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As central as the method of forcing is within set theory, it has yet to be incorporated
into the philosopher’s toolbox. That strikes me as a shame, since it may well have important
applications within philosophy. One barrier is that typical presentations of forcing are overly
dry and technical and make it seem inherently bound up with its applications within set
theory. The purpose of this note is to try to rectify this. I will show how forcing models can
be seen as a special case of a more general class of intentional models that philosophers are
already interested in: namely, possibility models.

1 The basic idea

In set theory we use the axioms of ZFC to construct models of those very same axioms. The
most well-known example is Gödel’s model, L, comprising the so-called constructible sets. In
ZFC, we can prove both of each axiom of ZFC that it is is true in L and that the continuum
hypothesis (CH) is true in L. We conclude that ZFC does not prove the negation of CH,
assuming it’s consistent: if it did, it would prove that both CH and its negation hold in L,
which is impossible. Think of L as specific way the universe of sets could be: the way it
would be if every set were constructible. So the strategy is to find specific ways the universe
of sets could be in which the axioms of ZFC are all true but in which some target claim is
false, thereby showing that the target claim doesn’t follow from those axioms.

As I’m going to present it here, the method of forcing generalises this strategy. Instead of
helping us to find specific ways the universe of sets could be—e.g. as it would be if every set
were constructible—it helps us to find a range of possibilities for the universe of sets, which is
to say: a range of non-specific ways the universe of sets could be. We use the axioms of ZFC
to construct possibility models in which those very same axioms are necessarily true, rather
than true simpliciter, but in which some target claim—like CH—is possibly false. As above,
we conclude that ZFC does not prove the target claim, assuming it’s consistent: if it did, it
would prove both that the target claim is necessarily true in the possibility model—because
that claim follows from the axioms of ZFC and each of those axioms is necessarily true—and
that its negation is possibly false, which is impossible.1

1Unless otherwise stated, in what follows I will implicitly work in ZFC. Nevertheless, a lot of what I say
isn’t intrinsically set theoretic. For example, the notion of a possibility model can be naturally formulated in a
higher-order logic and its basic properties proved. When we come to forcing possibility models, I’ll rely more
heavily—though still mostly implicitly—on the background set theory.
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2 Possibilities and possibility models

In specifying a range of ways the universe could be, possibility models are like Kripke models.
But whereas Kripke models deal with possible worlds, possibility models deal with possibil-
ities.2 Possibilities are like parts of possible worlds. Whereas possible worlds are complete
specifications of ways the world could be, possibilities are partial specifications. For example,
any possible world in which Mae loves George will also either be a possible world in which
Mae is a comedian or a possible world in which they aren’t. A possibility in which Mae
loves George, on the other hand, may make neither claim true. Nevertheless, possibilities can
be extended to more inclusive possibilities that settle such questions: possibilities in which
Mae loves George and works as a comedian, and possibilities in which Mae loves George and
doesn’t work as a comedian.3

A space of possibilities can be modelled by a partial order: which is to say a non-empty
set together with a reflexive, transitive, and anti-symmetric relation ≤ on its members.4 In
particular, we can think of the elements of the partial order as representing the possibilities
and its relation ≤ as representing extension between them. So, for possibilities p and q, the
idea is that p ≤ q when p has q as a part; when p includes q; when p extends q. For example,
q might be a possibility in which Mae loves George and p a possibility in which Mae loves
George and works as a comedian.

Let P be a partial order. We can obtain a possibility model from P in two simple steps.
First, we specify a domain for the model. For our purposes, the domain can be a proper class.5

Since our focus here is on set theory, we can think of its elements as possible sets, where a
possible set is a kind of mathematical object whose identity is determined by what members
is has at what possibilities. Possible sets are thus more akin to properties than traditional
sets. Second, for our atomic relations, we specify which objects in the domain relate to
which relative to what possibilities. Since our focus is on set theory, that means the relations
of membership and identity. Formally, then, a possibility model (for the language of first-
order set theory, L∈) is obtained by supplying a domain of objects D and two interpretation
functions I∈ and I= that map ordered pairs of elements of D to subsets of P. For example,
suppose that our interpretation function I∈ assigns the set of all possibilities to a pair ⟨x, y⟩:

2Possibility models were first introduced by Humberstone [1981]. See Holliday [2021] for an up-to-date
treatment.

3We might think of possible worlds as maximally inclusive possibilities: possibilities that cannot be extended
to more inclusive possibilities. Whether there are such possibilities will depend on how rich our space of
possibilities is. For some spaces, it may be that all possibilities are extendable and thus that there are no
possible worlds in this sense. When every possibility can be extended to a maximally inclusive possibility, the
resulting possibility models effectively collapse to Kripke models. The interesting cases are thus those where
this fails (see footnote 20 for further discussion). Of course, since classical models are a special case of Kripke
models, when there is a single possibility that extends every possibility, the resulting possibility models will
effectively collapse to classical models. In section 5 I will offer a more apt notion of possible world for the
possibility model approach to forcing.

4It is an interesting and important question what happens when the partial order is not a set, but a proper
class. As you’ll see, there is nothing in the set up that requires us to assume that the partial order is a set, and
many of the results below will have analogues when it isn’t. If we like, we could even use plural, higher-order,
or class quantification, to quantify over propositions. And indeed, there are interesting forcing models, as
I’m conceiving them, that are based on proper class-sized possibility spaces. Nevertheless, in the interests of
simplicity, I am going to ignore such spaces in this note.

5Indeed, when we get to our forcing models, it will be. Since we’re implicitly working in ZFC, that means
the domain will be definable by some formula in the language of first-order set theory, L∈. Similarly, for the
assignment functions below.
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that is, I∈(⟨x, y⟩) = P. Then according to that assignment, the claim that x is a member of
y is necessary. No matter how things had been, x would have been an element of y; x is an
element of y according to all possibilities. Conversely, suppose I∈ assigns the empty set of
possibilities to ⟨x, y⟩: that is, I∈(⟨x, y⟩) = ∅. Then according to that assignment, the claim
that x is a member of y is impossible. No matter how things had been, x would not have
been an element of y; x is an element of y according to no possibilities.

