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Abstract. In this contribution in honour of Paul Busch, we criticise the claims of many
expositions that the time-energy uncertainty principle allows both a violation of energy
conservation and particle creation, provided that this happens for a sufficiently short time.
But we agree that there are grains of truth in these claims: which we make precise and justify
using perturbation theory.

1. Introduction
In expositions of quantum theory, it is often said that energy conservation can be violated, and
that particles can ‘pop in to existence’ out of nowhere, thanks to a time-energy uncertainty
principle. Time-energy uncertainty was, of course, one of Paul Busch’s areas of expertise. His
insightful analyses of it began already in his two 1990 works [1, 2] and the topic remained an
abiding interest of his, shown for example in his 2008 review article about time in quantum
physics [3]. It seems to us very likely that Busch, with his clarity and precision of thought,
would have had misgivings about this ‘folklore’. Accordingly, we propose to commemorate his
life and work by criticising it—in a way that we hope is worthy of his memory. But we will also
argue that the folklore contains grains of truth: which we will make precise and justify, using
perturbation theory.

We begin with some illustrative quotations. Thus Jones proposes that

a consequence of the Heisenberg Uncertainty Principle is that we can take seriously the
possibility of the existence of energy non-conserving processes—provided the amount by
which energy is not conserved, Eviolation, exists for a time less than t = ~/2Eviolation’. [4,
p 226]

This folklore is not just a myth of pedagogy or popular exposition. Many excellent textbooks1

make similar comments; such as the classic quantum field theory textbook of Peskin and
Schroeder:

1 As Fermat might say: we have discovered a marvellous number of comments of this kind, which this footnote
is too small to contain. Here are a couple from books about quantum field theory; though one of our main points
will be that the issues are not specific to quantum field theory, but arise already in quantum mechanics. The
first book is about quantum field theory’s philosophical interpretation, the second about its mathematics. Thus
Teller [5, p 148] reports—and we agree—that violation of local energy conservation is ‘customarily excused’ by
the time-energy uncertainty principle; while Folland [6, p 133] writes that, ‘the uncertainty principle allows the
particle and/or quantum to be temporarily ‘off mass-shell’ between the times of emission and absorption or vice
versa’.
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Even when there is not enough energy for pair creation, multiparticle states appear, for
example, as intermediate states in second-order perturbation theory. We can think of
such states as existing only for a very short time, according to the uncertainty principle
∆E ·∆t = ~. As we go to higher orders in perturbation theory, arbitrarily many such
‘virtual’ particles can be created. [7, p 13]

Similarly, in their textbook on general relativity, Hobson et al [8] say that time-energy
uncertainty is responsible not just for virtual particles, but for concrete physical predictions
like Hawking radiation2:

Hawking’s original calculation uses the techniques of quantum field theory, but we can
derive the main results very simply from elementary arguments. ... Pair creation
violates the conservation of energy and so is classically forbidden. In quantum
mechanics, however, one form of Heisenberg’s uncertainty principle is ∆t∆E = ~,
where ∆E is the minimum uncertainty in the energy of a particle that resides in a
quantum mechanical state for a time ∆t. Thus, provided the pair annihilates in a time
less than ∆t = ~/∆E, where ∆E is the amount of energy violation, no physical law
has been broken. [8, §11.11]

Agreed: not everyone endorses this use of time-energy uncertainty to justify particle creation.
In particular, Griffiths [9] is unimpressed:

It is often said that the uncertainty principle means that energy is not strictly conserved
in quantum mechanics-that you’re allowed to ‘borrow’ energy ∆E, as long as you ‘pay
it back’ in a time ∆t ∼ ~/2∆E; the greater the violation, the briefer the period over
which it can occur. There are many legitimate readings of the energy-time uncertainty
principle, but this is not one of them. Nowhere does quantum mechanics license
violation of energy conservation. [9, p 115]

We agree with Griffiths.3 Of course, mass-energy is exactly conserved in an isolated physical
system, in quantum physics no less than classical physics. In quantum theory, the unitary
propagator Ut (a strongly continuous unitary representation of the reals under addition) can be
written Ut = e−itH , where the self-adjoint generator H is the energy. And, for any initial state
ρ that evolves unitarily according to ρt = UtρU

∗
t , the energy expectation value does not change

over time, since H and Ut commute: Tr(ρtH) = Tr(ρU∗t HUt) = Tr(ρH) for all t ∈ R.
Nevertheless, what the folklore says about time, energy, and energy conservation contains

some grains of truth. We will focus on three ideas:

(i) (non-conservation) There is some sense in which ‘energy’ associated with a perturbed
system is not conserved;

(ii) (particle creation) There is some sense in which that non-conservation allows the non-
conservation of particle-number; and

(iii) (shorter times) There is some sense in which more particle creation occurs during shorter
times.

