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1 Introduction

Machine learning is a scientific discipline that can be divided into two

main branches: supervised machine learning and unsupervised machine

learning. Generally speaking, an algorithm is supervised when it learns

to make predictions based on examples. For instance, an algorithm can be

trained to predict y given x based on several instances of (x,y) vectors.

In a supervised setting, one of the main challenges is to avoid a phe-

nomenon known as overfitting, i.e., to avoid choosing models that make

poor predictions on data that have never been used before even though

they make excellent predictions with the data used to train them. One

of the key characteristics of overfitting models is that they are too com-

plex. They have too many adjustable (or effective) parameters (Rochefort-

Maranda 2016). This fact has led some philosophers to study the impor-

tance of parametric simplicity in model selection (See Sober 2002; Forster

and Sober 1994; Forster 2007; Hitchcock and Sober 2004).

In unsupervised contexts however, things are fairly different. There is

no such thing as ”learning from examples” or ”overfitting models”. That

is because we do not make predictions when we use unsupervised algo-

rithms. This does not mean that parametric simplicity is not important. It

just means that it takes a different form. In this paper, we aim to show just

how simplicity matters in such contexts. This is important because unsu-

pervised machine learning algorithms have barely received any attention

in philosophy. Yet, there is a direct link between simplicity and truth in un-

supervised contexts that we do not find in their supervised counterparts.

This has thus far evaded philosophical discussions on simplicity.
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Unsupervised algorithms are mainly used to find geometrical shapes

within a data set. This is the truth that we are aiming for. We show how

those spatial structures, if they exist, can be found with the help of Ock-

ham’s razor. The resulting groups can be used for various ends (e.g., mar-

ket segmentation, classification of diseases, or species identification).

There are various kinds of clustering algorithms and each comes with

its own challenges. But here we will focus on one popular algorithm called

the K-means algorithm. It is fairly easy to grasp, it is used in current ma-

chine learning practice (e.g., Samanta and Khan 2018), and it shows the

importance of simplicity in unsupervised settings. By the same token, we

will also show how other epistemic virtues, such as theoretical coherence,

makes a difference in cluster selection.

The main point of this paper is to underscore the link between paramet-

ric simplicity and truth in an unsupervised context. We shall also show

how dimensional simplicity, as it is defined in Rochefort-Maranda 2016

can help with that goal. The topic of this paper is not the K-means algo-

rithm or its possible extensions (like the sparse, fuzzy or kernel K-means).

The K-means algorithm is taken as a mere case study to make a philosoph-

ical point -one that has evaded philosophers so far.

This paper contains two main sections. In the first section, we give an

introduction to the K-means algorithm and we explain how we can choose

the number of clusters. We show how simplicity matters for this task and

we expound on the link between simplicity and truth. This link is absent

in supervised contexts and this is why it is valuable to bring the philo-

sophical discussion to the unsupervised side of machine learning. In the
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second section, we underscore the weaknesses of the K-means algorithm

and explain how theoretical coherence and practical concerns play a cru-

cial role in determining the final clusters, regardless of the algorithm we

decide to use.

2 The K-means Algorithm and the Truth

K-means is an iterative algorithm that partitions each observation of a data

set into a predetermined number of clusters. For example, if we want to

create 8 clusters (K=8), then the algorithm will created 8 non-overlapping

sets and each observations will belong to one and only one of those sets.

The mathematical implementation of this algorithm is expounded here.

The algorithm can be implemented with three main steps (James et al.

2013, p.388). Variations and sophistications exist but here is a typical/basic

description.

1. Specify the number of groups K that we want to create.

2. Randomly assign a group to each observation.

3. Repeat the following two steps until the assignment does not change.

(a) Assign each observation to the closest centroid.

(b) For each cluster K, compute a mean.