It is natural to think of a set of possibilities as a proposition: namely, the proposition that
one of those possibilities obtains. Our interpretation functions I∈ and I= can therefore be seen
as assignments of propositions to ordered pairs over the domain. And, it turns out, there’s a
very natural way to extend I∈ and I= compositionally to assignments of propositions to all
claims in L∈. But first, we need to define a central notion in possibility semantics: namely,
that of compossibility. Possibilities are said to be compossible if there is a possibility extending
each of them: if they can all obtain in a single possibility. So, for example, the possibility that
Mae loves George and the possibility that Mae loves Susan are compossible. Possibilities that
are not compossible are said to be incompossible. So, for example, any possibility in which
Mae’s hat is red and any possibility in which Mae’s hat is green are incompossible. We can
think of incompossibility as a kind of ruling out. If a possibility is incompossible with some
other possibilities, then it rules those possibilities out: it cannot obtain together with any
one of them. Any possibility in which Mae’s hat is red, for example, rules out all possibilities
in which their hat is green. This notion of ruling out is naturally seen as a notion of making
false (though, of course, it is not the only such notion). So, for example, we can say that a
possibility in which Mae’s hat is red makes it false that their hat is green. In general, we can
say that a possibility p makes a proposition X false when p rules out all the possibilities in
X, which is to say: when p is incompossible with all the possibilities in X. I will abbreviate
the claim that p is incompossible q as p⊥q and the claim that p is incompossible with all the
possibilities in X—equivalently: the claim that p makes X false—as p⊥X.

With these notions in place, we can extend the assignment functions I∈ and I= to the
whole language as follows. We let the possibilities for a disjunction be the possibilities for
its disjuncts; the possibilities for an existentially quantified claim, the possibilities for its
instances; and the possibilities for the negation of ϕ, the possibilities that make it false:
which is to say, the possibilities that are incompossible with the possibilities for ϕ. Formally,
let [[ϕ]]M denote the proposition assigned to ϕ by M—the proposition that ϕ—and let X =
{p ∈ P : p⊥X}. When M is clear from context, I’ll simply write [[ϕ]] for [[ϕ]]M . Then we have:

• [[ϕ ∨ ψ]] = [[ϕ]] ∪ [[ψ]]

• [[∃xϕ]] =
⋃

x∈D[[ϕ]]

• [[¬ϕ]] = [[ϕ]]

The notions of compossibility, incompossibility, and making false also allow us to define a
natural notion of implication between propositions. For propositions X,Y ⊆ P, we say that
X implies Y—in symbols, X ⊨ Y—when it is impossible for an X possibility to obtain
whilst Y is false. That is, when there is no possibility that includes an X possibility but is
incompossible with all the possibilities in Y .6 Equivalently: X implies Y when any possibility

6Formally: ¬∃p∃q, r(p < q, r∧q ∈ X ∧r ∈ Y ). In other words, if any possibility containing an X possibility
can be extended to contain a Y possibility. Formally: ∀p ∈ X∀q(q < p → ∃r < q∃s ∈ Y (r < s)). In other
words, when the possibilities making Y false are also possibilities making X false: that is, when Y ⊆ X.

3



that includes an X possibility does not make Y false.
It’s a good exercise to show that the implication relation and the assigned propositions

work together in a classical way.7 In particular, to show that the union
⋃
X of any set of

propositions X behaves implicationally like their disjunction,8 and that the set of possibili-
ties incompossible with a proposition X—that is, the possibilities making X false—behaves
implicationally and classically like its negation.9 So, when you’re reasoning with propositions
in this setting, you can just reason classically in the usual way. One upshot is therefore that
the laws of classical first-order logic without identity are preserved under implication.10

Theorem 2 Suppose ψ is provable from ϕ0, ..., ϕn in first-order logic without identity. Then
ZFC proves [[ϕ0 ∧ ... ∧ ϕn]] ⊨ [[ψ]] for any possibility model.

By picking a suitable interpretation function I=, we can also ensure that the identity axioms
are necessary so that all arguments of classical first-order logic are preserved under impli-
cation.11 In what follows, I will assume that we have done this. With such an assignment
in place, we can also simplify our possibility models a little. When the identity axioms are
necessary in a possibility model, it is not hard to see that we can, without changing the propo-
sitions assigned to claims in the language, identify objects in the domain that are necessarily
identical.12 In other words, we can equally well work with a model in which if [[x = y]] is

7As a first step, it is easy to see that implication is reflexive and transitive. Every proposition trivially
implies itself and any proposition implying a proposition that implies X already implies X. Formally, X ⊨ X
and X ⊨ Z whenever X ⊨ Y ∧ Y ⊨ Z.

8More precisely, each proposition in X implies
⋃

X and if each proposition in X implies some proposition
Y , then

⋃
X already implies Y . Formally, X ⊨

⋃
X for each X ∈ X , and

⋃
X ⊨ Y whenever X ⊨ Y for each

X ∈ X .
9More precisely, the only proposition that implies both X and X is the empty set—the absurd proposition—

and any proposition that is incompatible in this way with X implies X. Formally, say that X and Y are
incompatible if ∀Z(Z ⊨ X ∧ Z ⊨ Y → Z = ∅). Then, X and X are incompatible and for any proposition Y
incompatible with X, Y ⊨ X. Moreover, the implication relation has the classical property that negations of

negations of propositions imply those very propositions. Formally: X ⊨ X.
10More generally, it is not hard to show that, modulo implicational equivalence, the propositions form a

complete Boolean algebra.

Theorem 1 (ZFC) Modulo implicational equivalence, the empty proposition as the bottom element, union
as join, and X as complement, are a complete Boolean algebra on the propositions.

There are a number of natural ways to mod out by simply picking particular propositions to play the role
of the equivalence class. For example, it is easy to see that the union of all propositions implicationally
equivalent to X—

⋃
{Y : Y is implicationally equivalent toX}—is itself implicationally equivalent to X (and

thus a member of its equivalence class). It is easy to see that this proposition is simply the proposition
containing all possibilities that imply X—

⋃
{Y : Y is implicationally equivalent toX} = {p ∈ P : p ⊨ X}.

11The simplest such function takes identity to be absolute, so that when x = y, I=(⟨x, y⟩) = P and when
x ̸= y, I=(⟨x, y⟩) = ∅. Unfortunately, this function will not always work for possibility models of set theory.
In such models, we want the axiom of extensionality to be necessary. Given the necessity of the identity
axioms, this means that [[∀z(z ∈ x ↔ z ∈ y)]] will have to be implicationally equivalent to [[x = y]]. Variation
in membership across possibilities will in general therefore require variation in identities. Since the most
interesting possibility models will have lots of variation in membership across possibilities, they will typically
also have lots of variation in identities. The hardest task in constructing the forcing model described below
is precisely in obtaining this link between membership and identity in a way that makes the identity axioms
necessary.