So our aim is to do the exercise of making these statements precise, and verifying them. Our
lesson will be that, in each case, it is not a time-energy uncertainty relation that provides the
wiggle-room to create particles: hence our slogan, ‘time-energy uncertainty does not create

2 There is a sense in which Hawking radiation [10], when viewed as a comparison between a quantum field
theory constructed at past null infinity and one constructed at future null infinity, is indeed associated with
particle creation. However, this is a matter of inequivalent vacua, and so spontaneous symmetry breaking, not of
time-energy uncertainty.
3 Another dissenter is Bunge [11], who gives a short but scathing criticism of understanding virtual particles in
terms of time-energy uncertainty.
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particles.’ The particles are rather best viewed as artefacts of the shifted perspective one adopts
when approximating a physical system using perturbation theory. We will discuss the statements
(i), (ii) and (iii) in Sections 3, 4 and 5, respectively. But we precede this with an overview, Section
2, about perturbation theory, and the way it justifies the idea of a virtual state.

2. The perturbation view of virtual states
For our purposes, a quantum system is a triple (H,A, t 7→ Ut), where H is a separable
complex Hilbert space, A is a von Neumann algebra of linear operators on H, and t 7→ Ut
is a strongly continuous one-parameter unitary representation in A of the group R under
addition. The Hilbert space represents a collection of states; the algebra contains a collection
of operators that represent observables; and the unitary representation provides the dynamics.
By Stone’s theorem, there exists a unique self-adjoint operator H ∈ A (the ‘energy’ operator or
‘Hamiltonian’) such that the dynamics can be written in the form, Ut = e−itH , for all t ∈ R.

Perturbation theory uses a quantum system that is in some way tractable to approximate
a quantum system that is not. For example: the energy H of a Helium atom, which contains
two mutually repulsive electrons, can be approximated by a system whose energy H0 ignores
the mutual repulsion of the electrons. In such examples, one begins with a quantum system
(H,A, t 7→ Ut) and a set of operators {Aλ} ⊂ A parametrised by a real number λ, one value of
which gives the correct, physically real, or at least appropriate, operator of interest:

Aλ = A0 + Vλ. (1)

This set is constructed in such a way that as λ → 0, we get Aλ → A0 in the operator norm.
A0 is called the ‘unperturbed’ operator, and the set Aλ is called a ‘perturbation’. The hope
is both that a physical system can be correctly described by Aλ for some value of λ, and also
that its properties can be accurately approximated using known facts about the more tractable
operator A0. Agreed, the appropriate operator Aλ does not always exist in quantum field theory:
most notoriously, when associated with a series expansion that does not converge. But to keep
matters simple we will set aside this issue, since our main points do not depend on it.

Perturbation theory allows one to approximate various aspects of the operator Aλ when it can
be represented in a power series expansion around λ = 0. That is, one seeks an exact expression
of Aλ of the form,

Aλ = A0 + λ

(
d

dλ
Vλ

) ∣∣∣
λ=0

+
λ2

2!

(
d2

dλ2
Vλ

) ∣∣∣
λ=0

+ · · · (2)

The nth-order approximation of Aλ is by definition the sum of the first n terms in this series. As
n→∞, the series approaches Aλ in the operator norm. A wide class of problems can be solved
by adopting the simple approximation where only the first two terms are calculated. Defining

V := d
dλVλ

∣∣∣
λ=0

this gives what is called a ‘linear’ perturbation:

Aλ ≈ A0 + λV. (3)

The eigenvalue problem for an operator expressed as a linear perturbation can typically be given
an approximate analysis thanks to classic results in perturbation theory.4

A typical way for virtual states to arise in perturbation theory is in its application to the
dynamics. Again: for simplicity we set aside the issue of non-convergent expansions, so that

