Skip to main content
Log in

Systems Bioethics and Stem Cell Biology

  • Published:
Journal of Bioethical Inquiry Aims and scope Submit manuscript

Abstract

The complexities of modern science are not adequately reflected in many bioethical discussions. This is especially problematic in highly contested cases where there is significant pressure to generate clinical applications fast, as in stem cell research. In those cases a more integrated approach to bioethics, which we call systems bioethics, can provide a useful framework to address ethical and policy issues. Much as systems biology brings together different experimental and methodological approaches in an integrative way, systems bioethics integrates aspects of the history and philosophy of science, social and political theory, and normative analysis with the science in question. In this paper we outline how a careful analysis of the science of stem cell research can help to refocus the discussions related to the clinical applications of stem cells. We show how inaccurate or inadequate scientific assumptions help to create a set of unrealistic expectations and badly inform ethical deliberations and policy development. Systems bioethics offers resources for moving beyond the current impasse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Alon, U. (2003). Biological networks: The tinkerer as an engineer. Science, 301, 1866–1867.

    Article  PubMed  CAS  Google Scholar 

  2. Austriaco, N. P. G. (2002). On static eggs and dynamic embryos: A systems perspective. National Catholic Bioethics Quarterly, 2, 659–683.

    PubMed  Google Scholar 

  3. Balsam, L. B., Wagers, A. J., Christensen, J. L., Kofidis, T., Weissman I. L., & Robbins, R. C. (2004). Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature, 428, 668–673.

    Article  PubMed  CAS  Google Scholar 

  4. Baylis, F. (2002). Human cloning: Three mistakes and an alternative. Journal of Medicine and Philosophy, 27, 319–337.

    Article  PubMed  Google Scholar 

  5. Bjerknes, M. (1994). Simple stochastic theory of stem cell differentiation is not simultaneously consistent with crypt extinction probability and the expansion of mutated clones. Journal of Theoretical Biology, 168, 349–365.

    Article  PubMed  CAS  Google Scholar 

  6. Blau, H. M., Brazelton, T. R., & Weimann, J. M. (2001). The evolving concept of a stem cell: Entity or function? Cell, 105, 829–841.

    Article  PubMed  CAS  Google Scholar 

  7. Brown, M. B. (2004). The political philosophy of science policy. Minerva: A Review of Science, Learning and Policy, 42, 77–95.

    Google Scholar 

  8. Brown, M. B. (2006). Citizen panels and the concept of representation. The Journal of Political Philosophy, 14, 203–225.

    Article  Google Scholar 

  9. Davidson, E. H., Rast, J. P., Oliveri, P., Ransick, A., Calestani, C., Yuh, C.-H., et al. (2002). A genomic regulatory network for development. Science, 295, 1669–1678.

    Article  PubMed  CAS  Google Scholar 

  10. de Wert, G., & Mummery, C. (2003). Human embryonic stem cells: Research, ethics and policy. Human Reproduction, 18, 672–682.

    Article  PubMed  Google Scholar 

  11. Elliott, K. C. (2005). Developmental systems theory and human embryos: A response to Austriaco. National Catholic Bioethics Quarterly, 5, 249–259.

    PubMed  Google Scholar 

  12. Fewell, J. H. (2003). Social insect networks. Science, 301, 1667–1670.

    Article  Google Scholar 

  13. Furusawa, C., & Kaneko, K. (2000). Origin of complexity in multicellular organisms. Physical Review Letters, 86, 6130–6133.

    Article  Google Scholar 

  14. Geijsen, N., Horoschak, M., Kim, K., Gribnau, J., Eggan, K., & Daley, G. Q. (2004). Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature, 427, 148–154.

    Article  PubMed  CAS  Google Scholar 

  15. Green, R. M. (2002). Benefiting from ‘evil’: An incipient moral problem in human stem cell research. Bioethics, 16, 544–556.

    Article  PubMed  Google Scholar 

  16. Hardy, K., & Starck, J. (2002). Mathematical models of the balance between apoptosis and proliferation. Apoptosis, 7, 373–381.