12More precisely, given a possibility model M = ⟨P, D, I∈, I=⟩ making the identity axioms necessarily
true, we can let M= be the model whose domain comprises equivalence classes of elements of D under the
relation [[x = y]] ≡ P and whose interpretation functions are defined accordingly. Since these equivalence
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necessary, then x = y. So, in what follows then, I will assume that a possibility model is as
before, but now such that it (1) makes the identity axioms necessary and (2) is such that
necessarily identical elements of the domain are really identical.

A natural notion of truth at a possibility is immediate, given our notion of implication. In
particular, we can say that a possibility makes a proposition true—or that the proposition is
true at the possibility—when the singleton of the possibility implies the proposition. Formally,
we can say that p makes X true—or that X is true at p—when {p} ⊨ X, which I will write
simply as p ⊨ X. We can then say that a possibility makes ϕ true—or that ϕ is true at the
possibility—when p makes the proposition that ϕ true. Formally, we’ll say that p makes ϕ
true—or that ϕ is true at p—when p ⊨ [[ϕ]]. Truth at a possibility is the possibility model
analogue of truth at a possible world in a Kripke model. But whereas the truth of ϕ at a
possible world can be determined by the truth of its subformulas at that world, the truth of ϕ
at a possibility will typically only be determined by the truth of its subformulas at extensions
of that possibility. In particular, whereas a possible world makes ¬ϕ true when it fails to make
ϕ true, a possibility makes ¬ϕ true when it makes ϕ false or rules out ϕs being true: that is,
when it is incompossible with all the possibilities that make ϕ true (equivalently: when every
possibility extending it fails to make ϕ true). And whereas a possible world makes ϕ ∨ ψ
true when it makes either ϕ or ψ true, a possibility makes ϕ ∨ ψ true when no possibility
extending it makes both ϕ and ψ false or rules out both ϕ and ψ: that is, when no possibility
extending is incompossible with all the possibilities that make ϕ true and all the possibilities
that make ψ true (equivalently, when every possibility extending it can be further extended
to a possibility that makes ϕ true or further extended to a possibility that makes ψ true). In
general, we can derive the following clauses for truth at a possibility (extending them to ∀,
∧, and →, which I will take to be defined from ∃, ∨, and ¬ in the usual way).

• p ⊨ ¬ϕ ⇔ p⊥[[ϕ]] ⇔ ¬∃q ≤ p∃r ∈ [[ϕ]](q ≤ r) ⇔ ∀q ≤ p(q ̸⊨ ϕ)

• p ⊨ ϕ ∨ ψ ⇔ ¬∃q ≤ p(q ⊨ ¬ϕ ∧ w ⊨ ¬ψ) ⇔ ∀q ≤ p∃r ≤ q(r ⊨ ϕ ∨ r ⊨ ψ)

• p ⊨ ϕ ∧ ψ ⇔ p ⊨ ϕ ∧ p ⊨ ψ

• p ⊨ ϕ→ ψ ⇔ ¬∃q ≤ p(q ⊨ ϕ ∧ q ⊨ ¬ψ) ⇔ ∀q ≤ p(q ⊨ ϕ→ q ⊨ ψ)

• p ⊨ ∀xϕ ⇔ ∀x ∈ D(p ⊨ ϕ)

• p ⊨ ∃xϕ ⇔ ¬∃q ≤ p∀x ∈ D(q ⊨ ¬ϕ) ⇔ ∀q ≤ p∃r ≤ q∃x ∈ D(r ⊨ ϕ)

Just as we get used to evaluating the truth of claims at possible worlds by working through
examples, so too one can relatively easily get used to evaluating the truth of claims at a
possibility by working through examples. The big difference is that even when evaluating
non-modal claims at a possibility, we have to consider the possibilities extending it. Let’s
look at a simple example.

classes will be proper classes, we can use the Scott trick to obtain sets that play the same role. Then,
where [[x]] is the equivalence class for x, the interpretation functions I ′= and I ′∈ for M= can be defined by:
I ′=([[x]], [[y]]) =

⋃
x∈[[x]],y∈[[y]][[x = y]] and I ′∈([[x]], [[y]]) =

⋃
x∈[[x]],y∈[[y]][[x ∈ y]]. It is then straightforward to show

that in general the proposition assigned by M to ϕ(x⃗) is implicationally equivalent to the proposition assigned

by M= to ϕ( ⃗[[x]]).
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Suppose we want to figure out whether the claim that every possible set is a member
of some possible set—that is, ∀x∃y(x ∈ y)—is made true by a possibility p. Since it’s a
universal quantification, we know that p will make it true just in case it makes each instance
true. Formally:

p ⊨ ∀x∃y(x ∈ y) ⇔ ∀x ∈ D(p ⊨ ∃y(x ∈ y))

To figure out whether p ⊨ ∀x∃y(x ∈ y), then, we need to figure out whether, for each possible
set x in the domain, p makes it true that x is a member of some possible set. Since that’s
an existential quantification, we know that p will make it true just in case every one of p’s
extensions can be further extended to make some instance true. Formally:

p ⊨ ∃y(x ∈ y) ⇔ ∀q ≤ p∃r ≤ q∃y ∈ D(r ⊨ x ∈ y)

So, we let q ≤ p be an arbitrary possibility extending p and we ask: is there a possibility
extending q that makes x ∈ y true for some possible set y? If we can find such a possibility
and possible set for each such q ≤ p, then we’ve established that p makes ∃y(x ∈ y) true for
x. Alternatively, if there is a q ≤ p for which we can’t find such a possibility and possible
set, then we’ve established that p does not make ∃y(x ∈ y) true (and so does not make
∀x∃y(x ∈ y) true either). Of course, even if p doesn’t make ∃y(x ∈ y), that doesn’t mean it
makes its negation true! There may still be possibilities extending p that makes ∃y(x ∈ y)
true. Possibilities are not possible worlds.

When working in a possibility model, it is natural to move back and forth between individual
possibilities and propositions. Propositions allow us a more coarse grained view on the model,
whereas possibilities allow us a more fine grained view. When we are dealing with logical
relations, it makes sense to focus on propositions and forget the possibilities they contain.
When we are dealing with the behaviour of particular possible sets, it makes sense to focus on
the possibilities that encode specific information about them. Because we explicitly defined
implication in terms of the relations of extension among possibilities, we can indeed move
freely back and forth between possibilities and propositions: X implies Y precisely when
every possibility in X implies Y , which is precisely when no possibility extending an X
possibility rules out Y , which is precisely when every possibility in X is only extended by
possibilities compossible with some possibility in Y .

