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Abstract. How should we characterise the observable aspects of physics? This

paper makes a start on this question by analysing the concept of an observable

in quantum mechanics, arguing that philosophers and physicists should jettison a

standard dogma: that observables must be represented by self-adjoint Hermitian op-

erators. Four classes of non-standard observables are identified: normal operators,

symmetric operators, real-spectrum operators, and none of these. The philosophical

and physical implications of each are explored.

1. Introduction

There is a disconnect between between standard accounts of mathematical

representation and standard accounts of physical observables. From the perspective

of the philosophy of representation, we enjoy extraordinary freedom in choosing what

mathematical objects can represent things. In contrast, most well-developed accounts

of observables insist on restricting to a tiny corner of mathematics involving real

numbers. Nowhere is this dogma more stark than in quantum mechanics, where
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observables are generally associated with the real-number eigenvalues of self-adjoint

Hermitian operators. My aim in this paper is to show how this restriction on quantum

observables can be given up, and to identify the important new classes of observables

that arise as a consequence.

The restriction to real numbers is sometimes motivated by appeal to an old

worry about complex numbers, which should be immediately dispelled. Consider a

bead that is constrained to move on a ring. We could represent its position using pairs

(r, θ) of real numbers, or using the complex unit circle eiθ ∈ C with θ ∈ [0, 2π). Of

course, there was oonce considerable skepticism about the status of complex numbers,

which led to the use of the word ‘imaginary’ in the second case.1 But such misgivings

should not trouble us today: the complex numbers can be constructed axiomatically

in just the same sense as the real numbers. So, it is difficult to see a sense in which the

two representations are not equally adequate. Indeed, viewing the real unit and the

complex unit circles embedded in C2, we find the two are related by a rigid rotation,

shown in Figure 1.

Nevertheless, standard discussion of quantum theory almost always insist that

observables must involve real numbers and self-adjoint operators, as in Sakurai’s

classic textbook: “[w]e expect on physical grounds that an observable has real eigen-

values.... That is why we talk about Hermitian observables in quantum mechanics”

(Sakurai 1994, §1.3). Similarly, Griffiths writes, “the expectation value of an ob-

servable quantity has got to be a real number (after all, it corresponds to actual

measurements in the laboratory, using rulers and clocks and meters)” (Griffiths 1995,

§3.3). And Weinbserg writes, “[w]e can now see why it is important for all operators

representing observable quantities to be Hermitian. ... Hermitian operators have real

1Cardano derived complex solutions to the equation x2 − 10x + 30 = 0 in his 1545 Ars Magna,
but concluded, “So progresses arithmetic subtlety the end of which, as is said, is as refined as it
is useless” (Cardano 1968, §37). Over 200 years later Euler took a similar view: “they are usually
called imaginary quantities, because they exist merely in the imagination”, although he argued
that “nothing prevents us from making use of these imaginary numbers, and employing them in
calculation” (Euler 1822, p.43).
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Figure 1. Real and complex descriptions of particle position related
by a rotation in C2.

expectation values” (Weinberg 2013, p.24). Even when one encounters quantum field

operators that are not self-adjoint, such as the free Klein-Gordon field, this is quickly

explained away as equivalent to a commuting pair of operators that are self-adjoint.

The philosophy of quantum mechanics has largely followed the textbooks. For

example, Hughes writes that self-adjoint operators “represent physical quantities,

and their eigenvalues will be the possible values of those quantities; clearly it befits a

measurable quantity that its possible values should be real” (Hughes 1992, p.33). Sim-

ilarly, Albert’s book on the philosophy of quantum mechanics sets out what he calls

‘principle (B)’, that measurable properties are to be represented by linear operators,

and then states, “it’s clear from principle (B) (since, of course, the values of physically

measurable quantities are always real numbers) that the operators associated with

measurable properties must necessarily be Hermitian operators” (Albert 1992, p.40).

Similar remarks are found in many other places in physics and philosophy.

The thesis of this paper is that this orthodoxy should be given up: there

are many physically and philosophically interesting ways to have a non-self-adjoint

observable. In particular, the self-adjointness property may be broken down into three

‘component’ properties: being normal, being symmetric, and having a real spectrum,

each defined precisely below. Observables can be represented by non-self-adjoint
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operators that have any one of these properties while giving up the other two, or that

give up all three.

The plan of the paper is as follows. The second section will introduce the

dogma of self-adjoint operators, and then propose a way to classify the possible non-

self-adjoint observables. The third section considers non-self-adjoint operators that

are normal. Here I argue that existing proposals in favour of normal operators must be

restricted using the concept of what I call a ‘sharp set’. The fourth section explores

the physics of non-normal operators. First I consider non-normal operators that

are symmetric but do not have a real spectrum; these turn out to allow for the

introduction of ‘time observables’. Next I consider those that have a real spectrum but

are not symmetric; these give rise to PT -symmetric observables. Finally, I consider

operators that do not have any of these three properties: they are not normal, do not

have a real spectrum, and are not symmetric. The fifth section is the conclusion.

2. Self-adjointness disassembled

2.1. The history of self-adjointness. How did we come to require self-adjoint

observables? It began when Heisenberg arrived in Göttingen in June of 1925 with

a draft of his celebrated paper on non-commutative mechanics. Max Born famously

recognised, upon seeing this draft, that the theory could be represented in terms of

matrices. Soon, Born and Jordan (1925) had formulated the observables of quantum

mechanics as self-adjoint or ‘Hermitian’ operators.2 In a letter to Jordan in September

of that year, Heisenberg wrote, “Now the learned Göttingen mathematicians talk so

much about Hermitian matrices, but I do not even know what a matrix is.3.” As

2Charmingly, their collaboration apparently began by chance, on a train to Hannover soon after Born
met Heisenberg in 1925. Born recalls confiding to a colleague on the train that he had formulated
Heisenberg’s equations of motion using matrix theory, but was stuck trying to derive the energy from
this. Jordan, who was sitting opposite and overheard the conversation, said, “Professor, I know about
matrices, can I help you?” Born suggested they give it a try, and a historic collaboration ensued
(from an interview with Born by Ewald 1960).
3Quoted from Jammer (1996, p.207) The impressive list of ‘learned mathematicians’ at Göttingen
when Heisenberg arrived in 1925 includes Paul Bernays, Max Born, Richard Courant, David Hilbert,
Pascual Jordan, Emmy Noether, Lothar Nordheim, B.L. Van der Waerden, and Hermann Weyl.
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Heisenberg’s letter reveals, matrices were far from common tools among physicists

at the time, let alone Hermitian ones, despite the latter having been introduced by

Hermite (1855) seventy years earlier.