    Article  PubMed  CAS  Google Scholar 

  17. Holm, S. (2002). Going to the roots of the stem cell controversy. Bioethics, 16, 493–507.

    Article  PubMed  Google Scholar 

  18. Hurlbut, W. B. (2005). Patenting humans: Clones, chimeras, and biological artifacts. Science and Engineering Ethics, 11, 21–29.

    PubMed  Google Scholar 

  19. Ioannidis, J. P. A. (2004). Materializing research promises: Opportunities, priorities and conflicts in translational medicine. Journal of Translational Medicine, 2, 5.

    Article  PubMed  Google Scholar 

  20. Ivanova, N. B., Dimos, J. T., Schaniel, C., Hackney, J. A., Moore, K. A., & Lemischka, I. R. (2002). A stem cell molecular signature. Science, 298, 601–604.

    Article  PubMed  CAS  Google Scholar 

  21. Kai, T., & Spradling, A. (2004). Differentiating germ cells can revert into functional stem cells in Drosophila melanogaster ovaries. Nature, 428, 564–569.

    Article  PubMed  CAS  Google Scholar 

  22. Kitano, H., (Ed.) (2001). Foundations of systems biology. Cambridge: MIT.

  23. Kitano, H. (2002). Systems biology: A brief overview. Science, 295, 1662–1664.

    Article  PubMed  CAS  Google Scholar 

  24. Kitcher, P. (2001). Science, truth, and democracy. New York: Oxford University Press.

    Google Scholar 

  25. Komaroff, A. L., & Daley, G. Q. View from the lab: Harnessing stem cells. Newsweek. 2004 Dec. 6;144:54; available online at http://www.msnbc.msn.com/id/6596811/site/newsweek/.

  26. Lakatos, A., & Franklin, R. J. (2002). Transplant mediated repair of the central nervous system: An imminent solution? Current Opinion in Neurology, 15, 701–705.

    Article  PubMed  Google Scholar 

  27. Laubichler, M. D., & Wagner, G. P. (2000). Organism and character decomposition: Steps towards an integrative theory in biology. Philosophy of Science, 67, S289–S300.

    Article  Google Scholar 

  28. Loeffler, M., Birke, A., Winton, D., & Potten, C. (1993). Somatic mutation, monoclonality and stochastic models of stem cell organization in the intestinal crypt. Journal of Theoretical Biology, 160, 471–491.

    Article  PubMed  CAS  Google Scholar 

  29. Maienschein, J. (2003). Whose view of life? Embryos, cloning, and stem cells. Cambridge: Harvard University Press.

    Google Scholar 

  30. Maturana, H. R., & Varela, F. J. (1980). Autopoiesis: The organization of the living. Boston Studies in the Philosophy of Science, 42, 59–141.

    Google Scholar 

  31. Murry, C. E., Soonpaa, M. H., Reinecke, H., Nakajima, H., Nakajima, H. O., Rubart, M., et al. (2004). Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature, 428, 664–668.

    Article  PubMed  CAS  Google Scholar 

  32. National Academy of Sciences, Committee on Guidelines for Human Embryonic Stem Cell Research, National Research Council. (2005). Guidelines for human embryonic stem cell research. Washington, District of Columbia: National Academies.

    Google Scholar 

  33. Neumann-Held, E. M. (1999). The gene is dead – Long live the gene! Conceptualizing genes the constructionist way. In P. Koslowski (Ed.), Sociobiology and bioeconomics: The theory of evolution in biological and economic theory (pp. 105–137). Berlin Heidelberg New York: Springer.

    Google Scholar 

  34. Powell, K. (2005). Stem-cell niches: It’s the ecology, stupid! Nature, 435, 268–270.

    Article  PubMed  CAS  Google Scholar 

  35. Ramalho-Santos, M. (2004). Stem cells as probabilistic self-producing entities. BioEssays, 26, 1013–1016.

    Article  PubMed  Google Scholar 

  36. Ramalho-Santos, M., Yoon, S., Matsuzaki, Y., Mulligan, R. C., & Melton, D. A. (2002). ‘Stemness’: Transcriptional profiling of embryonic and adult stem cells. Science, 298, 597–600.