4 For example, if it is the case that for all λ, Aλ = A0 + λV has a discrete spectrum and commutes with its
adjoint (AλA

∗
λ = A∗λAλ), then by the Mitzkin-Taussky theorem, the eigenvalues of aiλ of Aλ are linear in λ (in

that aiλ = ai0 + λki), and its eigenvectors are analytic functions of λ [12, §2.5]. It is then possible to expand these
eigenvectors around λ = 0 to give an approximation in terms of (usually already-known) eigenvectors of A0.
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the following discussion is straightforward. (Thus we forego discussion of which results can
be recovered for asymptotic series.) Let (H,A, t 7→ Ut) be a quantum system, and consider a
second one-parameter unitary representation t 7→ U0

t . We write H and H0 for their respective
Hamiltonian generators, and refer to the former as the ‘perturbed’ (or ‘interacting’) Hamiltonian,
while the the latter is the ‘unperturbed’ Hamiltonian. We define V := H −H0 and refer to it as
the ‘potential’. Writing Ut = U0

t (U0
−tUt), we expand the term in parentheses as a power series

around t = 0,

Ut = U0
t

(
I + t

d

dt
(U0
−tUt)

∣∣∣
t=0

+
t2

2!

d2

dt2
(U0
−tUt)

∣∣∣
t=0

+ · · ·
)
. (4)

To the extent that t is close to zero and V = H−H0 is small (in the operator norm), the operator
Ut is approximated by summing the first N terms in this series and ignoring the rest [12, §II.3].
Note however that this partial sum of the first N terms is in general not unitary.

Writing U
(n)
t to denote the nth term in the series, the first few orders of approximation can

be calculated by applying the Leibniz rule to the derivatives:

U
(0)
t = U0

t ;

U
(1)
t = −itU0

t V ;

U
(2)
t = t2

2!U
0
t

(
[V,H0]− V 2

)
.

(5)

The virtual states picture arises from imagining that each contribution to the series is
the amplitude of a “scattering event” in its own right. For example, suppose ψa and ψb are
orthogonal eigenvectors of the unperturbed Hamiltonian H0, and that we wish to approximate
the amplitude 〈ψb, Utψa〉 associated with a transition during time t from ψa to ψb. In a first-

order approximation, we replace Ut with the sum of the terms U
(0)
t + U

(1)
t . In a more accurate

second-order approximation, we replace it with U
(0)
t + U

(1)
t + U

(2)
t , and so on. With a little

calculation5, the terms in these approximations are found to be,

〈ψb, U
(0)
t ψa〉 = 0;

〈ψb, U
(1)
t ψa〉 = −iteibt〈ψb, V ψa〉;

〈ψb, U
(2)
t ψb〉 = eibt(a− b)〈ψb, V ψa〉 − eibt〈ψb, V 2ψa〉;

(6)

where a and b are the H0 eigenvalues associated with ψa and ψb, respectively. The zeroth-order
contribution 〈ψb, U (0)ψa〉, viewed as a transition amplitude in its own right, describes an initial
state ψa that never transitions to ψb. The first-order contribution might lead us to say that
the presence of the potential V ‘deflects’ the initial state ψa to ψb with some probability. The
second-order contribution has two terms, the first of which will just get collected together with
the first-order one in the series, and the second of which is a ‘deflection’ by the potential V 2. Of
course, we have not given any reason to view this language as anything more than short-hand;
strictly speaking, each is simply a contribution to a series that approximates 〈ψb, Utψa〉.

Virtual states arise as ‘intermediate states’ in this kind of analysis. In the example just given
of approximating the transition amplitude 〈ψb, Utψa〉, they begin to appear at the level of the

second-order contribution U
(2)
t . Instead of thinking of the second-order term eibt〈ψb, V 2ψa〉 as a

deflection in the potential V 2, let us rewrite it in the form,

eibt〈ψb, V 2ψa〉 = 〈ψb, V eib(t−t
′)ψ′〉〈ψ′, V eibt′ψa〉 (7)

5 Zeroth order: 〈ψb, U (0)
t ψa〉 = eiat〈ψb, ψa〉 = 0. First-order: 〈ψb, U (1)

t ψa〉 = −it〈ψb, U0
t V ψa〉 = −iteibt〈ψb, V ψa〉.

Second-order: 〈ψb, U (2)ψb〉 = 〈ψb, U0
t [V,H0]ψa〉 − 〈ψb, U0

t V
2ψa〉 = eibt(a− b)〈ψb, V ψa〉+ eibt〈ψb, V 2ψa〉.