Physically significant non-Hermitian matrices appeared the following May,

when London (1926) derived the non-Hermitian raising and lowering operators for

the harmonic oscillator. By December of 1926, Jordan (1927a) was actually toy-

ing with the idea of treating non-Hermitian operators as observables. Remarkably,

Jordan’s formalism allowed one to assign complex expectation values to such non-

Hermitian operators, as Duncan and Janssen (2013, §2.4) have shown. But in April

of 1927, Hilbert, von Neumann and Nordheim had identified self-adjoint operators as

appropriate for ensuring that the values of energy are always positive numbers.4 By

the time Jordan (1927b) submitted a follow-up paper in June, he had given up on

the idea of non-Hermitian observables idea in favour of the new dogma.5

Like many aspects of quantum theory as we know it, self-adjointness was con-

solidated at the September 1927 Solvay conference, where Born and Heisenberg’s

report argued that, “the analogy with classical [Fourier] theory leads further to al-

lowing as representatives of real quantities only matrices that are Hermitian” (Born

and Heisenberg 2009, p.327). Their idea is a familiar one: it is often convenient to

use a complex unit eiθ = cos θ + i sin θ to represent a harmonic phenomenon like a

classical wave, on the understanding that the amplitude and position of a physical

wavecrest is described by just the real part, Re(eiθ) = cos θ.

The dogma soon became encoded in the influential textbooks of the field,

including Dirac’s famous Principles of Quantum Mechanics. In the 1930 first edition,

Dirac actually used the term ‘observables’ to refer to all linear operators. But he

quickly revised this language by the second edition of 1935, writing, “it is preferable

to restrict the word ‘observable’ to refer to real functions of dynamical variables

4(Hilbert et al. 1928). As Janssen and Duncan point out, this article was submitted in April 1927,
but “for whatever reason” not published until 1928 (Duncan and Janssen 2013, §3, p.221).
5See Duncan and Janssen (2009, 2013) for a fascinating exposition of this episode in the development
of quantum mechanics.
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and to introduce a corresponding restriction on the linear operators that represent

observables” (Dirac 1935, p.29). The ‘corresponding restriction’ was that observables

be self-adjoint (for a more detailed discussion of Dirac’s view on observables, see

Roberts 2017).

Dirac’s dictum has continued to be a pervasive dogma, with an emphasis on

the fact that they have a real spectrum, as indicated in the textbook comments of

the previous section. I will argue that it should be abandoned. To be precise about

what I’m advocating, let me begin by setting out a few mathematical definitions and

prerequisites that these discussions are not always sensitive to.

2.2. Mathematical prerequisites. This discussion will deal entirely with Hilbert

spaces over the complex field that admit a countable (though possibly infinite) basis.

Some of the Hilbert space operators we discuss will be unbounded, which implies that

their domains6 are not equal to the entire Hilbert space. When that is the case, I will

still presume that they are at least densely-defined and closed.7 I will write A∗ to

denote the adjoint8 (or ‘conjugate transpose’) of A. An operator A is called normal

if it commutes with its adjoint, AA∗ = A∗A. It is symmetric if it has the property

that Aψ = A∗ψ for all ψ in the common domain of A and A∗. It is self-adjoint if it

is both symmetric and has the property that the A and A∗ have the same domain.9

The term ‘Hermitian’ is sometimes used for one or both of these last two properties;

this is unambiguous if A is bounded, in which case an operator is symmetric if and

only if it is self-adjoint. But since this equivalence fails for unbounded operators, I

will try to reduce confusion by avoiding the term ‘Hermitian’.

6The domain DA of an operator A on a Hilbert space H is the set of vectors ψ such that Aψ ∈ H.
7An operator A is densely-defined iff its domain DA is dense; this ensures that the operator is
minimally well-defined on ‘most’ vector states. It is closed iff for any sequence {φn} ⊆ DA such
that φn → φ and Aφn → ψ, it follows that φ ∈ DA and ψ = Aφ. This ensures that the spectrum is
allowed to be non-trivial; if a densely defined operator is not closed then its spectrum is Sp(A) = C.
8The adjoint of A is defined by A∗ψ := ψ∗, where 〈ψ∗, φ〉 = 〈ψ,Aφ〉 for all φ in the domain of A.
The domain of A∗ consists of those vectors ψ for which such an element ψ∗ exists.
9Every symmetric operator satisfies DA ⊆ DA∗ . So, the additional condition that DA = DA∗ is
equivalent to the statement that DA∗ ⊆ DA. See Blank et al. (2008, §4).
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The spectrum of a linear operator A is the set of numbers λ ∈ C such that the

operator (A − λI) does not admit an inverse. The eigenvalues of A are the subset

of the spectrum consisting of elements λ that satisfy Aψ = λψ for some ψ. We say

that an operator has a discrete or pure point spectrum when its spectrum consists

entirely of eigenvalues. All operators on a finite-dimensional Hilbert space have a

discrete spectrum, but in the infinite-dimensional case the spectrum may contain

elements that are not eigenvalues. Finally, an important fact for our discussion is

that in general, if A is self-adjoint, then its spectrum (and thus its set of eigenvalues)

is entirely composed of real numbers.

How do normal operators, symmetric operators, and operators with a real

spectrum underpin the property of self-adjointness? One answer is given by following.

Fact. A closed, densely-defined linear operator A is self-adjoint if it satisfies any two

of the following properties.

(1) Normal. AA∗ = A∗A.

(2) Symmetric. Aψ = A∗ψ for all ψ ∈ DA.

(3) Real spectrum. Sp(A) ⊆ R.

Conversely, every self-adjoint operator satisfies all three of the properties above.

This conveniently summarises several standard results.10 Self-adjoint operators

are widely known to satisfy all three of the properties above. However, no single one

of them is in general sufficient to guarantee that A is self-adjoint: A normal operator

can fail to be symmetric; a unitary operator is an example. A symmetric operator

that is unbounded can fail to be normal; the so-called ‘maximal symmetric’ operators

(operators with no self-adjoint extension) are an example. And an operator with a

real spectrum can fail to be symmetric. We will discuss more concrete examples of

10A normal operator is symmetric if and only if it is self-adjoint (Blank et al. 2008, Thm. 4.3.1); a
symmetric operator has a real spectrum if and only if it is self-adjoint (Reed and Simon 1975, p.136,
Thm. X.1(3)); and a normal operator has a real spectrum if and only if it is self-adjoint (this follows
immediately from the spectral theorem for normal operators; see Rudin 1991, Thm. 12.26).
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such operators over the course of this paper. But to keep the facts in one’s head, it

is helpful to refer to the Venn diagram of Figure 2.

Self
Adjoint

SymmetricNormal

Real
Spectrum

Figure 2. Venn diagram of normal, symmetric, and real-spectrum
operators, any two of which imply self-adjointness. For bounded oper-
ators, being symmetric is equivalent to being self-adjoint, and so the
right ‘petal’ vanishes.

Since many find the last property particularly surprising, that a non-self-

adjoint operator may have a real spectrum, let me give a concrete example. A

particularly simple one is the 2× 2 matrix,

A =

1 1

0 2

 .

