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Consider some people: Melesha, Nadia, and Dylan. What is the relation between them—

taken together—and the individual people they comprise? For example:

1. Is Melesha one of them whenever they exist?

In other words, is it necessarily the case that if they exist, Melesha is one of them?

2. Must Dylan exist whenever they exist?

In other words, is it necessarily the case that if they exist, Dylan exists?

Or consider a natural converse.

3. Do they exist whenever each of Melesha, Nadia, and Dylan exists?

In other words, is it necessarily the case that if Melesha, Nadia, and Dylan each

exists, they exist?

Standard treatments of the modal logic of plurals have typically addressed the first two

kinds of question.1 The third, however, is vitally important: positions in the philosophy of

mathematics, philosophical logic, and metaphysics depend on its answer. The goal of this

paper is to articulate a general conception of pluralities which answers these and many other

related questions. It is based on the following simple claim, which I call the nothing over and

above conception of pluralities.2

Some things are nothing over and above the individual things they comprise

Here’s the plan. In section 1, I make the nothing over and above conception precise. I show

how it can be captured both model-theoretically and axiomatically. In section 2, I use this to

shed light on debates in the philosophy of mathematics, philosophical logic, and metaphysics.

Section 3 is a technical appendix.

∗Thanks to Peter Fritz, Øystein Linnebo, Agustin Rayo, Alex Roberts, and Gabriel Uzquiano for helpful
comments and discussion.

1See, for example, Uzquiano [2011] and Rumfitt [2005]. Williamson [2013] is an exception. See section 2
for discussion.

2This conception is arguably implicit in a lot of work on plurals—for example, in Boolos [1984], especially
in his discussion of the cheerios—but is made explicit in Roberts [2016], Roberts [2019], and Linnebo [2016].

1



1 Pluralities as nothing over and above

The nothing over and above conception says that some things are nothing over and above the

individual things they comprise. In other words, it says that there is no difference between

some things taken together and those very same things taken individually. For some, this may

seem like a mysterious statement, perhaps even meaningless; for others, like a truism, trivial

and inferentially inert. I will show that neither reaction is correct: the nothing over and

above conception is both tractable and has important consequences for a number of debates

in philosophy. This section will focus on making the conception formally precise and the next

on exploring its consequences.

First, some preliminaries. I will restrict my attention to claims in the language of plural

modal logic. This language, L, can be obtained from the language of first-order logic by

adding a stock of plural variables xx, yy, zz, ... etc., a relation symbol≺ intended to express the

relation that holds between an object and some things when it is one of them—so, “x ≺ xx” is

well-formed and read “itx is one of themxx”—and a modal operator 3 expressing metaphysical

possibility.3 For simplicity, I will allow the identity relation to be flanked by plural variables—

so, “xx = yy” is well-formed.4 My goal is thus to make the nothing over and above conception

formally tractable in so far as it concerns claims in L. For all I will say, it could have

consequences beyond those claims.

Let K = 〈W,D1, D2, I〉 be an arbitrary Kripke model where D1 is a domain function

assigning a set of ‘objects’ to each world, D2 a domain function assigning a set of ‘pluralities’ to

each world, and I an interpretation function which interprets≺ and the non-logical vocabulary

of L. Since it has no accessibility relation, K will validate the modal logic S5. Given a plurality

X, I will denote the set of things ‘among’ X at w: Iw(X) (that is, Iw(X) = {x : w � x ≺ X}).5

As it stands, no assumptions have yet been made about the behaviour of pluralities. There

may be none—all D2(w) could be empty—or there may be many more pluralities in D2(w)

than there are subsets of
⋃

w∈W D1(w) and every one of them could be empty. In particular,

K may not conform to the nothing over and above conception.

3See Linnebo [2017] for more details.
4Nothing hangs on this, however, and I will show in section 2 how identity between plural variables can be

explicitly defined and thus eliminated.
5Since Kripke models are classical, they do not allow for indeterminacy. Although this simplifies matters

considerably, it is a significant omission. It will turn out that the nothing over and above conception implies a
plural comprehension principle in such models (see below). But it has been argued that some of its instances
are undermined by indeterminacy in quantifiers or predicates (see, for example, [Yablo, 2006, p.151-152] and
[Linnebo, 2016, p.670-673]). These arguments don’t target the other components of the nothing over and above
conception that I will identify, however, and so a modified form of the conception could perhaps survive those
arguments with a suitably restricted comprehension principle. I will ignore this complication in what follows.
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1.1 A model-theoretic characterisation

I will start with a model-theoretic characterisation of the nothing over and above conception.

First, I will highlight four simple constraints that I argue should hold whenever a Kripke

model conforms to the conception. I will argue, in other words, that the constraints are

sound for the conception. I will then argue that they are complete: that any Kripke model

satisfying the constraints conforms to the conception. The models conforming to the nothing

over and above conception can then be characterised as precisely those satisfying the four

constraints.

The first two constraints are perhaps the most interesting and concern the behaviour of plu-

ralities across worlds.

Recall our people—Melesha, Nadia, and Dylan—and consider the first two questions I raised

in the introduction, now in light of the nothing over and above conception. Is Melesha one of

them whenever they exist? And, must Dylan exist whenever they exist? If they are nothing

over and above the individual things they comprise and they comprise precisely Melesha,

Nadia, and Dylan, then nothing more could be needed for them to comprise Melesha, Nadia,

and Dylan than that they exist; and nothing more could be needed for Melesha, Nadia, and

Dylan to exist than that they exist. There is no metaphysical gap between them and the

individuals Melesha, Nadia, and Dylan. So, Melesha must be one of them whenever they

exist and Dylan must exist whenever they exist.