X ⊨ Y ⇔ ∀p ∈ X(p ⊨ Y ) ⇔ ¬∃p ∈ X∃q ≤ p(q⊥Y ) ⇔ ∀p ∈ X∀q ≤ p(q��⊥Y )

3 Forcing models as possibility models

As I’m thinking of it here, the method of forcing consists in the construction of very specific
possibility models in which the axioms of ZFC are necessary. Given a particular space of
possibilities, these possibility models are uniquely characterised by three simple features:
Extensionality, Maximality, and Well-foundedness. Before I get to them, I need to define an
important notion: namely, that of a profile.

Possible sets are objects that have members at various possibilities. So, any function f
from some possible sets to propositions gives us an abstract specification of a possible set:
namely, a possible set that has something as a member in so far as that thing is equal to one
of the possible sets in f ’s domain in so far as the corresponding proposition is true. A profile
is simply such a specification.
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Definition 1 A profile is a function from possible sets to propositions. Let X ≡ Y abbre-
viate the claim that propositions X and Y are implicationally equivalent: formally, X ≡ Y
abbreviates X ⊨ Y ∧ Y ⊨ X. Then we say that a profile f defines a possible set s when, for
any possible set y in D:

[[y ∈ s]] ≡ [[(y = x0 ∧ f(x0)) ∨ (y = x1 ∧ f(x1)) ∨ ... ∨ (y = xi ∧ f(xi)) ∨ ...]]

for xi ∈ dom(f).

Let M = ⟨P, D, I=, I∈⟩ be a possibility model.

Extensionality simply says that the axiom of extensionality is necessarily true in M. In other
words, it says that the proposition assigned to the axiom of extensionality is implicationally
equivalent to P. Equivalently: it says that the proposition that x and y have the same
elements implies the proposition that they are identical, for any possible sets x and y in D.
Formally:

[[∀z(z ∈ x↔ z ∈ y)]] ⊨ [[x = y]]

Because our possibility models identify necessarily identical possible sets, it is not hard to
see that this gives us a criterion of identity for possible sets according to which possible sets
containing the same elements at the same possibilities are identical. Extensionality tells us, in
other words, that possible sets are completely characterised by what members they have at
what possibilities. Possible sets defined by the same profiles are identical.

Maximality says that M contains as many possible sets as it can, that the model is as rich as
possible. More precisely, it says that every profile for M defines a possible set in M.13

When s is by a profile f , membership in s is completely determined by membership for the
possible sets in dom(f). Formally, for each y in D, we have:

[[y ∈ s]] ≡ [[(y = x0 ∧ x0 ∈ s) ∨ (y = x1 ∧ x1 ∈ s) ∨ ... ∨ (y = xi ∧ xi ∈ s) ∨ ...]]

for xi ∈ dom(f). Once we know the possibilities at which those possible sets in dom(f) are
members of s, in other words, we thereby know the possibilities at which any possible set what-
soever is a member of s. When membership for a possible set s is completely determined by
membership for the possible sets in x in this way, I will say that x is a core for s.14 It is a nice
exercise to show that x is a core for s just in case x = dom(f) for some profile f that defines x.

Well-foundedness says that membership can be determined in a well-founded way. It partic-
ular, it says that there is some way of assigning cores to possible sets such that there is no
sequence of possible sets x0, x1, ..., xn, ... such that x0 has a core containing x1, x1 has a core
containing x2, x2 has a core containing x3, and so on. More precisely, it says that there is
a (possibly proper class-sized) function F from D to cores such that there is no ω-sequence
of possible sets x0, ..., xn, ... for which F (xi) ∋ xi+1 for all i ∈ ω. An example may help
to illustrate. By Maximality, there is a possible set, s∅, that never contains anything: it is
necessarily empty. Now suppose we have two incompossible possibilities p and q. Then, by

13Compare this with the requirement on classical models that for any subset x of the domain, there is a set
in the model whose elements are precisely the members of x.

14Ordinary sets effectively have one core: namely, themselves. Possible sets can have many.
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Maximality, there will be two possible sets s1 and s2 such that s1 contains s∅ in so far as p is
the case (and otherwise contains nothing) and such that s2 contains s∅ in so far as q is the
case (and otherwise contains nothing). So, by Extensionality, according to p, s∅ is an element
of s1 and s2 = s∅ and according to q, s∅ is an element of s2 and s1 = s∅. Now there are two
importantly different ways of describing s1 and s2. On one description, s1 has {s2} as a core
and s2 has {s1} as a core. To be an element of s1 is to be equal to s2 in so far as p is the case
and to be an element of s2 is to be equal to s1 in so far as q is the case. Accordingly, relative
to this assignment of cores, they are non-well-founded: s1 is a member of the core {s1} of s2
and s2 is a member of the core {s2} of s1. On another description, they both have {s∅} as a
core. To be an element of s1 is to be equal to s∅ in so far as p is the case and to be an element
of s2 is to be equal to s∅ in so far as q is the case. Accordingly, relative to this assignment of
cores, they are well-founded: each has {s∅} as its core, and s∅ has nothing in its core, since
its core is ∅. Well-foundedness says that the possible sets are well-founded under some such
description, under some uniform allocation of cores to possible sets.

We can prove in ZFC that over any space of possibilities there is exactly one possibility model
satisfying Extensionality, Maximality, and Well-foundedness, up to isomorphism.

Theorem 3 (ZFC) For any partial order P, there is a (proper class-sized) possibility model
M = ⟨P, D, I=, I∈⟩ satisfying Extensionality, Maximality, and Well-foundedness.

Theorem 4 (ZFC) Let M = ⟨D,P, I=, I∈⟩ and M′ = ⟨D′,P, I ′=, I
′
∈⟩ be possibility models

satisfying Extensionality, Maximality, and Well-foundedness. Then, M and M′ are isomor-
phic.15 In other words, let [[ϕ]]M be the proposition assigned to ϕ according to M. Then,
there is a one-one function j from D to D′ such that:

[[ϕ(x⃗)]]M ≡ [[ϕ( ⃗j(x))]]M′

Since the model is unique up to isomorphism, I will refer to it as the the forcing possibility
model (for P).

It’s a nice exercise to verify that in any possibility model satisfying Extensionality, Maximality,
and Well-foundedness—and thus in any forcing possibility model—the axioms of ZFC are
necessary.

Theorem 5 If ϕ is an axiom of ZFC, then ZFC proves that in any forcing possibility model
M, [[ϕ]] ≡ P.