Mathematical Foundations of Quantum Mechanics - in memoriam Paul Busch

Journal of Physics: Conference Series 1638 (2020) 012005

IOP Publishing

doi:10.1088/1742-6596/1638/1/012005

5

where we define ψ′ := 1
|V ψa|V ψa, and choose any t′ such that 0 < t′ < t. Now, instead of

viewing the transition as going from ψa to ψb in the potential V 2 during a time t, we can view
it as consisting of an intermediate transition from ψa to ψ′ in V during time t′, followed by a
transition from ψ′ to ψb in V during the later time-interval t − t′. The intermediate state ψ′

is an example of a virtual state. As expected, the third-order transitions have a V 3 term that
gives rise to a pair of virtual states, and so on up the series.

One can draw a Feynman diagram for each contribution 〈ψb, U
(n)
t ψa〉 in this series, illustrated

for U (0), U (1), and U (2) in Figure 1. Virtual states appear, beginning in the second-order
diagrams, as states without open endpoints, such as ψ′ in the right-most diagram of the Figure.
This encodes the fact that they are not associated with the measured in-state or out-state in
the scattering experiment associated with this amplitude. However, again: we have given no
reason to view each diagram as anything other than shorthand for a term 〈ψb, U (n)ψa〉 in a series

approximation of the amplitude 〈ψa, Utψb〉 ≈ 〈ψa, U
(0)
t ψb〉+ 〈ψa, U (1)

t ψb〉+ 〈ψa, U (2)
t ψb〉+ · · · .

ψa

V ψa

ψb

V

V ψb

ψa

ψ′

Figure 1.
Feynman diagrams for the first three terms in a perturbation series for 〈ψb, Utψa〉, with
Ut = e−it(H0+V ) and ψa, ψb eigenvectors of H0. The second-order state ψ′ is ‘virtual’.

3. The appearance of energy non-conservation
To sum up: the perturbation view is one of shifting perspectives. We describe a quantum system
(H,A, t 7→ Ut) from the perspective of the nth-order approximation in a perturbation series,
recognising that on this perspective, the system will sometimes appear to deviate from its true
‘perturbed’ dynamics, as well as from the idealised ‘unperturbed’ dynamics.

As it happens, one such deviation is that energy conservation can appear to fail. Thus we
have our first claim:

(i) (non-conservation) There is some sense in which ‘energy’ associated with a perturbed
system is not conserved.

In the context of the virtual states described in the previous section, the ‘energy’ that fails to be
conserved is associated with the idealised Hamiltonian H0 of the unperturbed dynamics. In the
zeroth-order approximation U (0), it is conserved. However, in the first-order and second-order
approximations, it is not, in that there are eigenstates of H0 that are not stationary. This is due
to the fact that for interacting systems with [H0, V ] 6= 0, the unperturbed Hamiltonian is not
stationary, UtH0U

∗
t 6= 0, or equivalently, [H,H0] 6= 0. So this is one thing that could be meant

by saying ‘energy’ is not conserved in the presence of virtual states.
However, in a quantum system (H,A, t 7→ Ut), it is the generator H of the true i.e. perturbed

dynamics Ut that represents the ‘true energy’ of the system, not the idealised Hamiltonian
H0. So, a more physically interesting question is whether H commutes with the approximate
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dynamics given by a partial sum, up to say the Nth term, of the perturbation series, eq. 4 and
5.

Of course, it may happen that for some finite N , we find that
∑N

n U
(n) = Ut, so that

∑N
n U

(n)

is an exact description rather than an approximate one, and the energy H is indeed conserved.
But in general, the approximate dynamics

∑N
n U

(n) is not equal to Ut, indeed is not even unitary;
and H will not be conserved under it.

On the other hand, there is a sense in which energy H for the perturbed dynamics Ut comes
closer to being conserved by the approximate dynamics, the higher the order of approximation.

For as we add more terms, the resulting approximate dynamics
∑

n U
(n)
t better approximates

the true dynamics Ut, at least under appropriate conditions (cf. [12]). More generally, if∑N
n=0 U

(n)
t → Ut in the operator norm as N becomes arbitrarily large, then:6[∑N

n=0 U
(n)
t , H

]
→ 0 as N → +∞, (8)

giving perfect conservation of energy in the limit. This is ironic, in that Peskin and Schroeder [7]
write: ‘As we go to higher orders in perturbation theory, arbitrarily many such ‘virtual’ particles
can be created’, suggesting that energy conservation gets worse with higher order terms [7, p 13].
Agreed: there is ‘more room’ for virtual states in higher-order terms. But this does not mean
that energy conservation gets worse. In general, it gets better as the ‘true’ perturbed energy
becomes more distant (in the operator norm) from the idealised, unperturbed description of the
system.