The first constraint I want to highlight generalises this insight. It says that the individual

things a plurality comprises will continue to be comprised by it and exist whenever it exists:

where the plurality goes, so too do the things it comprises.6 Formally:7

Downward Dependence

If X ∈ D2(w
′), then Iw(X) ⊆ D1(w

′) ∩ Iw′(X)

Now consider the third question in light of the nothing over and above conception. Do they

exist whenever each of Melesha, Nadia, and Dylan exists? If they are nothing over and above

6To aid readability, I will frequently use the singular “plurality”. Nothing hangs on this and can always be
reformulated in terms of genuinely plural locutions.

7We could, if we like, break this constraint into two further constraints corresponding to each of the two
initial questions. The first would say that a plurality comprises the same things whenever it exists,

Downward Dependence1

If X ∈ D2(w′), then Iw(X) ⊆ Iw′(X)

and the second would say that a plurality cannot exist without the things it comprises,

Downward Dependence2

If X ∈ D2(w′), then Iw(X) ⊆ D1(w′)
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the individual things they comprise and they comprise precisely Melesha, Nadia, and Dylan,

then nothing more could be needed for them to exist than that each of Melesha, Nadia, and

Dylan exists. There is no metaphysical gap between the individuals Melesha, Nadia, Dylan

and them. So, they must exist whenever each of Melesha, Nadia, and Dylan exists.

The second constraint I want to highlight generalises this insight. It says that a plurality

exists whenever the things it comprises exist: where the things a plurality comprises go, so

too does the plurality. Formally:8

Upward Dependence

If
⋃

w∈W Iw(X) ⊆ D1(w
′), then X ∈ D2(w

′)

The last two constraints I want to highlight are somewhat standard and concern the behaviour

of pluralities within worlds. The first is an extensionality principle: it says that pluralities

comprising the same things are identical. Clearly, if these things and those things are nothing

over and above the individual things they comprise and these things comprise the same things

as those, then these are those. Formally:

Extensionality

If X,Y ∈ D2(w) and Iw(X) = Iw(Y ), then X = Y .

Finally, there is a comprehension principle: it says that given a set of objects at a world,

there is a plurality comprising precisely those objects. Clearly, if some things are nothing

over and above the individual things they comprise and each individual thing in X exists,

then nothing more could be needed for there to exist some things comprising the X s. There

is no metaphysical gap between the individual things in X and those very same things taken

together. Formally:9

Comprehension

If X ⊆ D1(w), then there is X ∈ D2(w) such that X = Iw(X)

The four constraints are thus sound for the nothing over and above conception: any model

that conforms to the conception must satisfy them. I will now argue that they are complete.

But before I do that, I need a distinction.

8Given Downward Dependence, Upward Dependence comes to the simpler claim that if X ∈ D2(w) and
Iw(X) ⊆ D1(w′), then X ∈ D2(w′). This is because, given Downward Dependence, when X ∈ D2(w), the
things X comprises at w are the things it comprises in any world: Iw(X) =

⋃
w′∈W Iw′(X). I’ve chosen the

slightly more complicated formulation in the main text because it does not rely on Downward Dependence in
this way.

9It follows from Comprehension that there is an empty plurality. Nothing will depend on this, however. If
we like, we can modify Comprehension so that it only applies to non-empty sets and require that every plurality
is non-empty. See Linnebo [2017] for discussion of this point.
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Although the above constraints tell us which things a plurality comprises when it exists—

namely, by Downward Dependence, whatever it comprises in any world—they do not tell us

what it comprises in worlds where it does not exist. Consider again our people—Melesha,

Nadia, and Dylan—and take a world w in which Melesha and Nadia exist but Dylan does

not. By Downward Dependence, they don’t exist in w. But is Melesha still one of them in w?

It seems to me that the nothing over and above conception is silent on this question.

Nevertheless, there appear to be three non-ad-hoc answers. First, when a plurality fails to

exist, it comprises nothing. Formally:

Nothing

If X 6∈ D2(w), then Iw(X) = ∅

Second, it comprises everything it would otherwise comprise. Formally:

Everything

If X 6∈ D2(w), then Iw(X) =
⋃

w′∈W Iw′(X)

Finally, it comprises the things it would otherwise comprise which also exist. Formally:

Existence

If X 6∈ D2(w), then Iw(X) =
⋃

w′∈W Iw′(X) ∩D1(w)

In what follows, I will assume that one of these answers is correct, though I will not take a

stance on which.

To show that our four constraints are complete for the nothing over and above conception, I

will employ a “squeezing” argument.10 It rests on three claims which jointly establish that

the informal notion of conforming to the nothing over and above conception coincides with

the formal notion of satisfying the four constraints.

The first claim is that a Kripke model conforms to the nothing over and above conception

only if it satisfies the constraints: in other words, conforming to the nothing over and above

conception implies satisfying the constraints. This was established above. The second claim

is that every model of a certain kind conforms to the nothing over and above conception: in

other words, being a model of that kind implies conforming to the conception. The final claim

is that every model satisfying the constraints is isomorphic to a model of that kind: in other

words, satisfying the constraints implies being (isomorphic to) a model of that kind. The

informal notion of conforming to the nothing over and above conception is thus sandwiched

between two equivalent formal notions. It follows that all three notions coincide. I will now

10See, for example, Smith [2010].

5



argue for the last two claims.

For the second claim, consider a Kripke model K = 〈W,D1, I〉 for a first-order language.

As Boolos [1985] effectively showed, we can use K to interpret the language of plural modal

logic without adding domains of pluralities. The idea is simple. We take a plural assignment

function to be a relation R that associates with each singular variable “x” a unique object in⋃
w∈W D1(w) and with each plural variable “xx” 0 or more objects from

⋃
w∈W D1(w). We

then define truth at a world by adding the following clauses to the usual first-order ones.

