain of
Q and Q̇. This in turn implies that [Q, (1/2)(µQ̇)2] = i(µQ̇), which we multiply
through by −i/µ to find that

i[(µ/2)Q̇2, Q] = Q̇.

But by definition, Q̇ = i[H,Q], where H is the self-adjoint generator of Ut. We may
thus equate i[(µ/2)Q̇2, Q] and i[H,Q], which implies that

[(H − µ

2
Q̇2), Q] = 0.

Since Q forms a complete set of commuting observables, all operators that commute
with Q are Borel functions of it. So the fact that H − 1

2
µQ̇2 commutes with Q
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implies that it is in fact a function of Q. Call that function v(Q). Then we have the
desired result,

H =
µ

2
Q̇2 + v(Q),

which proves the lemma. �

Theorem (T Theorem). Suppose (H,∆ 7→ E∆, t 7→ Ut) is Galilei invariant, and
that the self-adjoint operator Q associated with ∆ 7→ E∆ forms a complete set of
commuting observables. Then there exists a bijection T : H → H such that the
following hold.

(i) (T -reversal invariance) TUtT−1 = U−t;
(ii) (faithfulness) TQT−1 = Q and TQ̇T−1 = −Q̇;

(iii) (antiunitarity) T is antiunitary;
(iv) (involution) T 2 = cI for some c ∈ Cunit;

Moreover, this T is unique up to an arbitrary constant.

Proof. Let (H, eiaµQ̇, eibQ) be the representation guaranteed by Jauch’s lemma. We
begin by constructing a distinct (Schrödinger) representation, and define a “conju-
gation operator” KQ with respect to Q in that representation. This KQ can then
be used to construct an operator T satisfying conditions (i)-(iv).

Following a well-known procedure (Jauch 1968, §12.3), the operator Q can
be used to construct a Hilbert space HQ of square-integrable functions in which
Q is the multiplication operator: Qψ(x) = xψ(x). In this representation, define
the operator P on the differentiable functions in HQ by Pψ(x) := i(d/dx)ψ(x).
The operators Q and P together form an irreducible unitary representation of the
canonical commutation relations, called the Schrödinger representation. In Weyl
form, we may denote this representation, (H, eiaP , eibQ).

Next, we define the operator KQ : HQ → HQ to be the operator that
takes each square integrable function in the Schrödinger representation to its com-
plex conjugate: KQψ(x) = ψ∗(x). We follow Messiah (1999, §XV.5) in noting
three relevant properties of KQ. First, it is antiunitary, since 〈KQψ(x), KQφ(x)〉 =
〈ψ∗(x), φ∗(x)〉 = 〈ψ(x), φ(x)〉∗. Second, it is an involution, sinceK2

Qψ(x) = ψ∗∗(x) =
ψ(x). Finally, since Q is pure real and P is pure imaginary in this representation,
KQ has the property that KQQKQ = Q and KQPKQ = −P .

We will use this KQ to construct our desired time reversal operator. The
Stone von Neumann theorem (Blank et al. 2008, Theorem 8.2.4) guarantees that
the Jauch representation of the Weyl commutation relations is unitarily equivalent
to the Schrödinger representation. In particular, there must exist a unitary bijection
from the Schrödinger Hilbert space to the Jauch Hilbert space W : H → HQ such

that WQW ∗ = Q and WPW ∗ = µQ̇. We now define our time reversal operator to
be the image of KQ under this mapping:

T := WKQW
∗.
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One may quickly verify that this T inherits properties (ii)-(iv) from KQ. In partic-
ular, it is an involution:

T 2 = (WKQW
∗)(WKQW

∗) = WK2
QW

∗ = I.

It is the composition of two unitaries W and W ∗ with one antiunitary KQ and is

therefore antiunitary. And, it has the desired effect on Q and µQ̇:

TQT−1 = (WKQW
∗)(WQW ∗)(WKQW

∗)

= W (KQQKQ)W ∗ = WQW ∗ = Q

TµQ̇T−1 = (WKQW
∗)(WPW ∗)(WKQW

∗)

= W (KQPKQ)W ∗ = −(WPW ∗) = −µQ̇.

The remaining point to prove is (i). Note that since H = (µ/2)Q̇2 + v(Q)
by Jauch’s lemma, and since µQ̇ and H are both self-adjoint, we know that v(Q) is
self-adjoint as well. So, applying T to both sides of H, we get

(10) THT−1 =
µ

2
(TQ̇T−1)2 + Tv(Q)T−1 =

µ

2
Q̇2 + Tv(Q)T−1,

where by the functional calculus, v(Q) =
∫
R v(λ)dEλ. But v(Q) is known to be

self-adjoint. The v(λ) are thus real, and

Tv(Q)T−1 =

∫
R
v(λ)dTEλT

−1 =

∫
R
v(λ)dEλ = v(Q).

From this, together with (10), it follows that THT−1 = H, which establishes time
reversal invariance.

We finally show that this T is unique up to a constant. Suppose that both T
and T̃ satisfy conditions (i)-(iv). In particular, suppose that they are both antilinear
involutions satisfying

TQT−1 = Q T̃QT̃−1 = Q

TQ̇T−1 = −Q̇ T̃ Q̇T̃−1 = −Q̇.

Then T T̃ is a linear operator that commutes with both Q and µQ̇, since

(T T̃ )Q(T̃−1T−1) = TQT−1 = Q

(T T̃ )µQ̇(T̃−1T−1) = T (−µQ̇)T−1 = µQ̇.

But the representation (Q, µQ̇) provided by Jauch’s lemma is irreducible. By Schur’s
lemma, this implies that the only linear operators commuting with both Q and µQ̇
are constant multiples of the identity. So, for some k ∈ C,

kI = T T̃ = T T̃−1,

where we have used the fact that T̃ is an involution in the second equality. Therefore,
T = kT̃ as claimed. �
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