4. Particle creation
We now turn to the statement of (ii), the particle-number claim. For this we need to add
some notion of particle number to our description. This will consist in a representation of
annihilation (ai) and creation (a∗i ) operators on H for i ∈ Z+, which satisfy [ai, a

∗
j ] = δij and

[ai, aj ] = [a∗i , a
∗
j ] = 0. Let N =

∑
i a
∗
i ai be the ‘particle number’ operator. Taking U0

t as
the unperturbed dynamics associated with no interactions, we will here assume for simplicity
that [N,U0

t ] = 0, and hence that the unperturbed system is one in which this (unperturbed)
particle-number is conserved. (Although much more could be said about number operators in
this context, we here confine ourselves to this simple situation.)

However, if [N,Ut] 6= 0, then particle number will in general not be conserved by the ‘true’
dynamics; and in general, it will not be conserved under the dynamics given by any of the partial-

sum approximations
∑

n U
(n)
t . Agreed, N might be conserved by Ut and-or by an approximate

dynamics. But this will not hold true in general. That is, we have:

(ii) (particle-creation) The dynamics generated by the partial-sum approximation
∑

n U
(n)
t does

not in general conserve the unperturbed particle number N .

5. Shorter times
We now turn to our final claim:

(iii) (shorter times) There is some sense in which more particle creation occurs during shorter
times.

Here we enter the realm of the time-energy uncertainty principle—or, rather, principles—that
are invoked by the cavalier textbook tradition with which we began. These principles are
surveyed by Busch [1–3]. For us, there are two main points to make, corresponding to two broad

6 In general, ‖An−B‖ → 0 implies the commutator ‖[An, B]‖ → 0, since ‖[An, B]‖ = ‖(An−B)B+B(B−An)‖ ≤
‖An −B‖‖B‖+ ‖B‖‖B −An‖ = 2‖B‖‖An −B‖.
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understandings of time-energy uncertainty. The first point is not connected to perturbation
theory: it is really a warning against an untenable understanding of time-energy uncertainty.
The second point will be more positive, in that it will vindicate the shorter-time claim (iii).

The first point concerns what Busch [3] suggests one should call ‘external time’ (or in [1]:
‘pragmatic time’): namely, time as measured by clocks that are not coupled to the objects
studied in the experiment. So in this role, time specifies a parameter or parameters of the
experiment: e.g. an instant or duration of preparation or of measurement, or the time-interval
between preparation and measurement. In this role, there seems to be no scope for uncertainty
about time. And indeed, our first point here is a warning—following Busch [1]. For as Busch
discusses, there is a tradition (deriving from the founding fathers of quantum theory) of an
uncertainty principle between:

(1) the duration of an energy measurement; and

(2) either the range of an uncontrollable change of the measured system’s energy, or the
resolution of the energy measurement, or the statistical spread of the system’s energy.

To give a little more detail: Busch [1, §1-2] describes how various authorities (including
Landau and Peierls [13] and Landau and Lifshitz [14, §44]) endorse at least one of the following
claims:

(P ) An energy measurement of duration ∆t leads to an uncontrollable and unpredictable
change of the (previously sharply defined) energy by an amount of the order ∆E such that
∆E.∆t ≥ ~; so that there is no short-time reproducible (first kind) energy measurement.

(P ′) An energy measurement of duration ∆t must carry an inaccuracy ∆E such that the
uncertainty relation ∆E.∆t ≥ ~ is satisfied.

Busch argues, and we agree, that Aharonov and Bohm [15] refute this tradition; (see [1],
especially §4, and [3, §3.1]). They give a simple model of an arbitrarily accurate and arbitrarily
rapid energy measurement, where in short: two particles are confined to a line and are both
free, except for an impulsive measurement of the momentum and so energy of the first by the
second, with the momentum of the second being the pointer-quantity.7 This leaves little room
for ‘energy uncertainty’ to develop during brief (in external time) energy measurements, either
in terms of uncontrollable changes in energy, or in terms of measurement inaccuracy.

Our second, more positive, point concerns what Busch [3] suggests one should call ‘intrinsic
time’ (or in his [1]: ‘dynamical time’): namely, a dynamical variable of the target system itself
whose function is to measure the time, such as the position of a clock’s dial relative to its face.
Busch suggests that in principle, every non-stationary quantity A ∈ A and density operator
state ρ defines a characteristic time interval, τρ(A), in which the expectation value changes
‘significantly’. For example: in the Schrödinger representation on the space of L2(R) functions,
if Aψ(x) := Qψ(x) = xψ(x) for all ψ(x) in the domain of Q and if ρ = Eψ is the projection
associated with a wave packet ψ(x), then τρ(A) could be defined as the time interval required
for the bulk of the wave packet to shift by its width—in some sense of ‘width’.