It is obviously not symmetric (and thus not self-adjoint), since the conjugate-transpose

is given by A∗ =
(

1 0
1 2

)
6= A. But one can easily check that it has exactly two eigenval-

ues, both of which are real: λ = 1 with eigenvector
(

1
0

)
, and λ = 2 with eigenvector(

1
1

)
. As expected, this operator fails to be normal, as one can verify by checking

AA∗ 6= A∗A. It also has the property that its eigenvectors span the Hilbert space,

but are not orthogonal.

2.3. A classification of non-self-adjoint observables. This mathematical discus-

sion suggests a classification scheme for non-self-adjoint observables. A consequence

of the fact above is that all of the non-self-adjoint operators (that are closed and
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densely defined, as will be assumed throughout) fall into exactly one of the following

four categories.

(1) Normal operators that are non-symmetric and have non-real spectra;

(2) Symmetric operators that are not normal and have non-real spectra;

(3) Real-spectrum operators that are not normal and not symmetric;

(4) None of the above: operators that fail to have all three of these properties.

That is, one can allow non-self-adjoint observables to include operators from exactly

one of the three ‘petals’ in the flower of Figure 2, or none of them. Note that if one

restricts attention to bounded operators, then the symmetric petal vanishes, since for

bounded operators being symmetric is equivalent to being self-adjoint.

I will discuss each of these four classes of non-self-adjoint observables in turn.

They introduce varying degrees of conceptual difficulties, but I will identify circum-

stances in which each of them are reasonable.

3. Normal operators as observables

A simple example of a normal operator with a pure imaginary spectrum is

iQ, where Q is the position operator (for one spatial dimension) in the Schrödinger

representation. It obviously commutes with its adjoint (iQ)∗ = −iQ, and so it is

normal. Its spectrum is a line in the complex plane (namely, the pure imaginary

axis) and so it can be used to represent the position of a bead in one dimension of

space. It even satisfies a natural commutation relation: if we represent momentum by

iP , then [iQ, iP ]ψ = −[Q,P ]ψ = −iψ (working in units of ~ = 1). Another example

is the unitary operator eiQ: it also commutes with its adjoint, and has a spectrum

equal to the complex unit circle. It can be used to represent the position of a bead

on the loop depicted in Figure 1. And it too can be given a natural commutation

relation.11

11One could simply take it to be given by the canonical commutation relations in Weyl form,
eiaP eibQ = eiabeibQeiaP . Lévy-Leblond (1976) suggests an alternative expressed in terms of an-
gular momentum.
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My main argument in this section is that a normal operator can be adopted

as an observable in just the same sense that a self-adjoint operator can. Others

have suggested this as well,12 but I will try to give a systematic argument. I begin

by identifying how one can still apply the statistical rules of quantum theory to an

individual normal operator, but note that a collection of normal operator observables

must be restricted using the concept of a ‘sharp set’. I finally discuss how symmetries

and unitary evolution appear when normal operators are observables.

3.1. Interpreting observables. Reichenbach (1944, §6) reserved the term ‘observ-

able’ for things that can be directly verified using human sense organs, such as the

positions of the spectral lines produced by a light source. He preferred the term ‘phe-

nomena’ for occurrences that might be only indirectly observed, like the emission of

a photon from a Hydrogen atom, and ‘interphenomena’ for everything in between.

I prefer a simpler principle for thinking about observables in quantum theory: ob-

servables associate experimental states with symbols. This has the advantage of being

applicable at any of Reichenbach’s levels, and makes the relationship between ex-

periment and language more explicit. For example, when we say that an observable

is represented by a discrete self-adjoint operator A, we are indicating an association

between a set of experimental states, represented by the eigenstates ϕ of A, with a set

of symbols, the real-number eigenvalues of A. We typically use the latter to express

quantitative facts about a magnitude registered by a physical device.

Nothing about this practice requires the symbols to be real numbers; quanti-

tative information can be conveyed by complex numbers as well, and by many other

structures. For example, consider a Stern-Gerlach experiment, in which a fermion

may deflect up or down as it passes through a magnetic field. We typically label

the ‘deflect up’ outcome with +1 and ‘deflect down’ with −1, corresponding to the

eigenvalues of a Pauli matrix like σz :=
(

1
−1

)
. But we could just as well label these

12See especially Lévy-Leblond (1976), Penrose (2004, p.539), and Duncan and Janssen (2013, §2.4);
this latter paper shows that normal operators can be used to formalise Jordan’s early theory of
non-self-adjoint observables.
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outcomes using the pure imaginary numbers +i and −i, which are eigenvalues of the

‘anti-hermitian’ matrix iσz, illustrated in Figure 3.

Figure 3. The outcomes of a Stern-Gerlach experiment represented by ±i.

The statistics for such an experiment can be defined just as they are in ortho-

dox quantum mechanics: let A be an operator on a Hilbert space of finite dimension,

with a complex eigenvalue λ corresponding to the eigenstate ϕ. Then the transi-

tion probability from an arbitrary state ψ to ϕ is still given by the usual Born rule,

|〈ϕ, ψ〉|2. If the eigenvectors of A form a complete basis, then its expectation value

when the state ψ is prepared can still be defined by 〈ψ,Aψ〉 =
∑n

i=1 λi|〈ϕi, ψ〉|2, or

more generally by Tr(ρA) when the state is a density matrix ρ. For a normal op-

erator A, such an expectation value may be a complex number, but this still makes

good conceptual sense: a complex expectation value is just a weighted average of the

complex numbers representing these states.

3.2. Spectral resolution. To confirm that the practice I am proposing has the same

statistical interpretation as orthodox quantum theory, we make use of the spectral

theorem. This is expressed in terms of a projection valued measure (or ‘spectral’

measure) on Borel sets13, called the spectral resolution of the observable. In its state-

ment for (possibly unbounded) self-adjoint operators, it says that every self-adjoint

operator A admits a unique projection valued measure ∆ 7→ E∆ on Borel sets of the

reals such that A =
∫
R λdEλ, where a bounded operator B commutes with A if and

only if B commutes with each projection E∆ (Blank et al. 2008, Theorem 5.3.1). In

13A projection valued measure on Borel subsets of a topological field F is a map ∆ 7→ E(∆),
which associates each Borel subset ∆ of F with a projection operator E(∆), where E(F) = I and
E(
⋃
i ∆i) =

∑
iE(∆i) for any countable disjoint collection {∆1,∆2, . . . } that weakly converges. It

follows from this that E(∅) = 0, and E(∆1)E(∆2) = 0 for disjoint ∆1, ∆2.