This means that just as we can freely use classical logical inferences when reasoning with
propositions, or when reasoning about what is true at a possibility, we can now also freely use

15Proof sketch: Let M = ⟨P, D, I=, I∈⟩ and M′ = ⟨P, D′, I ′=, I
′
∈⟩ be possibility models satisfying Ex-

tensionality, Maximality, and Well-foundedness and let F and F ′ witness their respective well-foundedness.
Now, by a simple induction on the well-founded relation “x ∈ F (y)” we can use Extensionality and Maximal-
ity to recursively build a one-one function π from D to D′ for which [[x = y]]M ≡ [[π(x) = π(y)]]M′ and
[[x ∈ y]]M ≡ [[π(x) ∈ π(y)]]M′ . This, in turn, extends via the compositional clauses for assigning propositions

to show that [[ϕ(x⃗)]]M ≡ [[ϕ( ⃗π(x))]]M′ for any ϕ 2. This theorem corresponds to the internal categoricity result
in ZFC which says that any two extensional (set-like) well-founded classical models are isomorphic when, for
any subset of their domains, there’s a set in the model with precisely the same elements.
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the theorems of ZFC. For example, if p makes it true that a possible set x is a well-ordered
relation, then p will also make it true that x is isomorphic with some ordinal.

For many of the axioms of ZFC, we establish their necessary truth by using Maximality to
find a suitable possible set. For example, given any two possible sets s and s′, we can use
Maximality to obtain the possible set that contains both at all possibilities, thus ensuring that
the axiom of pairing holds at all possibilities.16 And depending on which space of possibilities
we work with, we can use also use Maximality to obtain much more exotic possible sets. For
example, there is a P relative to which we can use Maximality to obtain a possible set that
leads to the necessary failure of the continuum hypothesis: that is, [[CH]] ≡ ∅.

In addition to the interesting and exotic possible sets, there will also always be a wide
range of boring possible sets: sets for which membership is fundamentally a necessary matter.
And it turns out these boring possible sets are isomorphic to the sets. The empty set, for
example, corresponds to the possible set, s∅, that is necessarily empty; the singleton of the
empty set corresponds to the possible set s{∅}, that necessarily contains s∅ and nothing else;
and so on.17 This means that in addition to de dicto necessity claims, we can also make sense
of de re necessity claims about particular sets, via the corresponding boring possible sets. For
example, let sω be the boring possible set corresponding to ω and sP(ω) the boring possible
set corresponding to its powerset. Then there is a space of possibilities P over which it is
necessary in the forcing model that there is some subset of ω not in P(ω), which is to say
[[∃y ⊆ sω(y ̸∈ sP(ω))]] ≡ P. In general, if x is any infinite set and y is any set, there is a space
of possibilities P over which it is necessary in the forcing model that there is some subset of
x not in y, which is to say [[∃z ⊆ sx(z ̸∈ sy)]] ≡ P. Similarly, given any set x, there is a P over
which x is necessarily countable in the forcing model, which is to say [[sx is countable]] ≡ P.

Perhaps unsurprisingly, when we restrict our quantifiers solely to these boring possible
sets, we get claims that agree with V .18 In particular, we have the following theorem.

Theorem 6 (ZFC) Let ϕ be ∆0 with parameters among x⃗. Then ϕ(x⃗) is true in V just in
case [[ϕ(s⃗x)]] ≡ P.

So, how do we ensure that there are the relevant kinds of interesting and exotic possible sets,
like those that lead to a failure of the continuum hypothesis? In general, how do choose
possibility spaces so that the resulting forcing possibility models that make some target claim
possibly false? Unfortunately, there is no general recipe here. But there are two things we
typically do. First, by thinking about the target claim, we try to come up with a kind of
possible set we’d need to invalidate it. For example, in the case of CH, at the very least,
we’d need a possible set that acts as a function from some relevantly large set, say sω2 , into
the powerset of ω. Call this our wish list item. We then try to find a rich enough space of
possibilities that allows us to obtain our wish list item using Maximality. Again, there is no
general recipe for this. But one approach is try to reverse engineer the space of possibilities
from our wish list item. Here’s an example.

16Where that axiom is formulated as the claim that for any two sets, some set contains both.
17In general, we can define the notion of a transitively boring possible set in a series of stages. In particular,

the transitively boring possible sets at stage α+1 are all and only the possible sets specified by profiles that are
functions from transitively boring possible sets at stage α to the propositions ∅ and P. We can then recursively
associate a unique transitively boring possible set with each set in the obvious way.

18Formally, let [[ϕ]]∗ be like [[ϕ]] except that [[∃xϕ]]∗ is the union of instances for the boring possible sets: that
is, [[∃xϕ(x)]]∗ =

⋃
x∈V [[ϕ(sx)]]

∗. Then, we can prove that: V ⊨ ϕ(x⃗) ↔ [[ϕ(s⃗x)]]
∗ ≡ P.
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Suppose we want a forcing possibility model in which it is necessary that there is a new
subset of ω. That is, we want a possible set s that necessarily disagrees on sω with every sy
for y ⊆ ω. That’s our wish list item. If there were such a possible set, then every possibility
p could be extended to witness the disagreement. So, for any p, there will be a q ≤ p such
that either q ⊨ sn ∈ s for some n ̸∈ y or q ⊨ sn ̸∈ s for some n ∈ y. So, effectively, as we move
down the partial order, we will keep adding information about what elements of ω are and
aren’t in s. But because we always have to be able to extend so as to disagree with any given
y, we can’t reach a possibility that is completely opinionated about what elements of ω are
and aren’t in s.19 So, elements of the partial order need to encode an increasing but limited
amount of information about what elements of ω are and aren’t in s. One partial order that
has this kind of behaviour “built” in is the set of finite functions from ω to 0, 1. We can think
of each such function as “saying” that s contains sn, if f(n) = 1, or fails to contain sn, if
f(n) = 0. Because it only has an opinion about finitely many elements of ω, we can always
extend it so that is says s differs from any given y. So, to obtain our desired possible set s,
we take the profile that maps sn to {f : ω → {0, 1} : |dom(f)| < ω ∧ f(n) = 1}. It is then a
simple exercise to check that the corresponding possible set behaves as required.