• w �R “∃xxϕ” ↔ ∃R′ =“xx” R(∀x(R′(“xx”, x) → x ∈ D1(w)) ∧ w �R′ “ϕ”), where

R′ =“xx” R means that the plural assignment R′ is just like R except perhaps in what

it associates with “xx”.

• w �R “xx = yy” ↔ ∀x(R(“xx”, x)↔ R(“yy”, x))

together with one of the following (depending on which of Nothing, Everything, or Existence

we want to adopt),

(N) w �R “x ≺ xx” ↔ R(“xx”, x) ∧ w �R “Exx”11

(Ev) w �R “x ≺ xx” ↔ R(“xx”, x)

(Ex) w �R “x ≺ xx” ↔ R(“xx”, x) ∧ w �R “Ex”

Call this the Boolos model over K. In Boolos models, there is nothing more to the xx on

a given assignment than the individual things assigned to the variable “xx”. Boolos models

are therefore precisely models in which pluralities are nothing over and above the individual

things they comprise; they conform to the nothing over and above conception.

For the final claim, it is straightforward to prove that every Kripke model satisfying the

four constraints together with one of Nothing, Everything, or Existence is isomorphic to the

Boolos model over its first-order part (theorem 1). That completes the argument.

Model-theoretically, then, the nothing over and above conception breaks down into four

components: Downward Dependence, Upward Dependence, Extensionality, and Comprehension.

More precisely, given one of Nothing, Everything, or Existence, a model conforms to the noth-

ing over and above conception just in case it satisfies those components.

Let me finish this section by noting an important feature of the model-theoretic explication of

the nothing over and above conception: it implies that plural reality supervenes on first-order

11I use Exx as an abbreviation for ∃yy(xx = yy) and similarly for Ex.
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reality. More precisely, we can show that any models which (1) satisfy the four constraints—

together with one of Nothing, Everything, or Existence—and (2) have the same first-order part

are isomorphic (theorem 2). This means that on the model-theoretic explication, the nothing

over and above conception provides a complete account of plural reality: keeping first-order

reality fixed, any claim in L is either true in all of its models or false in all of them.

1.2 An axiomatic characterisation

I will now look at the extent to which the nothing over and above conception can be cap-

tured axiomatically. I will start by finding object language correlates of the model-theoretic

constraints from the last section.

First, the successes. It is easy to see that Downward Dependence can be axiomatised by the

following principle.12

(stability) x ≺ xx→ 2(Exx→ Ex ∧ x ≺ xx)

More precisely, it is straightforward to show that a model satisfies Downward Dependence

precisely when it validates stability.

And it turns out that given stability and a single instance of Comprehension, Upward De-

pendence and Extensionality can be jointly axiomatised by the following strong extensionality

principle which says that pluralities comprising the same things across worlds are identical.

(ext) 2∀x(3(x ≺ xx)↔ 3(x ≺ yy))→ xx = yy

More precisely, we can show that when a model validates:

∃xx∀x(x ≺ xx↔ 3(x ≺ yy))

it satisfies Downward Dependence, Upward Dependence, and Extensionality precisely when it

12Let me briefly explain the choice of terminology here. Just as Downward Dependence can be factored into
Downward Dependence1 and Downward Dependence2, stability can be factored into the following two principles.

(i) x ≺ xx→ 2(Exx→ x ≺ xx)

(ii) x ≺ xx→ 2(Exx→ Ex)

The literature is inconsistent on the terminology for these principles, especially the first, but there are roughly
two camps. Parsons [1983] and Fine [1981] use “rigidity” for the set-theoretic version of (i). Parsons [1983]
uses “full rigidity” for the conjunction of the set-theoretic versions of both, and suggests that they should hold
for pluralities. Williamson [2013] and Linnebo [2016] follow them, using “rigidity” for (i). As Linnebo [2013]
points out, though, the problem with this terminology is that it may engender confusion with the well-known
semantic notion made famous by Kripke. For this reason, Linnebo [2013] opts for the term “stability”, which
I follow here. (Linnebo [2013] calls (ii) “inextensibility”, though his formulation differs from mine because he
is working in a weaker modal logic.) Thanks to an anonymous referee for pushing me on this point.
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validates stability and ext (theorem 3).13

That leaves Comprehension. Unfortunately, it is well-known that Comprehension cannot

be axiomatised, since any reasonable theory has models in which it fails.14 Nonetheless, it

does admit of an approximation in the form of a comprehension schema which says of each

condition ϕ in a fixed language that there are some things comprising each and every ϕ.

Formally:

(comp) ∃xx∀x(x ≺ xx↔ ϕ)

As we move to richer and richer languages, comp approaches Comprehension closer and closer

even though it is never reached.

For our purposes, the difference between Comprehension and comp is not idle. It is natu-

ral to see Comprehension as modelling a certain combinatorial aspect of pluralities: the idea

that any combination of objects gives rise to a plurality.15 The schema comp delivers such

pluralities when the relevant combination of objects is circumscribed by a condition in some

language. But there may be combinations of objects that are not circumscribed by any condi-

tion in any language. It is plausible, for example, that there is a combination of set-theoretic

ordered pairs that associates each set with one and only one of its members (Pollard [1988]).

By the combinatorial idea, there should thus be a plurality of such pairs. But there is no

reason to think that any condition in any language will circumscribe such a plurality. If this is

right, there will be claims—like those asserting the existence of these ‘choice pluralities’—that

follow from the nothing over and above conception but are not provable from stability, ext,

and comp.16

13Other standard extensionality principles fail to capture Upward Dependence in this way. Clearly, a model
satisfies Extensionality precisely when it validates:

(*) ∀xx, yy(∀x(x ≺ xx↔ x ≺ yy)→ xx = yy)

But there are models of Comprehension, stability and (*) that do not model ext and thus in which Upward
Dependence fails. Indeed, there are models of Comprehension, stability and both of the following stronger
extensionality principles that do not model ext (theorem 6).