12 Bryan W. Roberts

finite dimensions, the integral gets expressed as the sum,

A =
n∑
i

λiEi,

where each λi is a real-number eigenvalue of A, and the projections Ei satisfy
∑n

i Ei =

1, and also EiEj = 0 when i 6= j. One of the conceptually important consequences

of this theorem for quantum theory is that it allows us to view each state as defining

a probability distribution on definite experimental outcomes associated with A. For

example, in the finite-dimensional case, the spectral theorem implies there is a set

of orthogonal, unit-norm eigenvectors ϕ1, ϕ2, . . . , ϕn of A that form a basis for the

Hilbert space. That fact is what allowed Born to view a vector ψ as defining a

probability distribution pψ(ϕi) := |〈ϕi, ψ〉|2, since it implies
∑n

i pψ(ϕi) = 1. Messiah

thus writes in his classic textbook that,

“[a]ll... operators do not possess a complete, orthonormal set of eigen-

functions. However, the Hermitian operators capable of representing

physical quantities possess such a set. For this reason we give the name

‘observable’ to such operators” (Messiah 1999, §V.9).

But in fact, by Messiah’s reasoning, we should give the name ‘observable’

to normal operators, too! The more general form of the spectral theorem turns

out to hold for normal operators, so that all normal operators possess a ‘complete,

orthonormal set of eigenfunctions’ of the kind Messiah demands.

It is straightforward to see how, if the spectral theorem holds for self-adjoint

operators, then it holds for normal operators as well. Every linear operator A (normal

or not) can be written in the form A = B + iC, with B and C self-adjoint, by

defining B := A∗+A
2

and C := i(A∗−A)
2

. Using these definitions, we find that in

general, AA∗ − A∗A = 2i(CB − BC). This immediately implies that A is normal

(AA∗ = A∗A) if and only if BC = CB. The operators B and C can thus be viewed

as simultaneously measurable, and we can derive a spectral resolution for the normal



Observables, Disassembled 13

operator A by applying the ordinary spectral theorem to B and C individually.14 In

finite dimensions, this gets expressed as,

A =
n∑
i

ζiGi,

where each ζi is a complex-number eigenvalue of A, and where the properties of the

projections Gi carry over exactly as in the self-adjoint case.

This means that, just as with self-adjoint operators, every state defines a prob-

ability distribution on the experimental outcomes associated with a normal operator

A. And just as with self-adjoint operators, a normal operator A in finite dimensions

has a set of orthonormal eigenvectors that form a basis for the Hilbert space, with

pψ(ϕi) := |〈ϕi, ψ〉|2 defining a probability distribution over those eigenvectors.

This sort of thinking led Roger Penrose to suggested that we may relax the or-

dinary dogma about self-adjoint (Hermitian) observables, and adopt normal operators

as well:

“In my opinion, this Hermitian requirement on an observable Q is

an unreasonably strong requirement, since complex numbers are fre-

quently used in classical physics.... Since I am happy for the results

of measurements (eigenvalues) to be complex numbers, while insisting

on the standard requirement of orthogonality between the alternative

states that can result from a measurement, I shall demand only that

my quantum ‘observables’ be normal linear operators, rather than the

stronger conventional requirement that they be Hermitian.” (Penrose

2004, p.539)

14Let the projection-valued measures for B and C be ∆ 7→ E∆ and ∆ 7→ F∆, respectively. Since B
and C commute, their projections all commute as well. This allows one to define a projection-valued
measure on R2 in terms of the direct product ∆×∆′ 7→ G(∆×∆′) := E∆ ×F∆′ . The Borel sets of
R2 = R × R are naturally identified with those of C = R × iR, which finally provides the spectral
resolution A = B + iC =

∫
C ζdGζ . See Blank et al. (2008, Proposition 5.3.7) or Conway (1990,

Theorem X.4.11).
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A similar suggestion has also been proposed by Lévy-Leblond (1976), who pointed

out that since a self-adjoint operator has spectral decomposition A =
∑

i λiEi, every

Borel function f of a self-adjoint operator does too.

However, there is an important caveat to the proposal to treat self-adjoint

operators and normal operators as ‘equivalent’ descriptions, to which we will now

turn.

3.3. Not all normal operators: Sharp sets. The discussion above shows that any

individual normal operator can be treated as an observable. However, there is also a

sense in which we cannot have all the normal operators be observables at once. Let’s

begin with a concrete example of the problem.

Suppose that, instead of using the real numbers ±1 to indicate the spin up or

down outcomes of a Stern-Gerlach experiment, we decide to use ±i, and thus adopt

the ‘anti-Hermitian’ operator iσz as an observable as suggested above. It has the

same eigenvectors as σz, but with eigenvalues ±i, and is therefore not self-adjoint.

This alone amounts to little more than a change in labeling. But now we have a

difficulty: recall that the Pauli operators satisfy the relations,

σyσz = iσx σzσx = iσy σxσy = iσz.

The product σxσy would normally be taken to represent the ‘joint’ observation of a

Stern-Gerlach system in both the x and y directions. But Stern and Gerlach found

such an observation to be experimentally impossible. It is moreover excluded by the

quantum formalism: recall that when two normal operators do not commute, they do

not have a common basis of eigenvectors (or a common spectral decomposition). As

a result, if two non-commuting operators are observables, then there is no projection

corresponding to a definite outcome for both. Thus, if σx and σy are interpreted as

observables, then their product iσz = σxσy cannot be.

However, this is not an argument for self-adjoint operators, since the same

situation can be described from the perspective of other observables as well. Suppose
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that we interpret the operators {iσx, iσy, σz} as observables, only one of which is self-

adjoint. No one of these operators is the product of the other two, and so there is

no problem of the kind we have just seen. However, by taking pairwise products of

each, we do find that,

(iσy)(iσx) = iσz σz(iσy) = σx (iσx)σz = σy.

Since each of these is a product of non-commuting observables, it follows by the same

argument as before that each is a non-observable. In particular, this implies that σx,

σy, and iσz are non-observables. Thus, although we may freely choose to interpret

sets of normal operators like {σx, σy, σz} and {iσx, iσy, σz} as observables, we cannot

interpret both to be observables at once.

The fact that the product of a pair of non-commuting observables is gener-

ally unobservable suggests a way to identify which sets of normal operators can be

observables in the same interpretation.

Definition. A sharp set S of linear operators is one such that, for any A,B ∈ S, if

AB ∈ S, then AB = BA. A maximal sharp set S with respect to a set of operators

A is one such that R ⊆ A is a sharp set with S ⊆ R only if R = S.

A more careful proposal is then that a set of normal operators consists of

observables only if it is a sharp set. Moreover, this set is ‘as big as it can be’ only if

it is maximal.

We may immediately identify a few easy implications of this proposal.

Proposition 1. The following properties hold of sharp sets on a Hilbert space H.

(1) A set that is closed under multiplication is sharp iff it is commutative.

(2) The set of all normal operators on H is not a sharp set.

(3) Every set of self-adjoint operators on H is a sharp set.