Various definitions of such a time interval are available. We will choose what is sometimes
called the ‘characteristic time’ associated with the dispersion of an operator-state pair. This
obeys what is probably the best-known time-energy uncertainty principle for intrinsic times: the
Mandelstam-Tamm uncertainty principle.

7 Note that Busch argues that a proper analysis and vindication of Aharonov and Bohm’s refutation uses
positive operator-valued measures (POVMs) to describe measurement outcomes, a notion of physical quantity
that generalises projection-valued measures (PVMs); this follows the tradition of Ludwig [16,17], and is developed
at book-length by Busch et al [18].
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One arrives at it for a quantum system (H,A, t 7→ Ut) by combining three ideas: (a) the
Heisenberg equation of motion for an operator A ∈ A with A(t) := UtAU

∗
t ,

i~ d
dtA(t) = [H,A(t)]; (9)

(b) the Heisenberg-Robertson uncertainty principle8, that for any quantities A,B ∈ A, and
density operator (quantum state) ρ,

∆ρA∆ρB ≥
1

2
|Tr(i[A,B]ρ)| ; (10)

and (c) the definition of a characteristic time for an operator A that does not commute with the
unitary dynamics t 7→ Ut, and for a time-independent state ρ that is not an eigenstate of A:

τρ(A) :=
∆ρA

| ddt Tr(A(t)ρ)|
, (11)

i.e. the time it takes for the expectation value of A to change by its standard deviation. From
these definitions it immediately follows that,

τρ(A)∆ρ(H) ≥ 1

2
~, (12)

whenever [A,H] 6= 0 and ρ is not an eigenstate of H.
This principle can be applied in a perturbation theory analysis of a quantum system

(H,A, t 7→ Ut) with Hamiltonian generator H and an unperturbed Hamiltonian H0, in two
ways, so as to give two construals of the shorter times claims (iii). The first way puts H0 for A
in eq. 12, while the second way puts a number operator N for A.

So first set A := H0 in eq. 12, to get: τρ(H0)∆ρ(H) ≥ 1
2~. Suppose that ∆ρH0 is very small,

corresponding to a state ρ that is ‘peaked’ in unperturbed energy, so that the characteristic time
τρ(H0) is comparatively small. The Mandelstam-Tamm uncertainty principle then implies that
∆ρH is comparatively large, and hence that the spread of the system’s true (unperturbed) energy
is large. In this sense, a short characteristic time and a peaked distribution of the unperturbed
energy is associated with a large uncertainty of the system’s true energy. Thus we have one
general way to construe the shorter-times claim (iii) above. Agreed, this is a construal that uses
the unperturbed Hamiltonian H0, not an (unperturbed) number operator N .

And finally: a related construal of claim (iii) can be given, about a particle number opera-
tor N associated with the unperturbed dynamics i.e. that satisfies [N,H0] = 0; so that under
unperturbed dynamics, this particle number is conserved. Such an operator will typically not
be conserved by the true dynamics, in that [H,N ] 6= 0. Thus let us suppose now that ρ is a
state for which the true i.e. perturbed energy H is peaked, in that ∆ρH is small, and hence
(eq. 12) that the characteristic time (under the true i.e. perturbed dynamics) τρ(N) is large.

Then, the larger | ddt Tr(N(t)ρ)| is, corresponding to a fast rate of change of the expectation
value of N in the true dynamics, the larger the spread ∆pN must be, in order to guarantee

that τρ(N) := ∆ρN/| ddt Tr(N(t)ρ)| (cf. eq. 11) is sufficiently large. So this construal of claim
(iii) amounts to: ‘If the perturbed energy H is peaked, and the expectation value of N changes
fast (‘short times’), then N has large spread (‘non-negligible amplitudes for values far from the
expectation value’)’.

To conclude: we hope to have shown that with a little Buschian wisdom, one can recover some
grains of truth from some cavalier statements in the textbook tradition. May Paul’s legacy
continue to inspire our community to emulate his craftsmanship and creativity.

8 Cf. [19, Theorem 8.1.2].
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[19] Blank J, Exner P and Havĺıček M 2008 Hilbert Space Operators in Quantum Physics (Dordrecht: Springer)