(**) 2∀x(x ≺ xx↔ x ≺ yy)→ xx = yy

(***) 2∀x2(x ≺ xx↔ x ≺ yy)→ xx = yy

14More precisely, if Comprehension holds in every model of T, then T proves, for some n, that there are
necessarily at most n things.

15Compare this with the combinatorial conception of set (Bernays [1935]). I am tempted to think that both
this combinatorial idea and Upward dependence have a common source in a more general upward dependence
idea. If that is right, then there are really three ideas behind the nothing over and above conception: a general
form of upward dependence, a downward dependence idea, and an extensionality idea.

16It is a standard result in set theory that the existence of choice pluralities is not provable from comp
and the extensionality principle (*) from footnote 13. It follows immediately that their existence is also not
provable from stability, ext, and comp.
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Where does this leave us? I have shown how to axiomatise three core components of the

nothing over and above conception—those modelled by Downward Dependence, Upward De-

pendence, and Extensionality—and I have provided an approximation for the other—namely,

the combinatorial idea modelled by Comprehension. Clearly, the motivation for those con-

straints extends to show that stability, ext, and comp each follow from the nothing over and

above conception. Any claim provable from them will therefore also follow from the nothing

over and above conception. What the ‘choice plurality’ example shows is that the converse

may fail: there may be claims that follow from the nothing over and above conception which

are not provable from stability, ext, and comp. Nevertheless, there is a precise sense in which

such claims only concern the combinatorial aspect of pluralities: it is an immediate conse-

quence of the previous results that a model conforms to the nothing over and above conception

just in case it validates stability, ext, and comp and satisfies Comprehension, assuming one of

Nothing, Everything, or Existence. Those latter claims moreover have straightforward axioma-

tisations. In particular, it is easy to see that a model satisfies Nothing precisely when it

validates:

(no) x ≺ xx→ Exx

that it satisfies Everything precisely when it validates:

(ev) x ≺ xx→ 2(¬Exx→ x ≺ xx)

and that it satisfies Existence precisely when it validates:

(ex) x ≺ xx→ 2(¬Exx→ [x ≺ xx↔ Ex])

Thus, assuming that a model validates one of no, ev, or ex, it conforms to the nothing over and

above conception just in case it validates stability, ext, and comp and satisfies Comprehension.

So we might say that any claim which follows from the nothing over and above conception

follows from stability, ext, and comp when we enhance them with the combinatorial idea be-

hind Comprehension (assuming one of no, ev, or ex). In other words, we can fully capture the

nothing over and above conception in the object language partly precisely, in terms of stability,

ext, and comp, and partly informally, in terms of the combinatorial idea behind Comprehension.

It is consequence of the failure of comp to fully axiomatise Comprehension that stability, ext,

and comp fail to provide a complete account of plural reality: they have non-isomorphic

models with the same first-order part. In spite of this, they do come surprisingly close. In

particular, suppose we take two models K and K ′ of stability, ext, and comp together with

one of no, ev, or ex and assume that comp holds in both models for pluralities in the other
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model. That is, assume that whenever X is a plurality in K, there is some plurality Y in K ′

for which: ⋃
w∈W

Iw(X) =
⋃

w′∈W ′
Iw′(Y )

and vice versa. Then we can show that if K and K ′ have the same first-order part, they are

isomorphic (theorem 4).

Here is another way to put the point. Suppose two speakers adopt comp in an open-ended

way—so that they intend it to hold no matter which language they consider—then if they

agree on first-order reality and accept stability, ext, and comp (together with one of no, ev,

ex), they will agree on plural reality.17

2 Discussion

The model-theoretic and axiomatic explications of the nothing over and above conception

show that it provides a simple, strong, and explanatory account of pluralities. As such, we

might think it can be used to justify the claims that follow from it.18,19 This is significant

because much of the work on the modal logic of plurals has focused on trying to justify

principles like stability by deriving them from claims that are, as Linnebo [2016] points out,

no more clearly justified.20

The explications moreover show just how far that justification extends. To see this, it

will help to compare stability, ext, and comp with what I take to be the most comprehensive

investigation of the principles of plural modal logic to date, namely Linnebo [2016].21 In

addition to comp, Linnebo proposes the following.22

(Idsc) ∀xx, yy(∀x(x ≺ xx↔ x ≺ yy)→ ϕ(xx)↔ ϕ(yy))

(Stab+) ∀xx, x(x ≺ xx→ 2(Exx ∧ Ex→ x ≺ xx))

17Compare this with the ‘internal’ categoricity results in set theory. See Walsh and Button [2018] for
discussion.

18In this respect, it plays a similar role to that played by the so-called iterative conception of set in set
theory. See, for example, Boolos [1971].

19Roberts [2016], Roberts [2019], and Linnebo [2016] also suggest using the nothing over and above concep-
tion to justify certain claims in the language of plural modal logic. In addition to stability and comp, I had
already outlined the importance of ext in my thesis, Roberts [2016].

20See, for example, Uzquiano [2011] and Rumfitt [2005].
21Linnebo [2016] defines the existence predicate for pluralities, Exx, as ∃x(x ≺ xx). This will not effect

the claims I make below, but it is worth noting that once we define Exx in this way, what are usually logical
and innocuous principles become substantive. For example, instances of the axiom of universal instantiation—
Exx ∧ ∀yyϕ→ ϕ(xx)—become highly non-trivial. Effectively, they assume no: x ≺ xx→ Exx.

22As I pointed out in footnote 5, Linnebo [2016] actually gives some reasons for denying comp in full
generality. But again this will not effect the claims I am going to make.
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(Stab−) ∀xx, x(x 6≺ xx→ 2(Exx ∧ Ex→ x 6≺ xx))

(Dep) ∀xx, x(x ≺ xx→ 2(Exx→ Ex))

(BC) x ≺ xx→ Ex23,24

Although extensive, there are important claims that these principles fail to imply.