(4) The sharp set of all self-adjoint operators is not maximal in B(H).



16 Bryan W. Roberts

Proof. (1) is immediate from our definition, and (2) follows from the discussion above.

(3) If S is a set of self-adjoint operators and B,C ∈ S, then BC ∈ S only if BC =

(BC)∗ = CB, which means that S is sharp. (4) For any set S of self-adjoint operators,

let R = S ∪ {iI} with I the identity operator. Let A,B,AB ∈ R. If either A = iI

or B = iI, then clearly AB = BA. It thus remains to show that AB = BA when

A,B ∈ S. But no pair of self-adjoint operators A,B ∈ S can satisfy AB = iI, since

AB and (AB)∗ = BA have the same non-zero spectral elements, whereas iI and (iI)∗

do not. In this case we thus have A,B,AB ∈ S, which implies that AB = BA by

the previous argument. �

This last property suggests in particular that, by associating observables with

the concept of a maximal sharp set in place of the standard set of self-adjoint oper-

ators, it is possible to meaningfully enrich the standard observables beyond what is

usually available. In this sense, the self-adjoint operators are not as ‘large as they

could be’. Not all normal operators can be treated as observables at once, but we can

certainly include more than just the self-adjoint ones.

3.4. Symmetries and Dynamics. A final question about normal operators as ob-

servables is how one ought to understand symmetries in this context. In orthodox

quantum theory, there is a tight connection between symmetries and self-adjoint oper-

ators, which is reminiscent of Noether’s theorem for variational symmetries. Namely,

Stone’s theorem guarantees a continuous group of symmetries is always generated by

a unique self-adjoint operator. More precisely, if s 7→ Us is a strongly continuous,

one-parameter set of unitary operators satisfying UrUs = Ur+s for all r, s ∈ R, then

there exists a unique self-adjoint operator A such that Us = eisA for all s ∈ R (Blank

et al. 2008, Thm. 5.9.2). Conversely, every self-adjoint operator generates a strongly

continuous one parameter unitary representation of this kind. Examples: the spa-

tial translation group a 7→ Ua is generated by the momentum operator P , in that

Ua = eiaP . Similarly, the spatial rotation group θ 7→ Rθ is generated by the angular

momentum operator J , in that Rθ = eiθJ .
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Can Stone’s theorem be converted into an argument that observables must

be self-adjoint operators? One might try to argue that continuous symmetries are

generally associated with a conserved quantity, which we should think of as an ob-

servable. This does allow one to identify certain self-adjoint operators as observables.

For example, the expectation value of momentum P does not change under spatial

translations, in that for any (pure or mixed) state represented by a density operator

ρ, we have Tr(UaPU
∗
aρ) = Tr(UaU

∗
aPρ) = Tr(Pρ). However, this thinking works for

normal operators, too: a whole host of normal operators are conserved along con-

tinuous unitary symmetries. Indeed, if Us is generated by the self-adjoint operator

A, then every Borel function of A is also similarly conserved, since such a function

f(A) always commutes with Us = eisA. As a result, non-self-adjoint normal operators

like iP and eiaP are conserved along spatial translations as well. So, conservation

alone is no argument that observables are always self-adjoint operators. And after

all, strictly speaking, the generator of a unitary group Us = eisA is not even really

a self-adjoint operator, but rather the ‘pure imaginary’ operator iA, which has only

imaginary numbers in its spectrum.

Still: even if there are non-self-adjoint normal observables, one might insist on

an ordinary unitary dynamics, which requires a self-adjoint generator H (the ‘Hamil-

tonian’). The reasoning can be made precise as follows. Reflecting on our experience

of time’s passage, we might presume that time evolution is strongly continuous, as

best we can tell. Isolated systems also seem to allow the same experiment to repeated

at later moments in time with the same probabilistic outcomes, which is to say that

the dynamics t 7→ Ut seems to satisfy time-translation invariance, Ut1+t2 = Ut1Ut2 ,

with Ut unitary so as to preserve probabilities.15 Finally, suppose we presume that

dynamical evolution holds (or could in principle hold) infinitely to the future and

to the past, i.e. it can be described for all t1, t2 ∈ R. If one believes these things

15Unitarity in this sense for a continuous group follows by Wigner’s theorem. One can alternatively
presume that symmetries should preserve the norm of each state, since quantum states can be
represented by normalised vectors; a corollary of Wigner’s theorem then implies unitarity as well. I
thank Adam Caulton for pointing this latter strategy out.
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about the evolution of a quantum system, then Stone’s theorem guarantees that the

Hamiltonian observable H is self-adjoint.

This perspective is certainly compatible with non-self-adjoint observables that

are not the Hamiltonian. However, there may also be physical circumstances in which

one or more of these presumptions assumptions fails. This can lead to the failure of

unitarity and a failure of the Hamiltonian to be self-adjoint. For example, a non-

isolated system does not satisfy the requirement of time translation invariance; we

will see this example again in the discussion of radioactive decay in Section 4.3.

It may also be unreasonable to assume that dynamical evolution holds forever

to the future and to the past. Such an assumption is much stronger than what is

normally required of classical Hamiltonian mechanics, where only local time evolution

is guaranteed.16 One might similarly expect that for some quantum systems, time

translation might only be defined locally, perhaps because the system has a finite

past, a finite future, or for some other reason altogether. This dynamical evolution

will be generated by a Hamiltonian that is not-self-adjoint. Indeed, we will see explicit

examples of this kind of evolution among the non-normal operators of the next section.

4. Non-normal operators as observables

Let us now turn to another class of non-self-adjoint observable, which involves

operators that are not even normal. Treating non-normal operators as observables

is a more dramatic extension of quantum theory, far from a mere adjustment of

convention. Following the mathematical discussion above, there are three kinds of

non-self-adjoint operators in this class: those that are symmetric but do not have a

real spectrum, and those that have a real spectrum but are not symmetric, and those

that satisfy neither. One may therefore choose exactly one of these commitments, or

else reject them both. There are circumstances in which each is reasonable.

16More formally: A smooth function h : M → R on a symplectic manifold generates a Hamiltonian
vector field, for which one can find a unique set of integral curves in a neighbourhood of each point.
But it is perfectly possible for this Hamiltonian vector field that is incomplete, which is to say that
its set of integral curves ϕ(t) cannot be defined for all parameter times t ∈ R.
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4.1. Symmetric operators and time observables. Let me begin by recalling a

case in which one commonly treats a non-self-adjoint operator like an observable, but

only because it can be extended to a self-adjoint operator. I will then turn to the

more important case for my purposes, of non-self-adjoint operators that cannot be

extended in this way.