In fact, the algorithm aims to find the K clusters such that the Euclidean

distances between every two points inside each cluster is minimal. In

other words, the algorithm aims to minimise the within cluster variance.
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This concept can be defines as follows where K is the number of clusters,

C is a cluster, and p is the number of features (clustering variables).

minimise
C1,C2,...,Ck

{
K

∑
k=1

1
|Ck| ∑

i,i′∈Ck

p

∑
j=1

(xij − xi′ j)
2}

The formula above is called a cost function. By looking to minimise

this function, the algorithm is therefore ideal to create spherical shaped

clusters of similar sizes and similar density ( SeeFahim et al. 2008). Know-

ing this much, we also know that the k-means algorithm is a perfect tool

to find such geometrical structures in a dataset. If this is the truth that we

are looking for, then this is the algorithm to use. In other words, this algo-

rithm will label truthfully each observations in our dataset if the dataset is

made of spherical shaped clusters of similar sizes and similar density.

When we use a clustering algorithm with the purpose of finding geo-

metrical structures, we need to make such an assumption right from the

beginning. This will determine the choice of the clustering algorithm.

Whether or not this is the right choice will usually depend on how well

we can interpret the clusters (See section 3).

Different algorithms are able to find different kinds of geometric struc-

tures. Although we are now discussing the k-means algorithm, the au-

thors of this paper are fully aware that there are other clustering algo-

rithms that can latch onto different geometric shapes.

Having thus decided on the k-means algorithm, we now need to spec-

ify the number of clusters K before we can even run the algorithm, which

brings the question of how to chose K in the first place. If K=8, the algo-

rithm will create 8 clusters as long as there are at least 8 observations. But
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it could also create 7 or 6 clusters. We need to find the true number of

clusters with spherical shapes of similar size and similar density.

2.1 How to Choose K: Simplicity and Its Link with Truth

In this section we shall discuss three adequate ways to solve this problem

and explain how parametric simplicity plays a crucial role. I will show

how we need to take into account parametric simplicity if we want to find

all the clusters of spherical shapes with similar size and similar density

(the truth).

2.1.1 The Elbow Method

A naive attempt at solving this problem might be to choose the number of

clusters such that the within cluster variance is the smallest possible. Un-

fortunately, that variance inevitably diminishes as the number of clusters

K increases (in the extreme case where there is one observation per cluster,

there is no variance).

A better idea, and one that is used in practice, is to plot the within clus-

ter variance in function of the number of clusters and look for an inflexion

point (for the ”elbow”). In other words, the idea is to look for the smallest

number of clusters that is associated with a sharp drop in within cluster

variance.

Here is an example taken from a toy dataset that we have created. It

is important to use a toy dataset in this context since we aim at showing

that we can truthfully label observations with simplicity and the k-means
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algorithm under the assumption that those observations belong to clusters

of spherical shapes with similar size and similar density.

Figure 1: Toy Dataset

Figure 1 show three obvious groups. By using a K-means algorithm

and by plotting the within cluster variance from k=1 to k=15, we can ob-

tain the results shown in Figure 2.
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Figure 2: Within Cluster Sum of Squares in Function of the Number of Clusters

As we can see, the within cluster variance decreases with k. However,

the point of inflection (the smallest number of clusters that is associated

with a sharp drop in within cluster variance) is found for k=3. This sug-

gests that there are 3 groups (surprise!) and we can see the result of the

clustering with the K-means algorithm in Figure 3.
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Figure 3: Final Clustering with k=3. The colors represent the clustering done by

the algorithm.

The search for a point of inflexion in a graph like the one pictured

in Figure 2 shows the importance of parametric simplicity for finding all

the clusters of spherical shapes with similar size and similar density (the

truth). Parametric simplicity here is defined by the number of parameters

that an algorithm is trying to adjust by using a cost function. The less pa-

rameters we have to adjust, the simpler is the result. As the elbow method

shows, if we want to find the true number of clusters of spherical shapes

with similar size and similar density in the dataset, we need to find the
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simplest clustering (defined in terms of parametric simplicity) such that

any further minimisation of the cost function would be an artefact of the

complexity (defined in terms of parametric simplicity) of the clustering.