The second thing we typically do when choosing a suitable possibility space is to try to
ensure that it is not too rich. For example, some partial orders that allow us to obtain a
possible set that behaves like a function from sω2 into the powerset of ω are so rich that they
give us, via Maximality, a function from sω onto sω2 : that is, a possible set witnessing the
countability of sω2 . In other words, they give us a forcing possibility model in which although
there is a function from sω2 into the powerset of sω, sω2 is no longer relevantly large! As a
consequence, such partial orders need not result in forcing possibility models invalidating CH.
So, how do we ensure that our possibility space is relevantly constrained? Again, there is no
general recipe for this. But an example will help to illustrate one important way in which
partial orders can be relevantly restrictive. Consider the possibility p that Mae is wearing a
green hat. That possibility can be extended to more specific possibilities concerning the shade
of the hat. For as many shades of green as there are, there will be possibilities extending p at
which Mae’s hat is that shade of green. So the set of possibilities where Mae’s hat is some shade
of green is quite large: let’s say it has size 2ω. The proposition that Mae’s hat is some shade of
green, in other words, is quite large. The proposition that it is green, on the other hand, is very
small: let’s say it has size 1. But those propositions are implicationally equivalent! In so far
as we’re interested in the proposition that Mae’s hat is some shade of green, we could equally
well have worked with a much smaller proposition. The countable chain condition simply
says that every proposition is equivalent to some countable sub-proposition.20 So although
the partial order might be rich enough to have uncountably many distinct possibilities that
make ϕ true, it is sufficiently impoverished that those possibilities are equivalent to only
countably many of them. One important upshot of this restrictive assumption is precisely
that it does not allow for possible sets that change the cardinalities of the boring possible
sets. More precisely, when P satisfies the countable chain condition, κ is the cardinality of x
in V just in case [[sκ is the cardinality of sx]] ≡ P.21

19If there were such a possibility p, then {n ∈ ω : p ⊨ sn ∈ s} would be a set that p cannot be extended so
that s disagrees with it.

20The usual definition of the countable chain condition is that every set of pair-wise incompossible possibilities
is countable—that is, there is no uncountable set of pair-wise incompossible possibilities. It is a nice exercise
to show that these two definitions are equivalent.

21The core of the proof involves showing that ordinals cannot change their co-finalities. To see how it works,
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Forcing arguments are typically a matter of finding partial order that has the right
balance richness—enough to result in new and potentially interesting possible sets—and
restrictiveness—enough to ensure that the new possible sets fulfil their potential.

4 An iterative conception of possible sets

The simplest way to construct a forcing possibility model is iteratively.22 Here’s the general
idea. We first construct its domain in a series of stages, corresponding to the usual construc-
tion of the Vαs. We start at stage 0 with no possible sets whatsoever. Then, the possible sets
at stage 1 are all and only the functions from possible sets at stage 0 to propositions. Since
there is nothing at stage 0, that means the only possible set at stage 1 is the empty set: the
function that maps nothing to no propositions. The possible sets at stage 2 are all and only
the functions from possible sets at stage 1 to propositions. And so on. In general, successor
stages α+1 comprise all and only the functions from things at stage α to propositions, limit
stages λ comprise all and only the things at previous stages, and the possible sets of the model
are the things at some stage or other.

In this construction, the possible sets effectively have their profiles “built in”: a function
at some stage is a profile. So, assuming we can construct a suitable assignment function for
identity, I=, we can explicitly define an assignment function for membership, I∈, by letting
I∈(⟨f, g⟩) be:

[[(f = z0 ∧ g(z0)) ∨ (f = z1 ∧ g(z1)) ∨ ... ∨ (f = zi ∧ g(zi)) ∨ ...]]

for zi ∈ dom(g). Which would immediately guarantee both Maximality and Well-foundedness,
where dom(f) is the assigned core for f . So the only non-trivial task is to construct a suitable
assignment function for identity that will guarantee both Extensionality and the identity ax-
ioms. We do this recursively along the stages. In particular, once we’ve defined I= for pairs
of possible sets at stage α, we define [[f = g]], for f, g at stage α + 1, to be the proposition
that for every x in the domain of f , in so far as f(x) is true, x is identical to something y in
the domain of g in so far as g(y) is true, and vice versa.23 We then have to carefully check
that this, together with the resulting definition of I∈, indeed validates Extensionality and the
identity axioms.

suppose we have two infinite ordinals α and β and β has co-finality greater than α: that is, there is no function
from α that takes values unbounded in β. Now suppose for contradiction that there is a possible set s coding
a function from α unbounded in β. Let δ ≤ α. The proposition that s sends sδ to something in β is just the
union of its instances: either it sends sδ to s0 or s1 or... What the countable chain condition tells us is that
countable many of its instances are equivalent to all of them. In other words, there is a countable sequence
γ0, γ1, γ2... of elements of β such that in so far as s sends sδ to something in β it either sends it to sγ0 or sγ1 or
sγ2 or... Since β has co-finality greater than α and α is infinite, it has co-finality greater than ω. So let λδ be
the least upper bound of γ0, γ1, γ2, ... in β. Then it will be necessary that in so far as s maps sδ to something
in β, it maps it to something below λδ. Now, because β has co-finality greater than α the least upper bound,
λ, of all the λδ’s for δ ≤ α will be less than β. And it will be necessary that in so far as s maps something in sα
to something in sβ , it takes values ≤ λ. But that’s inconsistent with the claim that it takes values unbounded
in β.

22This exactly mirrors the construction of P-names and the forcing relation in standard presentations of
forcing. See, for example, Kunen [1971].

23Formally: we set [[f = g]] = [[(f(z0) → [(z0 = y0 ∧ g(y0)) ∨ (z0 = y1 ∧ g(y1)) ∨ ...] ∧ (f(z1) → [(z1 =
y0 ∧ g(y0))∨ (z1 = y1 ∧ g(y1))∨ ...]∧ ...∧ (g(y0) → [(y0 = z0 ∧ f(z0))∨ (y0 = z1 ∧ f(z1))∨ ...]∧ (g(y1) → [(y1 =
z0 ∧ f(z0))∨ (y1 = z1 ∧ f(z1))∨ ...]∧ ...]]. An induction then shows that the assignment functions at each stage
agree with one another and so that their union is an assignment function.
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This iterative structure isn’t simply a quirk of this particular construction. It is an essential
feature of forcing possibility models in general, and provides us with a natural iterative way
to think about them. To see this, let M = ⟨P, D, I=, I∈⟩ be a forcing possibility model. We
can divide D into a series of stages. Stage 0 will be the empty set. Stage 1 will comprise
all the possible sets in M that have as a core some set of possible at stage 0. Since there
is nothing at stage 0, that means the only possible set in M at stage 1 is s∅. Stage 2 will
comprise all the possible sets in M that have as a core some set of possible sets at stage 1.
And so on. In general, successor stages α + 1 comprise all and only the possible sets in M
that have as a core a set of possible sets at stage α, and limit stages λ comprise all and only
the things at previous stages. More precisely, we let:24

• M0 = ∅

• Mα+1 = {x ∈ D : ∃y ⊆ Mα(y is a core for x)}

• Mλ =
⋃

α<λMα

A simple induction on the well-founded relation given by Well-foundedness then shows that
every possible set in M must occur in some Mα: D =

⋃
Mα. Conversely, if every possible

set is in some Mα, then we get a witness to Well-foundedness: if x first occurs at stage α+1,
we can assign it Mα as a core.25

Theorem 7 (ZFC) Let M = ⟨P, D, I=, I∈⟩ be a possibility model satisfying Extensionality.
Then, M satisfies Well-foundedness just in case D =

⋃
Mα.