Recall our people—Melesha, Nadia, and Dylan—and consider them without Melesha. To

avoid confusion, let xx be the former people and yy the latter. Are the yy among the xx,

whenever the xx exist? Do the yy exist whenever the xx do? The nothing over and above

conception implies positive answers to both questions. If these and those are nothing over

and above the individual things they comprise and these are among those, then whenever

those exist these must exist and be among them. Formally:

(sub-plurality) ∀xx, yy(xx ⊆ yy → 2(Eyy → Exx ∧ xx ⊆ yy))

Indeed, it can be shown that sub-plurality follows from stability, ext, and comp (theorem 5).

And it has important applications in the philosophy of mathematics. Take modal structural-

ism, the view that mathematics concerns possible structures. On the most prominent version

of this view, due to Geoffrey Hellman, structures are pluralities.25 It turns out that for such

structures to be well-behaved—in particular, for a structure to satisfy the same second-order

claims wherever it exists—sub-pluralities of a structure must continue to exist and be its

sub-pluralities wherever that structure exists. This is precisely what sub-plurality ensures

([Roberts, 2019, p. 18]).

But sub-plurality does not follow from Linnebo’s principles (theorem 6).26 More generally,

23This is the first-order “being constraint” for ≺. See Williamson [2013] for a general discussion of the being
constraint. The plural being constraint is no. Given Linnebo’s definition of “Exx”, no follows from BC.

24Linnebo also suggests the following “traversability principle”:

(UnivTrav-C) ∀xx2(Exx→ ∀x(x ≺ xx↔
∨

a≺xx

x = a))

where “
∨

a≺xx x = a” is intended to express an infinite disjunction of claims of the form “x = a” where a is
one of the xxs. But this is redundant. It is easy to see that Stab+, Dep, and BC already imply stability and
that stability in turn ensures UnivTrav-C on its intended reading. Nonetheless, see footnote 28 for a criticism
of the formalism used in this principle.

25See Hellman [1989] and Roberts [2019] for details.
26Another natural claim that Linnebo’s principles fail to imply is the following restricted version of the plural

Barcan formula.
Eyy ∧3∃xx ⊆ yyϕ→ ∃xx ⊆ yy3ϕ

It is straightforward to modify the proof of theorem 5 to show that this also follows from stability, ext, and
comp, and it is easy to see that it fails at w0 of the Kripke model of Linnebo’s principles constructed in
theorem 6 when ϕ = “xx = zz”, “yy” is assigned {0, 1}, and “zz” is assigned 3. Since that model validates
the unrestricted first-order Barcan formula, this also shows that the first-order Barcan formula does not imply
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it is easy to see that sub-plurality is subsumed by the idea behind Upward Dependence and

that it is precisely this idea that Linnebo’s principles fail to capture. In fact, there are simple

Kripke models of Linnebo’s principles in which the first-order domains are constant but the

plural domains are completely disjoint.27,28

Let me end with two more applications of the idea behind Upward Dependence.

Perhaps the most well-known use of pluralities in the philosophy of mathematics is in securing

categoricity results. It is often claimed, for example, that plural formulations of arithmetic

have exactly one model up to isomorphism: in so far as there are non-standard models,

they can be rejected as illegitimate. More generally, plural quantification is taken to be

determinate: given any first-order domain, there is only one legitimate corresponding plural

domain. Florio and Linnebo [2016] have challenged this orthodoxy. They show that there are

non-standard plurality-based models—where the domain of the plural quantifiers consists of

pluralities—and argue that there is no reason to dismiss such models as illegitimate. More

precisely, they argue that there is a symmetry between plural and set quantification: extant

reasons to dismiss their non-standard models of plural quantification are also reasons to

dismiss non-standard models of set quantification. The detour through pluralities in order

to secure categoricity would thus be redundant. I will now argue that the nothing over and

above conception, and in particular the idea behind Upward Dependence, can be used to break

this symmetry.

It will help to start with an argument for the determinacy of plural quantification that

Florio and Linnebo consider and reject. The argument, which they attribute to Hossack

[2000], is based on the claim that plural quantification is ontologically innocent. On one

natural way of spelling this claim out, it says that pluralities in the range of plural quantifiers

are not an ontological commitment over and above the ontological commitments of the first-

order quantifiers. Ontological innocence is thus determined locally, plurality by plurality: if

each plurality in the domain of a plural quantifier is nothing over and above some individual

the restricted plural Barcan formula without ext. It is again straightforward to modify the proof of theorem 5
to show that it does follow given ext.

27To see this, take any Kripke model with a constant first-order domain in which the plural domains are
disjoint copies of its powerset. If Y is the copy of X at w, then we let Iw(Y ) = X. That will already satisfy
all of Linnebo’s principles with the exception of BC. To make sure the model also satisfies BC we just require
that x ≺ X is trivially false at worlds at which X does not exist. Formally, we require that when X 6∈ D2(w),
w � x 6≺ X. In other words, we adopt Nothing.

28In a footnote, Linnebo also suggests the following principle as an alternative to Dep:

∀xx2(Exx↔
∧

a≺xx

Ea)

Once this is added, it turns out that on a natural model theory for “
∧

a≺xx”, we do get Upward Dependence.
The problem is that although this new resource is tolerably clear in the model theory, it is completely unclear
how to axiomatise it.
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things in the domain of the first-order quantifier, then the plural quantifier is ontologically

innocent. This is clearly in keeping with the nothing over and above conception. But as

Florio and Linnebo point out, it is not enough to ensure determinacy. Any plurality-based

model respects ontological innocence in this sense and since Florio and Linnebo have shown

that there are non-standard plurality-based models, ontological innocence in this sense does

not ensure determinacy.