The more clusters we try to fit onto a data set, the lower will be the cost

function that we try to minimise with the K-means algorithm (see p.5).

However, we will fail to latch onto real structures if we ask the algorithm

to find too many clusters. In this context, Ockham’s razor is used in a way

that makes sure that we will not specify more clusters that we need to, in

order to minimise adequately the cost function.

Of course here there are only 3 clusters in the toy dataset. What if we

had 100 clusters instead? Would we not end up choosing 100 parameters

such that simplicity would not matter? The answer is no. 100 would be

the smallest number of parameters (e.g. the simplest clustering) such that

any further minimisation of the cost function would be an artefact of the

complexity of the clustering.

The argument is this: If we want to find the true number of clusters of

spherical shapes with similar size and similar density in a dataset with the

k-means algorithm, we need to make sure that the number of parameters

that we are trying to adjust is minimal such that any further minimisation

of the cost function would be an artefact of the complexity of the cluster-

ing. The true (finite) number of clusters can be as large as one wishes.

2.1.2 The Gap Statistic and Cross-validation

Now, the elbow method is quite rudimentary. We can use other methods to

choose the correct number parameters, such as maximising the Gap Statis-
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tic or a cross-validation score. But the argument for simplicity remains the

same. If we want to find the true number of clusters of spherical shapes

with similar size and similar density with the k-means algorithm, we need

to make sure that the number of parameters that we are trying to adjust is

minimal such that any further minimisation of the cost function (See p.5)

would be an artefact of the complexity of the clustering.

The Gap Statistic was first developed in 2000 by Tibshirani, Whalter,

and Hastie (Tibshirani et al. 2001). Give that D is a Euclidean distance, the

statistic is defined as follows:

Dr = ∑
i,i′∈Cr

Dii′

Wk =
k

∑
r=1

1
2nr

Dr

Gapn(k) = E∗n{log(Wk)} − log(Wk)

E∗n denotes expectation under a sampling of size n from a reference dis-

tribution (uniform). Intuitively, the Gap statistic measures the distance be-

tween a given clustering and the clustering that we would have obtained

under a reference distribution such as the uniform distribution. The larger

the distance, the better the clustering. However, a large Gap can be an

artefact of the complexity of the clustering. Therefore, it is recommended

to choose the smallest number of clusters such that its corresponding Gap

statistic is larger than the next Gap statistic minus its standard deviation
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(Tibshirani et al. 2001, p.415). Once again, we can see the importance of

parametric simplicity.

If we plot the Gap statistic and it’s variance for different number of

clusters on the toy dataset, here is what we obtain: (The choice is clear.

There are 3 clusters in the dataset.)

Figure 4: Gap Statistic in Function of the Number of Clusters applied on the Toy

Dataset.

We could also compute a cross-validation score, to choose the right

number of clusters. Cross-validation in an unsupervised context comes in

many shapes and forms (See Wang 2010 and Tibshirani and Walther 2005).

Here is one way to do it as defined in Wang 2010 :
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1. Divide the data set into three: one validation set, two training sets.

2. Cluster the two training sets separately with the same clustering al-

gorithm and the same number of clusters K.

3. For each training set, use the centers found with the clustering algo-

rithm to cluster the observations in the validation set. This will result

into two different sets of clusters containing only the observations of

the validation set

4. We can measure the stability of the clustering by counting how many

pairs of observations are clustered together in one set of clusters but

not in the other. The more pairs we find, the least stable is the clus-

tering.

5. Find the optimal number of clusters K such that the clustering dis-

plays the most stability.

6. Repeat the experiment. Choose the number of clusters K that is voted

the optimal number of clusters most of the time.

When we use such a technique, we also find 3 clusters in the toy dataset.

Any other number of clusters is less stable. This is a direct consequence of

the fact that a better minimisation of the cost function described on p.5 is

an artefact of the complexity of the clustering.