When every possible set in M occurs at some stage, Maximality turns out to be equivalent to
the claim that any profile whose domain is a set of possible sets at stage α defines a possible
set at stage α+ 1.

Definition 2 Mα+1 is maximal for Mα when every profile whose domain is a subset of Mα

defines a possible set in Mα+1.

Theorem 8 (ZFC) Let M = ⟨P, D, I=, I∈⟩ be a possibility model satisfying Extensionality
and Well-foundedness. Then, M satisfies Maximality just in case for all α, Mα+1 is maximal
for Mα.

Corollary 1 (ZFC) Let M = ⟨P, D, I=, I∈⟩ be a possibility model satisfying Extensionality.
Then, M satisfies Well-foundedness and Maximality just in case D =

⋃
Mα and for all α,

Mα+1 is maximal for Mα.

Say that a possibility model M = ⟨P, D, I=, I∈⟩ is fully iterative if D =
⋃
Mα and for all α,

Mα+1 is maximal for Mα.

24At each stage we have set-many possible sets, rather than proper class-many, because if Mα is set-sized,
then there are only set-many profiles based on Mα and possible sets with the same profiles are identical by
Extensionality and the fact that we are working with possibility models in which necessarily identical sets are
really identical.

25It is easy to see that if y ⊆ Mα is a core for x, then so too is Mα itself. Simply consider the profile f that
maps each z in y to [[z ∈ x]] and each z ∈ Mα that is not in y to ∅.
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Corollary 2 (ZFC) Let M = ⟨P, D, I=, I∈⟩ be a possibility model. Then, M satisfies Ex-
tensionality, Well-foundedness, and Maximality just in case it is fully iterative and satisfies
Extensionality.

Corollary 3 (ZFC) Let M = ⟨P, D, I=, I∈⟩ and M′ = ⟨P, D′, I ′=, I
′
∈⟩ be fully iterative pos-

sibility models satisfying Extensionality. Then, they are isomorphic.

This isn’t simply a nice alternative way to think of forcing possibility models and their cat-
egoricity theorem. It also highlights two interesting further points. First, it leads to a much
more general, quasi-categoricity result. Second, it shows that if we ultimately want to think
of possible sets as a new sui generis kind of mathematical object, then we could see them as
governed by an iterative conception of possible sets. Let’s look at these points in turn.

4.1 Quasi-categoricity

Definition 3 Say that a possibility model M = ⟨P, D, I=, I∈⟩ it is partially iterative if there
is some λ for which D =

⋃
α<λMα and for all α < λ, Mα+1 is maximal for Mα. In any such

model M, for any β + 1 < λ, there will be a boring set at stage β + 1 necessarily containing
all the possible sets at stage β. Call this sMβ

.

Corollary 4 (ZFC) Let M = ⟨P, D, I=, I∈⟩ and M′ = ⟨P, D′, I ′=, I
′
∈⟩ be possibility models

satisfying Extensionality. Suppose they are partially iterative, and let α and α′ be the cor-
responding ordinals. Then, (i) if α = α′, M and M′ are isomorphic, and (ii) if α < α′, M
is isomorphic to M′

α in M′: that is, there is a one-one function j from D to M ′
α such that

[[ϕ(x⃗)]]M ≡ [[ϕsMα ( ⃗j(x))]]M′ .

4.2 An iterative conception of possible sets

Using these ideas, it is straightforward to modify our possibility model M to obtain models
of an iterative conception of possible sets. First, we add a set of “stages” together with an
“earlier than” relation. For simplicity, we can assume that this relation is a well-order. As a
result, we can identify the stages with the predecessors of some ordinal α and we can identify
the earlier than relation with ≤ on those ordinals. Second, we add a relation of “formed
at” or simply “at” between the possible sets and the stages. We then impose two obvious
constraints on them.

1. We have a principle of Plenitude, which is just a version of the maximality claim we saw
earlier. Plenitude says that any profile available at a stage—that is, any function from
some possible sets at that stage to propositions—defines a possible set at all subsequent
stages.

– Formally, it says that for any profile f whose domain is a subset of the things in
D at stage α, and any stage β later than α, there is some x in D that f defines.

2. We have a principle of Priority, which says that anything at a stage must be defined by
a profile available at some prior stage.

– Formally, it says that for any x in D at stage α, there is some stage β < α and a
profile f whose domain is a subset of the things in D at β such that f defines x.
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Call possibility models extended in this way iterative possibility models.

We can think of iterative possibility models as, on the way I’m thinking about it, precisely
the standard models of the iterative conception of possible sets. It is not hard to see that
the iterative possibility models satisfying Extensionality are precisely the partially iterative
possibility models satisfying Extensionality.

Theorem 9 (ZFC) Let M′ be the extension of a partially iterative possibility model M
whose stages are the height of M and “x occurs at β” is interpreted as “x ∈MMβ”. Then,
[[ϕ]]M = [[ϕ]]M′ (for ϕ ∈ L∈).

It is also relatively easy to see how we might formulate Plenitude and Priority in a second-order
object language if we ultimately wanted to axiomatise the iterative conception of possible sets.

5 Possibilities, possible worlds, and forcing extensions

How does this all relate to more familiar presentations of forcing? In particular, how does
the forcing possibility model relate to so-called forcing extensions: that is, models of the form
M [G]? In this section, I answer this question. In brief: forcing extensions are just possible
worlds for a possibility model.

Possibilities are like parts of possible worlds. It is therefore natural to think of a possible
world as a set of possibilities: namely, the possibilities that it has as parts. At a minimum,
this set of possibilities should have two features. First, it should be rich enough to witness
every proposition or its negation. A possible world is a complete specification of a way the
world could be and so the possibilities that compose it should witness this fact. Second, it
should be modest enough not to witness both some proposition and its negation. A possible
world is a way the world could be, and the world could not be inconsistent, so the possibilities
that compose it should witness this fact too.

Definition 4 Say that X ⊆ P is a possible world (for P) when it is complete—for every
proposition Y , X either contains a possibility in Y or a possibility in Y—and consistent—
there is no proposition Y such that X contains both a possibility from Y and a possibility
from Y (equivalently: any two of its possibilities are compossible).