Case 1: Self-adjoint extensions. Suppose we wish to describe a particle in a box

of finite width b− a. We adopt the Hilbert space of square-integrable wavefunctions

ψ(x) ∈ L2([a, b]) with 〈ψ, φ〉 :=
∫ b
a
ψ∗(x)φ(x)dx. As experienced quantum mechanics,

we wish to see a momentum observable for this particle that looks like the standard

momentum operator P = id/dx. Such an unbounded operator cannot act on the

entire Hilbert space. The art of unbounded operators is thus to answer the question:

which wavefunctions does the operator it act on? Since it also has different properties

depending on the domain acted upon, let me for the moment describe momentum

as an operator-domain pair (P,D). Suppose we identify the domain D as the set

of differentiable functions that vanish at the edges of the box, ψ(a) = ψ(b) = 0, as

shown in Figure 4. Call this domain D0. Then (P,D0) can be shown to be closed,

densely-defined and symmetric; however, it is not self-adjoint (Blank et al. 2008,

Example 4.2.5). It is also non-normal and fails to have a purely real spectrum, as a

consequence of our mathematical discussion above.

Figure 4. P = i d
dx

is not self-adjoint on differentiable wavefunctions
that vanish at the sides of a box, ψ(a) = ψ(b) = 0.

Nevertheless, it is common practice to view non-self-adjoint operators like

this one as observables. This is because one can turn (P,D0) into a self-adjoint
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operator by extending its domain, this time to include all the wavefunctions that

satisfy ψ(a) = eiθψ(b) for some fixed real θ, which includes those that vanish at the

edges of the box as a subset. Call this extended domain Dθ ⊃ D0. Then (P,Dθ) is self-

adjoint, for each real number θ (ibid). This procedure is common practice: construct

a symmetric observable that is physically motivated but not self-adjoint, with the

aim of extending to a self-adjoint operator as needed. As Earman (2009) has pointed

out, this can be a hazardous practice when the observable being considered is the

Hamiltonian. For, as in the case of the particle in a box, there may be multiple self-

adjoint extensions of a symmetric observable. Symmetric operators that avoid this

by admitting a unique self-adjoint extension are called essentially self-adjoint. When

a Hamiltonian fails to have this property it may have multiple distinct self-adjoint

extensions. This gives rise to multiple unitary evolutions, and therefore a failure of

determinism for Schrödinger evolution. The failure of determinism might lead one to

be skeptical of treating non-self-adjoint operators with multiple self-adjoint extensions

as observables. This is not so convincing if one takes the question of determinism to

be an open one.17 But another class of non-self-adjoint symmetric operator is even

more convincing. That class is the following.

Case 2: Maximal symmetric operators Let me turn to cases that may appear

even worse, but are in fact better: symmetric operators that do not admit any self-

adjoint extensions at all. Such operators are called maximal symmetric. If we wish to

treat a maximal symmetric operator like an observable, then it cannot stand proxy

for a self-adjoint extension; it must be treated like an observable in its own right.

The assumptions of Stone’s theorem fail for maximal symmetric operators, so

they do not generate a unitary group in the usual sense. However, they do satisfy

a closely related result. Stating this result makes use of the concept of an isometry,

a Hilbert space operator U satisfying U∗Uψ = ψ for all ψ in its domain (a unitary

17Earman (2009, p.36) still supports the practice of treating some symmetric operators that are not
self-adjoint as observables, calling its rejection “high handedness”; Wüthrich (2011, p.373) agrees
for this reason that “the question of whether the Schrödinger evolution is deterministic does not
afford a simple and unqualified answer.”
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operator is an isometry that is bijective). Isometries are symmetry transformations

in much the same sense as a unitary operator, except that they are not defined on all

states. They also allow us to state the following generalisation of Stone’s theorem.18

Generalised Stone Theorem. If s 7→ Us is a strongly continuous, one-parameter

set of isometries satisfying UrUs = Ur+s for all r, s ≥ 0 (or for all r, s ≤ 0, but not

both), then there exists a unique maximal symmetric operator A such that Us = eisA.

Conversely, every maximal symmetric operator A generates a strongly continuous one

parameter set of isometries set s 7→ Us = eisA satisfying UrUs = Ur+s, for all r, s ≥ 0

(or for all r, s ≤ 0, but not both). (Cooper 1947, 1948)

This means that maximal symmetric operators are associated with a set of

symmetries after all, in much the same way as self-adjoint operators. These sym-

metries are simply limited to a restricted domain, in addition to be limited by the

parameter values of the set.

When a maximal symmetric observable is a Hamiltonian, the Generalised

Stone Theorem says that a unique solution to the Schrödinger equation exists, al-

though it is only defined for non-negative times or non-positive times (but not both).

As far as determinism is concerned, this situation is an improvement on the fail-

ure of essential self-adjointness considered by Earman (2009). The generalised Stone

theorem says that the dynamical evolution generated by a maximal symmetric Hamil-

tonian is unique, much like the dynamics of an essentially self-adjoint Hamiltonian.

The dynamics is time-translation invariant, in the restricted sense of an isometry. The

limitation is just that this dynamics is not defined for all times t ∈ R. As discussed

above, having a dynamics for all times is a very strong requirement, which we may

have good reason to relax.

Maximal symmetric operators also fail to satisfy the conditions of the ordinary

spectral theorem. But there is an interesting generalisation of this too, which makes

18This result follows naturally from the work of Naimark (1940, 1968) on the theory of self-adjoint
extensions, although it was proved independently by Cooper (1947, 1948).
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use of Positive Operator Valued Measures (POVMs) on Borel sets of the reals. A

POVM generalises our earlier notion of a projection valued measure, by carrying

over its properties exactly but for positive operators instead of projections.19 Such

measures allow us to state the following.

Naimark Spectral Theorem. Let A be a closed, densely defined symmetric opera-

tor. Then there exists a POVM ∆ 7→ F∆ such that A =
∫
R λdFλ, which is unique (up

to unitary equivalence) if and only if A is maximal symmetric, and which is a Pro-

jection Valued Measure if and only if A is self-adjoint. (Dubin and Hennings 1990,

Thm. 5.16, pg.135)

Just like self-adjoint operators, maximal symmetric operators have a unique

spectral decomposition. It is just not in terms of a projection valued measure. As

Busch, Grabowski and Lahti (1994, 1995) have pointed out, a POVM and a state

still give rise to a probability distribution, which allows one to interpret a POVM

statistically in an experiment. However, the details of that interpretation can be

subtle. A curiosity about POVMs is that two elements F∆ and F∆′ with ∆∩∆′ = ∅

are not necessarily orthogonal, or even commutative. Consequently, given a state ψ

and a maximal symmetric operator A with a pure point spectrum, the decomposi-

tion ψ = c1ϕ1 + c2ϕ2 + · · · may be in terms of eigenvectors ϕi of A that span the

Hilbert space, but which are not all pairwise orthogonal. Such a POVM is sometimes

interpreted as arising out of some uncontrolled aspect of a measurement procedure

(see e.g. Nielsen and Chuang 2000, §2.2.6). But it can also occur in more elementary

measurement scenarios.