2.2 Unsupervised VS Supervised Contexts

In a supervised learning scenario, we need parametric simplicity if we

want to have a good predictive model. That kind of simplicity is necessary
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to reach the goal of predictive accuracy. But even if we find the best pre-

dictive model, it does not mean that we will find the true model. A good

predictive model does not imply that the model is true or close to the truth

in any way. Simple models can be false and make excellent predictions. In

fact, they can make better predictions than the true model. That is why

some have underscored the gap between parametric simplicity and truth.

Parametric simplicity in supervised context aim for predictive accuracy,

not truth.

Perhaps the most interesting of the standard arguments in fa-

vor of simplicity is based upon the concept of ’overfitting’ [...]

although this argument is sound and compelling, so far as us-

ing an equation for predictive purposes is concerned, it is also

irrelevant to the question at hand, which concerns finding the

true theory rather than using a false theory for predictive pur-

poses (Kelly 2007a, p.113).

On the other hand, in an unsupervised context like the one presented

above, we need parametric simplicity if we want to have a chance at dis-

covering specific geometric shapes within our dataset. Parametric sim-

plicity is essential for the algorithm to latch onto true structures (if they

exist). That is what sets apart parametric simplicity in unsupervised con-

text. The idea that we wish to underscore here is that parametric sim-

plicity, when using the K-means algorithm, is not an indication of truth

but the methodological principle that has been explained in details here is

truth conducive.
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The idea is not that we can find real kinds with the K-means algorithm

and Ockham’s razor. This is a totally different question that is addressed in

(Hennig 2015). In this paper, we are talking about finding true patterns in-

side the data set. Whether or not those patterns point to something ”real”

or ”constructed” is a different matter.

”Is a set of young millennials, living with their parents and who like to

buys clothes online a natual or a constructed kind?” is not the type of ques-

tion that we are interested in. What we are interested in here is whether or

not the representation of those individuals inside a data set forms a spe-

cific structure of points in space and whether the K-means algorithm can

truly ”catch” that structure. We have shown that the algorithm can if we

pay attention to parametric simplicity.

What are those true patterns? They are geometrical shapes such as

spherical shaped clusters of similar sizes and similar density. If those spe-

cific clusters are in our dataset, the k-means algorithm will find them only

if we pay attention to parametric simplicity as we try to minimise the cost

function associated with that algorithm:

minimise
C1,C2,...,Ck

{
K

∑
k=1

1
|Ck| ∑

i,i′∈Ck

p

∑
j=1

(xij − xi′ j)
2}

2.3 Simplicity Strikes Again

Besides parametric simplicity as defined by the number of clusters K that

we choose to partition our data with the K-means algorithm, we must also

be parsimonious with the number of variables that we choose in order to
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partition the data. This is sometimes referred to as dimensional simplicity

(Rochefort-Maranda 2016). Not every variable in a data set are useful in

order to cluster specific shapes in a dataset. Some of them might just add

meaningless noise.

This is why another algorithm, called sparse k-means, can be used

when we work in high dimensions (Witten and Tibshirani 2010). It is an

extension of the K-means algorithm with an emphasis on the importance

of dimensional simplicity.

The idea behind this algorithm is quite simple, as we previously men-

tioned, K-means tries to minimise the within cluster sum of squares. This

is equivalent to maximising the between cluster sum of squares (BCSS).

BCSS =
p

∑
j=1

(
n

∑
i=1

(xij − µj)
2 −

K

∑
k=1

∑
i∈Ck

(xij − µkj)
2)

Now we can assign weights wj to each variables as we try to maximise

BCSS.

max
C1...Ck,w

{
p

∑
j=1

wj(
n

∑
i=1

(xij − µj)
2 −

K

∑
k=1

∑
i∈Ck

(xij − µkj)
2)}

||w||2 ≤ 1

||w||1(norm1) ≤ s

wj ≥ 0∀j

The idea here is that unimportant variables will have no or very little

weight such that we can eliminate them from the clustering procedure.
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This will simplify and hopefully improve the quality of the clustering.

This is yet another way that simplicity can help an algorithm to find exist-

ing geometrical shapes in the dataset.