Unfortunately, for the most interesting class of possibility spaces—indeed, for the possibility
spaces we almost always use in forcing—there are, provably, no possible worlds!

Theorem 10 (ZFC) Suppose that below any possibility in P there are two incompossible
possibilities. Then, there are no possible worlds for P.26

26To see why these are the most interesting cases, suppose we have a possibility p that cannot be so extended.
Then, by working through the clauses for truth at a possibility, it is easy to see that p will be complete: it will
either make ϕ or ¬ϕ true for each ϕ. It will, in other words, act exactly like a classical model, like a possible
world in a Kripke model. Not only that: it will act like the universe of sets V . At any such possibility, every
possible set will be identical to some boring possible set. As a consequence, p will make a sentence true just
in case it is true in V ! If anything interesting is going to happen in the associate forcing possibility model,
therefore, it ain’t going to happen at p.
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Nevertheless, although there aren’t any possible worlds, there could—in some important senses
of “could”—be such worlds. Let me explain.

We construct the forcing possibility model using the axioms of ZFC. So, any classical model
of ZFC will contain what it thinks is a forcing possibility models. Now consider a classical
countable transitive model M of ZFC and let P be a partial order in M .27 Then M will think
there is a forcing possibility model M. And as above, it will think that there are no possible
worlds for P. And we, from the outside, will think there are no possible worlds for P either.
Nevertheless, we can prove that because there are only countably many propositions in M ,
there will be a set of possibilities that is consistent and complete, not simpliciter, but for the
propositions in M .

Definition 5 Let M be a classical model. Then, say that X ⊆ P is a possible world for
M (and P) when it is complete for M—for every proposition Y ∈ M , X either contains a
possibility in Y or a possibility in Y—and consistent—there is no proposition Y such that
X contains both a possibility from Y and a possibility from Y (equivalently: any two of its
possibilities are compossible).

When M is a countable transitive model, there is, outside of M , a possible world for M .

Theorem 11 (ZFC) Suppose M is a countable transitive model and P is a partial order in
M . Then, there is a possible world for P. Indeed, for each p ∈ P, there is a possible world
for P containing p.

Now, what happens to the forcing possibility model M in M if we treat the possibilities in
some such world as actual? It turns out that we get a classical model, a possible world in the
Kripkean sense. More precisely, say that a proposition X ∈ M is true at W just in case W
contains a possibility p which implies X—that is, just in case ∃p ∈ W (p ⊨ X) (equivalently:
∃p ∈ W (p ∈ X)). Let W be a possible world for M . Then, we can define a classical model
MW from M in the obvious way. We let the domain of MW be exactly the same as the
domain of M, and we stipulate that:

• MW ⊨ x ∈ y iff [[x ∈ y]] is true at W

• MW ⊨ x = y iff [[x = y]] is true at W

A simple induction on the complexity of ϕ then establishes that ϕ is true in MW iff it is true
at W . Formally:

MW ⊨ ϕ↔ [[ϕ]] is true at W

By an obvious extension of our terminology, we can say that MW is a possible world for M.
It is then easy to see that necessary truth in M is simply truth in all possible worlds for M!
Formally, where W ranges over possible worlds for M , we can prove:

[[ϕ]] ≡ P ⇔ ∀W (MW ⊨ ϕ)

27Here and throughout the following discussion, I will implicitly appeal to the fact that various notions are
absolute for transitive models. For example, because P is a partial order in M , it will be a partial order in V .
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More generally, we can show that truth at a possibility is simply truth in all possible worlds
in which the possibility obtains. Formally, we can show that:

p ⊨ [[ϕ]] ⇔ ∀W ∋ p(MW ⊨ ϕ)

Now the G that you see in standard presentations of forcing is called a generic filter for M
and P. And although the definitions are different, generic filters are possible worlds. The
M [G] that you see in standard presentations of forcing is called a generic extension of M .
And, again, although the definitions are different, generic extensions are simply the transitive
collapses of possible worlds. In particular, M [G] is simply the transitive collapse of MG.

We can think of width potentialism as the view that although there may not be possible
worlds, there can—in some primitive sense of “can”—be possible worlds. Here’s one way
to make that precise. For a universe of sets U satisfying ZFC and partial order P ∈ U , as
above we say that a subset X of P is a possible world (for P and U) when it is complete
for U—for any proposition Y ∈ U , X either contains a possibility in Y or a possibility in
Y—and consistent—there is no proposition Y ∈ U such that X contains a possibility in Y
and a possibility in Y . Let W be a possible world for P and U and let M be the forcing
possibility model in U for P. As before, we say that a proposition X ∈ U is true at W just in
case W contains a possibility p which implies X—that is, just in case ∃p ∈W ({p} ⊨ X). We
then use W to define the corresponding classical model MW . The central width potentialist
claim can then be formulated precisely as follows.

Let U be a universe, P a partial order in U , and M the forcing possibility model in
U for P. Then there could be a universe U ′ which is isomorphic (modulo identity)
to MW for some possible world W for P and U .

By working with the right partial orders, we can use this claim to obtain universes making all
sorts of target claims true or false. For example, the central width potentialist claim implies
that as long as there is at least one universe, there could be a universe making ¬CH true.
Moreover, given the association of sets in U with the corresponding boring possible sets in
the forcing possibility model, we can show that for any sets x⃗ ∈ U , [[ϕ(s⃗x)]] is true in W
just in case ϕ(x⃗) is true in U ′ and thus that U ⊆ U ′.28 It then follows that there are also
universes making all sorts of statements about the elements of U true. For example, let x
be the powerset of ω in U . Then the central width potentialist claim implies that there is a
universe containing x and ω in which some subset of ω is not in x. So, no universe contains
absolutely all subsets of ω. In general, for any infinite set x in U and any set y in U , there is
a universe containing x and y in which some subset of x is not in y. So, no universe contains
absolutely all subsets of any infinite set x. Similarly, given any set x in U , the central width
potentialist claim implies that there is a universe U ′ ⊇ U in which x is countable. So, every
set in any universe is countable in some extended universe.29

28To prove this, we let i be the composition of the function from sets in U to the corresponding boring sets
in the forcing model with the isomorphism from MW to U ′. A simple induction then establishes that i is the
identity function on U .

29Given natural assumptions, this is actually equivalent to the central width potentialist claim. The reason
is that when the powerset of P in U is countable in some U ′ ⊇ U , we can explicitly define a possible world
for P and U in U ′. We can then use that world to explicitly define a transitive subcollection C ⊆ U ′ which is
isomorphic to MW (modulo identity). So if we assume that such collections also count as universes, then we
have a witness to the central width potentialist claim.
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