I will just mention one such scenario to illustrate, which is the case of ‘time

observables’. A time observable is a natural object of study when one is interested

in durations of some process, or in the time that something occurs. For example,

one might wish to use an observable to describe the moment that a particle in flight

arrives at its target, or the time that a jet or particle decay occurs in a detector.

19A positive operator is one that has a non-negative spectrum, Sp(A) ≥ 0.
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Such time observables are a natural candidate for description in terms of maximal

symmetric operators. For such observables, there is no need physical need to require

the eigenstates to be pairwise orthogonal; after all, the time that something occurs is

not statistically independent of previous times.

There is a literature that has come to this same conclusion through another

route. Let H be a Hilbert space, together with an ordinary unitary dynamics defined

by t 7→ Ut. We call a linear operator T a time operator if and only if it satisfies

UtTU
∗
t = T + tI for all t ∈ R. Equivalently, for any ψ ∈ DT with |ψ| = 1 and

ψ(t) := Utψ, a time operator T is one that satisfies 〈ψ(t), Tψ(t)〉 = 〈ψ, Tψ〉 + t,

for all t ∈ R. These properties can be informally summarised as requiring that a

time observable ‘tracks’ the evolution of time determined by the unitary dynamics.

An operator T with this property is in general unbounded, and also satisfies the

time-energy commutation relation [H,T ] = i, which is its ‘local’ expression.

The central no-go result for time operators, known as Pauli’s theorem, is that

if Ut = e−itH is generated by a Hamiltonian H that is bounded from below (as almost

all known Hamiltonians are), then every time operator fails to be self-adjoint.20 This

fact was originally interpreted as an impossibility result for time observables, and is

sometimes referred to as the ‘problem of time’ in quantum mechanics (Butterfield

2013). However, if we relax our requirements on what counts as an observable, then

it can equally be viewed as simply saying that time operators are non-self-adjoint

observables. Then there turn out to be a plethora of possible time observables, most

known examples of which are maximal symmetric.

A particularly simple time observable21 can be seen for the free particle Hamil-

tonian H = 1
2m
P 2. This dynamical system admits a time operator given by,

T = m
2

(QP−1 + P−1Q).

20This result is inspired by a famous remark of Pauli (1980, pg.63, fn.2), which was made more
rigorous e.g. by (Ludwig 1983, §VII.6) and Srinivas and Vijayalakshmi (1981), among others.
21This example was identified by Aharonov and Bohm (1961). For further discussion, see also Holevo
(1982); Busch et al. (1994); Galapon (2009); Pashby (2014).
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This T is a time operator because the free particle satisfies e−itHQeitH = Q + t
m
P

and e−itHPeitH = P , from which it easily follows that e−itHTeitH = T + tI. It is also

symmetric by construction.

However, we can immediately infer from Pauli’s theorem that this time oper-

ator is not self-adjoint, and with a little more work show that it does not have any

self-adjoint extensions (Holevo 1982, §3.8). It follows that T is maximal symmetric.

A large class of dynamical systems with such time operators has been constructed by

Busch et al. (1994) and by Hegerfeldt and Muga (2010), and these observables have

been put to many interesting uses (Muga et al. 2008). A closely-related discussion

exists for ‘phase observables’ as well (Busch et al. 1995).

Let me summarise the discussion of this section. The addition of maximal

symmetric operators as observables is a non-trivial extension of quantum theory.

However, it is a mathematically controlled extension, thanks to a generalised Stone

theorem and spectral theorem. These generalisations introduce features that are

unfamiliar from the perspective of more traditional observables. However, even these

unfamiliar features can be made sense of in concrete physical descriptions in which

we can put maximal symmetric operators to use. Little reason remains to deny their

status as bona fide ‘observables’.

4.2. Real spectrum operators and PT symmetry. Among the most commonly

demanded requirements on a quantum observable is that it should have a real spec-

trum. Non-self-adjoint operators with a real spectrum thus provide another natural

route to extending observables in quantum mechanics. However, as we shall see, this

class of operators is much more unwieldy that the previous ones, with no analogue

of the spectral theorem nor of Stone’s theorem without adding extra structure to the

theory.

We have discussed the matrix A =
(

1 1
0 2

)
as an example of a non-self-adjoint

operator with a real spectrum. A much more interesting example from the perspective
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of physical applications is the operator,

(1) H = 1
2m
P 2 + mω2

2
Q2 + iQ3,

where Q and P are the position and momentum operators in some representation of

the canonical commutation relations, and m,ω ∈ R+. This operator is obviously not

symmetric, and therefore fails to be self-adjoint or even normal. However, has been

studied extensively following the work of Bender and Boettcher (1998) as a possible

interaction Hamiltonian, and was proven by Dorey et al. (2001a,b) to have an entirely

real spectrum, with interesting connections to supersymmetry. More general classes of

non-self-adjoint operators with this property have also been explored, by considering

a class of PT -symmetric operators (Bender et al. 2002, 2003), or more generally a

class of operators that commute with an antilinear operator (Weigert 2003).

Streater (2007) has discussed one general class of operators that have a real

spectrum, but are not necessarily self-adjoint. Call a linear operator A a diagon if and

only if there exists an operatorB with densely-defined inverse such thatBAB−1 is self-

adjoint. Since the similarity transformation (·) 7→ B−1(·)B is spectrum-preserving, it

follows that every diagon has a real spectrum. In particular, a self-adjoint operator is a

diagon withB = I the identity. However, diagons are certainly not always self-adjoint.

For example, if Q and P are the position and momentum operators in the Schrödinger

representation, then Q−1PQ is a non-self-adjoint diagon. It can be transformed to

the self-adjoint operator P by the similarity transformation (·) 7→ Q(·)Q−1, and thus

has a real spectrum. But it is easy to check that it is not symmetric, not normal, and

therefore not self-adjoint.22

One strange feature of non-self-adjoint diagons is that their expectation values

may not be real, even though the spectrum of the operator is. In the example above,

this is easy to check: for an arbitrary vector ψ in the common domain of Q, P and

22Apply the commutation relations to see that it is not symmetric: (Q−1PQ)∗ = QPQ−1 = iQ−1 +
P , whereas Q−1PQ = iQ−1 − P . One can use these facts to check that Q−1PQ is also not normal.
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Q−1, we have by application of the commutation relations that,

〈ψ, (QPQ−1)ψ〉 = 〈ψ, (iQ−1 + P )ψ〉 = i〈ψ,Q−1ψ〉+ 〈ψ, Pψ〉.

This implies that QPQ−1 has expectation values with a pure-imaginary component.

Streater (2007, §12.5) has pointed out that such complex expectation values are quite

general features of non-self-adjoint diagons. Thus, even though these operators retain

what many have taken to be the ‘gold standard’ of observables, a real spectrum, their

expectation values may not satisfy this standard, which is difficult to interpret.