This is certainly right. But there are other equally natural ways to spell out the claim

that plural quantification is ontologically innocent. For example, we could say that a plural

quantifier is ontologically innocent if the pluralities in its range conform to the nothing over

and above conception. Ontological innocence would then be determined globally : if the

pluralities in the range of a plural quantifier respect the nothing over and above conception

as a whole, then the plural quantifier is ontologically innocent. Once we modify ontological

innocence in this way, however, we can rule out Florio and Linnebo’s non-standard plurality-

based models. In particular, we can show that any two models with the same first-order

domain that conform to the nothing over and above conception have the same plural domain.

The argument is simple and relies crucially on Upward Dependence.

I will follow Florio and Linnebo in using plural predicate variables D,D′,D′′ and so on

to circumscribe plural domains. Now suppose we have two modelsM andM′ with the same

first-order domain D but distinct plural domains D and D′ respectively, and suppose that

both models conform to the nothing over and above conception. Say that the xxs are in the

plural domain of M but not M′: D(xx) but not D′(xx). By Downward Dependence applied

to M, each of the xxs is in the domain D. Thus, by Upward Dependence applied to M′, the

xxs must exist according to M′, which is to say D′(xx). Contradiction!29

In short, pluralities are so closely tied to the things they comprise that they are not an ex-

tra ontological commitment beyond those things. Similarly, none of those individual things is

an extra ontological commitment beyond them. But they are also so closely tied to the things

they comprise that the existence of each of those things does incur an ontological commitment

to them. Similarly, they incur an ontological commitment to each of those individual things.

For pluralities, ontological commitment and ontological innocence cut both ways. This high-

lights a fundamental difference between sets and pluralities. A set is an extra ontological

commitment beyond its members; it is something over and above them.30,31 Florio and Lin-

nebo’s non-standard plurality-based models can thus be ruled out as illegitimate because they

29Note that this argument does not rely on Comprehension and as a consequence is insensitive to the worries
about Comprehension mentioned in footnote 5.

30I am unsure whether the members are also an extra ontological commitment beyond the set. It is typically
thought that sets metaphysically cannot exist without their members (see footnote 12). But it is not clear
that this extends to the associated claim about ontological commitment.

31Another respect in which sets differ from pluralities may be the generality with which upward and down-
ward dependence principles like stability and ext hold. For example, it strikes me as plausible that on the
nothing over and above conception, stability and ext hold when 2 is interpreted as logical necessity. But the
analogous principles for sets are clearly false.
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do not conform to the nothing over and above conception, whereas non-standard models of set

quantification cannot analogously be ruled out as illegitimate. In general, if plural quantifiers

are ontologically innocent in the sense I am advocating, plural quantification is determinate.

Williamson [2013] is a sustained defence of necessitism—the view that existence is necessary—

against contingentism—the view that it is not. One part of that defence concerns the kind of

plural modal logic that each view allows for. He argues, in particular, that the contingentist

lacks an adequate way to express very natural principles concerning pluralities. For example,

it looks like the contingentist cannot easily formulate a “plural analogue of identity” or a

principle that ensures statements like the following.

(1) ∀xx, x(∀y(y ≺ xx↔ y = x)→ 2(Ex→ Exx))

In order to do so, Williamson claims, the contingentist would have to avail themselves of

so-called backtracking operators [Williamson, 2013, p. 250-252]. Such operators effectively

allow worlds to be cross referenced: to refer in one world back to what is true in another. The

worry is that these operators may really be hidden quantifiers over possible worlds.32 But as

Williamson argues, it is unclear whether the contingentist can countenance such quantifica-

tion. For the contingentist, modal operators must be understood primitively.

What my axiomatisation of the nothing over and above conception shows is that the

contingentist can both formulate a notion of identity for pluralities and justify the relevant

consequences of Upward Dependence.33 In particular, the extensionality principle ext shows

that “2∀x(3(x ≺ xx)↔ 3(x ≺ yy))” can be treated as a plural analogue of identity without

the need for backtracking operators. More precisely, although I have stated ext as a principle

concerning a primitive relation of identity for pluralities, it could just as well be replaced by

a principle which says that it is an identity relation. Formally:

(2) 2∀x(3(x ≺ xx)↔ 3(x ≺ yy))→ ϕ(xx)↔ ϕ(yy)

The theory stability + ext + comp with the identity relation holding between pluralities is

provably equivalent to stability + 2 + comp with identity confined to first-order terms.34

Furthermore, the proof that sub-plurality follows from stability + ext + comp extends to show

(1) and other similar claims also follow (see theorem 5).35

32See Melia [1992].
33The Kripke models I used have variable domains and all the proof theoretic results are carried out in a

simple positive free version of S5 modal logic. They are thus perfectly compatible with contingentism.
34Technically, they are bi-interpretable.
35Williamson also claims that the necessitist has a simpler account of pluralities than the contingentist. It is

certainly true that for the necessitist, stability and ext have slightly simpler formulations. In particular, stability
is equivalent to:

x ≺ xx→ 2x ≺ xx
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3 Technical appendix

In this appendix, I provide proofs for the main results of the paper. Unless otherwise stated,

I will assume that we have uniformly settled on adopting Existence, Ex, or ex. The proofs can

then be easily modified for the other principles.

Theorem 1. Let K be a model of Downward Dependence, Upward Dependence, Extensionality,

Comprehension, and Existence. Then K is isomorphic to the Boolos model of its first-order

part.