3 The Weaknesses of the K-means Algorithm and

the Importance of Theoretical Coherence and

Usefulness

So far, the argument for simplicity when using the k-means algorithm as

been that we need to pay attention to it if we wish to find spherical shaped

clusters of similar sizes and similar density. But we normally do not know

if there are such shapes in the dataset because we are in an unsupervised

context. The K-means algorithm performs rather poorly when the clusters

have, for example, an elongated shape like the ones presented in Figure 5
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Figure 5: Elongated Clusters: The colors represent the clustering done by the

algorithm with k=3

Other algorithms such as the EM (expectation-maximization) algorithm

and the kernel K-means clustering (and many other algorithms), can out-

perform K-means in that respect but the problem is that it is usually impos-

sible to visualise the clusters that we have produced in order to validate

the performance of any clustering algorithm. In the previous examples

it was easy to do so because there were only 2 clustering variables such

that we could know in advance if the data could be separated into groups

and if the algorithm could find the real structures. However, in high di-
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mensional spaces, we cannot visually validate the result of a clustering

algorithm and we do not even know how many clusters there are.

That is why we always have to study the properties of a given cluster-

ing to see if the clusters are interpretable and useful. Theoretical coherence

and usefulness will ultimately determine the choice of a given clustering

and provide evidence as to whether or not we have captured true struc-

tures (specific geometrical shapes) with a method like K-means.

As stated in a study on clustering fMRI time series with the K-means

algorithm, the authors point out that the choice of the number of clusters

must be justified by the interpretation of the clusters: ”When the chosen

number is not reflected in the data, the results might end up being essen-

tially meaningless”(Goutte et al. 1999, p.300).

In fact, there might be more than one possible grouping with one data

set Looking at figure 4, for example, we could decide to group the two

elongated clusters together since they are so close. We might not need to

make very detailed groups. Ultimately, we will chose the one that suits

our practical goals.

The difficulty with unsupervised clustering is that there is a

huge number of possibilities regarding what will be done with

it and (as yet) no abstraction akin to a loss function which dis-

tils the end-user intent. Depending on the use to which a clus-

tering is to be put, the same clustering can either be helpful or

useless. (Guyon et al. 2009, p.66).

In a market segmentation project for example, perhaps it is more use-

ful to group individuals of similar generations, jobs and location and not
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individuals with the same ethnic background and salary range. However,

interpretability and practicality are no guarantee that we have carved the

data at its joints. Being able to use and give an interpretation to a particu-

lar set of clusters is not a substitute for the quantitative work that has been

presented in section 2. If we wish for our work to be replicable, then it has

to be grounded in real structural properties of the data.

4 Conclusion

In this paper we have expounded on a neglected side of machine learning

within the philosophical literature which is called ”unsupervied machine

learning”. Unlike their supervised counterparts, unsupervised algorithms

are not evaluated with respect to their predictions. They are usually as-

sessed in function on the quality and usefulness of the clusters that they

produce.

We have shown that simplicity (parametric and dimensional), coher-

ence and usefulness are all part of the epistemic toolbox that is used in

order to determine the quality of unsupervised algorithms such as the K-

means algorithm. This has given us the opportunity to underscore the

link between parametric simplicity, dimensional simplicity, and truth in

unsupervised contexts. The main take-away message is the following:

• Parametric and dimensional simplicity are not indicators of truth but the

methodological principle that urges us to pay attention to such notions of

simplicity is truth conducive. The truth that we are looking for are spe-

cific geometrical shapes and we know which algorithm can find which shape
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provided that we pay attention to parametric and dimensional simplicity.

Its meaning and justification have been expounded in details in section 2.

Ockham’s razor can be used in a way that makes sure that we will not

specify more clusters (parameters) that we need to in order to minimise a

cost function. This is essential if we want this algorithm to latch onto real

structures. It can also be used in order to prevent the clustering of noise by

cleverly reducing the number of clustering variables. We have made this

point by showing how the sparse K-means algorithm works.
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