A non-self-adjoint operator with a real spectrum is never ‘diagonalizable’ in

the usual sense: it does not have a spectral decomposition in the sense of a projection

valued measure, since the ordinary spectral theorem applies only to normal operators.

It is not known whether a more general spectral theorem exists for such operators,

analogous to the Naimark spectral theorem for symmetric operators. The application

of Stone’s theorem suffers from similar difficulties.

However, the spectral structure of a large class of real-spectrum operators

has been studied using other kinds of decompositions, introduced by Bender et al.

(2000) and developed by Weigert (2003) and others. The usual statistical interpreta-

tion of quantum theory is not possible for these operators, since they do not admit

a projection-valued measure. However, an interpretation is still possible if one in-

troduces a new inner product, and then defines the statistics and the dynamics with

respect to that. For example, if H is a non-self-adjoint diagon on a Hilbert space with

inner product 〈·, ·〉, then one can always construct a new inner product 〈·, ·〉H with

respect to which H is self-adjoint.23 One can then take spectral decompositions and

define a unitary dynamics in the resulting new Hilbert space. This strategy, proposed

by Bender et al. (2002), has been the subject of a great deal of fruitful research.24

23This is a straightforward exercise: first show that if H is a diagon with respect to 〈·, ·〉, then it is
‘quasi-Hermitian’ with respect to 〈·, ·〉B := 〈·, B(·)〉, meaning that BHB−1 = H∗. Then show that
if H is quasi-Hermitian with respect to 〈·, ·〉, then it is self-adjoint with respect to 〈·, ·〉B .
24For overviews, see Bender (2007); Moiseyev (2011); Znojil (2015).
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We thus have an interesting extension of quantum theory, in which we only re-

quire the spectrum of each observable to be real, and each non-self-adjoint observable

requires its own inner product. However, a central requirement of this programme,

that one must always have real eigenvalues, is perhaps not as well-motivated as it is

sometimes made out to be. We need not place so much weight on outcomes repre-

sented by real numbers. The previous sections have reviewed many scenarios in which

non-real numbers can be used to represent physical experiments. If one is willing to

relax the requirement of self-adjointness at all, then one should minimally allow for

complex eigenvalues, too. This is the topic of the last section.

4.3. None of the above: The wilderness beyond. For each of the properties

of being normal, being symmetric, and having a real spectrum, there is a literature

on retaining that property while giving up other two. In this section, we discuss

the possibility of giving up all three. Then there is no single mathematical idea

controlling the concept of an observable, which leads to a loss of generality of the

usual mathematical results that more traditional observables enjoy. However, the

result is not necessarily a complete free-for-all. There are physical ideas that allow

even these operators to be interpreted as observables, and mathematical results that

allow us to control their behaviour.

An early example of such an observable was proposed by Gamow (1928), in a

famous paper written on a visit to Göttingen that introduced the world to quantum

tunneling. Adopting Schrödinger’s wavefunction formalism, Gamow proposed that

the energy value of a radioactive particle could be described by a complex number,

E = E0 − iΓ.

He gave an immediate physical interpretation of this value, identifying E0 ∈ R+

the ‘ordinary energy’ and Γ ∈ R+ as a positive ‘damping term’. In particular, a

corresponding energy eigenstate φ would evolve according to the rule,

φ(t) = e−itEφ = e−it(E0−iΓ)φ = e−tΓe−itE0φ.



28 Bryan W. Roberts

This state is nearly stationary φ(t) ≈ e−itaφ when t ≈ 0, but has the decreasing

amplitude of a damped wave with decay rate Γ, as shown in Figure 5.

Figure 5. Gamow’s (1928) model of radioactive decay used a non-
self-adjoint Hamiltonian with eigenvalue E = E0 − iΓ.

What sort of observable generates the dynamics t 7→ e−itH for this system? It

is a non-self-adjoint Hamiltonian,

H = A− iB,

whereA andB are self-adjoint operators each with a positive spectrum. The dynamics

fails to be unitary because it is a non-isolated system that subtly interacts with

its environment. The operators A and B typically do not commute, and so the

Hamiltonian H is not generally normal. It is also non-symmetric, and has a non-

real eigenvalue E = E0 − iΓ by construction. So, the Hamiltonian for Gamow’s

quantum tunneling system is one that fails all the criteria for observables that we

have discussed so far. This example was discussed in an influential textbook by

Landau and Lifshitz (1977, pgs.555-556), and has given rise to literatures that use

non-self-adjoint Hamiltonians to describe quantum resonance and quantum optics

(see e.g. Moiseyev 2011).

Although there are many other operators that are non-symmetric, non-normal,

and have a non-real spectrum, it is not always easy to assign them a physical inter-

pretation. For example, if σx, σy, σz are the standard Pauli spin matrices, then we

can formally write down the operator,

R = σx + i(σy + σz).
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This operator has complex eigenvalues ±i, associated with eigenvectors
(
i
1

)
and

(
0
1

)
,

respectively. It has an overcomplete basis just like the maximal symmetric operators,

but is non-symmetric and non-normal. Unfortunately, the physical significance of such

an operator is also far from clear. It certainly does not admit an obvious interpretation

as the generator of a dynamics.

These are just a few examples from the wilderness of non-self-adjoint operators.

Much remains to be learned about the structural properties of such operators, such as

their spectral theory and physical applications, and research in this area is ongoing.

But this should not prevent us from exploring their possible use as observables.

5. Conclusion

In this paper we have sorted non-self-adjoint operators into four classes: those

that are normal, those that are symmetric, those that have a real spectrum, and those

that admit none of these properties. In spite of a pervasive dogma, non-self-adjoint

operators may provide conceptual clarity or calculational convenience in modeling

quantum systems. We have seen that the first class, that of normal operators, can in-

dividually be treated like standard quantum observables, although a set of them must

in general be restricted to be a sharp set. In contrast, the second and third classes

introduce varying degrees of new physics into the discussion, from time observables

to new interaction Hamiltonians. The fourth class is a wilderness of many unknowns.

But some of them can be used to fruitfully model quantum systems.

In his textbook on linear operators, E. Brian Davies gave an apt characterisa-

tion of the state of non-self-adjoint operators from a mathematical perspective:

Studying non-self-adjoint operators is like being a vet rather than a

doctor: one has to acquire a much wider range of knowledge, and to

accept that one cannot expect to have as high a rate of success when

confronted with particular cases. (Davies 2007, p.x)
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So too is the proposal to allow observables that are not self-adjoint. When an arbitrary

non-self-adjoint operator is proposed as an observable from the great wilderness of

possibilities, there may well be little that we can say about how to associate it with

real-world observations. However, a number of interesting cases are well-understood,

philosophically well-motivated, and lead to physically relevant models of quantum

theory. It would be a pity if mere dogma prevented us from enjoying them.
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