Proof. Let K be as in the theorem and let K ′ be its first-order part. Let a be a variable

assignment over K and let Aa be the following Boolos assignment:

〈“x”, y〉 ∈ Aa ↔ a(“x”) = y

〈“xx”, y〉 ∈ Aa ↔ y ∈
⋃

w∈W
Iw(a(“xx”))

By a simple induction on the complexity of formulas we show that:

w �a ϕ↔ w �Aa ϕ

The only non-trivial cases are those for “x ≺ xx”, “xx = yy”, and “∃xxϕ”. For “x ≺ xx”,

first note that by Ex, w �Aa “x ≺ xx” iff 〈“xx”, a(“x”)〉 ∈ Aa and a(“x”) ∈ D1(w). By the

definition of Aa, that is in turn equivalent to a(“x”) ∈
⋃

w∈W Iw(a(“xx”)) ∩D1(w). Now if

a(“xx”) ∈ D2(w), then Iw(a(“xx”)) =
⋃

w∈W Iw(a(“xx”))∩D1(w) by Downward Dependence;

but also if a(“xx”) 6∈ D2(w), then Iw(a(“xx”)) =
⋃

w∈W Iw(a(“xx”)) ∩ D1(w) by Existence.

So, in either case, w �Aa “x ≺ xx” iff w �a “x ≺ xx”

For “xx = yy”, first note that if a(“xx”) = a(“yy”), then
⋃

w∈W Iw(a(“xx”)) =
⋃

w∈W Iw(a(“yy”))

and thus w �Aa “xx = yy”. Conversely, suppose w �Aa “xx = yy” and thus
⋃

w∈W Iw(a(“xx”)) =⋃
w∈W Iw(a(“yy”)). Now, let w′ be such that a(“xx”) ∈ D2(w

′). Then, by Downward

Dependence,
⋃

w∈W Iw(a(“xx”)) =
⋃

w∈W Iw(a(“yy”)) ⊆ D1(w
′) and so by Upward Depen-

dence a(“yy”) ∈ D2(w
′). It follows from Extensionality and Downward Dependence that

a(“xx”) = a(“yy”) as required.

for the necessitist, and ext is equivalent to:

∀x(x ≺ xx↔ x ≺ yy)→ xx = yy

But if the necessitist and the contingentist both motivate their respective principles using the nothing over
and above conception, then they have precisely the same account of pluralities: namely, the nothing over and
above conception! As I see it, the crucial difference between the contingentist and the necessitist with respect
to plurals comes down to which of no, ev, or ex they adopt. For the necessitist, they all follow from stability.
The contingentist, on the other hand, has a genuine choice, and it is unclear what principled reasons they
could give for choosing one over the others.
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For “∃xxϕ”, assume that w �a “∃xxϕ”. Then w �a′ ϕ for some a′ that differs from a at

most in what it assigns to “xx” where that thing exists at w: that is, a′(“x”) ∈ D1(w). Thus

w �Aa′ ϕ by the induction hypothesis and
⋃

w∈W Iw(a(“xx”)) ⊆ D1(w) by the definition of

Aa′ . So, w �Aa “∃xxϕ”. Conversely, suppose w �Aa “∃xxϕ”. Then w �A′ ϕ for some A′ that

differs from Aa at most in what it relates to “xx” where those things all exist at w: that is,

{x : A′(“xx”, x)} ⊆ D1(w). Now, by Comprehension, there will be an X ∈ D2(w) for which

Iw(X) ∩D1(w) = {x : A′(“xx”, x)}. By Downward Dependence, Iw(X) ∩D1(w) = Iw(X) =⋃
w∈W Iw(X). Thus, where a′ is an assignment just like a expect possibly in that it assigns

X to “xx”, A′ = Aa′ . It follows that w �a “∃xxϕ”.

Theorem 2. Let K and K ′ be models of Downward Dependence, Upward Dependence, Exten-

sionality, Comprehension, and Existence. Assume, moreover, that they have the same first-order

part. Then, they are isomorphic.

Proof. Let X be a plurality in K and assume that it exists at w. By Downward Dependence,

Iw(X) =
⋃

w∈W Iw(X) ⊆ D1(w). By Comprehension, there is some Y in K ′ that exists at w

for which I ′w(Y ) ∩D1(w) =
⋃

w∈W Iw(X). Since Y exists at w it follows from Downward De-

pendence that I ′w(Y )∩D1(w) =
⋃

w∈W I ′w(Y ) and thus that
⋃

w∈W I ′w(Y ) =
⋃

w∈W Iw(X). By

Downward Dependence, Upward Dependence, and Extensionality, there is at most one plurality

comprising a given set of things: that is, for Z,Z ′ in a given model of Downward Dependence,

Upward Dependence, and Extensionality, if
⋃

w∈W Iw(Z) =
⋃

w∈W Iw(Z ′), then Z = Z ′. (This

is precisely what ext says.) So, Y is unique. In general, for X in K, let f(X) be the unique

such Y .

By induction on the complexity of formulas we prove that:

w �K ϕ( ~X)↔ w �K′ ϕ( ~f(X))

For “x ≺ xx”: if X ∈ D2(w), then f(X) ∈ D′2(w) and Iw(X) =
⋃

w∈W Iw(X) =
⋃

w∈W I ′w(Y ) =

I ′w(Y ) by Upward Dependence and Downward Dependence. Thus, w �K “x ≺ X” iff w �K′

“x ≺ X”. If X 6∈ D2(w), then Y 6∈ D′2(w) and Iw(X) =
⋃

w∈W Iw(X)∩D1(w) =
⋃

w∈W I ′w(Y )∩
D1(w) = I ′w(Y ) by Downward Dependence, Upward Dependence, and Existence. Thus, again,

w �K “x ≺ X” iff w �K′ “x ≺ X”.

By Downward Dependence, Upward Dependence, and Extensionality, w � “X = Y ” iff

X = Y iff
⋃

w∈W Iw(X) =
⋃

w∈W Iw(Y ) which in turn is equivalent to
⋃

w∈W I ′w(f(X)) =⋃
w∈W I ′w(f(Y )) and thus to f(X) = f(Y ) and to w � “f(X) = f(Y )”. In other words, f is

one-one.