    Article  PubMed  CAS  Google Scholar 

  37. Robert, J. S. (2004). Model systems in stem cell biology. BioEssays, 26, 1005–1012.

    Article  PubMed  Google Scholar 

  38. Robert, J. S. (2004). Embryology, epigenesis, and evolution: Taking development seriously. New York: Cambridge University Press.

    Google Scholar 

  39. Robert, J. S. (2006). The science and ethics of making part-human animals in stem cell biology. FASEB Journal, 20, 838–845.

    Article  PubMed  CAS  Google Scholar 

  40. Sandel, M. J. (2004). Embryo ethics: The moral logic of stem-cell research. New England Journal of Medicine, 351, 207–209.

    Article  PubMed  CAS  Google Scholar 

  41. Sarewitz, D. (2004). Stepping out of line in stem cell research: Proposition 71 would cut the link between science and democracy [editorial]. The Los Angeles Times. Oct 25; Sect. B, 11.

  42. Seaberg, R. M., & van der Kooy, D. (2003). Stem and progenitor cells: The premature desertion of rigorous definitions. Trends in Neurosciences, 26, 125–131.

    Article  PubMed  CAS  Google Scholar 

  43. Shostak, S. (2006). (Re)defining stem cells. BioEssays, 28, 301–308.

    Article  PubMed  Google Scholar 

  44. Snyder, E. Y., Daley, G. Q., & Goodell, M. (2004). Taking stock and planning for the next decade: Realistic prospects for stem cell therapies for the nervous system. Journal of Neuroscience Research, 76, 157–168.

    Article  PubMed  CAS  Google Scholar 

  45. Stadler, B. M. R., Stadler, P., Wagner, G. P., & Fontana, W. (2001). The topology of the possible: Formal spaces underlying pattern of evolutionary change. Journal of Theoretical Biology, 213, 241–274.

    Article  PubMed  CAS  Google Scholar 

  46. Steinbock, B. (2000). What does “respect for embryos” mean in the context of stem cell research? Women’s Health Issues, 10(3), 127–130, May–Jun.

    Article  PubMed  CAS  Google Scholar 

  47. Strogatz, S. H. (2001). Exploring complex networks. Nature, 410, 268–276.

    Article  PubMed  CAS  Google Scholar 

  48. Svendsen, C. N., & Langston, J. W. (2004). Stem cells for Parkinson disease and ALS: Replacement or protection? Nature Medicine, 10, 224–225.

    Article  PubMed  CAS  Google Scholar 

  49. Van Heyningen, V. (2000). Gene games of the future. Nature, 408, 769–771.

    Article  Google Scholar 

  50. Varela, F. G., Maturana, H. R., & Uribe, R. (1974). Autopoiesis: The organization of living systems, its characterization, and a model. Current Models in Biology, 5, 187–196.

    CAS  Google Scholar 

  51. Vogel, G. (2003). ‘Stemness’ genes still elusive. Science, 302, 371.

    Article  PubMed  CAS  Google Scholar 

  52. Wade, N. Tracking the uncertain science of growing heart cells. The New York Times. 2005 Mar 14; available online at: http://www.nytimes.com/2005/03/14/health/14heart.html.

  53. Wagner, G. P., & Laubichler, M. D. (2000). Character identification in evolutionary biology: The role of the organism. Theory in Biosciences, 119, 20–40.

    Article  Google Scholar 

  54. Wilson, E. B. (1896). The cell in development and inheritance. New York: Macmillan.

    Google Scholar 

Download references

Acknowledgments

We thank Rachel Ankeny (University of Sydney) and Mary Sunderland (Arizona State University) for initial discussions about this article, and Françoise Baylis (Dalhousie University) for contributing to an early draft. The comments of two anonymous referees for this journal were especially helpful. JM and JSR’s contributions have been informed by the Model Systems Strategic Research Network, funded by the Canadian Stem Cell Network (a member of the Networks of Centres of Excellence program). JSR has also benefited from a seed grant provided by the Institute for Humanities Research at Arizona State University. Each of the three authors contributed equally to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Scott Robert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robert, J.S., Maienschein, J. & Laubichler, M.D. Systems Bioethics and Stem Cell Biology. Bioethical Inquiry 3, 19–31 (2006). https://doi.org/10.1007/s11673-006-9001-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11673-006-9001-x

Keywords

Navigation