To complete the proof, we just need to show that f onto. So let Y be a plurality in K ′ and

suppose that Y ∈ D′2(w). Then by Downward Dependence I ′w(Y ) =
⋃

w∈W I ′w(Y ) ⊆ D1(w).

So, by Comprehension, there is some X ∈ D2(w) such that Iw(X) ∩ D1(w) = I ′w(Y ). Thus,

by Downward Dependence,
⋃

w∈W Iw(X) = Iw(X) = Iw(X)∩D1(w) = I ′w(Y ) =
⋃

w∈W I ′w(Y ).
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So, f(X) = Y .

Theorem 3. Suppose that K models stability and the following instance of comp:

∃xx∀x(x ≺ xx↔ 3(x ≺ yy))

Then, K models ext just in case it satisfies Extensionality and Upward Dependence.

Proof. Let K be as in the theorem, and assume that it models ext. Let X,Y ∈ D2(w) be such

that Iw(X)∩D1(w) = Iw(Y )∩D1(w). By stability,
⋃

w∈W Iw(X) = Iw(X) = Iw(X)∩D1(w) =

Iw(Y ) ∩ D1(w) = Iw(Y ) =
⋃

w∈W Iw(Y ). So, by ext, X = Y . In other words, K satisfies

Extensionality.

Now assume that
⋃

w∈W Iw(X) ⊆ D1(w). By the above instance of comp there is some

Y ∈ D2(w) for which Iw(Y )∩D1(w) =
⋃

w∈W Iw(X). Now, since Y ∈ D2(w), Iw(Y )∩D1(w) =

Iw(Y ) =
⋃

w∈W Iw(Y ). Thus,
⋃

w∈W Iw(X) =
⋃

w∈W Iw(Y ). By ext it follows that X = Y .

In other words, K satisfies Upward Dependence.

Finally, and conversely, assume that K satisfies Extensionality and Upward Dependence.

Then since it models stability, it also satisfies Downward Dependence. It follows from all three

principles that X = Y iff
⋃

w∈W Iw(X) =
⋃

w∈W I ′w(Y ).

Theorem 4. Let K and K ′ be two Kripke models with the same first-order part such that

for X ∈ D2(w), there is Y ∈ D′2(w) for which:

Iw(X) ∩D1(w) = I ′w(Y ) ∩D1(w)

and vice versa. Assume, moreover, that they both model comp + stability + ext + ex. Then,

they are isomorphic.

Proof. By the previous theorem, we know that K and K ′ both satisfy Upward Dependence,

Downward Dependence, and Extensionality. Moreover, ex is valid just in case Existence holds.

Finally, note that the proof of theorem 2 only relied on the assumption about comprehension

in the statement of this theorem.

Theorem 5. In positive free S5, stability + ext + comp entail sub-plurality.36

Proof. Assume that 3(Exx, yy and xx ⊆ yy) and Eyy. By comp there are some zz such

that ∀x(x ≺ zz ↔ 3(x ≺ xx)). First, we want to show that the zz are the xx. So, suppose

3(x ≺ zz). By stability, x ≺ zz and Ex and thus 3(x ≺ xx) by the definition of zz. Now,

suppose 3(x ≺ xx). By stability, it follows that 32(Exx → Ex ∧ x ≺ xx) and thus that

2(Exx → Ex ∧ x ≺ xx). So, by our first assumption, we have 3(x ≺ yy). By stability and

36The following two results are taken from Roberts [2019]. I repeat them here for completeness.
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our assumption that Eyy, it follows that Ex. Thus, x ≺ zz by the definition of the zz and

thus 3(x ≺ zz). By ext, the zz are identical with the xx as required, and so Exx.

Second, we show that xx ⊆ yy. So, suppose Ez and z ≺ xx, then 3(x ≺ yy) by stability

and our first assumption. But then x ≺ yy by stability and our second assumption. Putting

all of this together we get:

3(Exx, yy ∧ xx ⊆ yy)→ (Eyy → Exx ∧ xx ⊆ yy)

and S5 allows us to transform that into:

Exx, yy ∧ xx ⊆ yy → 2(Eyy → Exx ∧ xx ⊆ yy)

Theorem 6. In positive free S5, stability + comp together with any of:

(*) ∀xx∀yy(∀x(x ≺ xx↔ x ≺ yy)→ xx = yy)

(**) 2∀x(x ≺ xx↔ x ≺ yy)→ xx = yy

(***) 2∀x2(x ≺ xx↔ x ≺ yy)→ xx = yy

fail to imply sub-plurality. ext is thus strictly stronger than these principles.

Proof. Consider an S5 Kripke model K with two worlds w0, w1, both with the first-order

domain {0, 1} (so the model validates first-order necessitism; formally, 2∀x2Ex). Let the

pluralities at w0 be ∅, {0}, {1}, and {0, 1} and the pluralities at w1 be ∅, 3, {1}, and {0, 1}.
At w0 and w1, we let ∅ contain nothing, {1} contain 1, and {0, 1} contain 0 and 1. At w0,

we let {0} contain 0, but at w1 we make it contain nothing; and at w1, we let 3 contain 0,

but at w0 we make it contain nothing. So, K validates 2∀x(3(x ∈ {0}) ↔ 3(x ∈ 3)) even

though {0} 6= 3. ext thus fails in the model. It is straightforward to check that K validates

stability, comp and (*), (***), and (***). Moreover, at w0, both {0} and {0, 1} exist and {0}
is a subplurality of {0, 1}; but, at w1, {0, 1} exists even though {0} does not. So, K does not
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validate sub-plurality.37,38
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